第1章 数字逻辑概论
第一章数字逻辑基础(F)
2 (N )d b 1 2 0 b 2 2 1 .. .b . (n . 1 ) .2 . (n 2 ) b n 2 (n 1 ) 2 2 (N )d b 2 2 0 b 3 2 1 .. .b . (n . 2 ). 2 . (n 3 ) b (n 1 ) 2 (n 2 )
算;也可用来表示对立的逻辑状态,这时的“0”和 “1”,不是数值,而是逻辑0和逻辑1。
逻辑“0”和逻辑“1”表示彼此相关又互相对立 的两种状态。例如,“是”与“非”、“真”与 “假”、“开”与“关”、“低”与“高”等等 。 两种对立逻辑状态的逻辑关系称二值数字逻辑,简 称为数字逻辑。
在电路中,可以方便地用电子器件的开关特 性来实现二值数字逻辑,即高、低电平。
周期性 T
① 周期T(频率f):两个相邻脉冲间的时间间隔。 ② 脉冲宽度tW:脉冲波形的宽度,表示脉冲的作用
时间。 ③ 占空比 q: 脉冲宽度占整个周期的百分比。
q(%)= (tW / T)×100%
占空比为50%矩形脉冲,称为方波。
(5)实际的数字信号波形:
O.9Um O.5Um O.1Um tr
第一章 数字逻辑概论 ——§1数字电路和数字信号
2、数字技术的应用
(1)数字技术应用的典型代表是电子计算机,“数字革命”: 从模拟到数字化,用在广播电视、通信、控制、仪表等
(2)照相技术 胶片成像技术到数字照相技术 JPEG——静止图象压缩编码标准
(3)视频记录设备 录像带 VCD (MPEG1压缩方式) DVD (MPEG2)
逻辑电平:表示在电路中,由电子器件的开关特性形成
的离散信号电压或数字电压。是物理量的相对表 示
CMOS器件逻辑电平与电压范围的关系
数字电路第1章 数字逻辑概论
H 16 例如:(349)16=3×162+4×161+9×160=(841)10 (3AB.11)16=3×162+A×161+B×160+1×16-1+1×16-2 =(939.0664)10 基数:16 进位:逢十六进一
写法:(H)16 或
( H )16
i i m i
n 1
三、几种常用的进制之间的转换
2 25 2 12 余1 2 6 余0 2 3 余0 2 1 余1 0 余1 ∴ (25)10=(11001)2
最高位
三、几种常用的进制之间的转换
2、十——二转换 (2) 小数部分的转换——乘2取整法(基数乘法)
0.6875 × 2 1.3750 × 2 0.750 × 2 1.50 × 2 1.0 最高位
三、几种常用的进制之间的转换
2、十——二转换 (2) 小数部分的转换——乘2取整法(基数乘法) 例如: (75.5)10=( 113.4 )8
8 75 8 9 8 1 0
余3 余1 余1
0.5 ×8 4.0
取4
三、几种常用的进制之间的转换 3、二——八转换
将二进制数的整数部分由小 数点向左,每三位分成一组。最 后不足三位的,前面补零。小数 部分的由小数点向右,每三位分 为一组。最后不足三位的,后面 补零。然后,把每三位二进制数, 用对应的八进制数码代替即可。 二进制数与对应的八进制数
三、几种常用的进制之间的转换
2、十——二转换 (2) 小数部分的转换——乘2取整法(基数乘法)
说明: (1)有些十进制的小数,不能用有限位的二进制小数表示 时,可根据需要,表示到一定位数。 (2)对于具有小数和整数两个部分的十进制数,可以分别 把整数和小数分别换算成二进制数的表示形式,然后相加起 来即可。 例:(215.6531)10≈(11010111.101001)2 (3)基数乘除法也适用于将十进制数转换成其它进制数。
《数字逻辑教案》
《数字逻辑教案》word版第一章:数字逻辑基础1.1 数字逻辑概述介绍数字逻辑的基本概念和特点解释数字逻辑在计算机科学中的应用1.2 逻辑门介绍逻辑门的定义和功能详细介绍与门、或门、非门、异或门等基本逻辑门1.3 逻辑函数解释逻辑函数的概念和作用介绍逻辑函数的表示方法,如真值表和逻辑表达式第二章:数字逻辑电路2.1 逻辑电路概述介绍逻辑电路的基本概念和组成解释逻辑电路的功能和工作原理2.2 逻辑电路的组合介绍逻辑电路的组合方式和连接方法解释组合逻辑电路的输出特点2.3 逻辑电路的时序介绍逻辑电路的时序概念和重要性详细介绍触发器、计数器等时序逻辑电路第三章:数字逻辑设计3.1 数字逻辑设计概述介绍数字逻辑设计的目标和方法解释数字逻辑设计的重要性和应用3.2 组合逻辑设计介绍组合逻辑设计的基本方法和步骤举例说明组合逻辑电路的设计实例3.3 时序逻辑设计介绍时序逻辑设计的基本方法和步骤举例说明时序逻辑电路的设计实例第四章:数字逻辑仿真4.1 数字逻辑仿真概述介绍数字逻辑仿真的概念和作用解释数字逻辑仿真的方法和工具4.2 组合逻辑仿真介绍组合逻辑仿真的方法和步骤使用仿真工具进行组合逻辑电路的仿真实验4.3 时序逻辑仿真介绍时序逻辑仿真的方法和步骤使用仿真工具进行时序逻辑电路的仿真实验第五章:数字逻辑应用5.1 数字逻辑应用概述介绍数字逻辑应用的领域和实例解释数字逻辑在计算机硬件、通信系统等领域的应用5.2 数字逻辑在计算机硬件中的应用介绍数字逻辑在中央处理器、存储器等计算机硬件部件中的应用解释数字逻辑在计算机指令执行、数据处理等方面的作用5.3 数字逻辑在通信系统中的应用介绍数字逻辑在通信系统中的应用实例,如编码器、解码器、调制器等解释数字逻辑在信号处理、数据传输等方面的作用第六章:数字逻辑与计算机基础6.1 计算机基础概述介绍计算机的基本组成和原理解释计算机硬件和软件的关系6.2 计算机的数字逻辑核心讲解CPU内部的数字逻辑结构详细介绍寄存器、运算器、控制单元等关键部件6.3 计算机的指令系统解释指令系统的作用和组成介绍机器指令和汇编指令的概念第七章:数字逻辑与数字电路设计7.1 数字电路设计基础介绍数字电路设计的基本流程解释数字电路设计中的关键概念,如时钟频率、功耗等7.2 数字电路设计实例分析简单的数字电路设计案例讲解设计过程中的逻辑判断和优化7.3 数字电路设计工具与软件介绍常见的数字电路设计工具和软件解释这些工具和软件在设计过程中的作用第八章:数字逻辑与数字系统测试8.1 数字系统测试概述讲解数字系统测试的目的和方法解释测试在保证数字系统可靠性中的重要性8.2 数字逻辑测试技术介绍逻辑测试的基本方法和策略讲解测试向量和测试结果分析的过程8.3 故障诊断与容错设计解释数字系统中的故障类型和影响介绍故障诊断方法和容错设计策略第九章:数字逻辑在现代技术中的应用9.1 数字逻辑与现代通信技术讲解数字逻辑在现代通信技术中的应用介绍数字调制、信息编码等通信技术9.2 数字逻辑在物联网技术中的应用解释数字逻辑在物联网中的关键作用分析物联网设备中的数字逻辑结构和功能9.3 数字逻辑在领域的应用讲述数字逻辑在领域的应用实例介绍逻辑推理、神经网络等技术中的数字逻辑基础第十章:数字逻辑的未来发展10.1 数字逻辑技术的发展趋势分析数字逻辑技术的未来发展方向讲解新型数字逻辑器件和系统的特点10.2 量子逻辑与量子计算介绍量子逻辑与传统数字逻辑的区别讲解量子计算中的逻辑结构和运算规则10.3 数字逻辑教育的挑战与机遇分析数字逻辑教育面临的挑战讲述数字逻辑教育对培养计算机科学人才的重要性重点和难点解析重点环节一:逻辑门的概念和功能逻辑门是数字逻辑电路的基本构建块,包括与门、或门、非门、异或门等。
《电子技术基础》第1章数字逻辑概论
101 100
第 i 位的位权为 10i
每一数码处于不同的位置(数位)时,它所代 表的数值不同,这个数值称为位权值 。
0.32 = 310-1 + 210-2 位权: 10-1 10-2
第 i 位的位权为 10i
任意十进制数可表示为:
+
(N)D = Ki · 10i
i =- 其中: i -- 第 i 位 (为 - 到 + 的整数) Ki -- 第 i 位 的系数 10i --第 i 位的位权
周期
周期性数字波形
占空比 Q = tW / T
3、实际的数字信号(脉冲)波形及主要参数
上升时间tr 和下降时间tf -- 从脉冲幅值的10%到90% 上升下 降所经历的时间( 典型值ns )。
脉冲宽度 ( tw ) -- 脉冲幅值的50%的两个时间所跨越的时间。
周期 ( T ) -- 表示两个相邻脉冲之间的时间间隔。 占空比 Q -- 表示脉冲宽度占整个周期的百分比。
位权: 23 22 21 20
(0.11)B = 1 2-1 + 1 2-2 = (0.75)D
位权:
2-1
2-2
三. 二 -- 十进制之间的转换
1. 二进制转换为十进制
规则:把二进制数按位展开,然后将所有各项的数相加
,即得到等值的十进制数。
(1011.11)B = 1 23 + 0 22 + 1 21 +1 20 + 1 2-1 + 1 2-2 = (11.75)D
二. 二进制 (Binary)
1)由0,1两个数字组成。 2)逢2 进1,借1当2 。
例如:1 + 1 = 10 = 1×21 位权: 21
电子技术基础数字部分第六版答案完整版
电子技术基础数字部分第六版答案完整版
康华光《电子技术基础-数字部分》(第5版)笔记和课后习题(含考
研真题)详解
第1章 数字逻辑概论
1.1 复习笔记
一、模拟信号与数字信号
1.模拟信号和数字信号
(1)模拟信号
在时间上连续变化,幅值上也连续取值的物理量称为模拟量,幅值上也连续取值的物理量称为模拟量,表示模表示模
拟量的信号称为模拟信号,处理模拟信号的电子电路称为模拟电路。
(2)数字信号
与模拟量相对应,在一系列离散的时刻取值,取值的大小和每次的增减都是量化单位的整数倍,即时间离散、数值也离散的信号。
表示数字量的信号称为数字信号,工作于数字信号下的电子电路称为数字电路。
(3)模拟量的数字表示
①对模拟信号取样,通过取样电路后变成时间离散、通过取样电路后变成时间离散、幅值连续的取样幅值连续的取样信号;
②对取样信号进行量化即数字化;
③对得到的数字量进行编码,生成用0和1表示的数字信号。
2.数字信号的描述方法
(1)二值数字逻辑和逻辑电平
在数字电路中,可以用0和1组成的二进制数表示数量的大小,也可以用0和1表示两种不同的逻辑状态。
在电路中,当信号电压在3.5~5 V 范围内表示高电平;在0~1.5 V 范围内表示低电平。
以高、低电平分别表示逻辑1和0两种状态。
(2)数字波形
①数字波形的两种类型 非归零码:在一个时间拍内用高电平代表1,低电平代表0。
归零码:在一个时间拍内有脉冲代表1,无脉冲代表0。
②周期性和非周期性
周期性数字波形常用周期T 和频率f 来描述。
脉冲波形的脉冲宽度用。
数字电路知识点总结(精华版)
数字电路知识点总结(精华版)数字电路知识点总结(精华版)第一章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与十六进制数的转换二、基本逻辑门电路第二章逻辑代数逻辑函数的表示方法有:真值表、函数表达式、卡诺图、逻辑图和波形图等。
一、逻辑代数的基本公式和常用公式1.常量与变量的关系A + 0 = A,A × 1 = AA + 1 = 1,A × 0 = 02.与普通代数相运算规律a。
交换律:A + B = B + A,A × B = B × Ab。
结合律:(A + B) + C = A + (B + C),(A × B) × C = A ×(B × C)c。
分配律:A × (B + C) = A × B + A × C,A + B × C = (A + B) × (A + C)3.逻辑函数的特殊规律a。
同一律:A + A = Ab。
摩根定律:A + B = A × B,A × B = A + Bc。
关于否定的性质:A = A'二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量 A 的地方,都用一个函数 L 表示,则等式仍然成立,这个规则称为代入规则。
例如:A × B ⊕ C + A × B ⊕ C,可令 L = B ⊕ C,则上式变成 A × L + A × L = A ⊕ L = A ⊕ B ⊕ C。
三、逻辑函数的化简——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与或表达式。
1.合并项法利用 A + A' = 1 或 A × A' = 0,将二项合并为一项,合并时可消去一个变量。
数电1
ASIC :Application Specific Integrated Circuit PLD: Programmable Logic Device
是数字集成电路的主要单元电路, 结构&工艺分为: 逻辑门 是数字集成电路的主要单元电路, 按照 结构&工艺分为: 双极型、 双极型、MOS型、双极型 型 TTL、MOS、CMOS 、 、
1.1.3 模拟信号与数字信号
模拟量:时间上连续变化, 模拟量:时间上连续变化,幅值也连续取值的物理量 模拟信号: 表示模拟量的信号。 模拟信号 表示模拟量的信号。 模拟电路: 模拟电路:处理模拟信号的电子电路 例如速度、压力、温度信号、工频电压信号,正弦波、三角波、 例如速度、压力、温度信号、工频电压信号,正弦波、三角波、 调幅波、阻尼振荡波、指数衰减波等。 调幅波、阻尼振荡波、指数衰减波等。
照相机 JPEG:Joint Picture Experts Group 静态图像压缩技术 : ISO:International Standard Organization : CCTIT: International Telephone and Telegraph Consultative Committee 视频记录设备: 视频记录设备 VCD (Video Compact Disk) ) DVD (Digital Versatile Disk) ) MPEG: Moving Picture Experts Group 世界数字和音频压缩标准 交通控制灯
1.1.2 数字集成电路的分类 数字集成电路的分类(classification)及特点 及特点 (character feature)
1. 分类 电子电路按功能分为模拟电路 数字电路。 按功能分为模拟电路和 电子电路按功能分为模拟电路和数字电路。 根据电路的结构特点和对输出信号响应规则的不同, 结构特点和对输出信号响应规则的不同 根据电路的结构特点和对输出信号响应规则的不同,数字 电路可分为组合逻辑电路 时序逻辑电路。 组合逻辑电路和 电路可分为组合逻辑电路和时序逻辑电路。 数字集成电路的分类: 数字集成电路的分类: 小规模SSI(Smale scale intergration) 小规模 ( ) 中规模MSI(Medium scale integration ) 中规模 ( 大规模LSI (Large scale intergration ) 大规模 超大规模VLSI ( Very large scale intergration ) 超大规模 甚大规模ULSI ( Ultra large scale intergration ) 甚大规模 集成度:每一芯片所包含门的个数。 集成度:每一芯片所包含门的个数。
第01章数字逻辑概论
❖ Daniel M. Kaplan. Hands-On Electronics. Cambridge University Press. 2003
数模和模数转换
• 模拟电路中讲授
2021/5/6
北京化工大学电工电子中心
8
课程安排
❖课程名称:数字电子技术 ❖英文名称:Digital Electronics Technology ❖课程性质:学科基础理论必修课 ❖考核方式:考试 ❖开课专业:自控、电科 ❖开课学期: 4 ❖总学时: 56 ❖总学分: 3.5
第1章
作业
❖1.1.4
❖1.2.2 (2)(4)
❖1.2.6 (2)
❖1.3.1(2) (3)
❖1.4.1 (1)
补充: 1、现车牌为六位,前三位为英文字母,后三位 为十进数,求车牌容量。 2、一千个梨分放入十个葙中,如给定小于一千 任意数,都能整葙取走,如何分放?
2021/5/6
北京化工大学电工电子中心
❖稳定性好,抗干扰能力强;
❖设计相对容易,集成度高;
❖信息处理能力强;
❖持久高精度;
❖便于存储和检索;
❖灵活的可编程能力;
❖低功耗;
1958年,Jack Kilby发明了集成电路(IC)
2021/5/6
北京化工大学电工电子中心
34
1.1.4 数字电路与模拟电路的混合应用
许多系统融合了模拟电路与数字电路各自的优势。 一个典型的例子是CD播放器。通过CD驱动器接收CD唱 盘上的数字数据,通过数模转换为模拟信号并进行信号 放大。
第一章数字逻辑概论
数字信号波形 •数字电路和模拟电路:工作信号,研究的对象不同, 数字电路和模拟电路:工作信号,研究的对象不同, 分析、 分析、设计方法以及所用的数学工具也相应不同
3、模拟信号的数字表示 由于数字信号便于存储、分析和传输, 由于数字信号便于存储、分析和传输,通常都将模拟信号转换 为数字信号. 为数字信号. 模数转换的实现
2、数字波形 数字波形------是信号逻辑电平对时间的图形表示. 数字波形------是信号逻辑电平对时间的图形表示. ------是信号逻辑电平对时间的图形表示
(a) 用逻辑电平描述的数字波形
16位数据的图形表示 (b) 16位数据的图形表示
(1)数字波形的两种类型: (1)数字波形的两种类型: *非归零型 数字波形的两种类型 高电平
1.1数字电路与数字信号 数字电路与数字信号
1.1.1数字技术的发展及其应用 数字技术的发展及其应用
60~70代-IC技术迅速发展:SSI、MSI、LSI 、VLSI。 代 技术迅速发展: 、 技术迅速发展 、 。 10万个晶体管 片。 万个晶体管/片 万个晶体管 80年代后 ULSI , 1 0 亿个晶体管 片 、 ASIC 制作技术成熟 年代后亿个晶体管/片 年代后 90年代后 97年一片集成电路上有 亿个晶体管。 年代后年一片集成电路上有40亿个晶体管 年代后 年一片集成电路上有 亿个晶体管。 目前-- 芯片内部的布线细微到亚微米(0.13~0.09µm)量级 目前 芯片内部的布线细微到亚微米 µ 量级 微处理器的时钟频率高达3GHz(109Hz) ( 微处理器的时钟频率高达 ) 将来- 高分子材料或生物材料制成密度更高、 将来 高分子材料或生物材料制成密度更高、三维结构的电路
2、数字集成电路的特点 、数字集成电路的特点 1)电路简单,便于大规模集成,批量生产 电路简单,便于大规模集成, 电路简单 2)可靠性、稳定性和精度高,抗干扰能力强 可靠性、稳定性和精度高, 可靠性 3)体积小,通用性好,成本低. 体积小,通用性好,成本低. 体积小 4)具可编程性,可实现硬件设计软件化 具可编程性, 具可编程性 5)高速度 低功耗 高速度 6)加密性好 加密性好
第一章数字逻辑概论(DOC)
典型的模拟信号包括工频信号、射频信号、视频信号等。
我国和欧洲的工频信号的频率50Hz ,美国为60Hz。
调幅波的射频信号在 530Hz~1600kHz之间。
调频波的射频信号在880MHz~108MHz之间。
甚高频(VHF)和超高频(UHF)视频信号在6GHz以上。
二、数字信号二值数字逻辑和逻辑电平――二进制数正好是利用二值数字逻辑中的0和1来表示的。
二⑵位置记数法:(d)(d) (d)讨论与非逻辑运算的逻辑口诀,全1才0”的复合运算称为或非运算。
+B+C讨论或非逻辑运算的逻辑口诀,全1才0”非”的复合运算称为与或非运算。
AB+CD与或非逻辑的逻辑符号异或运算所谓异或运算,是指两个输入变量取值相同时输出为0讨论异或逻辑运算的逻辑口诀相同为0,相异为1”同或运算所谓同或运算,是指两个输入变量取值相同时输出为逻辑表达式: AB B A Y +=式中符号“⊙”表示同或运算。
讨论同或逻辑运算的逻辑口诀1.6.1是一个控制楼梯照明灯的电路,单刀双掷开关由表可以看出,最小项具有下列性质:⑴对于任意一个最小项,只有对应一组变量取值,才能使其的值为1,而在变量的其它取值时,这个最小项的值都是0。
对于C AB 这个最小项,只有变量取值为110时,它的值为1,在变量取其它各组值时,这个最小项的值为0。
⑵对于变量的任意一组取值,任意两个最小项的乘积(逻辑与)为0。
⑶对于变量的任意一组取值,所有最小项之和(逻辑或)为1。
最小项的编号任何函数表达式都可以转换成最小项表达式。
由最小项构成的函数表达式成为标准与或表达式对于不是最小项表达式的与或表达式,可利用公式1=+A A 和A(B+C)=BC A A C C +++)()2). 用卡诺图表示逻辑函数1)从真值表画卡诺图根据变量个数画出卡诺图,再按真值表填写每一个小方块的值(0或1)即可。
需注意二结构特点:①3变量的卡诺图有把表达式中所有的最小项在对应的小方块中填入1,其余的小方块中填入3)从与-或表达式画卡诺图把每一个乘积项所包含的那些最小项(该乘积项就是这些最小项的的公因子)所对应的小方块都填上1,剩下的填0或不填,就可以得到逻辑函数的卡诺图。
数字电子技术基础:1-1 数字逻辑概论
考核
平时成绩 考试 作业
20% 80%
两本作业本,写上姓名、班级、学号
每周交1次作业
答疑 时间待定
1.数字逻辑概论
1.1数字电路与数字信号 1.2 数制 1.3 二进制数的算术运算 1.4 二进制码 1.5 二值逻辑变量与基本逻辑运算 1.6 逻辑函数及其表示方法
教学基本要求
1、了解数字信号与数字电路的基本概念 2、了解数字信号的特点及表示方法 3、掌握常用二~十、二~十六进制数的转换 4、了解常用二进制码,熟悉8421 BCD码 5、掌握基本逻辑运算及逻辑函数的表示方法
1. 1 数字电路与数字信号
1.1.1 数字技术的应用及其发展 1.1.2 数字集成电路的分类及特点 1.1.3 模拟信号和数字信号 1.1.4 数字信号的描述方法
1 .1.1 数字技术的应用及其发展
1 )数字技术的应用
人类进入到数字时代,数字技术是发展最快 、 应用最广泛的技术.
航空航天
“勇气”号 火星探测器
2)按电路结构和工作特点不同划分: 可分为组合逻辑电路和时序逻辑电路两大类
2.数字集成电路的特点
1 )稳定性高, 抗干扰能力强 2 )易于设计, 精度高 3 )便于大规模集成,批量生产, 体积小,通用性好,成本低 4 )具可编程性, 可实现硬件设计软件化 5 ) 速度高、功耗低 6 )便于加密、解码
数字电子技术基础
(第五版)
课程介绍
1. 课程的性质 2. 教学目标 3. 课程研究内容 4. 课程特点与学习方法 5. 教材和参考书 6. 考核
1.课程性质
是电类专业的:
具入门性质的、重要的专业基础课
2.课程目标 获得适应信息时代的数字电子技术方面的基本理论、 基本知识和基本技能。培养分析和解决实际问题的能力, 为以后学习与数字电子技术相关学科和专业应用打好以 下两方面的基础: 1)正确分析、设计数字电路,特别是集成电路
数电重点、难点及考点
本章重点:
1、施密特触发器、单稳态触发器、多谐振荡器典型电路的工作原理,以及电路参数和性能的定性关系;
2、555定时器的应用;
3、脉冲电路的分析方法;
本章难点:
本章的难点是脉冲电路的分析方法,分析脉冲电路时使用的是分析非线性电路过渡过程的方法,而且在分析电路时必须考虑集成电路在不同工作状态下输入端和输出端的等效电路。
2、A/D转换器的主要类型(并联比较型、逐次渐近型、双积分型),它们的基本工作原理和综合性能的比较;
3、D/A、A/D转换器的转换速度与转换精度及影响它们的主要因素。
在讲授D/A转换器时,以一种电路(例如倒T形D/A转换器)为例,讲清D/A转换的基本原理和输出电压的定量计算,其他各种D/A转换器电路作为一般性了解的内容简单介绍。
数字电子技术课程考点
基础
第1章:二进制代码
第2章:逻辑代数代数化简、卡诺图化简
第3章:各种门电路之间的接口问题
组合逻辑电路
第4章:分析、设计
穿插考查1、2章知识点
触发器
第5章:各类触发器特性
时序逻辑电路
第6章:分析、设计
穿插考查5章知识点
存储器
第7章:基本概念和存储空间的计算
触发器应用:波形变换
第8章:多谐振荡品、单稳态、施密特触发器、555定时器
第七章半导体存储器
本章重点:
1、存储器的基本工作原理、分类和每种类型存储器的特点;
2、扩展存储器容量的方法;
3、用存储器设计组合逻辑电路的原理和方法。
因为存储器几乎都作成LSI器件,所以这一章的重点内容是如何正确使用这些器件。存储器内部的电路结构不是课程的重点。动态存储器和串的知识进行回忆、复习,了解用“三要素”法求解一阶RC电路暂态响应的一般方法;在RC充、放电回路的基础上,利用电路的“三要素”法求得输出脉宽tw以及多谐振荡器T1、T2、T和f的值.。
第1章数字逻辑概论
第1章数字逻辑概论ʌ内容提要ɔ本章将探究为什么要学习数字电子技术㊁数字电路中的数值表达,以及计算机是如何进行运算和处理信息(数值㊁文字㊁符号㊁图形㊁声音和图像信号)等数字电路基础知识㊂主要内容有:数字信号的概念和数字电路的分类及特点,数字电路与模拟电路的比较,常用数制㊁码制以及各种数制间的转换㊂ʌ本章目标ɔ(1)了解数字信号与模拟信号的区别㊁数字电路的特点及分类㊂(2)掌握数字电路中1和0的含义,掌握二进制㊁八进制㊁十进制㊁十六进制数及其转换㊂(3)理解8421码㊁2421码㊁余3码及格雷码等㊂1.1概述当今世界,科学技术的发展日新月异,人类社会进入了一个前所未有的数字化㊁信息化的时代,计算机的应用已经普及到寻常百姓家㊂信息数字化,使得广播及通信变得多频道化㊁双向化和多媒体化㊂目前广泛应用的D V D㊁因特网㊁电子邮件㊁微博及微信等,无不在改变人们的工作方式㊁学习方式及生活方式㊂有人说,世界已进入数字经济时代,一切信息都将数字化㊂所有这些都是与数字电子技术密不可分的㊂数字电子技术是现代工程技术的重要组成部分,是信息技术的基础,与国民经济和社会生活的关系日益密切㊂计算机网络㊁广播㊁雷达㊁通信㊁电视及音像传媒㊁自动控制㊁医疗㊁电子测量仪表㊁核物理㊁航天等无一不与数字电子技术密切相关并因此获得了巨大的技术进步㊂例如,在通信系统中,应用数字电子技术的数字通信系统,不仅比模拟通信系统的抗干扰能力强㊁保密性好,而且还能应用计算机进行数字处理和控制,形成以计算机为中心的自动交换通信网;在测量仪表中,数字测量仪表不仅比模拟测量仪表精度高㊁测试功能强,而且还易实现测试的自动化和智能化㊂随着集成电路技术(尤其是大规模和超大规模集成器件)的发展,各种电子系统可靠性大大提高,全世界正在经历一场数字化信息革命 即进入用数字0和1编码的信息时代㊂1.1.1模拟信号和数字信号1.模拟信号自然界广泛存在的物理量都是模拟量,如温度㊁压力㊁位移㊁声音等㊂这类物理量的变化在时间上和数值上都是连续的㊂表示模拟量的信号叫作模拟信号,处理和传输模拟信号的电路叫作模拟电路㊂温度是一个模拟量,因为它的取值是连续的,而且在连续变化过程中的任何一个取值都有具体的物理意义,即表示一个相应的温度㊂在一天中的某个时间段内,温度的变化不是从一个值跳变到另一个值,而是在值域范围内连续变化㊂例如,温度不会在一瞬间从20ħ跳变到30ħ,而是经历了从20ħ到30ħ之间的所有值㊂图1-1所示为气象台记录的某城市夏季一天内的气温曲线㊂其中,纵轴为温度值,横轴为一天的时间值㊂随着计算机的广泛应用,绝大多数电子系统都已经采用计算机来对信号进行处理㊂由于计算机无法直接处理模拟信号,所以需将模拟信号转换为数字信号㊂图1-1夏季某一天的温度变化曲线图1-2对图1-1中温度的取样(间隔为1h)2.数字信号图1-2所示为一天内每隔1h取样测量到的离散气温点图㊂由此可见,这类物理量的变化在时间上和数量上都是离散的,也就是说,它们的变化在时间上是不连续的,总是发生在一系列离散的瞬间㊂而且,它们数值的大小和每次的增减变化都是某一个最小数量单位的整数倍,而小于这个最小数量单位的数值没有任何物理意义㊂我们把这一类物理量称为数字量,把表示数字量的信号称为数字信号,并把工作在数字信号下的电子电路称为数字电路㊂例如,用一个电子电路记录信号灯闪亮的次数,信号灯每闪亮一次,就给电子电路一个信号,记作1;不闪亮时,不给电子电路信号,记作0㊂可见,电路工作信号的变化非0即1,即发生在离散信号的瞬间㊂又如电子表的秒信号㊁生产流水线上记录零件个数的计数信号㊁交通信号灯控制电路㊁智力竞赛抢答电路㊁计算机键盘输入电路中的信号,都是数字信号㊂不考虑温度的连续变化,只考虑时间轴上整点的温度值,这实际上是对温度曲线的特定点进行取样㊂如果取样点足够多,量化单位足够小,数字信号可以较真实地反映模拟信号㊂从一般的模拟信号到数字信号,要经过取样㊁保持㊁量化㊁编码,最终一个连续的模拟信号波形就变成了一串离散的㊁只有高低电平之分的 0101 变化的数字信号㊂如何实现模拟信号向数字信号的转化(数字化)是我们将要研究的数字电路问题㊂下面举例说明㊂传统电话线传输的是声音信号,计算机处理的是数字信号㊂利用传统的电话线即采用模拟传送线路的通信方式进行信息传递(E P上网)是过去许多家庭使用的一种方式㊂如图1-3所示,此种方式只能在1条通道上传递信息,因此用计算机进行数据传递时,还要通过MO D E M与传统的电话线路的模拟传送通路相连接,将模拟信号转换为数字信号㊂第1章数字逻辑概论图1-3模拟信号与数字信号之间的转换1.1.2数字电路的特点及优点随着计算机技术和数字技术的发展,现代电子设备已经实现从单纯用模拟电路到大范围地转变为数字电路㊂目前,大多只在模拟信号采集㊁微弱信号放大㊁高频大功率输出等局部电路采用模拟电路,其余部分广泛采用数字电子技术及数字电路㊂其广泛应用的主要原因是廉价集成电路的发展,以及显示㊁存储和计算机技术的应用㊂数字电路是数字电子技术的核心,是计算机和数字通信的硬件基础㊂与模拟电路相比,数字电路具有以下特点及优点㊂1.数字电路的特点(1)数字电路研究的是数字电路输入信号与输出信号间的因果关系,也称逻辑关系或逻辑功能㊂(2)由于数字电路的输入信号和输出信号都只有两种状态,所以工作在数字电路中的半导体二极管一般工作在开(导通)或关(截止)状态,对于半导体三极管,则不是工作在饱和状态就是工作在截止状态(而模拟电路中这类器件经常工作在放大状态),这两种状态的外部表现正是开关的通断㊁电流的有无㊁电压的高低㊂这种开与关㊁有与无㊁高与低㊁通与断㊁亮与灭㊁是与否㊁真与伪相对应的两种逻辑状态分别用逻辑1和逻辑0两个数码来表示(这里的1和0不是数值)㊂这种只有两种对立逻辑状态的逻辑关系称为二值逻辑,可以进行逻辑运算㊂数字电路能够对数字信号进行各种逻辑运算和算术运算,因此在数控装置㊁智能仪表以及计算机等方面得到了广泛应用㊂(3)数字电路的主要任务是进行逻辑分析和设计,运用的数学工具是逻辑代数,所以数字电路又叫逻辑电路㊂数字电路的研究可以分为两种:一种是对已有电路分析其逻辑功能,叫作逻辑分析;另一种是按逻辑功能要求设计出满足逻辑功能的电路,称为逻辑设计㊂而模拟电路研究的主要是对输入信号的放大和变换的电路㊂(4)数字电路的基本单元是逻辑门和触发器,而模拟电路的基本单元是放大器㊂(5)数字电路表达电路功能的方法主要有真值表㊁逻辑函数式㊁波形图㊁卡诺图及状态转换图(状态图)等,而模拟电路采用的分析方法是图解法和微变等效电路法㊂数字电路和模拟电路的主要区别见表1-1㊂2.数字电路的优点(1)数字电路实现简单,易于设计㊂以二进制为基础的数字逻辑电路,基本单元电路比较简单,只要能够可靠地区分0和1两种状态就可以正常工作,主要分析设计工具是逻辑代表1-1数字电路和模拟电路的主要区别类别数字电路模拟电路电路功能(研究问题)输入信号与输出信号间的逻辑关系如何不失真地进行模拟信号的放大工作信号数字信号(在时间上和数量上都离散)模拟信号(在时间上和数量上都连续)管子的作用及工作区域开关,工作在饱和区或截止区放大,工作在放大区研究对象逻辑功能放大性能基本单元电路逻辑门㊁触发器放大器主要分析工具真值表㊁逻辑函数式㊁卡诺图㊁波形图㊁状态图图解法和微变等效电路法数,不需要复杂的数学知识,电路元器件的精度要求不高,允许有较大的误差,制作时工艺要求相对低㊂因此,电路的分析和设计相对较容易㊂特别是采用计算机辅助设计工具以后,数字电路的设计时间要远远小于模拟电路的设计时间㊂(2)数字电路稳定性好,抗干扰能力强,精度高㊂数字电路主要是用高电平1和低电平0来表示信号的有和无,而高电平和低电平为一定的范围值(如T T L系列的高电平为3~ 5V),并不是一个固定值,只需要能区分信号两种截然不同的状态,不必精确地测量信号的大小,允许在一定范围内波动,从而大大提高了数字电路工作的可靠性,信号易辨别,不像模拟电路那样容易受噪声的干扰,噪声容限大㊂数字电路通过增加数字信号的位数就可以提高精度,它可以通过整形很方便地去除叠加于传输信号上的噪声与干扰,可以利用差错控制技术对传输信号进行查错和纠错,而模拟电路易受温度㊁电源电压㊁元器件老化及其他因素的影响㊂(3)数字信号更便于存储㊁加密㊁压缩㊁传输和再现㊂数字信息可以利用某种媒介,如磁带㊁磁盘㊁光盘等进行长时期的存储㊁携带和交换,可以方便地进行加密处理,保密性好,信息资源不易被窃取㊂(4)数字电路集成度高㊁产品系列多㊁通用性强㊁成本低㊂集成度高㊁体积小㊁速度高㊁功耗低是数字电路突出的优点之一㊂电路的设计㊁维修㊁维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,从元件级㊁器件级㊁部件级㊁板卡级上升到系统级㊂电路的设计组成只需采用一些标准的集成电路模块单元连接而成㊂对于非标准的特殊电路还可以使用可编程逻辑阵列电路,通过编程的方法实现任意的逻辑功能㊂数字电路能够制造成系列化㊁标准化的数字部件,并以此构成各种各样的数字系统,产品系列多㊁通用性强㊁容易制造且成本低廉㊂(5)便于计算机处理,实现智能化㊂只有数字电路才能直接与计算机连接,容易实现算术和逻辑运算功能,实现自动化㊁智能化控制㊂1.1.3数字电路的发展与应用数字电子技术产生于20世纪30年代,是在通信技术(电报㊁电话)中首先引入二进制的信息存储技术㊂在1847年由英国科学家乔治㊃布尔(G e o r g eB o o l e)创立布尔代数,形成开关代数,有一套完整的数字逻辑电路的分析和设计方法,并在电子电路中得到应用㊂数字电子技术是一门应用学科,数字电路的发展与应用可分为5个阶段㊂初级阶段:20世纪40年代以电子管(真空管)作为基本器件,在电子计算机中得到应用,另外在电话交换和数字通信方面也有应用㊂第二阶段:1947年晶体管的出现,使得数字电子技术有一个飞跃发展,除了在计算机㊁通信领域应用外,在其他(如测量)领域也得到了应用㊂第三阶段:20世纪50年代末期集成电路的出现,使得数字电子技术有了更广泛的应用,如在医疗㊁雷达㊁卫星等领域㊂第四阶段:20世纪70年代中期到80年代中期,微电子技术的发展使得数字电子技术得到迅猛的发展,产生了大规模和超大规模的集成数字芯片,应用在各行各业和我们的日常生活中㊂第五阶段:20世纪80年代中期以后,产生了一些专用和通用的集成芯片,以及一些可编程的数字芯片,并且制作技术日益成熟㊂数字电路的设计模块化和可编程的特点,提高了设备的性能㊁适用性,并降低了成本㊂越来越大的设计㊁越来越短的推向市场的时间㊁越来越低的价格㊁多层次的设计表述㊁大量使用复用技术㊁大量使用计算机辅助设计工具(E D A技术)是数字电路今后发展的趋势㊂随着微电子技术及集成电路(I C)工艺技术的迅猛发展,数字电路在计算机㊁通信系统㊁仪器仪表㊁数控技术㊁家电等领域都得到了广泛应用㊂电子电路数字化是当今电子技术的发展趋势㊂对数字电路的分析与设计,成为电子工程技术人员必备的专业基础知识㊂1.1.4数字电路的分类1.按组成结构分类按组成结构,数字电路可分为分立电路和集成电路两大类㊂分立电路是指将电阻㊁电感㊁电容㊁变压器㊁开关等分立元器件用导线在电路板上逐个连接起来的电路,从外观上可以看到一个一个的电子元器件㊂当你打开一台高清晰度的液晶电视机的后盖,或当你拆开一部功能齐全的手机或笔记本电脑时,你所看到的电路板已经不再是密密麻麻的分立元件,而是排列整齐的一个个I C(集成)芯片,有的芯片集成了几十个电子元器件,有的集成了几十万个电子元器件(例如:奔腾ⅣC P U就集成了38万个之多的电子元器件)㊂集成电路是用特殊的半导体制作工艺将许多微小的电子元器件及连接导线制作在同一块半导体晶片上而成为一个不可分割的整体电路(集成芯片),从外观上看不到任何元器件,只能看到一个一个的引脚㊂通常把一个芯片封装后含有等效元器件的个数定义为集成度㊂随着微电子技术的发展和数字I C芯片集成度的不断提高,在不久的将来,量子器件和以分子(原子)为基础的纳米电子学将成为集成电路技术领域研究的热点㊂集成电路技术和其他新技术相结合,将形成新的技术增长点,智能计算机㊁光子计算机㊁生物芯片等将会出现在人们的现实生活中㊂2.按集成度分类按照传统的集成度划分方法,数字集成电路可划分为小规模集成电路(S m a l lS c a l e I n t e g r a t i o n,S S I)㊁中规模集成电路(M e d i u m S c a l eI n t e g r a t i o n,M S I)㊁大规模集成电路(L a r g eS c a l e I n t e g r a t i o n,L S I)㊁超大规模集成电路(V e r y L a r g eS c a l e I n t e g r a t i o n,V L S I)㊁特大规模集成电路(U l t r aL a r g eS c a l e I n t e g r a t i o n,U L S I)㊁巨大规模集成电路(G r e a tL a r g e S c a l e I n t e g r a t i o n,G L S I),见表1-2㊂不过,国际上最近出现了一种模糊了小规模集成电路与中规模集成电路之间的分类界限的集成电路,将它们统称为普通规模集成电路;同时也有。
数电第01章数字逻辑概论康华光
9 10 11 12 13 14 15
1001 1010 1011 1100 1101 1110 1111
11 12 13 14 15 16 17
9 A B C D E F
(1-10)
三、数制间的转换
1、N 进制数转换为十进制数 通式: (an an-1 … a0)N=(an×N n+an-1×N n-1+…+a0×N 0)10 (1)二进制→十进制
F AB A B =A⊙B A B
相同出1,不同出0
(1-34)
八. 与或非门
1.图形符号 A B C D
& ≥1
F
2.逻辑代数式
F AB CD
(1-35)
§1.6 逻辑函数及其表示方法
一、逻辑函数的定义
——输出逻辑变量与输入逻辑变量之间的关系。 若输入逻辑变量用A、B、C……表示, 输出逻辑变 量用L表示, 就称L是A、B、C…的逻辑函数,写作: L=f(A,B,C…)
L
V
3、或门图形符号
A B ≥1 L=A+B L
A 0 0 1 1
B 0 1 0 1
L 0 1 1 1
有1出1,全0出0 实现或逻辑运算功能 的电路称为“或门”。
4、数学表达式 L=A+B
(1-29)
三、非运算
1、非运算实例
R A
V
L
设:开关闭合=1 ,开关不闭合=0 灯亮时L=1 , 灯不亮时L=0 则得表格: 2、真值表(状态表、功能表)
有权码 2421码 0000 0001 0010 0011 0100 1011 1100 1101 1110 1111
5421码 0000 0001 0010 0011 0100 1000 1001 1010 1011 1100
数字逻辑第1章概论精品文档
【例3】将八进制数(67.731)8写成权表示的形式。
解:
(67.731)8=6×81+7×80+7×8-1+3×8-2+1×8-3
【例4】 将十六进制数(8AE6)16写成权表示的形式。
解:
(8AE6)16=8×163+A×162+E×161+6×160
1.2 数制系统
【例5】分别将二进制数(11010.101)2和十六进制数(B6F.C)16转换为 十进制数。
十六进制数运算规则自行推导
1.3 有符号二进制数的编码表示
术语:
1、真值:二进制数值前用“-”、 “+”符号表示二进制数负数和正数。这 种表示的二进制数的方法,称为符号数的 真值,简称真值。
2、机器数:将真值的符号部分数字 化以及真值的数值部分采用编码表示,称 为机器数。
真值的符号部分在机器数中称为符号 位,真值的数值部分在机器数中称为尾数。
【例1】将十进制数(2019.9)10写成权表示的形式。
解: (2019.9)10=2×103+0×102+0×101+1×100+9×10-1
【例2】将二进制数(1101.101)2写成权表示的形式。
解: (1101.101)2=1×23+1×22+0×21+1×20+1×2-1+0×2-2+1×2-
1.3 有符号二进制数的编码表示
1.3 有符号二进制数的编码表示
1.3 有符号二进制数的编码表示
1.3 有符号二进制数的编码表示
1.3 有符号二进制数的编码表示
1.3 有符号二进制数的编码表示
1.3 有符号二进制数的编码表示
《电子技术基础》数电部分课后习题解答
数字电子部分习题解答第1章数字逻辑概论1.2.2 将10进值数127、2.718转换为2进制数、16进制数解:(2) (127)D = (1111111)B 此结果由127除2取余直至商为0得到。
= (7F)H 此结果为将每4位2进制数对应1位16进制数得到。
(4) (2.718)D = (10.1011)B 此结果分两步得到:整数部分--除2取余直至商为0得到;小数部分—乘2取整直至满足精度要求.= (2.B)H 此结果为以小数点为界,将每4位2进制数对应1位16进制数得到。
1.4.1 将10进值数127、2.718转换为8421码。
解:(2) (127)D = = (000100100111)(000100100111)8421BCD 此结果为将127中每1位10进制数对应4位8421码得到。
(4) (2.718)D = (0010.0111 0001 1000)8421BCD 此结果为将2.718中每1位10进制数对应4位8421码得到。
第2章逻辑代数2.23 用卡诺图化简下列各式。
解:(4) )12,10,8,4,2,0(),,,(å=m D C B A L D C AB D C B A D C B A D C B A D C B A D C B A +++++=对应卡诺图为: 化简结果: DB DC L +=解:(6) åå+=)15,11,55,3,1()13,9,6,4,2,0(),,,(d m D C B A L 对应卡诺图为: 卡诺图化简原则: 1. 每个圈包围相邻1单元(每个1对应1个最小项)的个数为2n (1,2,4,8,16); 2. 每个圈应包围尽量多的1单元; 3. 同一个1单元可以被多个圈包围; 4. 每个1单元均应被圈过; 5. 每个圈对应一个与项; 6. 化简结果为所有与项的或(加). 化简结果: D A L +=第4章 组合逻辑电路组合逻辑电路4.4.7 试用一片74HC138实现函数ACD C AB D C B A L +=),,,( 4.4.7 试用一片74HC138实现函数ACD C AB D C B A L +=),,,(。
数字逻辑概论第五版
2、数字集成电路旳特点
(1)稳定性高,成果旳再现性好 (2)易于设计 (3)大批量生产,成本低廉 (4)可编程性 (5)高速度,低功耗
3、数字电路旳分析、设计与测试
(1)数字电路旳分析措施: 分析工具:逻辑代数、计算机仿真
(2)数字电路旳设计措施: 设计过程:方案旳提出、验证、修改 设计方式:老式旳设计方式;EDA软件设计方式
八进制数
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制数
0 1 2 3 4 5 6 7 8 9 A B C D E F
1.2.2 数制转换
将N进制数按权展开,即能够转换为十进制数。 1、二进制数与八进制数旳相互转换
(1)二进制数转换为八进制数: 将二进制数由小数点开始, 整数部分向左,小数部分向右,每3位提成一组,不够3位补 零,则每组二进制数便是一位八进制数。
(2)基 数:进位制旳基数,就是在该进位制中可能用到 旳数码个数。
(3) 位 权(位旳权数):在某一进位制旳数中,每一位 旳大小都相应着该位上旳数码乘上一种固定旳数,这个固 定旳数就是这一位旳权数。权数是一种幂。
1、十进制 数码为:0~9;基数是10。 运算规律:逢十进一,即:9+1=10。 十进制数旳权展开式:
例1.3.3 求1001与1011旳积。
解:
1001
×) 1 0 1 1
1001
1001
0000
1001
1100011
11 1
即:1001×1011=1100011
可见,乘法运算法运算和除法运算
除法法则:
0 1 0 111
例1.3.4 求1010与111之商。
逻辑电平与电压值旳关系(正逻辑) :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.57 10 1001.0100 2 11.20 8 9.4 16
1.4 二进制代码
码:用数码表示一类事物或信息 — 代码
第1章 1.4
码制:编码的体制。如:二 – 十进制编码(BCD码) BCD编码规则:用4位二进制码表示1位十进制数字。 常见的有权二—十进制码
1)Y A AB C
A B C
2)Y A B C
8421码
a3 8 a2 4 a1 2 a0 1
注意:8421BCD码中1010~1111的数字无效!!
2421码:0和9 ,1和8,2和7,3和6,4和5 互为反码 余三码:8421码加3得, 同样0和9 ,1和8,2和7,3
和6,4和5 互为反码
常用BCD 码对照表 十进制数 0 1 2 8421BCD码 2421BCD码 5421BCD码 0000 0000 0000 0001 0001 0001 0010 0010 0010 余三码 0011 0100 0101
口诀:有1出1,全0出0
3. 非逻辑关系:决定事件的条件只有一个,当条件具备时,
事件不会发生,条件不存在时,事件发生。
第1章 1.5
R E
•
A Y
逻辑式
Y=A
非门真值表
•
非门逻辑符号
A
1
A 0 1
Y 1 0
Y
口诀:有0出1,有1出0
复
A & B 口诀:有 C
合
1
门
Y
电 路
A B C
第1章 1.5
3.6V 0.7V 0
t/ms 1 2 5 8 11
1(高电平)
数字逻辑波形
0(低电平) 1 2
t/ms 5 8 11
3. 脉冲波形常用术语及参数
第1章 1.1
① 周期性数字波形用频率f或周期T描述其快慢;脉冲 波形的频率用脉冲可重复频率PRR描述。
② 实际脉冲 下降沿
0.9A 0.5A 0.1A
上 升 沿
tr
tw
T
tf
第1章 1.1
脉冲信号是指作用时间很短的突变电压或电流
矩形波 三角波
梯形波
尖顶波
③ 正脉冲与负脉冲 正脉冲:脉冲跃变后的值比初始值高。 负脉冲:脉冲跃变后的值比初始值低。
第1章 1.1
3.6v 0.7v
0.7v
-2.5v 正脉冲
负脉冲
④ 占空比q(周期性数字波形)
脉冲宽度tw占整个周期T的百分比。
第1章 1.5
Y
Y
或非门
A B 异或门
Y
A B 同或门
Y
第1章 1.5
例题1 :分别计算以下逻辑式的输出值Y
Y 111111 0
Y 1 0 0 0 0 1
第1章 1.5
2、已知输入变量A、B、C的波形,分别画出Y的波形。
A B C
Y
第1章 1.4
3. 根据已知输入变量A、B、C的波形,画出Y的波形并 写出真值表。
一、模拟信号
特点:
第1章 1.1
1. 任何时间上,任意大小的数值都有意义, 任何△t内的数值有无穷多个。 2. 对模拟信号的分析主要是研究输入、输出 信号间的大小及相位关系。 3. 通讯中占用信道频率较窄。 4. 信息包含于信号的波形中,处理和传输中 抗干扰性差。
二、 数字信号
第1章 1.1
1. 时间和数值上均为离散的,用0和1表示电 平的两种状态。仅有两个电压值对其有逻 辑意义,其余值均无意义。
表示数字信号中的两个离散的电压值,H 、L
——逻辑电平
逻辑0和1的含义
用逻辑1和0表示存在的2种对立逻辑关系,“非0,即1‖
——二值数字逻辑,简称数字逻辑
在数字电路中,信号的分析和处理以及 电路的设计等都与数字逻辑相结合!
2. 数字波形
逻辑电平对时间的图形表示——数字波形
第1章 1.1
数字波形分为周期性和非周期性两种! v/V 脉冲波形
4. 大量可编程器件使得电路的设计与组成更为方便、灵活。
5. 工作速度高,低功耗。 基本术语: Bit比特 来自binary digit (二进制数字),用以描述数字量的最小单位
Byte字节:由8个位所组成,可代表一个字符(A~Z)、数字(0~9)、或 符号(,.?!%&+-*/),是内存储存数据的基本单位。
第1章 1.1
注意: 时间顺序的的关系由时间参考信号(时钟脉冲 CP信号)最终决定!!。
1.2 数制
第1章 1.2
数制:计数体制,常用的有二、八、十、十六进制等。
基数:所用数码的个数;位权:该位为 1 时对应的数值
十进制:基数为10,可用十个数组合表示,逢十进一。 如:451=4×102+5×101+1×100
1. 与门和非门构成与非门
Y= ABC
0出1,全1出0
&
Y
2. 或门和非门构成或非门
A
Y= A+B+C
Y
A
B 口诀:有 C
≥1
1出0,全0出1
A B C D & ≥1
1
B C
≥1
Y
3. 与或非门 Y= AB+CD
Y
复
4. 异或门
A B
合
门
电 路
A 0 0 1 1 B 0 1 0 1
第1章 1.5
Y=AB=AB+AB =A B =1
Y
真值表
Y 0 1 1 0
口诀:奇数个1出1
5. 同或门
A
B
Y=A B =AB+AB =AB =
Y
A 0 0 1 1
B 0 1 0 1
Y 1 0 0 1
口诀:偶数个1出1
常用逻辑门符号中外对照表
A B
A B
第1章 1.5
&
A Y B
Y
>1
Y
A B
Y
A
1
Y
A
Y
常用逻辑门符号中外对照表
A B 与非门 A B
1
1 1 1
相邻数码 间仅有1位 不同! 用于A/D转 换微小变化 的模拟量, 以减少出错 的可能。
0
0 1 1
1
1 0 0
1
1 0 0
0 0
1 0 0 1 1 1
1
1 1 1
0
0 0 0
1
0 0 1
1
1 1 1
0
0 1 1
1
1 0 0
0 1
1 1 0 1 1 1
1
1 0 0
1
1 1 1
1
0 0 1
Y
口诀:有0出0,全1出1
第1章 1.5
2. 或逻辑关系:当决定事件的各个条件中有一个或一个以上
具备之后,事件就会发生。
•
Y
A B C
逻辑式 Y=A+B+C
•
E
或门逻辑符号
A B C
>1
Y
或门真值表 A B C Y 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1
1.1 数字电路与数字信号
1.1.1 数字电路的发展与分类
第1章 1.2
历史 电子管
半导体分 立元件
集成电路
组合逻辑电路
TTL
材料 COMS
功能
时序逻辑电路
脉冲波产生电路
数字集成电路的特点
1. 输出稳定性高,一致性好。 2. 二值逻辑易于设计和分析。 3. 集成度高,体积小,成本低廉。
第1章 1.2
第1章 1.2
注意:对于有正负意义的二进制数,正数的原码=反码=补码
x a3a2a1a0
(x)—— 符号位 正数:0 负数:1 原码对应位取反, 符号位:正数:0,负数:1 反码最低位+1 符号位:正数:0,负数:1
取反
(11001)原→ (10110)反→ (10111)补
符号位,不变
+1
数字万用表、逻辑笔
仪表和设备
信号发生器、示波器、逻辑分析仪
各类测试、操作台
1.1.3 模拟信号与数字信号
电子电路中的信号分为两大类:
模拟信号——时间上和数值上 的变化都是连续平滑的信号 模拟电路——处理模拟信号的 电路
第1章 1.1
(a)
(b)
数字信号——时间上和数值 上的变化都是不连续的。 数字电路——处理数字信号的 电路。
2└4……余数0(d1=0) 0.46×2=0.92……整数为0(d-2=0) 2└2……余数0(d2=0) 0.92×2=1.84……整数为1(d-3=1)
小数位由于误差要求,转换到前4位得0011,考虑余数为0.68,四 舍五入:0100
1……余数1(d3=1) 0.84×2=1.68……整数为1(d-4=1)
1
1
1
1
1
1
0 1
1 1
0
0
0
0
1
0
1.5 二值逻辑变量与基本逻辑运算
数字系统的运行是依据逻辑关系进行的。
第1章 1.5
分析和设计数字电路的数学工具——逻辑代数
逻辑代数是按一定的逻辑规律进行运算的代 数,逻辑代数是学习数字技术的基础。
表示逻辑关系的表达式——逻辑式
逻辑式中的运算是一种函数关系,又被称为逻辑函数 在进行逻辑分析和运算时必须预先定义逻辑“0‖ 和“1‖表示的实际意义。
第1章 1.2
最低位