binary response (from {0, 1}) covariates (predictors)
SPSS术语中英文对照
Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension , 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance ), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals , 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distributio n, 双变量正态分布Bivariate normal population,双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M 估计量Block, 区组/配伍组BMDP(Biomedical computer pro grams), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationshi p, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interac tion Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination , 决定系数Coefficient of multiple corr elation, 多重相关系数Coefficient of partial corre lation, 偏相关系数Coefficient of production-mo ment correlation, 积差相关系数Coefficient of rank correlat ion, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficien t, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design , 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically no rmal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regres sion, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribu tion, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution func tion, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class n umbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribut ion, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares , 估计误差均方Estimated error sum of squar es, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner mo dels), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 一般线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification,组内分组Hierarchical clustering meth od, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probabili ty, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation,反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function,分布函数Joint probability, 联合概率Joint probability distributi on, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kru skal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuratio n, 最不利构形Least favorable distribution , 最不利分布Least significant difference , 最小显著差法Least square method, 最小二乘法Least-absolute-residuals est imates, 最小绝对残差估计Least-absolute-residuals fit , 最小绝对残差拟合Least-absolute-residuals lin e, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L 估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivaria nce, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribut ion, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit 转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distrib ution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups,组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic , 最小充分统计量Minimum distance estimation,最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration , 最有利构形Multidimensional Scaling (AS CAL), 多维尺度/多维标度Multinomial Logistic Regress ion , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution,多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation,负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance,无统计意义Nominal variable, 名义变量Nonconstancy of variability,变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance , 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk , 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis , 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in str atified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numb ers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R 估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficien t, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis sys tem ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation mod eling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS 统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference , 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution , 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regress ion, 回归平方和Sum of squares between group s, 组间平方和Sum of squares of partial re gression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance , 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regr ession , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance u nbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation,方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression m ethod, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换Summarize菜单项数值分析过程Frequencies子菜单项单变量的频数分布统计Descriptives子菜单项单变量的描述统计Explore子菜单项指定变量的综合描述统计Crosstabs子菜单项双变量或多变量的各水平组合的频数分布统计Compare Mean菜单项均值比较分析过程Means子菜单项单变量的综合描述统计Independent Sample T test子菜单项独立样本的T检验Paired Sample T test子菜单项配对样本的T检验One-Way ANOVA子菜单项一维方差分析(单变量方差分析)ANOVA Models菜单项多元方差分析过程Simple Factorial子菜单项因子设计的方差分析General Factorial子菜单项一般方差分析Multivariate子菜单项双因变量或多因变量的方差分析Repeated Factorial子菜单项因变量均值校验Correlate菜单项相关分析Bivariate子菜单项Pearson积矩相关矩阵和Kendall、Spearman非参数相关分析Partial子菜单项双变量相关分析Distance子菜单项相似性、非相似性分析Regression菜单项回归分析Liner子菜单项线性回归分析Logistic子菜单项二分变量回归分析(逻辑回归分析)Probit子菜单项概率分析Nonlinear子菜单项非线性回归分析Weight Estimation子菜单项不同权数的线性回归分析2-stage Least Squares子菜单项二阶最小平方回归分析Loglinear菜单项对数线性回归分析General子菜单项一般对数线性回归分析Hierarchical子菜单项多维交叉变量对数回归分析Logit子菜单项单因变量多自变量回归分析Classify菜单项聚类和判别分析K-means Cluster子菜单项指定分类数聚类分析Hierarchical Cluster子菜单项未知分类数聚类分析Discriminent子菜单项聚类判别函数分析Data Reduction菜单项降维、简化数据过程Factor子菜单项因子分析Correspondence Analysis子菜单项对应表(交叉表)分析Homogeneity Analysis子菜单项多重对应分析Nonlinear Components子菜单项非线性成分分析OVERALS子菜单项非线性典则相关分析Scale菜单项Reliability Ananlysis子菜单项加性等级的项目分析Multidimensional Scaling子菜单项多维等级分析Nonparametric Tests菜单项Chi-Square子菜单项相对比例假设检验Binomial子菜单项特定时间发生概率检验Run子菜单项随即序列检验1-Sample Kolmogorov Smirnov子菜单项样本分布检验2-Independent Samples子菜单项双不相关组分布分析K Independent Samples子菜单项多不相关组分布分析2 Related Samples子菜单项双相关变量分布分析McNemar' test子菜单项相关样本比例变化分析K Related Samples子菜单项相关变量分布分析Cocharn's Q test子菜单项二分变量均数检验Kendall's W子菜单项一致性判定。
The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in COPD
n engl j med 350;10march 4, 2004 The new england journal of medicine1005The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary DiseaseBartolome R. Celli, M.D., Claudia G. Cote, M.D., Jose M. Marin, M.D., Ciro Casanova, M.D., Maria Montes de Oca, M.D., Reina A. Mendez, M.D.,Victor Pinto Plata, M.D., and Howard J. Cabral, Ph.D.From the COPD Center at St. Elizabeth’s Medical Center, Tufts University School of Medicine, Boston (B.R.C., V .P.P.); Bay Pines Veterans Affairs Medical Center, Bay Pines,Fla. (C.G.C.); Hospital Miguel Servet, Zara-goza, Spain (J.M.M.); H ospital Nuestra Senora de La Candelaria, Tenerife, Spain (C.C.); Hospital Universitario de Caracas and Hospital Jose I. Baldo, Caracas, Vene-zuela (M.M.O., R.A.M.); and Boston Uni-versity School of Public H ealth, Boston (H.J.C.). Address reprint requests to Dr.Celli at Pulmonary and Critical Care Medi-cine, St. Elizabeth’s Medical Center, 736Cambridge St., Boston, MA 02135, or at bcelli@.N Engl J Med 2004;350:1005-12.Copyright © 2004 Massachusetts Medical Society.backgroundChronic obstructive pulmonary disease (COPD) is characterized by an incompletely re-versible limitation in airflow. A physiological variable — the forced expiratory volume in one second (FEV 1 ) — is often used to grade the severity of COPD. However, patients with COPD have systemic manifestations that are not reflected by the FEV 1 . We hypoth-esized that a multidimensional grading system that assessed the respiratory and sys-temic expressions of COPD would better categorize and predict outcome in these pa-tients.methodsWe first evaluated 207 patients and found that four factors predicted the risk of death in this cohort: the body-mass index (B), the degree of airflow obstruction (O) and dys-pnea (D), and exercise capacity (E), measured by the six-minute–walk test. We used these variables to construct the BODE index, a multidimensional 10-point scale in which higher scores indicate a higher risk of death. We then prospectively validated the index in a cohort of 625 patients, with death from any cause and from respiratory caus-es as the outcome variables.resultsThere were 25 deaths among the first 207 patients and 162 deaths (26 percent) in the validation cohort. Sixty-one percent of the deaths in the validation cohort were due to respiratory insufficiency, 14 percent to myocardial infarction, 12 percent to lung can-cer, and 13 percent to other causes. Patients with higher BODE scores were at higher risk for death; the hazard ratio for death from any cause per one-point increase in the BODE score was 1.34 (95 percent confidence interval, 1.26 to 1.42; P<0.001), and the hazard ratio for death from respiratory causes was 1.62 (95 percent confidence inter-val, 1.48 to 1.77; P<0.001). The C statistic for the ability of the BODE index to predict the risk of death was larger than that for the FEV 1 (0.74 vs. 0.65).conclusionsThe BODE index, a simple multidimensional grading system, is better than the FEV 1at predicting the risk of death from any cause and from respiratory causes among pa-tients with COPD.The new england journal of medicine1006hronic obstructiv e pulmonarydisease (COPD), a common disease char-acterized by a poorly reversible limitationin airflow,1 is predicted to be the third most fre-quent cause of death in the world by 2020.2 Therisk of death in patients with COPD is often gradedwith the use of a single physiological variable, theforced expiratory volume in one second (FEV1).1,3,4However, other risk factors, such as the presenceof hypoxemia or hypercapnia,5,6 a short distancewalked in a fixed time,7 a high degree of functionalbreathlessness,8 and a low body-mass index (theweight in kilograms divided by the square of theheight in meters),9,10 are also associated with anincreased risk of death. We hypothesized that a mul-tidimensional grading system that assessed the res-piratory, perceptive, and systemic aspects of COPDwould better categorize the illness and predict theoutcome than does the FEV1 alone. We used datafrom an initial cohort of 207 patients to identifyfour factors that predicted the risk of death: thebody-mass index (B), the degree of airflow ob-struction (O) and functional dyspnea (D), and exer-cise capacity (E) as assessed by the six-minute–walk test. We then integrated these variables into amultidimensional index — the BODE index — andvalidated the index in a second cohort of 625 pa-tients, with death from any cause and death from859 outpatients with a wide range in the severityof COPD were recruited from clinics in the UnitedStates, Spain, and Venezuela. The study was ap-proved by the human-research review board at eachsite, and all patients provided written informed con-sent. COPD was defined by a history of smokingthat exceeded 20 pack-years and a ratio of FEV1 toforced vital capacity (FVC) of less than 0.7 measured20 minutes after the administration of albuterol.1All patients were in clinically stable condition andreceiving appropriate therapy. Patients who werereceiving inhaled oxygen had to have been takinga stable dose for at least six months before studyentry. The exclusion criteria were an illness otherthan COPD that was likely to result in death withinthree years; asthma, defined as an increase in theFEV1 of more than 15 percent above the base-linevalue or of 200 ml after the administration of a bron-chodilator; an inability to take the lung-functionand six-minute–walk tests; a myocardial infarctionwithin the preceding four months; unstable angi-na; or congestive heart failure (New York Heart As-sociation class III or IV).variables selected for the bode indexWe determined the following variables in the first207 patients who were recruited between 1995 and1997: age; sex; pack-years of smoking; FVC; FEV1,measured in liters and as a percentage of the pre-dicted value according to the guidelines of theAmerican Thoracic Society11; the best of two six-minute–walk tests performed at least 30 minutesapart12; the degree of dyspnea, measured with theuse of the modified Medical Research Council(MMRC) dyspnea scale13; the body-mass index9,10;the functional residual capacity and inspiratorycapacity11; the hematocrit; and the albumin level.The validated Charlson index was used to deter-mine the degree of comorbidity. This index hasbeen shown to predict mortality.14 The differenc-es in these values between survivors and nonsur-vivors are shown in Table 1.Each of these possible explanatory variableswas independently evaluated to determine its as-sociation with one-year mortality in a stepwise for-ward logistic-regression analysis. A subgroup offour variables had the strongest association — thebody-mass index, FEV1 as a percentage of the pre-dicted value, score on the MMRC dyspnea scale,and the distance walked in six minutes (general-ized r2=0.21, P<0.001) — and these were includ-ed in the BODE index (Table 2). All these variablespredict important outcomes, are easily measured,and may change over time. We chose the post-bron-chodilator FEV1 as a percent of the predicted value,classified according to the three stages identifiedby the American Thoracic Society, because it can beused to predict health status,15 the rate of exacer-bation of COPD,16 the pharmacoeconomic costs ofthe disease,17 and the risk of death.18,19 We chosethe MMRC dyspnea scale because it predicts thelikelihood of survival among patients with COPD8and correlates well with other scales and health-status scores.20,21 We chose the six-minute–walktest because it predicts the risk of death in patientswith COPD,7 patients who have undergone lung-reduction surgery,22 patients with cardiomyopa-thy,23 and those with pulmonary hypertension.24In addition, the test has been standardized,12 theclinically significant thresholds have been deter-mined,25 and it can be used to predict resource uti-cn engl j med 350; march 4, 2004n engl j med 350;10march 4, 2004 a multidimensional grading system in chronic obstructive pulmonary disease1007lization. 26 Finally, there is an inverse relation be-tween body-mass index and survival 9,10 that is not linear but that has an inflection point, which was 21 in our cohort and in another study. 10validation of the bode indexThe BODE index was validated prospectively in two ways in a different cohort of 625 patients who were recruited between January 1997 and January 2003. First, we used the empirical model: for each threshold value of FEV 1 , distance walked in six min-utes, and score on the MMRC dyspnea scale shown in Table 2, the patients received points ranging from 0 (lowest value) to 3 (maximal value). For body-mass index the values were 0 or 1, because of the unique relation between body-mass index and survival described above. The points for each varia-ble were added, so that the BODE index ranged from 0 to 10 points, with higher scores indicating a greater risk of death. In an exploratory analysis, the various components of the BODE index were as-signed different weights, with no corresponding increase in predictive value.study protocolIn the cohort, patients were evaluated with the use of the BODE index within six weeks after enroll-ment and were seen every three to six months for at least two years or until death. The patient and family were contacted if the patient failed to return for appointments. Death from any cause and from specific respiratory causes was recorded. The cause of death was determined by the investigators at each site after reviewing the medical record and death certificate.statistical analysisData for continuous variables are presented as means ± SD. Comparison among the three coun-tries was completed with the use of one-way analy-sis of variance. The differences between survivors and nonsurvivors in pulmonary-function variables and other pertinent characteristics were established with the use of t-tests for independent samples.To evaluate the capacity of the BODE index to pre-dict the risk of death, we performed Cox propor-tional-hazards regression analyses. 27 We estimat-ed the hazard ratio, 95 percent confidence interval,and P value for the BODE score, before and after adjustment for coexisting conditions as measured by the Charlson index. We repeated these analyses using the BODE index as the predictor of interest in*FVC denotes forced vital capacity, FEV 1 forced expiratory volume in one sec-ond, and FRC functional residual capacity.†Scores on the modified Medical Research Council (MMRC) dyspnea scale can range from 0 to 4, with a score of 4 indicating that the patient is too breathless to leave the house or becomes breathless when dressing or undressing.‡The body-mass index is the weight in kilograms divided by the square of the height in meters.§Scores on the Charlson index can range from 0 to 33, with higher scores indi- cating more coexisting conditions.*The cutoff values for the assignment of points are shown for each variable. The total possible values range from 0 to 10. FEV 1 denotes forced expiratory volume in one second.†The FEV 1 categories are based on stages identified by the American Thoracic Society.‡Scores on the modified Medical Research Council (MMRC) dyspnea scale can range from 0 to 4, with a score of 4 indicating that the patient is too breathless to leave the house or becomes breathless when dressing or undressing.§The values for body-mass index were 0 or 1 because of the inflection point in the inverse relation between survival and body-mass index at a value of 21.The new england journal of medicine1008dummy-variable form, using the first quartile as thereference group. These analyses yielded estimatesof risk similar to those obtained from analyses us-ing the BODE score as a continuous variable. Thus,we focus our presentation on the predictive charac-teristics of the BODE index and present only bivari-ate results for survival according to quartiles of theBODE index in a Kaplan–Meier analysis. The statis-tical significance was evaluated with the use of thelog-rank test. We also performed bivariate analysison the stage of COPD according to the validatedstaging system of the American Thoracic Society.3In the Cox regression analysis, we assessed thereliability of the model with the body-mass index,degree of airflow obstruction and dyspnea, and ex-ercise capacity score as the predictor of the time todeath by computing bootstrap estimates using thefull sample for the hazard ratio and its 95 percentconfidence interval (according to the percentilemethod). This approach has the advantage of notrequiring that the data be split into subgroups andis more precise than alternative methods, such ascross-validation.28Finally, in order to determine how much moreprecise the BODE index is than the FEV1 alone, wecomputed the C statistics29 for a model containingFEV1 or the BODE score as the sole independentvariable. We compared the survival times and esti-mated the probabilities of death up to 52 months.In these analyses, the C statistic is a mathematicalfunction of the sensitivity and specificity of theBODE index in classifying patients by means of theCox model as either dying or surviving. The nullvalue for the C statistic is 0.5, with a maximum of29patients (Tables 3 and 4) with all degrees of severityof COPD. The FEV1 was slightly lower among pa-tients in the United States than among those in Ven-ezuela or Spain. The U.S. patients also had morefunctional impairment, more severe dyspnea, andmore coexisting conditions. The 27 patients (4 per-cent) lost to follow-up were evenly distributed ac-cording to the severity of COPD and did not differsignificantly from the rest of the cohort with respectto any measured characteristic. There were 162deaths (26 percent) over a median follow-up of 28months (range, 4 to 68). The majority of patients(61 percent) died of respiratory insufficiency, 14percent died of myocardial infarction, 12 percentof lung cancer, and the rest of miscellaneouscauses. The BODE score was lower among survi-vors than among those who died from any cause(3.7±2.2 vs. 5.9±2.6, P<0.005). The score was alsolower among survivors than among those whodied of respiratory causes, and the difference be-tween the scores was larger (3.6±2.2 vs. 6.7±2.3,P<0.001).Table 5 shows the BODE index as a predictor ofdeath from any cause after correction for coexistingconditions. There were significantly more deathsin the United States (32 percent) than in Spain (15percent) or Venezuela (13 percent) (P<0.001). How-ever, when the analysis was done separately foreach country, the predictive power of the BODE in-dex was similar; therefore, the data are presentedtogether. Table 5 shows that the BODE index wasalso a predictor of death from respiratory causesafter correction for coexisting conditions (hazardratio, 1.63; 95 percent confidence interval, 1.48 to1.80; P<0.001). The Kaplan–Meier analysis of sur-*Because of rounding, percentages do not total 100. Thethree stages of chronic obstructive pulmonary disease(COPD) were defined by the American Thoracic Society.FEV1 denotes forced expiratory volume in one second.†Higher scores on the body-mass index, degree of airflowobstruction and dyspnea, and exercise capacity (BODE)index indicate a greater risk of death. Quartile 1 was de-fined by a score of 0 to 2, quartile 2 by a score of 3 to 4,quartile 3 by a score of 5 to 6, and quartile 4 by a scoreof 7 to 10.n engl j med 350; march 4, 2004n engl j med 350;10march 4, 2004 a multidimensional grading system in chronic obstructive pulmonary disease1009vival (Fig. 1A) shows that each quartile increase in the BODE score was associated with increased mor-tality (P<0.001). Thus, the highest quartile (a BODE score of 7 to 10) was associated with a mortality rate of 80 percent at 52 months. These same data are shown in Figure 1B in relation to the severity of COPD according to the staging system of the Amer-ican Thoracic Society. The C statistic for the ability of the BODE index to predict the risk of death was 0.74, as compared with a value of 0.65 with the use of FEV 1 alone (expressed as a percentage of the pre-dicted value). The computation of 2000 bootstrap samples for these data and estimation of the haz-ard ratios for death indicated that for each one-point increment in the BODE score the hazard ratio for death from any cause was 1.34 (95 percent confi-dence interval, 1.26 to 1.42) and the hazard ratio for death from a respiratory cause was 1.62 (95 per-the BODE index — and validated its use by show-ing that it is a better predictor of the risk of death from any cause and from respiratory causes than is the FEV 1 alone. We believe that the BODE index is useful because it includes one domain that quan-tifies the degree of pulmonary impairment (FEV 1 ),one that captures the patient’s perception of symp-toms (the MMRC dyspnea scale), and two indepen-dent domains (the distance walked in six minutes and the body-mass index) that express the systemic consequences of COPD. The FEV 1 is essential for the diagnosis and quantification of the respirato-ry impairment resulting from COPD. 1,3,4 In addi-tion, the rate of decline in FEV 1 is a good marker of disease progression and mortality. 18,19 Howev-er, the FEV 1 does not adequately reflect all the sys-temic manifestations of the disease. For example,the FEV 1 correlates weakly with the degree of dys-pnea, 20 and the change in FEV 1 does not reflect the rate of decline in patients’ health. 30 More impor-tant, prospective observational studies of patients with COPD have found that the degree of dyspnea 8 and health-status scores 31 are more accurate pre-dictors of the risk of death than is the FEV 1 . Thus,although the FEV 1 is important to obtain and essen-tial in the staging of disease in any patient with COPD, other variables provide useful information that can improve the comprehensibility of the eval-uation of patients with COPD. Each variable should*Plus–minus values are means ±SD.†Analysis of variance was used to calculate the P values.‡Scores on the modified Medical Research Council (MMRC) dyspnea scale can range from 0 to 4, with a score of 4 indicating that the patient is too breathless to leave the house or becomes breathless when dressing or undressing.§Scores on the Charlson index can range from 0 to 33, with higher scores indi-cating more coexisting conditions.¶Scores on the body-mass index, degree of airflow obstruction and dyspnea, and exercise capacity (BODE) index can range from 0 to 10, with higher scores indicating a greater risk of death.*The Cox proportional-hazards models for death from any cause include 162 deaths. The Cox proportional-hazards models for death from specific respira-tory causes include 96 deaths. Model I includes the body-mass index, degree of airflow obstruction and dyspnea, and exercise capacity (BODE) index alone. The hazard ratio is for each one-point increase in the BODE score. Model II includes coexisting conditions as expressed by each one-point increase in the Charlson index. CI denotes confidence interval.The new england journal of medicine1010correlate independently with the prognosis ofCOPD, should be easily measurable, and shouldserve as a surrogate for other potentially importantvariables.In the BODE index, we included two descriptorsof systemic involvement in COPD: the body-massindex and the distance walked in six minutes. Bothare simply obtained and independently predict therisk of death.7,9,10 It is likely that they share somecommon underlying physiological determinants,but the distance walked in six minutes contains adegree of sensitivity not provided by the body-massindex. The six-minute–walk test is simple to per-form and has been standardized.12 Its use as a clin-ical tool has gained acceptance, since it is a goodpredictor of the risk of death among patients withother chronic diseases, including congestive heartfailure23 and pulmonary hypertension.24 Indeed, thedistance walked in six minutes has been acceptedas a good outcome measure after interventions suchas pulmonary rehabilitation.32 The body-mass in-dex was also an independent predictor of the riskof death and was therefore included in the BODEindex. We evaluated the independent prognosticpower of body-mass index in our cohort using dif-ferent thresholds and found that values below 21were associated with an increased risk of death, anobservation similar to that reported by Landbo andcoworkers in a large population study.10The Global Initiative for Chronic ObstructiveLung Disease and the American Thoracic Societyrecommend that a patient’s perception of dyspneabe included in any new staging system for COPD.1,3Dyspnea represents the most disabling symptomof COPD; the degree of dyspnea provides informa-tion regarding the patient’s perception of illnessand can be measured. The MMRC dyspnea scale issimple to administer and correlates with other dys-pnea scales20 and with scores of health status.21Furthermore, in a large cohort of prospectively fol-lowed patients with COPD, which used the thresh-old values included in the BODE index, the scoreon the MMRC dyspnea scale was a better predictorof the risk of death than was the FEV1.8The BODE index combines the four variables bymeans of a simple scale. We also explored whetherweighting the variables included in the index im-proved the predictive power of the BODE index. In-terestingly, it failed to do so, most likely becauseeach variable included has already proved to be agood predictor of the outcome of COPD.Our study had some limitations. First, relative-ly few women were recruited, even though enroll-ment was independent of sex. It probably reflectsthe problem of the underdiagnosis of COPD inwomen. Second, there were differences among thethree countries. For example, patients in the UnitedStates had a higher mortality rate, more severe dys-pnea, more functional limitations, and more co-n engl j med 350; march 4, 2004n engl j med 350; march 4, 2004a multidimensional grading system in chronic obstructive pulmonary disease1011existing conditions than patients in Venezuela or Spain, even though the severity of airflow obstruc-tion was relatively similar among the patients as a whole. The reasons for these differences are un-known, because there have been no systematic com-parisons of the regional manifestations of COPD.In all three countries, the BODE index was the best predictor of survival, an observation that renders our findings widely applicable.Three studies have reported the effects of the grouping of variables to express the various do-mains affected by COPD.33-35 These studies did not include variables now known to be important pre-dictors of outcome, such as the body-mass index.However, as we found in our study, they showedthat the FEV 1, the degree of dyspnea, and exercise performance provide independent information regarding the degree of compromise in patients with COPD.Besides its excellent predictive power with re-gard to outcome, the BODE index is simple to cal-culate and requires no special equipment. This makes it a practical tool of potentially widespread applicability. Although the BODE index is a predic-tor of the risk of death, we do not know whether it will be a useful indicator of the outcome in clinical trials, the degree of utilization of health care re-sources, or the clinical response to therapy.We are indebted to Dr. Gordon L. Snider, whose guidance, com-ments, and criticisms were fundamental to the final manuscript.1.Pauwels RA, Buist AS, Calverley PM,Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Work-shop summary. Am J Respir Crit Care Med 2001;163:1256-76.2.Murray CJL, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997;349:1269-76.3.Definitions, epidemiology, pathophys-iology, diagnosis, and staging. Am J Respir Crit Care Med 1995;152:Suppl:S78-S83.4.Siafakas NM, Vermeire P, Pride NB, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). Eur Respir J 1995;8:1398-420.5.Nocturnal Oxygen Therapy Trial Group.Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive pulmonary disease: a clinical trial. Ann Intern Med 1980;93:391-8.6.Intermittent positive pressure breathing therapy of chronic obstructive pulmonary disease: a clinical trial. Ann Intern Med 1983;99:612-20.7.Gerardi DA, Lovett L, Benoit-Connors ML, Reardon JZ, ZuWallack RL. Variables re-lated to increased mortality following out-patient pulmonary rehabilitation. Eur Res-pir J 1996;9:431-5.8.Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year sur-vival than airway obstruction in patients with COPD. Chest 2002;121:1434-40.9.Schols AM, Slangen J, Volovics L, Wout-ers EF. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmo-nary disease. Am J Respir Crit Care Med 1998;157:1791-7.ndbo C, Prescott E, Lange P, Vestbo J,Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary dis-ease. Am J Respir Crit Care Med 1999;160:1856-61.11.American Thoracic Society Statement.Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 1991;144:1202-18.12.ATS Committee on Proficiency Stan-dards for Clinical Pulmonary Function Lab-oratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-7.13.Mahler D, Wells C. Evaluation of clinical methods for rating dyspnea. Chest 1988;93:580-6.14.Charlson M, Szatrowski T, Peterson J,Gold J. Validation of a combined comor-bidity index. J Clin Epidemiol 1994;47:1245-51.15.Ferrer M, Alonso J, Morera J, et al. Chron-ic obstructive pulmonary disease stage and health-related quality of life. Ann Intern Med 1997;127:1072-9.16.Dewan NA, Rafique S, Kanwar B, et al.Acute exacerbation of COPD: factors associ-ated with poor treatment outcome. Chest 2000;117:662-71.17.Friedman M, Serby CW , Menjoge SS,Wilson JD, Hilleman DE, Witek TJ Jr. Phar-macoeconomic evaluation of a combination of ipratropium plus albuterol compared with ipratropium alone and albuterol alone in COPD. Chest 1999;115:635-41.18.Anthonisen NR, Wright EC, Hodgkin JE. Prognosis in chronic obstructive pulmo-nary disease. Am Rev Respir Dis 1986;133:14-20.19.Burrows B. Predictors of loss of lung function and mortality in obstructive lung diseases. Eur Respir Rev 1991;1:340-5.20.Mahler DA, Weinberg DH, Wells CK ,Feinstein AR. The measurement of dyspnea:contents, interobserver agreement, and phys-iologic correlates of two new clinical index-es. Chest 1984;85:751-8.21.Hajiro T, Nishimura K, Tsukino M, Ike-da A, Koyama H, Izumi T. Comparison of discriminative properties among disease-specific questionnaires for measuring health-related quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:785-90.22.Szekely LA, Oelberg DA, Wright C, et al.Preoperative predictors of operative mor-bidity and mortality in COPD patients under-going bilateral lung volume reduction sur-gery. Chest 1997;111:550-8.23.Shah M, Hasselblad V , Gheorgiadis M,et al. Prognostic usefulness of the six-min-ute walk in patients with advanced conges-tive heart failure secondary to ischemic and nonischemic cardiomyopathy. Am J Car-diol 2001;88:987-93.24.Miyamoto S, Nagaya N, Satoh T, et al.Clinical correlates and prognostic signifi-cance of six-minute walk test in patients with primary pulmonary hypertension: compari-son with cardiopulmonary exercise testing.Am J Respir Crit Care Med 2000;161:487-92.25.Redelmeier DA, Bayoumi AM, Gold-stein RS, Guyatt GH. Interpreting small dif-ferences in functional status: the Six Minute Walk test in chronic lung disease patients.Am J Respir Crit Care Med 1997;155:1278-82.26.Decramer M, Gosselink R, Troosters T,Verschueren M, Evers G. Muscle weakness is related to utilization of health care resourc-es in COPD patients. Eur Respir J 1997;10:417-23.27.Cox DR. Regression models and life-tables. J R Stat Soc [B] 1972;34:187-220.28.Harrell FE Jr, Lee KL, Mark DB. Multi-variate prognostic models: issues in devel-oping models, evaluating assumptions and adequacy, and measuring and reducing er-rors. Stat Med 1996;15:361-87.29.Nam B-H, D’Agostino R. Discrimina-tion index, the area under the ROC curve. In:Huber-Carol C, Balakrishnan N, Nikulin MS,Mesbah M, eds. Goodness-of-fit tests and。
慢性阻塞性肺疾病与2型糖尿病相关性研究进展
58 CHINA MEDICINE AND PHARMACY Vol.10 No.24 December2020慢性阻塞性肺疾病与2型糖尿病相关性研究进展谢小月△ 张 敏▲暨南大学医学院附属广州红十字会医院呼吸内科,广东广州 510220[摘要] 慢性阻塞性肺疾病(COPD)为临床常见的一种呼吸系统疾病,其特征是持续呼吸道症状和气流受限,常呈进行性发展,是可以预防和治疗的疾病。
2型糖尿病(T2DM)是一种以慢性血糖水平增高为特征的代谢性疾病,随着病程的发展可引起多系统损伤。
T2DM 是COPD 重要且常见的共患病,有研究发现其可以影响COPD 的进展和预后,也有研究认为COPD 是T2DM 形成和进展的重要危险因素。
本文评估了T2DM 和COPD 之间的流行病学关联,分析潜在的病理机制联系以及两者合并的临床特点。
[关键词] 慢性阻塞性肺疾病;2型糖尿病;系统性炎症;氧化应激;高血糖[中图分类号] R563 [文献标识码] A [文章编号] 2095-0616(2020)24-58-04Research progress on the relationship between chronicobstructive pulmonary disease and type 2 diabetes mellitusXIE Xiaoyue ZHANG MinDepartment of Respiratory Medicine,Guangzhou Red Cross Hospital of Medical College of Ji'nan University,Guangdong,Guangzhou 510220,China[Abstract] The chronic obstructive pulmonary disease (COPD) is a common respiratory disease in clinic, characterized by persistent respiratory symptoms and airflow limitation. COPD is a progressive disease that can be prevented and treated. Type 2 diabetes mellitus (T2DM) is a common metabolic disorder characterized by chronic hyperglycaemia, which can cause multi-system injuries with the course of the disease. T2DM is a common comorbidity of COPD. T2DM has been well documented to influence the progress and prognosis of COPD. Some studies have suggested that COPD is an important risk factor for the development and progression of T2DM. In this review, the epidemiological association between T2DM and COPD was evaluated, and the underlying pathomechanical association and the clinical features of their combination were analyzed as well.[Key words] Chronic obstructive pulmonary disease; Type 2 diabetes mellitus; Systemic inflammation; Oxidative stress; Hyperglycemia△暨南大学医学院2018级硕士研究生在读▲通讯作者近年来,国内外相关研究认为慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)与2型糖尿病(Type 2 diabetes mellitus,T2DM)之间具有一定的相关性,COPD 合并T2DM 可影响疾病的进展和预后,这方面也逐渐受到临床重视。
二分类交叉熵损失函数binary
二分类交叉熵损失函数binary二分类交叉熵损失函数binary是一种为了解决分类问题而开发出来的损失函数,它是一种最常用的损失函数,我们可以使用它来帮助分类器从训练数据中学习模型,从而得出最合适的结果。
二分类交叉熵损失函数binary的基本原理其实是一个结果分布问题,它将一个样本结果分布转化为一个更加有效的分布,这样,算法就可以从结果分布中计算出最有效的结果了。
具体来说,二分类交叉熵损失函数binary用来衡量两个分类结果(即真实标签和预测标签)之间的差异,它计算的是真实标签 x_i 测标签 y_i 之间的差异程度,其公式为:L(x, y) =_i^n -x_i log(y_i) - (1 - x_i) log(1 - y_i) 其中,n样本数量。
在模型训练时,模型会通过算法自动更新参数,以最小化此损失函数求解训练模型,达到准确率最高的效果。
此外,二分类交叉熵损失函数binary还有一个特别之处。
它并不是一个完全的评价指标,而是一种可以影响和改进模型的损失函数。
它可以帮助我们更好的改变模型,对模型进行优化。
例如,在神经网络模型中,当输入和预测的标签之间的差异越大时,交叉熵损失函数binary越大,这就意味着我们可以用它来评估模型,来看看训练数据越来越好,模型越来越强大,准确率也会越来越高。
此外,我们也可以利用交叉熵损失函数binary来进行正则化,来防止模型过拟合,从而让模型有更好的泛化能力。
正则化的主要原理就是将那些重要的特征给出一定的权重,而其他特征则给出较小的权重,以减小模型对特征间的依赖性和泛化能力。
总之,二分类交叉熵损失函数binary在分类问题上发挥了应有的作用,它不仅可以帮助我们更好的训练模型,还可以为模型提供优化,而且可以利用它来进行正则化,这样,模型就可以得到更有效的训练,从而达到更高的准确率。
所以说,二分类交叉熵损失函数binary 是一种非常实用的损失函数,有助于我们训练和开发出更优异的分类模型。
php计算皮皮尔卡森系数
皮尔逊相关系数(Pearson correlation coefficient)用于衡量两个变量之间的线性相关性。
在PHP中,可以使用以下代码来计算皮尔逊相关系数:function pearsonCorrelation($x, $y) {$n = count($x);// 计算x和y的平均值$meanX = array_sum($x) / $n;$meanY = array_sum($y) / $n;// 计算协方差和标准差$covariance = 0;$varianceX = 0;$varianceY = 0;for ($i = 0; $i < $n; $i++) {$covariance += ($x[$i] - $meanX) * ($y[$i] - $meanY);$varianceX += pow($x[$i] - $meanX, 2);$varianceY += pow($y[$i] - $meanY, 2);}// 计算皮尔逊相关系数$correlation = $covariance / (sqrt($varianceX) * sqrt($varianceY));return $correlation;}// 示例数据$x = [1, 2, 3, 4, 5];$y = [2, 3, 4, 5, 6];// 计算皮尔逊相关系数$pearsonCoefficient = pearsonCorrelation($x, $y);echo "Pearson Correlation Coefficient: " . $pearsonCoefficient;在上面的代码中,我们定义了一个名为`pearsonCorrelation`的函数,用于计算皮尔逊相关系数。
然后我们提供了示例数据`$x`和`$y`,并调用`pearsonCorrelation`函数来计算皮尔逊相关系数。
多重应答数据深度分析方法及其SPSS操作
多重应答数据深度分析方法及其SPSS操作data发表于2015-05-25 21:37 来源:统计资源门户多重应答(Multiple Response),又称多选题,是市场调查研究中十分常见的数据形式。
多重应答数据本质上属于分类数据,但由于各选项均是对同一个问题的回答,之间存在一定的相关,将各选项单独进行分析并不恰当。
对多重应答数据最常见的分析是使用SPSS中的“Multiple Response”命令,通过定义变量集的方式,对选项进行简单的频数分析和交叉分析。
笔者认为,该分析方法对调查数据的开发利用往往是不够的,我们还可以使用其他分析方法对数据信息进行深度挖掘。
一、两种数据录入方式比如说在某次民意调查中,我们希望了解公众评价宜居城市时,到底是城市的哪一些特征决定人们对该城市宜居性的评估。
为此,我们在研究中设计了14项标准请被访者从中选出他们在进行宜居评价时最看重的5项标准(关于宜居标准的具体探讨,参见本刊2006年第8期)。
选项包括:这是一道典型的多重应答题。
统计软件中对多重应答的标准纪录方式有两种:(1)多重二分法(Multiple dichotomy method)。
对于多项选择题的每一个选项看作一个变量来定义。
0代表没有被选中,1代表被选中。
这样,多项选择题中有几个选项,就会变成有几个单选变量。
这些单选变量的选项都只有两个,即0或1。
比如在上述例子中,我们就可以设置14个单选变量,来标示某选项是否被选中;(2)多重分类法(Multiple category method)。
多项选择题中有几个选项,就定义几个单选变量。
每个变量的选项都一样,都和多项选择题的选项相同。
每个变量代表被调查者的一次选择,即纪录的是被选中的选项的代码。
如上述例子中,我们可以设置X1~X5共5个变量,每个变量的选项兼为从1到14的14项宜居标准。
很多情况下,当问卷中不限定被访者可选择的选项数量时,被调查者可能不会全部选项都选,因此在数据录入时,一般从这些变量的最前面几个变量开始录入,这样最后面几个变量自然就是缺失值。
二值响应模型的概率质量函数公式
二值响应模型的概率质量函数公式
PMF(X=x)=p,其中x为事件的取值(通常为0或1),p为事件出现的概率。
二值响应模型通常包含一个或多个自变量(独立变量),用来描述事件出现的条件。
常见的二值响应模型包括逻辑斯蒂回归模型、Probit模型等,这些模型都基于不同的概率分布函数,并且在一定的条件下通过最大似然估计或贝叶斯方法来估计模型的参数。
以逻辑斯蒂回归模型为例,它通常用来对事件的概率进行建模。
逻辑斯蒂回归模型的PMF由逻辑斯蒂函数(Logistic Function)表示,可以写作:
PMF(X=x) = exp(β0 + β1*X) / (1 + exp(β0 + β1*X))
其中,β0和β1是逻辑斯蒂回归模型的参数,X是自变量(通常为一个或多个),exp(.)是指数函数,exp(a)表示e的a次方,e是自然对数的底数。
逻辑斯蒂回归模型的PMF用于计算事件出现的概率。
当自变量的取值固定时,可以通过代入参数的估计值来计算概率。
逻辑斯蒂回归模型的参数估计通常采用最大似然估计或贝叶斯方法,通过最小化目标函数来求解参数的估计值。
除了逻辑斯蒂回归模型,二值响应模型还有其他的表达形式和计算方法,如Probit模型、广义线性模型等。
这些模型的PMF公式会根据具体的模型形式和概率分布函数不同而有所差异,但基本思想相同,都是用来计算事件的概率。
总结起来,二值响应模型的PMF公式是用来计算事件是否发生的概率。
具体的公式形式会根据不同的模型和概率分布函数而有所差异,常见的二
值响应模型包括逻辑斯蒂回归模型、Probit模型等。
这些模型通过最大
似然估计或贝叶斯方法来估计模型的参数,进而计算事件的概率。
acc(binary)评估指标
acc(binary)评估指标1.准确率是衡量分类器性能的重要指标。
Accuracy is an important metric for evaluating the performance of a classifier.2.当模型对数据进行预测时,准确率可以告诉我们有多少预测是正确的。
When the model makes predictions on the data, accuracy can tell us how many of the predictions are correct.3.在二进制分类中,准确率可以通过计算正确分类的样本数与总样本数的比例来计算。
In binary classification, accuracy can be calculated by comparing the number of correctly classified samples to the total number of samples.4.然而,准确率并不是完美的指标,因为它无法告诉我们模型在不同类别上的表现。
However, accuracy is not a perfect metric as it does not tell us about the performance of the model on different classes.5.在某些情况下,数据可能存在不平衡,这时准确率可能会误导我们对模型性能的判断。
In some cases, the data may be imbalanced, and accuracy may mislead us about the performance of the model.6.为了更全面地评估模型,我们需要考虑其他指标,如精确率和召回率。
To assess the model more comprehensively, we need to consider other metrics such as precision and recall.7.精确率告诉我们在模型预测为正类的样本中,有多少是真正的正类。
审计术语
auditCPAassuranceaudit of financial statementsagreed-upon procedurescompilationhigh levels of assurancemoderate levels of assurancecredibilityreliabilityrelevancecontinuing professional education(CPE)A uniform CPA examinationprofessional skepticismobjectivityprofessional competenceSenior/CPA-in-chargeaudit engagement letterrecurring auditthe clientthe nominated CPAchange CPAthe exsiting CPAthe preceding CPA(The predecessor CPAaudit appointmentthe agreed termaccpet an audit engaementthe objective of the engaementthe scope of the auditissue the audit reportother CPAexpertwithdrawan initial auditthe board of directorsa change in engaementshareholdercomponentknowledge of the entity's businessperforming an audit of financial statementsassess inherent and control risksdetermine the nature, timing and extend of the audit procedures a general knowledge of …, a preminary knowledge ofa more particular knowledge ofprior to accepting an engagementfollowing acceptance of the engagementupdate and revaluate information gathered previouslythe prior year's working papersdirectorsenior operating personelinternal audit personel, internal audit'sinternal audit reportsminutes of meetingmaterial sent to shareholders or filed with regulatory authorities interim financial reportsmanagement policy manualchart of accountsexercise professional judgmentbusiness risks(of the client)mannagement response theretoappropriatenessaccounting estimatemanagement representationsrerated partyrelated party transactiongoing concern assumptionaudit planthe overall audit planthe detailed audit planeffcient auditthe size of the entitythe complexity of the auditthe specific methodology and technologyfinancial performancematerial misstatementsignificant audit areascoordinationreviewstatutory responsibilitytime budgeterrorfraudmodified or additional procedureplan and perform audit procedureadequate accounting and internal control systemreduce but not eliminatemanipulationfalsificationalteration of records or documentsmisappropriation of assetstransactions without substancemisapplication of accounting policiesthe underlying recordsoversight or misinterpretationunusual pressuresaccounting policy alternativeunusual transactionsincomplete filesout of balance control accountslack of proper authorizationcomputer information systems environmentinherent limitations of audit testdisscuss with managementthe remedial actionseek legal advicelaws and regulationsnoncompliancewithdrawal from the engagementsenior managementdetect noncompliance laws and regulationsdeliberate failure to record transctionssenior management override of controlintentional misrepresentations being made to the CPA written representationthe suspected noncomplianceaudit committeesupervisory boardregulatory and enforcement authoritiesmaterialityexceed the materiality levelapproach the materiality levelan acceptably low levelthe overall finacial statement level and in related account balances and transaction levelsthe detected but uncorrected misstatements or omissions misstatements or omissionsthe detected and the projected misstatements or omissions aggregatesubsequent eventscontingenciesextend the scope of the substantive testadjust the financial statementsperform additional audit procedurescarry out extended or additional tests of controlmodify the nature,timing and extendof planned substantive proceduresaudit riskinherent riskcontrol riskdetection riskinappropriate audit opinionmaterial misstatementanalytical procedures risksubstantive tests of the detail risktolerable misstatementthe combined level of inherent and control risks the acceptable of detection riskplanned assessed level of control risksmall businessaccounting systeminternal control systemcontrol environmentcontrol procedurescompliance testtest of controlwalk-through testmanagement lettermaterial weakness in internal controlrisk assessmentcontrol activitiesinformationcommunicationmonitoringprocedures manualjob descriptionsflow chartwritten narrativequestinnairereperformance of internal controlcomputer-assisted audit techniques communication with managementaudit evedencetests of controlsubstantive proceduressufficiency of audit evidenceappropriateness of audit evedenceassertionsexistence or occurrencecompletenessrights and obligationsvaluation or allocationpresentation and disclosurevaliditycutoffmechanical accuracyclassificationdisclosureinspectionsupervision of countingobservationenquiryconfirmationcomputationanalytical proceduresvouchaged trial balancetraceaudit samplingerroranomalous errorexpected errorpopulationsampling risknon-sampling risksampling unitstatistical samplingstratificationtolerable errorthe risk of under reliancethe risk of over reliancethe risk of incorrect rejectionthe risk of incorrect acceptancethe rate of deviationsample sizerequired confidence levelthe number of sampling units in the population methods usedeffective auditefficient auditaudit working papers(documentation)working trial balanceadjusting and reclassification entriesaudit markindexing and cross-referencingpermanent audit filescurrent audit filescomprehensive working papersaudit-oriented working papersreference working papersthe use of standardized working papers checklistscash receiptcash disbursementpetty cashcustodyflowchartinternal control questionnaire walk-through of the system segregation of dutiesdeposit slippurchase orderreceiving reportgeneral ledgerbank statementbank reconciliationbalance sheet datecheck outstandingchange fundcash countkitingfloat periodcutoff bank statement unearned revenuenet realizable valuecollateralsales orderstoreroomstorekeeperperpetual inventory record shipping documentbill of ladingbillingsales invoiceextensfootingprice listaging scheduleaged trial balancebreak downdelinquent account confirmationpositive confirmation request negative confirmation request advancepurchase requisitionpurchase ordervouchers payablevendor's invoicediscrepancydescriptionvouchersremittancegross marginresonablenessauthenticityoverheadmanufacturing overheadbill of materailsinspection recordjob costlabor cost distributionmaterial requisitionpayroll summarypayroll ledgerproduction orderprodution runsrate and deduction authorization form time cardtime ticketaccountabilityrouting sheetsuppliesutilitiesjob orderinventory-takingtest countinventory tagbond certificatestock certificatebroker's advicepaid-in-capitaltreasury stockbond debentureportfolioleaseholdasset retirement orderregistrartransfer agenttrust companynegotiable intrumentcollateralliens and mortgaesminutes of board of directorstrusteerestrictive covenantcontributed capitalstubaudit reportthe truthfulness of the audit reportthe legitimacy of the audit reportentityaddressee of the audit reportunqualified opinionqualified opiniondisclaimer of opinionadverse opinionintrodutory paragraphscope paragraphopinion paragraphexplanatory paragraphmaterialprofessional languagescope limitationunadjusted eventsadquately disclosedthe extent of impact on the finacial statemnts audit report on special purpose engagements审计注册会计师可信性保证财务报表审计执行商定程序编制高保证水平中等保证水平可信性、可信程序可靠性、可靠程序相关、相关性职业后续教育统一注册会计师考试职业谨慎客观,客观性专业胜任能力项目经理业务约定书连续审计、常年审计委托人被提名审计师更换审计师现任审计师后任会计师审计委托约定条款接受业务委托委托目的审计范围出具审计报告其他注册会计师专家撤销初次审计董事会变更约定书股东组成部分了解补审计单位情况实施财务报表审计评估固有风险和内部控制风险决定审计程序的性质、时间和范围初步了解进一步了解接受业务委托之前接受业务委托之后更新并重新评价以前收集的信息以前年度工作底稿董事高级管理人员内部审计人员内部审计报告会议纪要寄送股东或报送临管部门备案的资料中期财务报告管理政策手册会计科目表做出专业判断经营风险管理当局的对策适当性会计估计管理层声明关联方关联方交易持续经营假设审计计划总体审计计划具体审计计划提高审计效率被审计单位的规模审计的复杂性具体的方法和技术财务业绩重大遗漏重点审计领域协调复核法定责任时间预算错误舞弊修改或追加审计程序计划和实施审计程序适当的会计和内部控制系统减少但不能消除篡改伪造更改文件或凭证侵占资产虚构交易滥用会计政策原始凭证疏忽或误解会计政策变更异常交易不完整文件财户余额不平衡缺乏恰当的授权计算机信息系统环境审计测试的固有限制与管理层讨论纠正措施寻求法律咨询法律与规章没有遵守解除业务约定高级管理层发现没有遵守法律与规章的行为故意漏记交易高级管理层逾越控制故意对CPA做出错误陈述管理层声明涉嫌存在违法行为审计委员会监事会临管和执法机构重要性超过重要性水平接近重要性水平可接受的低水平财务报表层面和相关账户、交易层面已发现但尚未调整的错报或漏报错报或漏报已发现和推断的错报或漏报累计期后事项或有事项扩大实质性测试范围调整财务报表执行追加的审计程序实施扩大或追加的控制测试修改实质性程序的性质、时间和范围审计风险固有风险控制风险检查风险不恰当的审计意见风险性测试风险细节测试风险可容忍错报固有风险和控制风险的综合水平可接受的检查风险计划评估的控制风险小规模企业会计系统内部控制系统控制环境控制程序符合性程序控制测试穿行测试管理建议书内部控制的重大缺陷风险评估控制活动信息沟通监督程序手册工作说明流程图文字叙述调查问卷重新执行内部控制计算机辅助审计程序与管理导沟通审计证据控制测试实质性程序审计证据的充分性审计证据的恰当性认定存在或发生完整性权利与义务估价与分摊表达与披露合法性截止机械准备性分类披露检查观察询问函证计算分析性程序核对账龄分析表追查审计抽样错误偶发性错误预期误差总体抽样风险非抽样风险抽样单位统计抽样分层可容忍误差信赖不足风险信赖过度风险误拒风险误受风险偏离程度样本量可信赖水平总体中样本的数量所选用的方法审计效果审计效率审计工作底稿试算平衡表调整和重分类分录审计标识索引和交叉索引永久性档案当期档案综合类工作底稿业务类工作底稿备查类工作底稿使用标准工作底稿核对用清单现金收据现金支出零用现金保管流程图内部控制调查问卷系统的穿行测试职责划分存款凭单采购订单验收报告总分类账银行对账单银行存款余额调节表资产负债表日未兑现支票找零备用金现金盘点开空头支票浮游期截止性银行对账单预收账款可变现净值抵押销售通知单仓库仓库保管员永续盘存记录货运文件提货单开票销售发票小计加总、合计价目表账龄分析表过期账项试算表分解、按细目分类过期账户函证积极式函证消极式孙证预付款请购单订购单应付凭单卖方发票差异货物的说明、种类付款凭单汇款、付款毛利合理性真实性期间费用制造费用用料单验收记录订单成本计算单人工成本分配表领料单工资汇总表工资登记薄生产通知单生产流程工资率及扣减授权表计时卡计时单成本会计流程表机物料消耗公用事业费分批工作通知单存货盘点抽点存货标签债券股票经纪人意见书实收资本库存股债券契约证券组合投资租赁的资产报废通知单注册管理机构过户代理人信托公司流通票据抵押品留置与抵押董事会会议记录受托管理人限制性条款实缴资本存根审计报告的真实性审计报告的合法性被审计单位、客户审计报告的收件人无保留意见保留意见无法表示意见否定意见引言段范围段意见段说明段重要专业术语范围限制未调整事项适当披露对会计报表反映的影响程序特殊目的的审计报告。
英汉对照计量经济学术语
计量经济学术语A校正R2(Adjusted R-Squared):多元回归分析中拟合优度的量度,在估计误差的方差时对添加的解释变量用一个自由度来调整。
对立假设(Alternative Hypothesis):检验虚拟假设时的相对假设。
AR(1)序列相关(AR(1) Serial Correlation):时间序列回归模型中的误差遵循AR(1)模型。
渐近置信区间(Asymptotic Confidence Interval):大样本容量下近似成立的置信区间。
渐近正态性(Asymptotic Normality):适当正态化后样本分布收敛到标准正态分布的估计量。
渐近性质(Asymptotic Properties):当样本容量无限增长时适用的估计量和检验统计量性质。
渐近标准误(Asymptotic Standard Error):大样本下生效的标准误。
渐近t 统计量(Asymptotic t Statistic):大样本下近似服从标准正态分布的t 统计量。
渐近方差(Asymptotic Variance):为了获得渐近标准正态分布,我们必须用以除估计量的平方值。
渐近有效(Asymptotically Efficient):对于服从渐近正态分布的一致性估计量,有最小渐近方差的估计量。
渐近不相关(Asymptotically Uncorrelated):时间序列过程中,随着两个时点上的随机变量的时间间隔增加,它们之间的相关趋于零。
衰减偏误(Attenuation Bias):总是朝向零的估计量偏误,因而有衰减偏误的估计量的期望值小于参数的绝对值。
自回归条件异方差性(Autoregressive Conditional Heteroskedasticity, ARCH):动态异方差性模型,即给定过去信息,误差项的方差线性依赖于过去的误差的平方。
一阶自回归过程[AR(1)](Autoregressive Process of Order One [AR(1)]):一个时间序列模型,其当前值线性依赖于最近的值加上一个无法预测的扰动。
如何利用贝叶斯采样器处理拥抱不确定性
迭代贝叶斯滤波
p( xk | z1:k )
• Prediction:
Sample space
p( xk | z1:k 1 ) p( xk | xk 1 ) p( xk 1 | z1:k 1 )dxk 1
(1)
• Update:
p( zk | xk ) p( xk | z1:k 1 ) p( xk | z1:k ) p( zk | z1:k 1 )
“Unቤተ መጻሕፍቲ ባይዱnformative” prior
贝叶斯推理:一个小例子
P(ttotal|tpast) 1/ttotal
posterior probability Random sampling
1/ttotal
“Uninformative” prior
P(ttotal|tpast)
tpast
ttotal
如何利用贝叶斯采样器处理(拥抱) 不确定性
刘斌 南京邮电大学计算机学院 2017-11-02 @ 华东师大中国R会
不确定性(Uncertainty)
概率(Probability)
“不确定性”的来源
• 世界运转的规律(规则) :有可能就是随机的 • 不可知(或尚未可知)的因素
• 观测噪声
物理概率(Physical Probability)
• The basic building-block: Importance Sampling
11
重要性采样(Importance Sampling)
• Evaluate complex integrals using probabilistic techniques • Assume we are trying to estimate a complicated integral of a function f over some domain D: F f ( x )dx
python二元泊松分布计算概率
一、Python概述Python是一种高级编程语言,具有清晰易读的语法和丰富的库。
它被广泛应用于数据分析、人工智能、网络开发等领域。
Python的简洁和强大使得它成为许多领域的首选编程语言之一。
二、泊松分布概念泊松分布是描述在一段固定时间或空间内事件发生次数的概率分布。
它适用于描述独立事件在连续或离散时间内的分布情况。
泊松分布的概率质量函数为:P(x) = (λ^x * e^(-λ)) / x!其中,λ是单位时间(或单位空间)内事件的平均发生率,x是事件发生的次数。
三、Python二元泊松分布计算概率使用Python可以方便地计算二元泊松分布的概率。
下面将介绍如何使用Python进行二元泊松分布的概率计算。
1. 导入库我们需要导入Python的一些数学计算库,例如numpy和scipy,以便进行计算。
```pythonimport numpy as npfrom scipy.stats import poisson```2. 输入参数接下来,我们需要输入二元泊松分布的参数,包括事件的平均发生率λ和事件发生的次数x。
```pythonlambda1 = 2lambda2 = 3x1 = 1x2 = 2```3. 计算概率我们利用scipy库中的泊松分布函数来计算概率。
```pythonP1 = poisson.pmf(x1, lambda1)P2 = poisson.pmf(x2, lambda2)print("事件发生次数为{}的概率为:{}".format(x1, P1))print("事件发生次数为{}的概率为:{}".format(x2, P2))```通过以上步骤,我们可以得到二元泊松分布中事件发生次数为x1和x2的概率。
四、示例代码下面是完整的示例代码:```pythonimport numpy as npfrom scipy.stats import poissonlambda1 = 2lambda2 = 3x1 = 1x2 = 2P1 = poisson.pmf(x1, lambda1)P2 = poisson.pmf(x2, lambda2)print("事件发生次数为{}的概率为:{}".format(x1, P1))print("事件发生次数为{}的概率为:{}".format(x2, P2))```五、总结本文介绍了如何使用Python进行二元泊松分布的概率计算。
二元选择模型和二值响应模型
二元选择模型和二值响应模型
"二元选择模型"(Binary Choice Model)和"二值响应模型"(Binary Response Model)通常在统计学和计量经济学中使用,用于处理对一个二元结果的建模和分析。
尽管这两个术语有时可以互换使用,但它们通常涉及到略微不同的概念。
1.二元选择模型(Binary Choice Model):这个术语通常用于描述一类模型,其中观测值的因变量(响应变量)只有两个可能的取值,通常是0和1。
这个模型用于解释一个二元决策或选择的过程。
例如,考虑一个人是否购买某个产品(购买=1,不购买=0),这种情况下可以使用二元选择模型来建模。
2.常见的二元选择模型包括Logit模型(逻辑回归)和Probit模型(概率模型),它们都是处理二元结果的广泛应用的模型。
3.二值响应模型(Binary Response Model):这个术语更加通用,它指的是对于某个事件或观测结果的响应只有两个可能取值的模型。
这也可以包括那些不仅仅涉及到选择或决策的情境,还包括其他类型的二元结果。
例如,是否违约(违约=1,未违约=0)也可以用二值响应模型来建模。
4.二值响应模型可以包括二元选择模型,但不限于此,因为它可以应用于更广泛的情境,包括一些不涉及明确选择的问题。
总体而言,这两个术语都涉及到处理二元结果的模型,而具体使用哪一个取决于具体的上下文和研究问题。
逻辑回归和概率模型是处理这类问题时常见的方法,它们在许多领域,包括经济学、社会科学和医学等方面都有广泛的应用。
数据通信原理实验指导书
实验一编码与译码一、实验学时:2学时二、实验类型:验证型三、实验仪器:安装Matlab软件的PC机一台四、实验目的:用MA TLAB仿真技术实现信源编译码、差错控制编译码,并计算误码率。
在这个实验中我们将观察到二进制信息是如何进行编码的。
我们将主要了解:1.目前用于数字通信的基带码型2.差错控制编译码五、实验内容:1.常用基带码型(1)使用MATLAB 函数wave_gen 来产生代表二进制序列的波形,函数wave_gen 的格式是:wave_gen(二进制码元,…码型‟,Rb)此处Rb 是二进制码元速率,单位为比特/秒(bps)。
产生如下的二进制序列:>> b = [1 0 1 0 1 1];使用Rb=1000bps 的单极性不归零码产生代表b的波形且显示波形x,填写图1-1:>> x = wave_gen(b,…unipolar_nrz‟,1000);>> waveplot(x)(2)用如下码型重复步骤(1)(提示:可以键入“help wave_gen”来获取帮助),并做出相应的记录:a 双极性不归零码b 单极性归零码c 双极性归零码d 曼彻斯特码(manchester)x 10-3x 10-3x 10-3x 10-32.差错控制编译码(1) 使用MATLAB 函数encode 来对二进制序列进行差错控制编码, 函数encode 的格式是:A .code = encode(msg,n,k,'linear/fmt',genmat)B .code = encode(msg,n,k,'cyclic/fmt',genpoly)C .code = encode(msg,n,k,'hamming/fmt',prim_poly)其中A .用于产生线性分组码,B .用于产生循环码,C .用于产生hamming 码,msgx 10-3图1-5曼彻斯特码图1-1 单极性不归零码 图1-3单极性归零码 图1-4双极性归零码图1-2双极性不归零码为待编码二进制序列,n为码字长度,k为分组msg长度,genmat为生成矩阵,维数为k*n,genpoly为生成多项式,缺省情况下为cyclpoly(n,k)。
非参数统计(R软件)参考答案
非参数统计(R软件)参考答案内容:A.3, A.10, A.12A.3 上机实践:将MASS数据包用命令library(MASS)加载到R中,调用自带“老忠实”喷泉数据集geyer,它有两个变量:等待时间waiting和喷涌时间duration,其中…(1) 将等待时间70min以下的数据挑选出来;(2) 将等待时间70min以下,且等待时间不等于57min的数据挑选出来;(3) 将等待时间70min以下喷泉的喷涌时间挑选出来;(4) 将喷涌时间大于70min喷泉的等待时间挑选出来。
解:读取数据的R命令:library(MASS);#加载MASS包data(geyser);#加载数据集geyserattach(geyser);#将数据集geyser的变量置为内存变量(1) 依题意编定R程序如下:sub1geyser=geyser[which(waiting<70),1];#提取满足条件(waiting<70)的数据,which(),读取下标sub1geyser[1:5];#显示子数据集sub1geyser的前5行[1] 57 60 56 50 54(2) 依题意编定R程序如下:Sub2geyser=geyser[which((waiting<70)&(waiting!=57)), 1];#提取满足条件(waiting<70& (waiting!=57)的数据. Sub2geyser[1:5];#显示子数据集sub1geyser的前5行[1] 60 56 50 54 60 ……原数据集的第1列为waiting喷涌时间,所以用[which(waiting<70),2](3)Sub3geyser=geyser[which(waiting<70),2];#提取满足条件(waiting<70)的数据,which(),读取下标Sub3geyser[1:5];#显示子数据集sub1geyser的前5行[1] 4.000000 4.383333 4.833333 5.450000 4.866667……原数据集的第2列为喷涌时间,所以用[which(waiting<70),2](4)Sub4geyser=geyser[which(waiting>70),1];#提取满足条件(waiting<70)的数据,which(),读取下标Sub4geyser[1:5];#显示子数据集sub1geyser的前5行[1] 80 71 80 75 77…….A.10如光盘文件student.txt中的数据,一个班有30名学生,每名学生有5门课程的成绩,编写函数实现下述要求:(1) 以data.frame的格式保存上述数据;(2) 计算每个学生各科平均分,并将该数据加入(1)数据集的最后一列;(3) 找出各科平均分的最高分所对应的学生和他所修课程的成绩;(4) 找出至少两门课程不及格的学生,输出他们的全部成绩和平均成绩;(5) 比较具有(4)特点学生的各科平均分与其余学生平均分之间是否存在差异。
样本量估算系列02--基于PASS两样本率非劣效比较样本量计算
样本量估算系列02--基于PASS两样本率非劣效比较样本量计算题记:今天我们用一个案例介绍基于PASS软件的两样本率非劣效比较的样本量计算方法。
1. 基础知识各位可参考我们上一篇文章 (样本量估算系列 01 -- 基于PASS两样本率比较的样本量计算),此处不再赘述。
2. 案例分析[案例] 一个新的抗肿瘤药物A与标准药物B对照进行III期临床试验。
已知药物B的有效率为30%。
根据临床应用的实际情况,设置非劣效性的限值为10%。
根据预实验,估计新药A有效率为25%。
按照1:1平行非劣效性设计,单侧检验,alpha=0.025,power=90%,每组需要多少样本?总计需要多少样本?分析:按照非劣效设计,A药只要不比B药的有效性低10%则认为A药有用。
这种情况临床很常见,B药作为标准治疗虽然效果很好,但可能存在一些不足,比如价格昂贵、副反应大等。
A药作为一种替代药品具有价格便宜,安全性高等优势,如果疗效上不比B药差,或者仅仅比B药差那么一点,当然也有可能优于B药,我们则认为A药有效。
我们可根据专业知识或者文献回顾设定一个非劣效性的界值,此处设为10%,即A药的有效率只要不低于10%,我们都认为B药与A药疗效一致。
此外,还要已知其他参数:A药的实际有效率(根据文献回顾或预实验获得)25%,1:1平行设计,单侧检验,alpha=0.025,power=90%。
3. PASS计算过程第一步,如图依次点击:图1. 依次选择Proportions--Two IndependentProportions--Non-Inferiority -- Non-Inferiority Test For the Difference BetweenTwo Proportions第二步,如图依次填入参数图2. 如图依次设置参数参数解释:Sample Size表示待计算的试验组样本量,此处为选择项;Higher Proportions Are: Better,此处为选择项,相当于告诉软件后面填入的Proportion越大表示效果越好。
基于美国FAERS数据库的阿巴西普不良事件信号挖掘与分析
基于美国FAERS 数据库的阿巴西普不良事件信号挖掘与分析高茂威 1 *,杨小娟 2,纵尚尚 1(1.皖北煤电集团总医院药学部,安徽 宿州 234000;2.皖北煤电集团总医院药物临床试验机构办公室,安徽 宿州 234000)中图分类号 R 969.3 文献标志码 A 文章编号 1001-0408(2023)15-1884-07DOI 10.6039/j.issn.1001-0408.2023.15.18摘要 目的 为阿巴西普的临床安全使用提供参考依据。
方法 以美国FDA 不良事件报告系统(FAERS )数据库为基础,以药品通用名“abatacept ”与商品名“Orencia ”作为检索关键词,检索首要怀疑药物为阿巴西普的药物不良事件(ADE )信号,并采用比例失衡法中的报告比值比法和比例报告比值法以及Excel 2020软件对信号进行挖掘与分析。
结果 共检索出阿巴西普ADE 报告93 189份,以女性病例(75.98%)为主,年龄主要集中于18~64岁(35.17%);数据上报的主要国家为美国(47.41%)与加拿大(30.59%),上报的数量总体呈逐年递增的趋势。
共筛选出ADE 信号3 092个,其中与阿巴西普的药品说明书描述相似的是与原发疾病相关的ADE 信号,如类风湿性关节炎、关节痛、关节肿胀等;其次是与输液反应相关的ADE 信号,包括疼痛、乏力、皮疹等。
所有筛选出的ADE 信号共涉及27个系统器官分类,主要为全身疾病及给药部位各种反应,肌肉骨骼和结缔组织疾病,伤害、中毒和手术并发症,感染和侵袭类疾病,胃肠疾病,神经系统疾病,呼吸、胸腔和纵隔疾病,心脏疾病,良性、恶性和未特指的肿瘤,生殖系统和乳腺疾病等。
报告例数排前50位的ADE 信号中未被阿巴西普药品说明书收录的共有22个,包括乏力、药物不耐受、腹部不适、肿胀、红斑狼疮、周围肿胀、天疱疮、腹泻、肝酶升高与下呼吸道感染等。
结论 临床在使用阿巴西普的过程中应格外注意感染及其致癌性,同时评估患者的呼吸及心血管系统疾病风险,当患者合并这2类基础疾病时,应权衡利弊后谨慎选用;此外,该药在神经、胃肠及生殖系统的ADE 也不容忽视。
binary segmentation突变点检测 matlab
binary segmentation突变点检测 matlab
在MATLAB中,可以使用几种不同的方法来实现二进制分割(binary segmentation)和突变点检测(change point detection)。
1. 二值分割:使用MATLAB中的图像分割函数,如`imbinarize`或`graythresh`,
将图像转换为二值图像。
这些函数可以根据阈值自动将灰度图像转换为二值图像。
```matlab
grayImage = imread('image.jpg');
binaryImage = imbinarize(grayImage);
2. 边缘检测:使用MATLAB中的边缘检测函数,如`edge`,来检测图像中的边缘。
边缘通常表示着图像中的物体或区域之间的边界。
```matlab
grayImage = imread('image.jpg');
binaryImage = edge(grayImage, 'Canny');
3. 突变点检测:可以使用MATLAB中的信号处理函数来检测信号中的突变点。
这些函数包括`diff`和`findpeaks`等。
```matlab
time = 1:100;
signal = rand(1, 100);
diffSignal = diff(signal);
peaks = findpeaks(diffSignal);
以上方法只是其中的一些示例,具体的方法选择取决于你的应用场景和需求。
你
可以进一步研究这些方法,并根据自己的需求进行调整和扩展。
基于差分编码和压缩的SOAP优化
基于差分编码和压缩的SOAP优化
刘欣;谢琦
【期刊名称】《计算机工程》
【年(卷),期】2009(35)1
【摘要】针对SOAP在序列化和反序列化过程中效率低及消息自身的冗余问题,提出在.NET框架下使用SOAP扩展以优化SOAP消息.对于SOAP请求消息,采用增加消息模版的方式实现差分编码,对于SOAP响应消息,根据消息的长短分别采用压缩或差分的方法来优化,减少带宽占用,使Web服务得到优化.
【总页数】3页(P126-127,146)
【作者】刘欣;谢琦
【作者单位】郑州大学信息工程学院,郑州,450001;郑州大学信息工程学院,郑州,450001
【正文语种】中文
【中图分类】TP393
【相关文献】
1.星地遥感数据压缩的差分编码方法研究 [J], 林宗坚;姚娜;邓冰
2.基于SOAP的查询优化设计 [J], 王晓东
3.基于SOAP压缩的OLAP分析引擎通信性能优化 [J], 吴占锋;胡建华
4.基于动态字典和差分编码的计量数据压缩研究 [J], 梁捷;蒋雯倩;李金瑾
5.基于差分编码的RDF分组压缩 [J], 伍伟鑫;韩京宇;朱曼
因版权原因,仅展示原文概要,查看原文内容请购买。
binary accuracy 指标
binary accuracy 指标二分类问题中最常用的评估指标就是 binary accuracy 指标,即二分类准确度。
该指标可以用来衡量模型分类准确性的水平。
在本文中,我们将围绕 binary accuracy 指标展开讨论。
1. 什么是 binary accuracy 指标?Binary accuracy 指标是指模型在二分类问题中预测正确的比例。
在这样的问题中,模型需要将样本数据划分为两类中的一类。
而binary accuracy 指标就是在所有这些划分中,模型预测正确的比例。
2. 如何计算 binary accuracy?Binary accuracy 的计算方式很简单,只需要将模型正确预测的数目除以总的样本数。
公式如下:Binary accuracy = (正确预测的数目) / (所有样本数)通常,我们将 binary accuracy 表示成百分数的形式。
例如,如果模型在100个样本中正确预测了90个,那么其 binary accuracy 为90%。
3. binary accuracy 与其他评估指标的关系在二分类问题中,我们还经常使用其他的评估指标来评估模型的准确性,例如精确率、召回率和 F1 值等。
在实践中,这些指标往往不是单独使用,而是结合在一起评估模型的表现。
以下是这些指标的计算公式:Precision = (真正例数) / (真正例数 + 假正例数)Recall = (真正例数) / (真正例数 + 假反例数)F1 score = 2 * (精确率 * 召回率) / (精确率 + 召回率) 与 binary accuracy 指标相比,精确率和召回率都更加注重模型对少数类的准确预测,而 F1 值则平衡了精确率和召回率的两面性。
相比之下,binary accuracy 指标只关心模型在所有类别上的总体表现。
4. binary accuracy 的应用在实际应用中,binary accuracy 指标是一种常用的评估指标,尤其是在样本分布均衡的情况下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
for i=1:M Z = rand_nort(designX * beta, ones(size(designX * beta)), left, right); Zs=[Zs Z]; sigma=inv(designX’ * designX); betaMLE = inv(designX’ * designX)* designX’ * Z; beta = rand_MVN(1, betaMLE, sigma)’; betas=[betas beta]; piz = [piz .5*(1+erf(designX * beta/sqrt(2)))]; end
1.2
Slice Sampler.
Slice sampler generates pairs (X, Y ) that fill in the area under (possibly unnormalized) target density in a uniform fashion. Then the X -projection is a sample from the density. The slice sampler works as follows: Suppose the target density f (x) is known up to normalizing constant, i.e., we know g (x) such that f (x) ∝ g (x).
ቤተ መጻሕፍቲ ባይዱ
Responses Yi are indicators of a particular attribute (event, property, outcome). In such situations the researcher is interested in modeling p = P (Y = 1|X ), i.e., the probability that the attribute is present, given the vector of covariates, X . Assume that Zi = Xi β + i , i = 1, . . . ,
1
This example and data have been provided by Matthew Wiggins, BioE Graduate Research Assistant at GaTech
ISyE8843A, Brani Vidakovic
Handout 11
1
1.1
Various Models and Related MCMC Stuff.
Latent Variable Binary Regression.
In the binary responses the observations are of the form binary response (from {0, 1}) Y1 Y2 ... Yn covariates (predictors) X1 = (X1,1 , X1,2 , . . . , X1,p ) X2 = (X2,1 , X2,2 , . . . , X2,p ) ... Xn = (Xn,1 , Xn,2 , . . . , Xn,p )
i
> 0) = P ( i > −Xi β ) = 1 − F (−Xi β ).
If the error distribution is symmetric about zero (as usually assumed), pi = 1 − F (−Xi β ) = F (Xi β ), is equivalent to probit, logit, and related models. However, the formulation that assumes latent variable Zi is allowing Gibbs sampling scheme (eg., Chib and Albert 1993) and Johnson and Albert (1999)). Successive sampling from full conditionals, (i) [β |Z, Y ] and (ii) [Z |β, Y ]. Assume that F is normal distribution and that the above model is probit. Then the distribution for β given Z is simply the multivariate normal distribution from the least square theory, [β |Z, Y ] ∼ MVN p ((X X )−1 X Z, (X X )−1 ), where X is design matrix with rows X1 , . . . , Xn . Next, we find the conditional distribution for each component of Z . If Yi and β are given, Zi is truncated at 0 normal distribution with mean Xi β . Recall the connection P (Yi = 1) = P (Zi > 0). Truncation is to the left, if Yi = 1 and to the right if Yi = 0. The conditional for Zi given Yi and β is [Zi |β, Yi ] ∼ T N (Xi β, 1, −∞, 0), T N (Xi β, 1, 0, ∞), if Yi = 0 if Yi = 1,
i iid
∼ F,
is a multivariate regression model in which Zi ’s are not observable, but the indicators Yi = 1(Zi > 0) are. Then, pi = P (Yi = 1) = P (Zi > 0) = P (Xi β +
2
−µ) where T N (µ, σ 2 , a, b) is truncated normal with density proportional to exp{− (z2 }1(a ≤ z ≤ b). σ2 These two conditional distributions are now defining an easy Gibbs sampler. Part of the matlab file albertmc3.m is given below. It requires two m-files from BAYES L AB: (i) rand nort.m that simulates truncated normal T N distribution, and (ii) rand MVN.m that simulates multivariate normal distribution.
Arrithmia Example.1 Patients who undergo Coronary Artery Bypass Graft Surgery (CABG) have an approximate 19-40% chance of developing atrial fibrillation (AF). AF can lead to blood clots forming causing greater in-hospital mortality, strokes, and longer hospital stays. While this can be prevented with drugs, it is very expensive and sometimes dangerous if not warranted. Ideally, several risk factors which would indicate an increased risk of developing AF in this population could save lives and money by indicating which patients need pharmacological intervention. Researchers began collecting data from CABG patients during their hospital stay such as demographics like age and sex, as well as heart rate, cholesterol, operation time, etc. Then, the researchers recorded which patients developed AF during their hospital stay. Researchers now want to find those pieces of data which indicate high risk of AF. In the past, indicators like age, hypertension, and body surface area (BSA) have been good indicators, though these alone have not produced a satisfactory solution. The data set looks has 81 records and the first 3 and the last 3 are provided: ARR 1 1 1 0 0 0 INT 1 1 1 ... 1 1 1 AGE 68 75 69 71 73 55 ACCT 64 111 63 51 68 44 CBT 126 167 94 83 122 78 ICUT 20.25 13.5 12 16.75 17.83 11.5 AHR 85 50 74 102 78.2 94.8 LVEF 81 75 62 59 50 40