初中数学函数图像与性质教育教学研究报告
初中数学教案:函数的图像与性质分析
初中数学教案:函数的图像与性质分析一、函数的图像分析函数是数学中常见的概念,它描述了一种特定关系。
在初中数学课程中,我们首次接触到了函数,并开始研究它的图像与性质。
本文将深入探讨初中数学教案:“函数的图像与性质分析”。
我们将从图像方面入手,介绍函数的基本类型以及它们的特点,然后进一步分析函数的部分性质。
1. 直线函数直线函数是最简单也是最基础的一类函数。
它的图像在平面直角坐标系中呈现为一条直线。
而这条直线又可以通过两个关键元素来确定:截距和斜率。
a) 截距:截距即截取到y轴上的值,用b表示。
当x=0时,相应地有y=b,这就是直线与y轴相交于点(0, b)。
b) 斜率:斜率用k表示,可以通过直线上两点(x₁, y₁)和(x₂, y₂)之间纵坐标差(Δy)除以横坐标差(Δx)计算得出:k = (y₂ - y₁)/(x₂ - x₁)2. 平方函数平方函数属于抛物线类别,其特征是具有一个二次项,常用形式为f(x) = ax² + bx + c。
平方函数的图像通常是一个开口朝上或朝下的U形曲线。
a) 抛物线的顶点:抛物线的顶点是其最低点(若开口向上)或最高点(若开口向下)。
它的x坐标可以通过以下公式得到: x = -b/2ab) 对称轴:对称轴是通过抛物线顶点且垂直于x轴的一根线。
它也可以通过公式 x = -b/2a 求得。
3. 开平方函数开平方函数类似于平方函数,但它具有一个重要区别。
开平方函数首先对自变量进行求平方根运算,然后再进行其他运算。
开平方函数的常用形式为f(x) =a√(bx + c)。
a) 定义域和值域:由于存在求平方根运算,导致定义域和值域有所限制。
在确定这两个范围时,我们需要考虑底数是否大于零、被开放项是否大于等于零等因素。
b) 升降性:我们需要关注抛物线U形曲线在不同区间内上升还是下降。
这涉及到系数a、b和c对图像形状的影响。
二、函数的性质分析除了图像外,我们还可以通过一些数学上的性质来深入了解函数。
初中数学_二次函数的图像与性质(1)教学设计学情分析教材分析课后反思
作业完成情况
检查学生的作业完成情况 ,了解学生对知识点的掌 握程度和应用能力。
测验或考试成绩
通过测验或考试的方式, 评价学生对二次函数的图 像和性质的理解和掌握程 度。
02
学情分析
学生数学基础情况
01
学生已经掌握了一次函数、反比例函数等基本初等函数 的知识,对函数概念有了一定的理解。
02
学生已经学习过平面直角坐标系,对坐标的概念和性质 有所了解,能够绘制简单的函数图像。
。
在未来的教学中,还将积极探索新的教 学方法和手段,如多媒体教学、网络教 学等,以提高教学效果和学生的学习兴
趣。
谢谢聆听
04
课后反思
教学效果评估
学生对于二次函数的图像与性质有了 初步的认识,能够绘制简单的二次函 数图像,并理解其开口方向、顶点、 对称轴等基本性质。
通过课堂练习和课后作业,大部分学 生能够运用所学知识解决相关问题, 表现出较好的学习效果。
存在问题与不足
部分学生对于二次函 数图像的绘制不够熟 练,需要加强练习和 指导。
教材特点与亮点
特点突出
本教材注重理论与实践相结合,通过丰富的实例和图形帮助 学生理解二次函数的图像与性质;同时,强调数学思想的渗 透和数学方法的应用。
亮点呈现
教材在阐述二次函数图像与性质时,采用了数形结合的方法 ,使得抽象的知识更加直观化;此外,还注重培养学生的探 究精神和创新意识,通过引导学生自主探索和发现规律,激 发学生的学习兴趣。
课堂互动不够充分, 部分学生缺乏参与讨 论的机会。
在讲解过程中,部分 内容的解释不够清晰 ,导致学生理解困难 。
改进措施与建议
针对学生绘制二次函数图像的困 难,可以增加更多的实例和练习 ,让学生多加练习并逐渐掌握技
初中数学教案:函数的图像与性质分析
初中数学教案:函数的图像与性质分析一、函数的图像分析a. 函数定义函数是数学中一个重要的概念,它描述了两个集合之间的映射关系。
在初中数学教学中,我们常用函数来解决实际问题,并通过观察和分析函数的图像来研究其性质与规律。
b. 图像表示法为了方便对函数进行图像表示,我们通常将自变量(x轴)和因变量(y轴)作为坐标系的坐标轴。
函数的图像是指所有满足函数关系的点在坐标系中所呈现出来的形状。
c. 增减性与最值对于一个给定区间上的函数,如果随着自变量的增加,因变量也随之增加,则该函数在这个区间上是增函数;如果随着自变量的增加,因变量反而减小,则该函数在这个区间上是减函数。
通过观察和比较函数各个区间内部不同部分的趋势变化,我们可以对其增减性有更进一步认识。
同时,在某一给定区间内,当因变量取得最大(或最小)值时,我们可称之为该函数在此区间上具有最大值(或最小值)。
二、函数性质的分析a. 奇偶性对于一个函数,如果对任意自变量x,有f(-x)=f(x),则称该函数具有偶性;若对任意自变量x,有f(-x)=-f(x),则称该函数具有奇性。
对于一个关于y轴对称的图像,其函数具有偶性;而对于一个关于原点对称的图像,则其函数具有奇性。
b. 单调性与极值在某一给定区间内,如果函数的增减关系始终一致,则该函数在此区间上是单调函数。
通过观察和比较函数各个区间内不同部分的趋势变化,我们可以更进一步了解其单调性。
同时,在某一给定区间内, 如果存在自变量取得最大(或最小)值时因变量也取得最大(或最小)值,则称之为该函数在此区间上具有极大值(或极小值)。
c. 对称轴与零点对于一个定义域为全体实数的函数,如果存在一条垂直于x轴的直线将其图像分成两个完全相同的部分,则这条直线被称为该函数的对称轴。
零点指的是使得因变量为0的自变量值。
通过观察和计算零点,我们可以了解函数图像与自变量的关系。
三、函数图像与性质分析的实例以一些常见的函数为例,我们来具体分析其图像与性质。
初中数学教案三次函数的图像与性质
初中数学教案三次函数的图像与性质三次函数是中学数学中的一个重要知识点,它具有独特的图像和性质。
本教案将以图像为线索,详细介绍三次函数的特点和性质,帮助学生深入理解和掌握这一概念。
一、三次函数的基本形式三次函数的一般形式为:$y = ax^3+bx^2+cx+d$,其中$a,b,c,d$为实数且$a\neq0$。
二、三次函数的图像为了研究三次函数的图像,我们将从以下几个方面进行讲解。
1. 零点与轨迹在$x$轴上,三次函数的零点对应的是方程$ax^3+bx^2+cx+d=0$的解。
解方程的方法是通过因式分解、配方法、求根公式等来求得。
2. 极值点与拐点三次函数的极值点和拐点可以通过求导数的方法得到。
求解导函数$y' = 3ax^2+2bx+c$,令其等于零,即可求得极值点和拐点的横坐标。
然后再代入原函数中,求得对应的纵坐标。
3. 对称性三次函数具有奇函数的对称性,即$f(-x) = -f(x)$。
这意味着如果某一点$(x_0, y_0)$在图像上,那么点$(-x_0, -y_0)$也在图像上。
三、三次函数的性质除了图像特点之外,我们还需要讲解三次函数的其他性质,包括:1. 定义域和值域三次函数的定义域为全体实数。
值域则需要通过观察图像或者进行计算得到。
2. 单调性三次函数的单调性与系数$a$的正负有关。
当$a>0$时,函数单调递增;当$a<0$时,函数单调递减。
3. 凹凸性通过分析二阶导函数$y''=6ax + 2b$的正负,可以判断三次函数的凹凸性。
当$y''>0$时,函数凹;当$y''<0$时,函数凸。
4. 渐近线对于三次函数而言,它可能有水平渐近线、垂直渐近线以及斜渐近线等。
通过求解极限或观察图像,可以确定渐近线的方程。
四、教学实例与练习为了帮助学生更好地掌握三次函数的图像和性质,我们可以设计一些教学实例和练习题,如:1. 画出函数$y=2x^3-3x^2-12x+5$的图像,并求出其所有零点和拐点的坐标。
初中数学教学课例《一次函数的图像和性质》教学设计及总结反思
随的增大而增大;随的增大而增大
当时,图像经过二,四象限,当时,图像都经过一,
三象限
随的增大而减小.随的增大而减小.
为了准备本节课,使本节课的效果更加高效,我主
要是搜索了有关于函数学习的方法和作图的方法。在这
一过程中,不断的更新自己的知识面,不断挑战自我。
本节课的教学内容过于丰富,学习的时间不够,在 课例研究综
(2)一次函数的解析式是什么?
2.观察这四个函数图像,问(1)这是什么函数的
图像?(2)图像是什么形状? 结论:一次函数的图像是一条直线,而两点确定一
条直线.(用两点法画一次函数的图像) (二)探索新知 例 1 画的图像. 让学生观察,取怎样的两点合适(计算简单,描点
方便,突出定点原点) 随堂练习 画,,的图像. 讨论,当时,正比例函数有哪些性质? (1)图像都经过原点; (2)图像都经过一,三象限; (3)随的增大而增大. 随堂练习 2.画(1)(2)(3)的图像. 讨论,当时,正比例函数有哪些性质? (1)图像都经过原点; (2)图像都经过二,四象限; (3)随的增大而减小. 练习一 填空 函数的图像是过点(,0)和(1,)的一条直线,
增大; (3)当时,图像都经过二,四象限,随的增大而
减小. 练习二 填空 函数的图像是经过(0,)和(,0)的一条直线,
随的增大而
函数的图像是经过点(0,)和(,0)的一条直线, 随的增大而
二、选择 函数()的图像大致是() ABCD (三)小结 1.提问(1)正比例函数有哪些性质? (2)一次函数有哪些性质? 2.让学生在小组内谈一谈自己的学习心得和学习 感受. 3.思考题 (1)若一次函数的图像是图中的直线,则的符号 是() B.C.D. 写出的 2 个值,使相应的一次函数的值都随值得增 大而减小. 六、板书设计 一次函数的图像和性质 正比例函数的性质一次函数的性质 1.图像都经过原点;1.图像都经过(0,); 当时,图像经过一,三象限,2.当时,图像都经过 一,三象限
初中数学_正比例函数的图象与性质教学设计学情分析教材分析课后反思
正比例函数的图象一、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。
2、通过观察、探究、分析、引导学生发现正比例函数的性质。
3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。
二、教学重点:正比例函数图象的画法及性质的探索。
三、教学难点:发现、归纳正比例函数的性质。
四、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。
本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
六、教具:三角板、多媒体。
七、教学过程。
教学过程:一、温故知新1、下列函数哪些是正比例函数?(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x22、(学生回答完上述问题后提问概念)一般地,形如y= kx(K≠0)的函数,叫正比例函数,其中k叫做比例系数.3、画函数图象的一般步骤(1)列表(2)描点(3)连线学生回答后:教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?出示课题二、导学释疑——探究正比例函数的图象和性质(一)探究正比例函数的性质例1、画出下列正比例函数的图象。
(1)y=2x;y=0.5x解:列表,描点,连线x ... -2 -1 0 1 2 ...y(2)学生练习画出函数y=0.5x的图象。
(3)在同一直角坐标系中画出函数y=4x的图象。
初中数学教学课例《二次函数图像和性质》教学设计及总结反思
学概念、思想、方法,培养提出问题、分析问题、解决
问题的能力.
直观地演示抛物线的平移,让学生明白抛物线是怎
样变化的。通过动态演示,学生能归纳出二次函数的性 课例研究综
质,并于认识上有深层的理解,完成基础问题的解答。 述
利用《几何画板》辅助教学,能加强学生的记忆和理解,
为学生更好地学习提供帮助。
精神、勇于探索创新。
1.探究引导策略:探讨式学习;教师启发引导。 教学策略选
2.自主合作探究式学习策略:互相讨论、交流、合作的 择与设计
课堂氛围。
在数学课程设计与实施中,充分利用计算机等现代
化教学手段,为学生创设丰富的数形结合环境,促进学 教学过程
生积极参与活动:猜想论证、探索与推理、问题的提出
与分析解决、计算与检验等,帮助学生更深刻地理解数
(三)情感态度目标
使学生体会数形结合思想,培养学生观察、思考、归纳
的良好思维习惯
在教学中,注重发挥学生的主体性,引导学生积极
地观察问题,分析问题,激发学生的求知欲和学习积极
学生学习能 性,指导学生积极思维、主动获取知识,养成良好的学
力分析 习习惯。并逐步学会独立提出问题、解决问题。引导学
生积极开动脑筋,思考问题和解决问题,从而学
思想,对学生基本数学思想和素养的形成起推动作用; 教材分析
(3)二次函数与一元二次方程、不等式等知识的联
系,使学生能更好地将所学知识融会贯通.
教学重点:
会用描点法画出二次函数 y=ax2 的图象,探索二次
函数性质
教学难点:
探索二次函数性质
(一)知识技能目标
初中数学教学课例《二次函数图像和性质》教学设计及总结 反思
学科
初中数学
二次函数的图象和性质分析报告
二次函数的图象和性质(1)分析报告这节课是北师大版九年级数学下册的一节探究课。
在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现主体参与、自主探索、合作交流、指导引探的教学理念。
整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。
我的设计目的就上让学生在复习这些知识的过程中体会从函数图像来研究函数性质的。
应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。
第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。
探究活动一是让学生在课本32页坐标系上画出二次函数y=x2的图象。
画图的过程包括列表、描点、连线。
列表过程是我引导学生取点的,画出了函数的图象。
紧接着我让学生自主探讨当a>0时函数y=ax2的性质。
探究活动二是独立画出函数y=-x2的图象,然后是自主探讨当a<0时函数y=ax2的性质。
探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。
第三部分是课堂检测。
我的优点主要包括:1、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
2、能运用现代化的教学手段教学,突破重难点。
我的不足之处表现在:1、知识的生成过程体现的不够具体。
在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。
2、作图的过程没必要放到课堂上来。
可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。
有时候就是要让学生经历“错误”的过程,这样他们才会懂。
3、课堂上讲的太多。
九年级下册《二次函数的图像与性质》数学教案
九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。
2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。
3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。
二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。
2. 教学难点:通过图像理解和应用二次函数的性质。
三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。
四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。
2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。
3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。
4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。
五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。
六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。
初中数学_一次函数的图像和性质教学设计学情分析教材分析课后反思
《一次函数的图像和性质》教学设计一、教材分析《一次函数的图像和性质》是义务教育教科书人教版数学八年级下册第19章第二节第二课时的教学内容。
主要内容是:一次函数的图象和性质. 主要包括两个知识点: 1、一次函数图象的画法。
2、一次函数的性质。
二、学情分析本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。
本课时内容安排在正比例函数的图象和性质与一次函数的概念之后。
通过这一节课的学习使学生会用两点法画一次函数图象和掌握一次函数的性质。
它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。
同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。
本节内容起着承上启下的作用。
更是学生进一步学习数形结合这一数学思想方法的很好素材。
三、教学目标根据《数学课程标准》的要求,结合以上分析从而确定教学目标。
教学目标和知识目标:使学生会用两点法画一次函数的图象,掌握一次函数的性质。
知识目标技能目标:通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;体验数形结合思想的应用,培养推理及抽象思维能力。
德育目标:德育目标:通过体验数与形的内在联系,培养学生“运动变化”的辩证唯物主义观点。
情感目标:体验数学活动的创造和探索,让学生在操作实践中产生浓厚的学习兴趣。
四、教学重点难点教学重点:一次函数的图象和性质。
因为图象是研究性质的前提,而性质又质又是研究函数的基础。
函数的多种表示方法(表格、解析式、图象)之间的联系与转换是学生能否灵活学习函数的条件之一。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
因为由函数图象归纳函数性质是学生首次接触,根据学生思维的最近发展区,让学生经历动手操作、观察、思考、猜想、归纳、应用等数学活动,从而培养学生的归纳总结和语言表达能力。
初中数学教案:函数的图像与性质分析
初中数学教案:函数的图像与性质分析一、引言函数作为数学中一种常见的数学概念,对于初中数学教学具有重要的意义。
函数的图像与性质分析是初中数学中的一个重要内容,通过对函数的图像进行分析,可以帮助学生更好地理解函数的性质,从而提升他们的数学思维能力和问题解决能力。
本教案将围绕函数的图像与性质分析展开,通过合理安排教学活动,帮助学生深入理解函数的性质。
二、教学目标1. 知识目标- 掌握函数的图像与性质分析的基本方法和技巧。
- 了解函数的单调性、奇偶性和周期性等基本性质。
2. 能力目标- 能够用合适的方法进行函数的图像与性质分析。
- 能够运用所学知识解决与函数性质有关的问题。
三、教学重点与难点1. 教学重点- 准确理解函数的图像与性质分析的基本概念。
- 掌握函数的单调性、奇偶性和周期性等基本性质的判断方法。
2. 教学难点- 帮助学生理解函数图像与性质之间的内在联系。
- 引导学生运用所学知识解决函数性质相关问题。
四、教学过程1. 导入- 引导学生回顾函数的定义和基本性质,并提出图像与性质分析的重要性。
2. 理论讲解- 介绍函数的单调性、奇偶性和周期性的概念与定义,并讲解相关判断方法。
- 通过具体的例子,解释函数图像与性质之间的关系。
3. 讲解案例- 选取几个简单的函数,通过具体的案例分析,引导学生运用所学知识分析函数的图像与性质。
- 帮助学生理解图像的形状与函数性质之间的联系。
4. 练习与讨论- 给学生一些练习题,让他们独立分析函数图像与性质,并与同伴讨论,相互交流与学习。
- 引导学生通过练习和讨论,进一步提升他们的分析和解决问题的能力。
5. 拓展与应用- 利用学生熟悉的实际问题,引导他们将函数的图像与性质分析应用到实际生活中。
- 鼓励学生发现并解决与函数性质相关的实际问题,培养他们的数学建模能力。
6. 总结归纳- 综合总结函数的图像与性质分析的基本方法和技巧。
- 引导学生总结规律并归纳出解决问题的思路与方法。
一次函数图象与性质的探究教学
一次函数图象与性质的探究教学【摘要】一次函数是初中数学的一个相对比较重要的知识点,其应用广泛,也是中考不可缺少的内容之一,容易与其他知识点相结合。
在教学实践中,我们发现,学生在一次函数中的数图形结合中错误率较高,理解较浅。
基于实践经验,结合一次函数图象,通过教学课堂中启发、合作等方法,使学生主动探索一次函数的性质,提高学生学习兴趣和学习效率。
【关键词】一次函数图象性质探究教学应用1.一次函数定义及求法一次函数是新人教版八年级下册的一个重要知识点,教学中要特别强调k≠0,一次函数是形式定义:形如y=kx+b(k≠0,k、b均为常数)的函数叫一次函数,解析式为y=kx+b(k≠0,k、b均为常数)。
求出一次函数的解析式的方法有待定系数法、平移变换法、数形结合法、分类讨论法等。
从数形结合法求一次函数解析式和频繁出现的一次函数与坐标系相结合的试题来看,我们可以得出,一次函数在直角坐标系中的图像,对于探究函数的性质有着重要的意义。
基于此,笔者根据教学的实践,结合直角坐标系探究一次函数的性质。
2.一次函数的性质与函数图像一次函数图像的变化与k、b息息相关的,k值的变化影响着图像呈什么趋势和陡缓,b值的变化影响图像与y轴的交点,k、b值的变化影响着函数图像与x轴,y轴的交点及其所在的象限,这就是数与形的内部联系。
以下是笔者在教学实践中的一次函数性质与直角坐标系关系的一个探究过程:2.1 激发学生兴趣。
在学习本节课之前,学生对函数、正比例函数、一次函数已经有了一定的知识基础,教师在利用图像来探究一次函数的时候,可以先着手对这些前面已有的知识基础进行复习,加深学生的印象和理解。
其次,设计学生的思考问题:”任何一个函数都具有相对应的图像,那么一次函数的图像是怎么样的,又有什么性质呢?一起来探索”。
这样的问题一抛出,既能激发学生的兴趣,又能联系学生已有的知识基础。
自主探究教学法有助于提高学生的兴趣和求知欲,因此,在实际的教学过程中,教师可以尝试使用自主探究教学法,让学生进行尝试小组合作后填表回答,使学生的讨论和学习更有方向,提高学生的学习效率和课堂效率,在学生合作交流后填制完这张表格时,教师在让学生进行全班之间的交流,得出答案。
解析初中数学函数图像与性质教学
解析初中数学函数图像与性质教学摘要】初中数学教学的过程中,函数是课堂教学的重要内容,函数的图像与性质那么是函数知识中的重点和难点.函数图像是函数常见的表示方式,可以更加形象直观地展示函数.借助函数图像表示函数关系,让学生从整体上直观形象地掌握函数的变化.函数的性质是函数学习和灵活应用的根底,是函数解题的根底.因此,在初中数学教学中,应当重视函数的图像与性质教育.文章中结合初中数学课堂教学,提出几点函数图像与性质教学的策略.【关键词】初中数学;函数图像与性质;教学策略初中函数教学的过程中,函数图像与性质是重要的教学环节,初中数学中函数教学是根本的教学内容,应当重视函数图像与性质的教学.作为初中学生,学习函数不仅需要掌握函数概念,激发学习兴趣,同时要能灵活应用函数图像和性质.因此,在教学的过程中,教师需要注重课堂教学方式的改良,不断总结课堂教学经验,完善课堂教学内容和方式,从多个角度和层面开展教学活动,提高课堂教学质量.一、展示函数形成过程,帮助学生理解函数概念初中数学教学的过程中,函数是数学教学的重要内容,不少学生对函数图像和性质不够理解,对初步接受函数的学生来说,函数的形式比拟复杂多样,其概念内容比拟抽象.在教学的过程中,教师如果采取灌输式的方式讲解函数概念和性质,会影响学生对函数知识的学习和理解,使得学生丧失对函数的学习兴趣.因此,在教学的过程中,教师应当向学生展示函数形成过程,让学生对函数概念深入理解.例如,沪科版初中数学八年级上册“一次函数〞的课堂教学中,教师可以利用学生熟悉的例子,带动学生了解函数的形成过程,深入理解函数的概念和图像.例如,在学校的运动会上,跑步比赛中,甲同学的速度是1.5m/s,乙同学的速度是2m/s.两名学生同时出发,写出两名学生距离起点的距离y和时间x之间的关系式.借助学生生活中的例子,引导学生思考和探究,让学生了解距离和时间之间的关系式,x是自变量,y是因变量.通过这样的探究,让学生写出两名同学的函数关系式.通过这样的方式让学生了解一次函数的形成过程,对函数的概念深入的理解,为函数图像和性质的学习奠定根底.二、合理利用多媒体技术,激发学生学习兴趣随着现代教育的开展,课堂教学中信息技术得到普遍的应用,成为一种重要的课堂教学辅助方式.在函数教学的过程中,教师借助多媒体技术将知识内容更加形象直观的展示,让学生更加直观地了解函数知识,锻炼学生的思维能力,培养学生的发散思维和想象能力.在教学的过程中,结合信息化技术的优势,将函数形象地展示给学生,激发学生的数学学习兴趣.例如,沪科版初中数学九年级下册“二次函数的图像与性质〞的教学中,教师设置相应的课堂教学情境,引出二次函数图像和性质的教学内容,让学生以y=x2为例,开展开展描点和连线等操作,将二次函数图像的描绘方法更加形象地展示出来,引导学生对函数图像进行观察,让学生对函数的对称轴、开口方向以及单调性等知识进行学习和掌握.通过多媒体技术使得知识内容更加的形象直观,让学生更好地理解二次函数性质,树立学生学习函数的自信,激发学生学习的兴趣.三、注重课前预习活动,调动学生自主性初中阶段的数学教学中,应当重视学生预习活动的开展,是课堂教学开展开展之前,引导和监督学生开展预习活动,让学生在课前独立完成根底知识的学习,教师在课堂教学中,针对学生的困难和疑惑做出解释,开展开展,学生可以在根底知识的根底上,加深知识内容的学习和记忆,通过学生自主学习和实践探究,深入学习和掌握函数的图像和性质.例如,沪科版初中数学八年级下册“反比例函数的图像与性质〞的教学中,教师引导学生开展相应的预习活动,让学生根据所学的一次函数的图像和性质,稳固反比例函数的概念、定义域以及值域等知识内容,学生结合实际的正比例函数,开展相应的学习和探究活动,让学生从正比例函数的图像形状、位置以及变化趋势等方面进行探究,了解反比例函数的图像,并且根据列表画图的方式,画出反比例函数的图像.在课堂教学的过程中,教师针对课堂教学的重点和难点,函数图像和性质的内容,开展深入的讲解,让学生通过观察函数的图像,对反比例函数的形状、位置、变化趋势以及增减性进行归纳和总结,解决学生预习中的困难和疑惑,让学生深入掌握反比例函数的单调性和对称性,同时能够灵活地利用k值不同的两种不同情况,提高学生的课堂学习效率.四、结语函数是初中教学的重要内容,函數的图像与性质是教学的重点和难点,借助有效的课堂教学方式,帮助学生深入理解函数的概念和意义,调动学生课堂学习积极性,合理利用多媒体技术,将知识内容更加形象直观的展示,激发学生学习兴趣,做好课堂预习活动,培养学生自主学习和探究能力,提高初中函数课堂教学效率和质量.【参考文献】开展[J].数理化解题研究:初中版,2021〔8〕:13-14.【2】曾敬荣.初中数学函数图像与性质教学研究[J].数学大世界〔中旬版〕,2021〔5〕:47.。
初中数学_正比例函数的图象和性质教学设计学情分析教材分析课后反思
《正比例函数的图像和性质》教学设计由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点 (1,k),过这两点做直线即可练习:说出用两点作图法画出下列函数的图像时应先确定哪两点(1)32=y x;(2)y =-3x拓展延伸:你有什么新发现?小组讨论得出:当 k 越大时,图像越靠近y轴当 k 越小时,图像越靠近y轴课堂练习(挑战自我)出示一组课堂练习4.分享收获、课堂小结从本节课的学习中,你获得了哪些知识?①如何快速画正比例函数的图象②正比例函数的性质③数形结合的数学思想方法④学生自身在合作小组讨论中的一些体验和感悟布置作业:作业:P98 第1、2、3题教学评价设计:1这个过程,由老师提问学生作答,在学生回答不够完善的地方,请其他学生补充,老师紧后给予完善。
2这样的设计,适合学生的学习习惯,能让学生在温习旧知识的过程中体验会旧知与新知之间的联系,积极探索新知识3学生对平面坐标系有所了解,但对数形结合的方法还不是很熟练,有必要给学生以示这样的设计,主要是让学生更多熟悉数与形的结合,体会数到形的转变,还为下一步的的探究做好辅垫。
4整个环节由浅入深,在与他人交流合作的过程中,同学们可以借助他人的想法来激发自己的灵感,体验问题解决多样化的学习策略,积累学习数学的经验。
问题一环紧扣一环,让学生逐层深入思考,既动手又动脑。
5这样的设计,可以让学生在没有压力的状态下完成同他人合作的过程,愿意表现的学生可以起来发言,在讨论和合作中,增加了分析和解决问题的能力。
教学反思:本课不是直接了当地进行介绍、灌输,而是通过各个活动,把学生带入主动探索的活动中来,引导学生动手画图、观察、分析,归纳极大地激发了学生的学习兴趣,练习中通过学生激烈的辩论使难点得到较好的解决,再结合实例,更加深了学生对定义的了解和掌握,收到了事半功倍的效果。
上过课后发现, 1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应,不同的坐标与不同的点一一对应函数关系与动点轨迹一一对应.把抽象的数量关系与形象直观的图形联系起来,通过解读图象了解抽象的数量关系,这种“数形结合”是数学中的一种重要的思想方法. 2.定系数法通过本节课的教学及课后反馈,我发现以下问题需要注意和改进1,学生在学习了一次函数的图象和性质的基础上学习本节课,大部分学生可以很快接受,但有少部分学生理解比较吃力,究其原因,发现是前面内容掌握不牢,,理解不透造成的。
初中数学教学课例《一次函数的图像和性质》教学设计及总结反思
画图,对一次函数的图像的形状有了感性认识。 (三)引导学生观察正比例函数 y=-6x 与一次函数
y=-6x+5 图象的相同点与不同点。(教材思考题)引导 学生可以通过平移得到一次函数 y=-6x-5 的图像。 (设计意图:引导学生过观察与比较,让学生体验两个 图像之间的位置关系:函数 y=-6x+5 的图像实际上是由 函数 y=-6x 的图像进行了平移的结果。) (四)猜想
初中数学教学课例《一次函数的图像和性质》教学设计及总 结反思
学科
初中数学
教学课例名
《一次函数的图像和性质》
称
函数是中学数学中非常重要的内容,是刻画和研究
现实世界变化规律的重要模型。它贯穿于整个初中阶段
的始终,同时也是历年中考的内容之一。初二数学中的 教材分析
函数又是中学函数知识的开端,是学生正式从常量世界
讲练结合,引导学生正确理解一次函数的性质及其 教学策略选
对应关系;教学学生学会观察探索函数图像,最后由性 择与设计
质又回归函数关系式。
(一)温故知新:
教学过程
1、复习一次函数的解析式。 2、复习正比例函数的图像和性质。
(设计意图:复习正比例函数的图像及性质,为类比、
探究一次函数的图像及性质做好铺垫。) (二)学生作图 引导学生画函数 y=2x+1,y=2x-1 的图像 设计意图:培养学生动脑动手的能力,通过描点法
质,并会加以运用。逐步培养学生从特殊到一般、数形
结合等数学思想。
教学难点:
一次函数性质的探索、语言的准确描述、归纳总结
及应用。
本人所教的(3)班是整个年级中成绩最优秀,学习
学生学习能 能力最强的一个班级,具备进行新学习所需的知识和技
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 .函数是初高中的一个重要衔接点:函数知识是初中代数内容的重要组成部分,贯穿于整个初中数学体系之中.熟悉高中知识的老师应该知道,高中数学多数知识都是与函数有着紧密的联系.所以初中函数的学习为高中数学的学习奠定了重要的基础.
2 .函数与其他知识的关联:函数在初中代数中具有统领的地位,与方程、不等式联系紧密,相互结合才真正让代数内容上升到一定高度,真正体现了函数的强大作用,可以解决更多的代数问题,这一点在高中代数中体现的更加明显.另外,函数在动态几何中有广泛的用处,可以对图形进行一些定量的分析,这一点在初中数学的学习中很重要.
< 4 )二次函数:二次函数的解读式,二次函数的图象,二次函数的性质,抛物线与坐标轴的交点,二次函数与二次方程、不等式,实际问题与二次函数.
函数的图象与性质贯穿着这个专题的每个内容,是每种函数都要着重研究的对象,通过对函数的图象与性质的研究,可以让学生更好的理解函数的概念,更好的应用函数解决相关问题.
初中数学函数图像与性质教学研究报告
———————————————————————————————— 作者:
———————————————————————————————— 日期:
初中数学“函数图象与性质”的教案研究
孙晓佳 <清华附中、高级教师)
一、对函数图象与性质知识的深层次理解
<一)函数图象与性质的知识结构与框架图
二、函数图象与性质的教案策略
<一)怎样进行函ຫໍສະໝຸດ 图象与性质教案引入的设计让学生掌握正比例函数与一次函数解读式的特点及意义,知道一次函数与正比例函数关系,会用简单方法画一次函数图象,理解一次函数图象特征与解读式的联系规律.
例1 ,画出函数y=-6x与y= -6x+5 的图象.并比较两个函数图象,探究他们的联系及解释原因.
4 .二次函数的图象与性质,抛物线与坐标轴的交点,抛物线的对称性,单调性,最大值与最小值.
教案难点:
1 .函数解读式中的参数与图象变换之间的关系;
2 .用函数图象解决方程、不等式的问题;
3 .函数的单调性及在求最大<小)值、比较大小中的应用;
4 .与函数图象有关的面积问题;
5 .实际问题的函数关系及函数图象.
3 .函数的学习引领着思维方式的转变:函数是在一个变化过程中两个变量的一种特殊对应关系.函数的学习实际上是定量知识到变量知识的一个飞跃,同时使学生学会了用运动变化和联系对应的观点看问题.函数与方程是一种重要的数学思想方法,同时还渗透着数形结合等数学思想.
4 .函数在实际生活中的应用:函数来源于生活,并用于生活.它与生活实际联系密切,是实际生活中数学建模的重要工具之一.在中学阶段,我们碰到的函数应用问题以一些理想化的或简化的问题为主,但这是基础.对于学生来说,也许在将来才能真正体会到函数应用对于研究和生活生产的强大作用.
<三)函数图象与性质的教案内容的重点和难点 .
函数图象与性质专题包含以下内容:函数的概念及图象,一次函数,反比例函
数和二次函数的图象与性质.具体的教案重难点如下:
教案重点:
1 .函数的概念及图象;
2 .一次函数的图象与性质,直线与坐标轴的交点,一次函数的单调性;
3 .反比例函数的图象,反比例函数的单调性,图象的对称性;
3
6
-1.5
<请把表中空白处填好)
描点,以表中各对应值为坐标,在直角坐标系中描出各点.
连线,用平滑的曲线把所描的点依次连接起来.
探究:反比例函数y= 和y=- 的图象有什么共同特征?它们之间有什么关系?若把y= 和y=- 的图象放到同一坐标系中,观察一下,看它们是否对称.
例 1 . 我们已知道,一次函数y=kx+b<k≠0 )的图象是一条直线,那么反比例函数y= <k为常数且k≠0 )的图象是什么样呢?
要求学生用描点法来画出反比例函数的图象.
画出反比例函数y= 和y=- 的图象.
解:列表
x
…
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
…
y=
-1
-1.5
-2
-6
3
1
y=-
1
1.2
引导学生从函数图象特征入手,寻求变量数值变化规律与解读式中k值的联系.
发现性质:
形的角度:当k>0 时,直线y=kx+b由左至右上升;当k<0 时,直线y=kx+b由左至右下降.
数的角度:当k>0 时,y随x增大而增大;当k<0 时,y随x增大而减小.
2 .反比例函数的图象与性质
让学生会画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.能用反比例函数的定义和性质解决实际问题.通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.
通过活动,可以让学生加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解读式联系规律.
例2 ,画出函数y=x+1 、y=-x+1 、y=2x+1 、y=-2x+1 的图象.由它们联想:一次函数解读式y=kx+b<k、b是常数,k≠0 )中,k的正负对函数图象有什么影响?
通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解读式联系.
初中数学中,函数专题包含四部分内容.具体如下:
< 1 )函数的概念及图象:函数的概念,函数的表示方法,函数的定义域,函数的图象;
< 2 )一次函数:一次函数的解读式,一次函数的图象,一次函数的性质,直线与坐标轴的交点,一次函数与一次方程、不等式,实际问题与一次函数;
< 3 )反比例函数:反比例函数的解读式,反比例函数的图象,反比例函数的性质,实际问题与反比例函数;
列表 —— 描点 —— 连线.
引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,从而认识两个图象的平移关系,进而了解解读式中k、b在图象中的意义,体会数形结合在实际中的表现.
比较两个函数的图象的相同点与不同点.
结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到<当b> 0 时,向上平移;当b< 0 时,向下平移).