Graph partition strategies for generalized mean field inference

合集下载

微积分英文专业词汇

微积分英文专业词汇

微积分词汇第一章函数与极限Chapter1Function and Limit集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood右领域right neighborhood映射mappingX到Y的映射mapping of X ontoY 满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain 单值函数single valued function多值函数multiple valued function单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity)of a function 对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function 初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于a converge to a发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of a convergent sequence子列subsequence函数的极限limits of functions函数当x趋于x0时的极限limit of functions as x approaches x0左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order低阶无穷小infinitesimal of lower order同阶无穷小infinitesimal of the same order作者:新少年特工2007-10-818:37回复此发言--------------------------------------------------------------------------------2高等数学-翻译等阶无穷小equivalent infinitesimal函数的连续性continuity of a function增量increment函数在x0连续the function is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数在该区间上连续function is continuous on an interval 不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value(absolute maximum)最小值global minimum value(absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem第二章导数与微分Chapter2Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function导函数derived function左导数left-hand derivative右导数right-hand derivative单侧导数one-sided derivatives在闭区间【a,b】上可导is derivable on the closed interval[a,b]切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log-derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error绝对误差absolute error相对误差relative error第三章微分中值定理与导数的应用Chapter3MeanValue Theorem of Differentials and the Application of Derivatives罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点stationary point稳定点stable point临界点critical point辅助函数auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式indeterminate form of type0/0不定式indeterminate form泰勒中值定理Taylor’s mean value theorem 泰勒公式Taylor formula余项remainder term拉格朗日余项Lagrange remainder term麦克劳林公式Maclaurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward,cancave up凹向下的,向上凸的concave downward’concave down 拐点inflection point函数的极值extremum of function极大值local(relative)maximum最大值global(absolute)mximum极小值local(relative)minimum最小值global(absolute)minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4Indefinite Integrals原函数primitive function(antiderivative)积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts 有理函数rational function真分式proper fraction假分式improper fraction第五章定积分Chapter5Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on an integvals牛顿-莱布尼茨公式Newton-Leibniz formula微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution递推公式recurrence formula反常积分improper integral反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6Applications of the Definite Integrals元素法the element method面积元素element of area平面图形的面积area of a luane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation 旋转椭球体ellipsoid of revolution,ellipsoid of rotation曲线的弧长arc length of acurve可求长的rectifiable光滑smooth功work 水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7Space Analytic Geometry and Vector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector三角法则triangle rule平行四边形法则parallelogram rule交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a与b的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids oftwo sheets柱面cylindrical surface,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve空间曲线的参数方程parametric equations of a space curve螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines 垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8Differentiation of Functions of Several Variables and Its Application一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order 二阶偏导数second order partial derivative混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method 拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system 球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10Line(Curve)Integrals and Surface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round-off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component 基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12Differential Equation解微分方程solve a dirrerential equation常微分方程ordinary differential equation偏微分方程partial differential equation,PDE 微分方程的阶order of a differential equation 微分方程的解solution of a differential equation微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation初值问题initial value problem微分方程的积分曲线integral curve of a differential equation可分离变量的微分方程variable separable differential equation隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation 非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant 暂态电流transient stata current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linera differential equation of higher order自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order linera differential equation线性相关linearly dependence线性无关linearly independce二阶常系数齐次线性微分方程second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping 固有频率natural frequency简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations 常系数线性微分方程组system of linera differential equations with constant coefficient。

GOCAD(外文资料) (20)

GOCAD(外文资料) (20)

Tetrahedral Volume Mesh
− concatenate T−surf point distribution w/ octree point distribution − Apply 3D Delaunay tetrahedralization algorithm − Break edges that cross material boundary by point addition at location where edge intersects boundary
EES−6 Hydrology Geochemistry & Geology
Exploded View of Five Blocks
EES−6 Hydrology Geochemistry & Geology
GOCAD block model and close−up of triangulation
EES−6 Hydrology Geochemistry & Geology
Uniform finite difference grid to test geometry definition.
51**3 nodes
11**3 nodes
101**3 nodes
EES−6 Hydrology Geochemistry & Geology
EES−6 Hydrology Geochemistry & GeologyS1来自S4¡¡
¡
¡
¡
S2
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
R1
¡ ¡ ¡ ¡ ¡ ¡
EES−6 Hydrology Geochemistry & Geology

设备带有恶化特性的作业车间调度模型与算法

设备带有恶化特性的作业车间调度模型与算法

第41卷第3期自动化学报Vol.41,No.3 2015年3月ACTA AUTOMATICA SINICA March,2015设备带有恶化特性的作业车间调度模型与算法黄敏1,2付亚平1,2王洪峰1,2朱兵虎1,2王兴伟1,2摘要考虑到现实作业车间调度中设备具有恶化特性,针对作业的处理时间是开始时间的线性递增函数的作业车间调度问题,建立了以最小化最迟完成时间为目标的优化模型,进而设计了嵌套分割算法进行求解.该算法在抽样阶段嵌入单亲遗传算法以提高抽样的多样性和质量.实例结果表明,所提出的算法在解决该问题上可以获得较高质量的解,并且具有很好的鲁棒性.关键词嵌套分割算法,单亲遗传算法,作业车间,设备恶化,调度问题引用格式黄敏,付亚平,王洪峰,朱兵虎,王兴伟.设备带有恶化特性的作业车间调度模型与算法.自动化学报,2015,41(3): 551−558DOI10.16383/j.aas.2015.c131067Job-shop Scheduling Model and Algorithm with Machine Deterioration HUANG Min1,2FU Ya-Ping1,2WANG Hong-Feng1,2ZHU Bing-Hu1,2WANG Xing-Wei1,2Abstract For the job-shop scheduling problem,a job-shop scheduling model with machine deterioration is built in order to minimize makespan,considering that the processing time of jobs is a linearly increasing function of the start time.Then a nested partition method is designed for solving it.In the sampling process,the partheno-genetic algorithm is embedded into the nested partition method in order to ensure the diversity of sampling and quality.Simulation experiments show that the proposed algorithm for solving job-shop scheduling problem with machine deterioration can get higher quality solutions and have a better robustness.Key words Nested partition method,partheno-genetic algorithm,job shop,machine deterioration,scheduling problem Citation Huang Min,Fu Ya-Ping,Wang Hong-Feng,Zhu Bing-Hu,Wang Xing-Wei.Job-shop scheduling model and algorithm with machine deterioration.Acta Automatica Sinica,2015,41(3):551−558调度是影响制造型企业生产效率的关键因素,建立合理的调度模型及寻找有效的调度方法和优化技术是提高制造型企业生产效率、降低生产成本的重要途径.作业车间调度问题(Job-shop scheduling problem,JSSP)是众多制造型企业普遍存在的生产调度问题,其蕴含着复杂的生产制约关系,既要考虑收稿日期2013-11-19录用日期2014-10-27Manuscript received November19,2013;accepted October27, 2014国家杰出青年科学基金(71325002,61225012),国家自然科学基金(71071028,71001018),流程工业综合自动化国家重点实验室基础科研业务费(2013ZCX11),中央高校基本科研业务费专项基金(N1304040 17)资助Supported by National Science Foundation for Distinguished Young Scholars of China(71325002,61225012),National Natu-ral Science Foundation of China(71071028,71001018),Funda-mental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(2013ZCX11),and Funda-mental Research Funds for the Central Universities(N1304040 17)本文责任编委李乐飞Recommended by Associate Editor LI Le-Fei1.东北大学信息科学与工程学院沈阳1108192.流程工业综合自动化国家重点实验室(东北大学)沈阳1108191.College of Information Science and Engineering,Northeast-ern University,Shenyang1108192.State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang110819作业加工的先后次序关系,又要考虑加工进程的协调,是一类复杂的组合优化问题.众多学者对作业车间调度问题进行了深入而系统的研究[1].传统的作业车间调度的研究假设作业处理时间为可知的常数[2].而在实际加工过程中,处理时间受到诸多不确定因素的影响,如文献[3−4]考虑了作业处理时间服从三角模糊数的不确定作业车间调度问题,文献[5−6]分别研究了作业的处理时间服从均匀分布和正态分布的作业车间调度问题.上述研究考虑作业的处理时间预先确定、模糊或随机的作业车间调度问题,但均未考虑由于设备工作效率降低或工件物理特性变化而引起的处理时间延长的问题.20世纪90年代,Gupta等[7]考虑到工件特性、设备磨损及操作者疲惫程度的影响,假设工件的处理时间是其开始时间的线性递增函数,首先提出了工件具有恶化特点的调度模型.这种考虑恶化的调度模型弥补了传统调度中模型缺乏实用性的不足,且具有广泛的应用背景,如钢铁生产、清洁维护及服务业等.目前,考虑恶化情形的调度问题的研究多以单机[8−10]和流水线[11−12]为背景,而在作业车间背景下的研究较少[13].Mosheiov[14]首次对具有恶化时552自动化学报41卷间的作业车间调度问题进行了复杂性研究,指出在实际处理时间与其开始时间呈线性关系的情况下,最小化最迟完成时间的作业车间调度问题是NP-complete问题.文献[13,15]研究带有恶化情形下的批量作业车间调度问题,假设作业的处理时间与其开始时间呈指数关系.文献[16]考虑了作业的处理时间具有线性恶化情形的柔性作业车间调度问题.现有对恶化特性的作业车间调度问题的研究,均假设作业在所有设备上的恶化系数相同.而在有些实际生产环境中,如带有自动和手控设备的作业车间,作业的恶化系数往往受到设备磨损、操作者疲惫程度及工序的复杂程度的影响,因此,各作业的不同工序往往具有不同的恶化系数.考虑到带有恶化情形的作业车间调度问题具有广泛的应用背景,本文针对具有自动和手控设备的作业车间,结合手控设备操作者的工作效率随其工作时间增加而降低的特点,研究了设备带有恶化特性的作业车间调度问题(Job-shop scheduling prob-lem with machine deterioration,JSSP-MD).考虑作业的不同工序具有不同的恶化系数,并假设各工序的实际处理时间为其在相应设备上开始时间的线性函数,建立了以最小化最迟完成时间为目标的调度模型,以最大化设备利用率.Garey等[17]已证明JSSP问题属于NP-hard问题,JSSP-MD是JSSP问题的扩展,具有更高的复杂性,因此,JSSP-MD也属于NP-hard问题.为此,本文在嵌套分割算法(Nested partition method,NPM)的抽样阶段嵌入单亲遗传算法(Partheno-genetic algorithm,PGA)的混合算法(Nested partition method embeddedpartheno-genetic algorithm,NP-PGA)进行求解.通过求解实例,验证和分析了该算法在解决JSSP-MD问题的执行效果.1问题描述与模型资源的有效利用对企业的管理决策是至关重要的,如何提高设备利用率、最小化最迟完成时间是衡量现实生产调度优化效果的重要指标.考虑最小化最迟完成时间和恶化时间的作业车间调度问题可以描述如下:n个作业在m台设备上加工,设J为待加工的作业集合,M为设备集合.集合J中的每个作业j(j=1,2,···,n,n表示作业总数)须按照预先确定的工艺顺序加工,A j={O jm1,O jm2,···,O jmK j },其中A j表示作业j的工艺路线,O jmk表示作业j的第k个工序在设备m k上加工,k=1, 2,3,···,K j,K j为作业j的工序总数.S ji和C ji 表示作业j在设备i上的开始处理时间和完成时间. p ji为作业j在设备i上的正常处理时间,作业在处理过程中,作业的实际处理时间会由于设备磨损及操作人员逐渐疲惫而增加,即作业的处理时间出现恶化现象.设αji为设备i加工作业j的恶化系数,假设恶化时间与其对应工序的开始时间呈线性关系,则作业j在设备i上的实际处理时间pji如式(1)所示,其中M1和M2分别表示不具有恶化特性的设备集和具有恶化特性的设备集.调度目标是确定各台设备上作业的加工顺序,以最小化最迟完成时间,并且满足如下约束条件:同一时刻同一设备只能处理一个作业;作业的加工不允许中断;不同作业的工序之间没有先后约束;所有设备在0时刻均可用.pji=p ji,∀j∈J,∀i∈M1p ji+αji S ji,∀j∈J,∀i∈M2(1)根据上述问题描述和符号定义,对JSSP-MD问题建立模型如下:min max1≤i≤mmax1≤j≤nC ji(2)C ji=S ji+pji,∀j∈J,∀i∈M(3)C ji≤S li∨C li≤S ji,j,l∈J,i∈M(4)C ji≤S jk,∀(o ji,o jk),∀A j,j∈J,i,k∈M(5)S ji,C ji≥0,∀j∈J,∀i∈M(6)pji=p ji,∀j∈J,∀i∈M1p ji+αji S ji,∀j∈J,∀i∈M2(7)模型中,式(2)为目标函数,表示最小化最迟完成时间;式(3)表示作业的各工序的完成时间为开始时间与实际处理时间和;式(4)和式(5)表示由工艺约束条件决定的各作业的各工序的先后加工顺序,以及加工各个作业的设备的先后顺序;式(6)为变量的取值约束;式(7)为作业的实际处理时间和正常处理时间的函数关系式.2NP-PGA算法NP算法是一种能够解决复杂的确定型和随机型优化问题的优化方法,其已被证明能够以概率1收敛到全局最优解.Shi等已将NP算法用于求解TSP问题、供应链网络优化、产品设计、资源分配等领域[18−19],并取得了很好的效果.2.1NP算法的基本思想设X为优化问题P的可行域空间,通过分割策略得到的区域称为可行域,各个可行域互不相交,且并集为整个可行域X.对于离散问题,只含一个解的可行域称为单解域.如果可行域σ∈X是通过分割可行域η∈X得到的,则称σ为η的子域,η为3期黄敏等:设备带有恶化特性的作业车间调度模型与算法553σ的父域.由初始可行域到达一个可行域所分割的次数称为该可行域的深度,初始可行域的深度为0,单解域具有最大的深度,故又称为最大深度域.NP算法包括四个基本算子[18]:分割(Parti-tion)、抽样(Sampling)、选区(Selection)和回溯(Backtracking).其基本思想是:1)在算法的第k次迭代中,如果认为σ(k)∈X是包含x∗的最可能域(The most promising region),则利用分割算子将σ(k)分割为M个子域,并将可行域X\σ(k)称为裙域(Surrounding region),得到M+1个互不相交的可行域;2)对每个可行域σj(k),j=1,2,3,···,M+1,利用抽样算子随机抽取N j个点x j1,x j 2,x j3,···,x jN j,j=1,2,3,···,M+1.计算相应的目标函数值f(x j1),f(x j2),f(x j3),···,f(x jN j),并选择最好值作为该可行域的可能性指数(Promising index)I(σj);3)基于抽取的样本,利用选区算子确定第k+1次迭代的最可能域.依据此方法继续分割,直到获得不可分割的单解域;4)如果最可能域为裙域X\σ(k),则利用回溯算子回溯至上次迭代的最可能域,并重新执行1)∼3).2.2NP-PGA算法求解JSSP-MD问题回溯次数过多会影响到NP算法的执行效率,为减少回溯次数,必须提高抽样算子抽取的样本质量,以保证算法沿着正确的方向搜索.为此,本文提出了NP-PGA算法,以提高NP算法的搜索效率.图1为NP-PGA算法的流程图.为有效地求解JSSP-MD问题,NP-PGA算法的基本算子设计方法如下.分割:假设n个作业在m台设备上加工,已知各个作业工艺路线可确定各设备上加工的作业集合.一个完整解分成m段,如图2所示,πj表示第j台设备上各作业相应工序的排序.分割算子每次确定一个作业在一台设备上的位置,依次确定第1台至第m台设备上作业的排序.以2台设备3个作业为例,工艺路线分别为:A1={O11,O12},A2={O22, O21},A3={O31,O32},其执行方法如图3所示.图中“∗”表示待分配作业的位置,第1层表示两台设备均处于待分配;第2层中第1个和第3个节点分别表示将作业1和作业3的第1个工序分配到第1台设备的第1个位置,第2个节点表示将作业2的第2个工序分配到第1台设备的第1个位置;第3层的两个衍生节点分别表示将作业1和作业3的第2个工序分配给第1台设备的第2个位置,以此类推,完成两台设备上的作业分配.抽样:嵌入PGA的抽样方法描述如下.1)从可行域中随机抽取N个解作为PGA的初始种群;2)对每一个体随机选择若干台未确定作业顺序的设备,随机地选择基因换位、基因段移位和基因段逆转操作,改变相应设备的作业的排序;3)计算个体的目标函数值,并取其倒数作为个体的适应度值;4)采用精英保留和轮盘赌方法选择下一代种群;5)重复执行2)∼4),直到满足停止条件,输出最优个体,并将该个体的目标值作为该可行域的可能性指数.重复上述操作直至完成对所有可行域的抽样操作.采用该抽样方法能够获得代表各个可行域质量的较好解,从而保证算法沿着正确的方向搜索.图1NP-PGA算法的流程图Fig.1Graph of NP-PGAalgorithm图2解的表达方式Fig.2Representation ofsolution图3可行域的分割方法Fig.3Partition method of feasible region选区:如果当前迭代中具有最优的可能性指数的可行域为当前最可能域的子域,则选取该子域为下次迭代的最可能域.回溯:如果当前迭代中具有最优的可能性指数的可行域为裙域,则需要进行回溯操作.本文采取两种回溯策略,分别为:1)回溯到当前最可能域的父554自动化学报41卷域;2)回溯到截至目前找到的最好解所在可行域的父域.根据上述算法设计,NP-PGA算法执行的伪码如图4所示.在完成算法参数及最可能域的初始化后,算法进入如下迭代过程:首先将最可能域分割为一定数量的子域并构造当前裙域;然后采用PGA方法对各可行域抽样,并计算各可行域的可能性指数;选择具有最好可能性指数的可行域,并依据其与当前最可能域的包含关系确定是否采取回溯策略;最后确定最可能域,并进入下一次迭代.3实验分析为验证算法的求解效果,本文从某加工企业选取三个不同规模的实例进行实验,计算机配置为Core2Duo2.4GHz CPU,2G RAM.实例1中有6个作业、6台设备;实例2中有7个作业、7台设备;实例3中有8个作业、8台设备,实验数据分别如表1∼3所示.表中p ji和αji分别表示作业j在工艺路线A j下各工序在相应设备i上的正常处理时间和恶化系数.每一实例分别运行30次,并分别取其最好值(Best)、最差值(Worst)、平均值(Mean)、标准方差(S)及平均CPU时间(Time,单位s)为评价指标.实验中NP算法采取两个停止条件:1)获得单解域;2)最大分割次数,本文取mn2.实验首先以实例1为例,验证不同回溯策略、抽样个数及PGA迭代次数对算法性能的影响.实验的结果及分析如下.图4NP-PGA算法伪码图Fig.4Pseudo-code of NP-PGA algorithm表1实例1的实验数据Table1Experimental data of thefirst instanceJ A j p jiαji1{O11,O14,O12,O13,O16}{8,2,9,4,17}{0.4,0.6,0,0.1,0.4} 2{O23,O26,O25,O21,O22}{11,1,9,7,8}{0.1,0.4,0.2,0.4,0} 3{O33,O31,O32,O34,O35}{17,10,7,20,9}{0.1,0.4,0,0.6,0.2} 4{O44,O42,O45,O43,O41}{1,9,16,18,2}{0.6,0,0.2,0.1,0.4} 5{O51,O56,O52,O55,O54}{2,3,3,10,11}{0.4,0.4,0,0.2,0.6} 6{O62,O66,O65,O64,O63}{3,17,13,4,14}{0,0.4,0.2,0.6,0.1}表2实例2的实验数据Table2Experimental data of the second instanceJ A j p jiαji1{O15,O13,O14,O16,O17,O12,O11}{19,18,7,18,3,10,15}{0.2,0.1,0.6,0.4,0.3,0,0.4} 2{O21,O24,O23,O22,O27,O25,O26}{14,11,12,5,2,20,14}{0.4,0.1,0.6,0.4,0.3,0,0.4} 3{O35,O36,O37,O33,O34,O31,O32}{13,2,4,10,16,9,8}{0.2,0.4,0.3,0.1,0.6,0.4,0} 4{O41,O44,O47,O46,O45,O43,O42}{7,16,4,1,9,4,9}{0.4,0.6,0.3,0.4,0.2,0.1,0} 5{O52,O56,O54,O51,O53,O57,O55}{6,3,7,8,9,13,6}{0,0.4,0.6,0.4,0.2,0.3,0.2} 6{O66,O62,O65,O64,O61,O63,O67}{1,4,5,10,11,4,12}{0.4,0,0.2,0.6,0.4,0.1,0.3} 7{O74,O76,O77,O73,O72,O75,O71}{11,12,15,8,16,7,13}{0.6,0.4,0.3,0.1,0,0.2,0.4}3期黄敏等:设备带有恶化特性的作业车间调度模型与算法555表3实例3的实验数据Table3Experimental data of the third instanceJ A j p jiαji1{O18,O17,O16,O11,O13}{7,20,17,4,8}{0.3,0.3,0.4,0.4,0.1}2{O23,O27,O24,O26,O22,O28}{3,19,13,1,9,15}{0.1,0.3,0.6,0.4,0,0.4}3{O37,O33,O34,O35}{14,5,12,18}{0.3,0.1,0.6,0.2}4{O44,O45,O42,O46,O47,O43,O41,O48}{17,9,6,9,16,5,8,20}{0.6,0.2,0,0.4,0.3,0.1,0.4,0.3} 5{O51,O56,O55,O53,O58}{10,7,20,17,14}{0.4,0.4,0.2,0.1,0.3}6{O66,O63,O64,O67,O65,O62,O68,O61}{13,14,8,19,16,18,14,14}{0.4,0,0.6,0.3,0.2,0,0.3,0.4} 7{O73,O72,O71,O75,O74,O78,O77,O76}{10,18,10,7,9,7,9,7}{0.1,0,0.4,0.2,0.6,0.3,0.3,0.4} 8{O81,O85,O88,O86,O82}{13,1,15,9,4}{0.4,0.2,0.3,0.4,0}3.1回溯策略对NP算法的影响基于标准的NP算法,验证回溯策略1)和2)及抽样个数对算法的影响.从表4(SN表示抽样个数)可以看出,两种策略均能在可接受的时间内获得相同的最好解.从均值和标准方差上看,策略2)的搜索效果优于策略1),且其稳定性较好.另外,增加抽样个数可以提高算法的求解效果和稳定性,但其求解时间也会相应增加.为提高算法的稳定性,本文选取策略2)作为后续实验的回溯策略.3.2抽样个数对NP-PGA的影响为验证抽样个数对NP-PGA的影响,固定PGA的迭代次数为50,且采取回溯策略2).表5(NG为迭代次数)给出了实验结果.从表5可以看出,抽样个数对NP-PGA影响的趋势类似于第3.1节中的结论,五种抽样个数的设置均能获得相同的最好解,从均值和标准方差上看,当抽样个数取30时,算法的稳定性较好.因此,在本文的后续实验中将抽样个数设置为30.3.3PGA迭代次数的影响为验证PGA迭代次数对算法的影响,固定抽样个数为30,且采取回溯策略2).表6为验证PGA的迭代次数对NP-PGA性能影响的实验结果.从表6中可以看出,随着迭代次数增大,算法的求解效果得到改善,均值和标准方差均有所下降,但也增大了计算开销,导致算法的求解时间增大.另外,当迭代次数为30时,NP-PGA的稳定性较好.因此,在后续实验中将PGA的迭代次数设置为30.3.4算法对比为验证NP-PGA的有效性,分别采用枚举算法(EA)、遗传算法(GA)、NP算法及NP-PGA求解实例1∼3.其中,EA可以获得问题的最优解,用以验证NP-PGA获得最优解的能力;GA已被证明可以有效求解作业车间调度问题,并被众多研究作为对比算法[15−16,20],NP算法用于验证本文所提出的改进策略的有效性.GA的参数设置为:种群规模为100,交叉率为0.7,变异率为0.3,迭代次数为500.NP-PGA采取回溯策略2),抽样次数为30, PGA迭代次数为30.NP的参数设置同NP-PGA.表7给出了求解的实验结果.对于所采用的3个实例(“–”表示EA不能在有效的时间内获得问题最优解),将NP-PGA得到的结果与EA、GA和NP 得到的结果进行对比.对于EA算法,J6×M6问题计算最优解的时间为3237.8s,并且该方法的计算结果与使用GA、NP和NP-PGA计算得到的结果一致.对于J7×M7问题,EA不能在有效的时间内获得最优解,其他3种算法均能够得到近似解.但是,显而易见的是,NP-PGA的求解结果优于GA和NP的求解结果,但求解时间相对较大.对于J8×M8问题,NP-PGA的求解结果优势更加明显,从最好解、均值、标准方差及求解时间上看, NP-PGA均好于GA和NP.对于NP算法,由于其采用随机抽样的方法,不能保证获得的样本解为可行域的最好解,从而造成回溯,而多次回溯必将会影响到算法的执行效率.针对这一问题,在抽样阶段嵌入PGA方法对NP加以改进.从表7的数据可以看出,NP-PGA算法与NP算法相比,最好解、均值、标准方差及求解时间均得到改进,并且随着问题规模的增大,NP-PGA的优势更加明显.通过在NP算法中嵌入PGA,可以提高抽样的多样性及样本质量,尽可能获得能够代表可行域的最好解,从而减少了回溯次数,提高了算法的求解性能.为直观地展示所提出的NP-PGA算法的有效性,分别选取三种算法30次求解的最好结果绘制收敛曲线.图5∼7分别给出了三种算法在求解J6×M6,J7×M7及J8×M8问题的收敛曲线图,图556自动化学报41卷表4回溯策略及抽样个数对算法影响Table4Experimental results on different backtracking strategies and sampling number策略SN Best Worst Mean S Time(s) 20178.83219.87192.4116.0319.2330178.83205.91185.859.4925.511)40178.83204.40185.0110.7829.2650178.83192.24183.8310.1239.3360178.83184.96181.778.9953.8020178.83221.46190.079.0614.3730178.83198.10185.319.8524.432)40178.83215.10184.739.3238.0050178.83195.34182.558.9657.4260178.83183.51180.228.3788.57表5抽样个数对算法影响Table5Experimental results on different sampling numberSN NG Best Worst Mean S Time(s) 1050178.83210.69186.5712.9417.74 2050178.83198.09186.0312.3236.50 3050178.83192.10181.69 5.4971.13 4050178.83192.10182.807.3185.09 5050178.83192.10181.43 5.7499.76表6PGA迭代次数对算法影响Table6Experimental results on different iteration times of PGASN NG Best Worst Mean S Time(s) 3010178.83210.69189.4313.2522.51 3020178.83210.69186.9910.1330.64 3030178.83188.84183.21 4.9745.19 3040178.83192.10183.83 5.8165.59 3050178.83198.09184.997.7182.45表7EA、GA、NP和NP-PGA算法对比结果Table7Comparison of experimental results obtained by EA,GA,NP and NP-PGAProblem Algorithm Best Mean S Time(s)J6×M6EA178.83178.8303237.8J6×M6GA178.83181.38 1.9233.39J6×M6NP178.83192.109.0638.03J6×M6NP-PGA178.83190.07 5.4945.19J7×M7EA−−−−J7×M7GA894.80917.0819.5051.68J7×M7NP901.51921.7511.8265.77J7×M7NP-PGA891.30910.0811.2074.52J8×M8EA−−−−J8×M8GA838.60842.7610.2295.88J8×M8NP833.43873.4217.26119.42J8×M8NP-PGA805.28820.8610.0488.933期黄敏等:设备带有恶化特性的作业车间调度模型与算法557中横坐标表示算法运行时间,纵坐标表示算法搜索到的最好解.从图中可以看出,NP-PGA 收敛的速度和效果均要优于GA 和NP,且在求解J 8×M 8问题上优势更加明显.图5三算法求解J 6×M 6收敛曲线Fig.5Convergence curve of three algorithms insolving J 6×M6图6三算法求解J 7×M 7收敛曲线Fig.6Convergence curve of three algorithms insolving J 7×M7图7三算法求解J 8×M 8收敛曲线Fig.7Convergence curve of three algorithms insolving J 8×M 84结论设备带有恶化特性的作业车间调度问题是制造型企业亟需解决的关键问题.本文针对设备带有恶化特性的作业车间调度问题进行了研究.首先,对作业车间环境下设备带有恶化特性的调度问题进行了描述,建立了以最小化最迟完成时间为目标的问题模型;进而针对问题特点设计了嵌入单亲遗传算法的混合嵌套分割算法进行问题求解;最后,通过与枚举算法、遗传算法及标准嵌套分割算法的对比分析,表明所提出的算法在求解质量、求解时间和稳定性方面均具有较好的性能,尤其在作业和设备数量增多时,所提出的算法具有更加明显的优势.该研究为设备带有恶化特性的作业车间调度问题提供了有效的建模和求解工具,在自动和手控设备并存的作业车间调度方面具有广泛的应用.未来研究可进一步分析设备恶化系数对算法性能的影响等.References1Brucker P.Scheduling Algorithms .Berlin:Springer-Verlag,2007.69−832Blazewicz J,Domschke W,Pesch E.The job shop scheduling problem:conventional and new solution techniques.Euro-pean Journal of Operational Research ,1996,93(1):1−333Wang L,Tang D B.An improved adaptive genetic algo-rithm based on hormone modulation mechanism for job-shop scheduling problem.Expert Systems with Applica-tions ,2011,38(6):7243−72504Qiao Wei,Wang Bing,Sun Jie.Uncertain job shop schedul-ing problems solved by genetic puter Inte-grated Manufacturing Systems ,2007,13(12):2452−2455(乔威,王冰,孙洁.用遗传算法求解一类不确定性作业车间调度问题.计算机集成制造系统,2007,13(12):2452−2455)5Li Fu-Ming,Zhu Yun-Long,Yin Chao-Wan,Song Xiao-Yu.Research on fuzzy job shop scheduling with alternative puter Integrated Manufacturing Systems ,2006,12(2):169−173(李富明,朱云龙,尹朝万,宋晓宇.可变机器约束的模糊作业车间调度问题研究.计算机集成制造系统,2006,12(2):169−173)6Yan Li-Jun,Li Zong-Bin,Wei Jun-Hu,Du Xuan.A new hy-brid optimization algorithm and its application in job shop scheduling.Acta Automatica Sinica ,2008,34(5):604−608(闫利军,李宗斌,卫军胡,杜轩.一种新的混合优化算法及其在车间调度中的应用.自动化学报,2008,34(5):604−608)7Gupta J N D,Gupta S K.Single facility scheduling with nonlinear processing puters and Industrial Engi-neering ,1988,14(4):387−3938Wu H P,Huang M.Improved estimation of distribution al-gorithm for the problem of single-machine scheduling with deteriorating jobs and different due putational and Applied Mathematics ,2014,33(3):557−5739Mosheiov G.Scheduling jobs under simple linear puters and Operations Research ,1994,21(6):653−65910Wu C C,Wu W H,Wu W H,Hsu P H,Yin Y Q,Xu J Y.A single-machine scheduling with a truncated linear deteri-oration and ready rmation Sciences ,2014,256:109−125558自动化学报41卷11Cheng M B,Tadikamalla P R,Shang J,Zhang S Q.Bi-criteria hierarchical optimization of two-machineflow shop scheduling problem with time-dependent deteriorating jobs.European Journal of Operational Research,2014,234(3): 650−65712Wang J B,Wang M Z.Solution algorithms for the total weighted completion time minimizationflow shop scheduling with decreasing linear deterioration.The International Jour-nal of Advanced Manufacturing Technology,2013,67(1−4): 243−25313Liu C H,Chen L S,Lin P S.Lot streaming multiple jobs with values exponentially deteriorating over time in a job-shop environment.International Journal of Production Re-search,2013,51(1):202−21414Mosheiov plexity analysis of job-shop scheduling with deteriorating jobs.Discrete Applied Mathematics, 2002,117(1−3):195−20915Liu C H.Scheduling jobs with values exponentially deterio-rating over time in a job shop environment.In:Proceedings of the2011International MultiConference of Engineers and Computer Scientists.Hong Kong,China:Newswood Lim-ited,2011.1113−111816Araghi M E T,Jolai F,Rabiee M.Incorporating learning effect and deterioration for solving a SDSTflexible job-shop scheduling problem with a hybrid meta-heuristic approach.International Journal of Computer Integrated Manufactur-ing,2013,27(8):733−74617Garey M R,Johnson D S,Sethi R.The complexity offlow shop and job shop scheduling.Mathematics of Operations Research,1976,1(2):117−12918Shi L,´Olafsson S.Nested Partitions Method,Theory and Applications.New York:Springer-Verlag,2008.131−22619Shi L,´Olafsson S.Nested partitions method for global op-timization.Operations Research,2000,48(3):390−40720Wang Y M,Yin H L,Qin K D.A novel genetic algorithm forflexible job shop scheduling problems with machine dis-ruptions.The International Journal of Advanced Manufac-turing Technology,2013,68(5−8):1317−1326黄敏东北大学信息科学与工程学院教授.主要研究方向为生产计划、调度与存储控制,物流与供应链管理,行为运筹,风险管理和软计算.E-mail:***************(HUANG Min Professor at theCollege of Information and Engineer-ing,Northeastern University.Her re-search interest covers production planning,scheduling and inventory control,behavioral operation,management of lo-gistics and supply chain,and risk management and soft computing.)付亚平东北大学信息科学与工程学院系统工程研究所博士研究生.主要研究方向为生产计划与调度,智能优化算法.本文通信作者.E-mail:********************(FU Ya-Ping Ph.D.candidate atthe College of Information and Engi-neering,Northeastern University.His research interest covers production planning and schedul-ing,optimization algorithm.Corresponding author of this paper.)王洪峰东北大学信息科学与工程学院副教授.主要研究方向为进化计算,生产计划与调度,物流与供应链管理.E-mail:***************(W ANG Hong-Feng Associateprofessor at the College of Informationand Engineering,Northeastern Univer-sity.His research interest covers evo-lutionary algorithm,production planning and scheduling, and management of logistics and supply chain.)朱兵虎东北大学信息科学与工程学院系统工程研究所硕士研究生.主要研究方向为生产计划与调度,智能优化算法.E-mail:*********************(ZHU Bing-Hu Master studentat the College of Information andEngineering,Northeastern University.His research interest covers production planning and scheduling,optimization algorithm.)王兴伟东北大学信息科学与工程学院教授.主要研究方向为下一代互联网,光互联网,移动互联网.E-mail:***************(W ANG Xing-Wei Professor atthe College of Information and Engi-neering,Northeastern University.Hisresearch interest covers next generation internet(NGI),optical internet,and mobile internet.)。

2类特殊图中的完美匹配数

2类特殊图中的完美匹配数

2类特殊图中的完美匹配数唐保祥;任韩【摘要】Perfect matching counting problems for graphs have been proven to be NP-hard, so it is very difficult to get the number of perfectly matched general graph.The counting formula of the perfect matching for graphs 4-1-nC10and 2-nT2 was made by applying partition, summation and re-recursion.The number of all perfect matchings of many graphs can be calculated by the method presented in this paper.The given method is also able to implement the possibility to obtain the number of all perfect matchings with perfect matching graphs.%图的完美对集计数问题已经被证实是NP-难的,因此要得到一般图的完美匹配数目非常困难.用划分、求和、再递推的方法给出了4-1-nC10和2-nT2图完美匹配数目的计算公式.该方法可计算许多图类的所有完美匹配的数目,使得到一般的有完美匹配图的所有完美匹配数目成为可能.【期刊名称】《浙江大学学报(理学版)》【年(卷),期】2017(044)003【总页数】4页(P266-269)【关键词】划分;递推式;完美匹配【作者】唐保祥;任韩【作者单位】天水师范学院数学与统计学院,甘肃天水 741001;华东师范大学数学系,上海 200062【正文语种】中文【中图分类】O157.5Journal of Zhejiang University(Science Edition), 2017,44(3):266-269图的完美匹配计数已经被证实是NP-难问题,因此要得到一般图的完美匹配数目是非常困难的.该问题在蛋白质结构预测、量子化学、晶体物理学和计算机科学等领域都有重要应用,对此问题的研究具有非常重要的理论价值和现实意义[1-9].本文用划分、求和、再递推的方法分别给出了4-1-nC10和2-nT2图的完美匹配数目的计算公式.该方法能够计算许多类图的所有完美匹配的数目.定义1 若G图的2个完美匹配M1和M2中有一条边不同,则称M1和M2是G 的2个不同的完美匹配.定义2 设2条长为n的路:P1=u1u2…un+1,P2=v1v2…vn+1, 分别连接路P1与P2的顶点ui与vi(i=1,2,…,n+1)得到的图,称长为n的梯子,记为Tn.n个长为10的圈记为连接圈Ci上顶点vi1与vi2,连接圈Ci与Ci+1的顶点ui2与ui+1,1,ui3与ui+1,4,wi3与wi+1,4,wi2与wi+1,1(i=1,2,…,n-1),再分别连接圈C1与Cn的顶点u14与w14,u11与w11,un3与wn3,un2与wn2,得到的图记为4-1-nC10,如图1所示.设 n个长为2的梯子,其顶点集为).连接梯子和的顶点vi1与ui+1,1、vi3与ui+1,3(i=1,2,…,n-1),再连接梯子的顶点u11与的顶点vn1与vn3,得到的图记为2-nT2,如图2所示.定理1 f(n)表示4-1-nC10图完美匹配的数目,则.证明 4-1-nC10图是3正则3边连通图,显然存在完美匹配.欲求f(n),需定义G1,G2,G3图,并分别求出其完美匹配的数目.4-1-nC10图删除边u11w11,u14w14后得到的图记为G;将路u1u2vw的顶点u1,u2,w分别与G图的顶点u11,u14,w14连接,得到的图记为G1;将路uvw1w2的顶点u,w1,w2分别与G 图的顶点u14,w14,w11连接,得到的图记为G2;将路u1u2的顶点u1,u2分别与G图的顶点u11,u14连接,再将路w1w2的顶点w1,w2分别与G图的顶点w14,w11连接,得到的图记为G3;G1,G2,G3图分别如图3~5所示.显然G1,G2,G3图都存在完美匹配,且G1≅G2.设G1,G2,G3图的完美匹配数分别为a(n),b(n),c(n),则a(n)=b(n).G1图的完美匹配按饱和顶点u1可划分为以下6种情形:情形1 由c(n)的定义,G1图包含边u1u11,u2u14,vw,v11v12,w14w11的完美匹配数为c(n-1).情形2 由a(n)的定义,G1图包含边u1u11,u2u14,vw,v11w14,w11w12的完美匹配数为a(n-1).情形3 由a(n)的定义,G1图包含边u1u11,u2v,ww14,v11w14,w11w12的完美匹配数为a(n-1).情形4 由b(n)的定义,G1图包含边u1u11,u2u14,vw,v11w14,w11w12的完美匹配数为b(n-1),又a(n)=b(n),所以b(n-1)=a(n-1).情形5 由c(n)的定义,G1图包含边u1u2,u11u14,vw,v11v12,w14w11的完美匹配数为c(n-1).情形6 由a(n)的定义,G1图包含边u1u2,u11u13,vw,v11w14,w11w12的完美匹配数为a(n-1).综上所述,G3图的完美匹配按饱和顶点u1可分以下8种情形求得:情形1 由c(n)的定义,G3图包含边u1u11,u2u14,v11v12,w1w14,w2w11的完美匹配数为c(n-1).情形2 由a(n)的定义,G3图包含边u1u11,u2u14,w1w2,v11w14,w11w12的完美匹配数为a(n-1).情形3 由c(n)的定义,G3图包含边u1u11,u2u14,v11v12,w1w2,w14w11的完美匹配数为c(n-1).情形4 由c(n)的定义,G3图包含边u1u2,u11u14,v11v12,w1w2,w14w11的完美匹配数为c(n-1).情形5 由c(n)的定义,G3图包含边u1u2,u11u14,v11v12,w1w14,w2w11的完美匹配数为c(n-1).情形6 由a(n)的定义,G3图包含边u1u2, u11u14, v11w14, w1w2, w11w12的完美匹配数为a(n-1).情形7 由b(n)的定义,G3图包含边u1u2,u11u12,u14v11,w1w14,w2w11的完美匹配数为b(n-1),又a(n)=b(n),所以b(n-1)=a(n-1).情形8 由b(n)的定义,G3图包含边u1u2,u11u12,u14v11,w1w2,w14w11的完美匹配数为b(n-1),又a(n)=b(n),所以b(n-1)=a(n-1).综上所述,4-1-nC10图的完美匹配按饱和顶点u11可分以下5种情形求得:情形1 由c(n)的定义,4-1-nC10图包含边u11w11,u14w14,v11v12的完美匹配数为c(n-1).情形2 由a(n)的定义,4-1-nC10图包含边u11u14,v11w14,w11w12的完美匹配数为a(n-1).情形3 由c(n)的定义,4-1-nC10图包含边u11u14,w11v12,w14w11的完美匹配数为c(n-1).情形4 由b(n)的定义,4-1-nC10图包含边u11u12,u14v11,w14w11的完美匹配数为b(n-1),又a(n)=b(n),所以b(n-1)=a(n-1).情形5 4-1-nC10图的完美匹配包含边u11u12,u14w14,v11v12,w11w12,则该完美匹配一定包含边ui3ui+1,4,wi3wi+1,4,ui+1,1ui+1,2,vi+1,1vi+1,2,wi+1,1wi+1,2,i=1,2,…,n-1.所以4-1-nC10图包含边u11u12,u14w14,v11v12,w11w12的完美匹配恰有1个. 综上所述,将式(1)和(2)代入式(3),得由式(3)得式(4)-式(5)×8得f(n)=8f(n-1)-4c(n-2)-7.由式(2)和(3)得由式(6)和(7)得易知非齐次线性递推式(8)的特解为1.齐次线性递推式f(n)=8f(n-1)-8f(n-2)的通解为由图6知f(1)=7.由式(3)知,由图7知a(1)=8.由图8知c(1)=12.所以,.定理2 g(n)表示2-nT2图的完美匹配数目,则g(n)=3n+1.证明 2-nT2图是2边连通3正则图,显然存在完美匹配.为求g(n),先定义G6图.删除2-nT2图的边u11u13得到的图记为G6,如图9所示.显然,G6图存在完美匹配,其完美匹配数记为d(n).G6图的完美匹配按饱和顶点u11的情况可分以下3种情形求得:情形1 由d(n)的定义,G6图包含边u11v11,u12v12,u13v13的完美匹配数为d(n-1).情形2 由d(n)的定义,G6图包含边u11v11,u12u13,v12v13的完美匹配数为d(n-1).情形3 由d(n)的定义,G6图包含边u11u12,v11v12,u13v13的完美匹配数为d(n-1).综上所述,d(n)=3d(n-1)=3n-1·d(1),易知2-nT2图的完美匹配按饱和顶点u11可分以下4种情形求得:情形1 2-nT2图的完美匹配包含边u11u13,则其必包含边ui2vi2(i=1,2,…,n),vi1ui+11,vi3ui+13(i=1,2,…,n-1),vn1vn3.所以2-nT2图包含边u11u13的完美匹配恰有一个.情形2 由d(n)的定义,2-nT2图包含边u11u12,v11v12,u13v13的完美匹配数为d(n-1).情形3 由d(n)的定义,2-nT2图包含边u11v11,u12v12,u13v13的完美匹配数为d(n-1).情形4 由d(n)的定义,2-nT2图包含边u11v11,u12u13,v12v13的完美匹配数为d(n-1).综上所述,由式(10)和(11), 得g(n)=3n+1.【相关文献】[1] LOVSZ L, PLUMMER M. Matching Theory [M]. New York: North-Holland Press,1986.[2] KRL D, SERENI J S, STIEBITZ M. A new lower bound on the number of perfect matchings in cubic graphs [J]. Discrete Math,2009,23:1465-1483.[3] KARDOS F, KRL D, MISKUF J, et al. Fullerene graphs have exponentially many perfect matchings[J].Journal of Mathematical Chemistry,2009,46:443-447.[4] 唐保祥,任韩.几类图完美匹配的数目[J].南京师大学报:自然科学版,2010,33(3):1-6. TANG B X, REN H. The number of perfect matching for three specific types of graphs [J].Journal ofNanjing Normal University: Natural Science Edition,2010,33(3):1-6.[5] 唐保祥,李刚,任韩.3类图完美匹配的数目[J].浙江大学学报:理学版,2011,38(4):387-390. TANGB X, LI G, REN H. The number of perfect matching for three specific types ofgraphs[J].Journal of Zhejiang University: Science Edition,2011,38(4):387-390.[6] 唐保祥,任韩.3类特殊图完美对集数的计算[J].南开大学学报:自然科学版,2014,47(5):11-16. TANG B X, REN H. The enumeration of perfect matchings in three types of special graphs[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2014,47(5):11-16.[7] 唐保祥,任韩.4类图完美匹配数目的递推求法[J].数学杂志,2015,353(2):626-634. TANG B X, REN H. Recursive method for finding the number of perfect matchings of the four types of graphs[J]. Journal of Mathematics,2015,353(2):626-634.[8] 唐保祥,任韩.4类图完美匹配的计数[J].武汉大学学报:理学版,2012,58(5):441-446. TANG B X, REN H. The number of perfect matchings in four types of graphs[J]. Journal of Wuhan University: Natural Science Edition,2011,58(5):441-446.[9] 唐保祥,任韩.5类图完美匹配的计数[J].中山大学学报:自然科学版,2012,51(4):31-37. TANG B X, REN H. The number of perfect matchings in five types of graphs[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2012,51(4):31-37.。

编程英语词汇汇总

编程英语词汇汇总

:JDK(Java Development Kit) java开发工具包JVM(Java Virtual Machine) java虚拟机Javac 编译命令java 解释命令Javadoc 生成java文档命令classpath 类路径Version 版本author 作者public 公共的class 类static 静态的void 没有返回值String 字符串类System 系统类out 输出print 同行打印println 换行打印JIT(just-in-time) 及时处理第二章:byte 字节char 字符boolean 布尔short 短整型int 整形long 长整形float 浮点类型double 双精度if 如果else 否则switch 多路分支case 与常值匹配break 终止default 默认while 当到循环do 直到循环for 已知次数循环continue结束本次循环进行下次跌代length 获取数组元素个数第三章:OOP object oriented programming 面向对象编程Object 对象Class 类Class member 类成员Class method 类方法Class variable 类变量Constructor 构造方法Package 包Import package 导入包第四章:Extends 继承Base class 基类Super class 超类Overloaded method 重载方法Overridden method 重写方法Public 公有Private 私有Protected 保护Static 静态Abstract 抽象Interface 接口Implements interface 实现接口第五章:Exception 意外,异常RuntimeExcepiton 运行时异常ArithmeticException 算术异常IllegalArgumentException 非法数据异常ArrayIndexOutOfBoundsException 数组索引越界异常NullPointerException 空指针异常ClassNotFoundException 类无法加载异常(类不能找到)NumberFormatException 字符串到float类型转换异常(数字格式异常)IOException 输入输出异常FileNotFoundException 找不到文件异常EOFException 文件结束异常InterruptedException (线程)中断异常try 尝试catch 捕捉finally 最后throw 投、掷、抛throws 投、掷、抛print Stack Trace() 打印堆栈信息get Message()获得错误消息get Cause()获得异常原因method 方法able 能够instance 实例check 检查第六章:byte(字节)char(字符)int(整型)long(长整型)float(浮点型)double(双精度)boolean(布尔)short(短整型)Byte (字节类)Character (字符类)Integer(整型类)Long (长整型类)Float(浮点型类)Double (双精度类)Boolean(布尔类)Short (短整型类)Digit (数字)Letter (字母)Lower (小写)Upper (大写)Space (空格)Identifier (标识符)Start (开始)String (字符串)length (值)equals (等于)Ignore (忽略)compare (比较)sub (提取)concat (连接)replace (替换)trim (整理)Buffer (缓冲器)reverse (颠倒)delete (删除)append (添加)Interrupted (中断的)第七章:Date 日期,日子After 后来,后面Before 在前,以前Equals 相等,均等toString 转换为字符串SetTime 设置时间Display 显示,展示Calendar 日历Add 添加,增加GetInstance 获得实例getTime 获得时间Clear 扫除,清除Clone 克隆,复制Util 工具,龙套Components 成分,组成Month 月份Year 年,年岁Hour 小时,钟头Minute 分钟Second 秒Random 随意,任意Next Int 下一个整数Gaussian 高斯ArrayList 对列LinkedList 链表Hash 无用信息,杂乱信号Map 地图Vector 向量,矢量Size 大小Collection 收集Shuffle 混乱,洗牌RemoveFirst 移动至开头RemoveLast 移动至最后lastElement 最后的元素Capacity 容量,生产量Contains 包含,容纳Copy 副本,拷贝Search 搜索,查询InsertElementAt 插入元素在某一位置第八章:io->in out 输入/输出File 文件import 导入exists 存在isFile 是文件isDirectory 是目录getName 获取名字getPath 获取路径getAbsolutePath 获取绝对路径lastModified 最后修改日期length 长度InputStream 输入流OutputStream 输出流Unicode 统一的字符编码标准, 采用双字节对字符进行编码Information 信息FileInputStream 文件输入流FileOutputStream文件输出流IOException 输入输出异常fileobject 文件对象available 可获取的read 读取write 写BufferedReader 缓冲区读取FileReader 文本文件读取BufferedWriter 缓冲区输出FileWriter 文本文件写出flush 清空close 关闭DataInputStream 二进制文件读取DataOutputStream二进制文件写出EOF 最后encoding 编码Remote 远程release 释放第九章:JBuider Java 集成开发环境(IDE)Enterprise 企业版Developer 开发版Foundation 基础版Messages 消息格Structure 结构窗格Project 工程Files 文件Source 源代码Design 设计History 历史Doc 文档File 文件Edit 编辑Search 查找Refactor 要素View 视图Run 运行Tools 工具Window 窗口Help 帮助Vector 矢量addElement 添加内容Project Winzard 工程向导Step 步骤Title 标题Description 描述Copyright 版权Company 公司Aptech Limited Aptech有限公司author 作者Back 后退Finish 完成version 版本Debug 调试New 新建ErrorInsight 调试第十章:JFrame 窗口框架JPanel 面板JScrollPane 滚动面板title 标题Dimension 尺寸Component 组件Swing JAVA轻量级组件getContentPane 得到内容面板LayoutManager 布局管理器setVerticalScrollBarPolicy 设置垂直滚动条策略AWT(Abstract Window Toolkit)抽象窗口工具包GUI (Graphical User Interface)图形用户界面VERTICAL_SCROLLEARAS_NEEDED 当内容大大面板出现滚动条VERTICAL_SOROLLEARAS_ALWAYS 显示滚动条VERTICAL_SOROLLEARAS_NEVER 不显示滚动条JLabel 标签Icon 图标image 图象LEFT 左对齐RIGHT 右对齐JTextField 单行文本getColumns 得到列数setLayout 设置布局BorderLayout 边框布局CENTER 居中对齐JTextArea 多行文本setFont 设置字体setHorizontalAlignment 设置文本水平对齐方式setDefaultCloseOperation 设置默认的关闭操作add 增加JButton 按钮JCheckBox 复选框JRadioButton单选按钮addItem 增加列表项getItemAt 得到位置的列表项getItemCount 得到列表项个数setRolloverIcon 当鼠标经过的图标setSelectedIcon 当选择按钮的图标getSelectedItem 得到选择的列表项getSelectedIndex 得到选择的索引ActionListener 按钮监听ActionEvent 按钮事件actionPerformed 按钮单击方法计算机编程英语大全关键字: 计算机编程英语大全算法常用术语中英对照Data Structures 基本数据结构Dictionaries 字典Priority Queues 堆Graph Data Structures 图Set Data Structures 集合Kd-Trees 线段树Numerical Problems 数值问题Solving Linear Equations 线性方程组Bandwidth Reduction 带宽压缩Matrix Multiplication 矩阵乘法Determinants and Permanents 行列式Constrained and Unconstrained Optimization 最值问题Linear Programming 线性规划Random Number Generation 随机数生成Factoring and Primality Testing 因子分解/质数判定Arbitrary Precision Arithmetic 高精度计算Knapsack Problem 背包问题Discrete Fourier Transform 离散Fourier变换Combinatorial Problems 组合问题Sorting 排序Searching 查找Median and Selection 中位数Generating Permutations 排列生成Generating Subsets 子集生成Generating Partitions 划分生成Generating Graphs 图的生成Calendrical Calculations 日期Job Scheduling 工程安排Satisfiability 可满足性Graph Problems -- polynomial 图论-多项式算法Connected Components 连通分支Topological Sorting 拓扑排序Minimum Spanning Tree 最小生成树Shortest Path 最短路径Transitive Closure and Reduction 传递闭包Matching 匹配Eulerian Cycle / Chinese Postman Euler回路/中国邮路Edge and Vertex Connectivity 割边/割点Network Flow 网络流Drawing Graphs Nicely 图的描绘Drawing Trees 树的描绘Planarity Detection and Embedding 平面性检测和嵌入Graph Problems -- hard 图论-NP问题Clique 最大团Independent Set 独立集Vertex Cover 点覆盖Traveling Salesman Problem 旅行商问题Hamiltonian Cycle Hamilton回路Graph Partition 图的划分Vertex Coloring 点染色Edge Coloring 边染色Graph Isomorphism 同构Steiner Tree Steiner树Feedback Edge/Vertex Set 最大无环子图Computational Geometry 计算几何Convex Hull 凸包Triangulation 三角剖分Voronoi Diagrams Voronoi图Nearest Neighbor Search 最近点对查询Range Search 范围查询Point Location 位置查询Intersection Detection 碰撞测试Bin Packing 装箱问题Medial-Axis Transformation 中轴变换Polygon Partitioning 多边形分割Simplifying Polygons 多边形化简Shape Similarity 相似多边形Motion Planning 运动规划Maintaining Line Arrangements 平面分割Minkowski Sum Minkowski和Set and String Problems 集合与串的问题Set Cover 集合覆盖Set Packing 集合配置String Matching 模式匹配Approximate String Matching 模糊匹配Text Compression 压缩Cryptography 密码Finite State Machine Minimization 有穷自动机简化Longest Common Substring 最长公共子串Shortest Common Superstring 最短公共父串DP——Dynamic Programming——动态规划recursion ——递归编程词汇A2A integration A2A整合abstract 抽象的abstract base class (ABC)抽象基类abstract class 抽象类abstraction 抽象、抽象物、抽象性access 存取、访问access level访问级别access function 访问函数account 账户action 动作activate 激活active 活动的actual parameter 实参adapter 适配器add-in 插件address 地址address space 地址空间address-of operator 取地址操作符ADL (argument-dependent lookup)ADO(ActiveX Data Object)ActiveX数据对象advanced 高级的aggregation 聚合、聚集algorithm 算法alias 别名align 排列、对齐allocate 分配、配置allocator分配器、配置器angle bracket 尖括号annotation 注解、评注API (Application Programming Interface) 应用(程序)编程接口app domain (application domain)应用域application 应用、应用程序application framework 应用程序框架appearance 外观append 附加architecture 架构、体系结构archive file 归档文件、存档文件argument引数(传给函式的值)。

Data Visualization Strategies

Data Visualization Strategies

Data Visualization StrategiesData visualization is a crucial aspect of data analysis, as it allows for the presentation of complex information in a visual format that is easy to understand and interpret. There are various strategies and techniques that can be employed to effectively visualize data, each with its own strengths and limitations. In this response, we will explore some of the most commonly used data visualization strategies, their applications, and the benefits they offer to data analysts and decision-makers.One of the most popular data visualization strategies is the use of charts and graphs. Charts and graphs are effective in presenting numerical data in a visual format, making it easier for the audience to identify patterns, trends, and outliers. Common types of charts and graphs include bar charts, line graphs, pie charts, and scatter plots. Each type of chart or graph is suitable for different types of data and can be used to convey different messages. For example, a bar chart is useful for comparing the values of different categories, while a line graph is effective in showing trends over time.Another important data visualization strategy is the use of maps. Maps are particularly useful for visualizing geographical data, such as population distribution, sales by region, or the spread of diseases. By overlaying data on a map, analysts can easily identify spatial patterns and make informed decisions based on the geographic distribution of the data. Geographic information system (GIS) software is commonly used to create and analyze maps, allowing for the visualization of spatial data in a variety of formats, such as choropleth maps, heat maps, and point maps.In addition to charts, graphs, and maps, data analysts can also utilize infographics as a data visualization strategy. Infographics are a visually appealing way to present complex information, combining text, images, and graphics to convey a message or tell a story. Infographics are particularly effective in summarizing large amounts of data and making it more accessible to a wider audience. By using a combination of visuals and concise text, infographics can help viewers quickly grasp the key insights from the data without being overwhelmed by too much information.Furthermore, interactive data visualization is becoming increasingly popular as a strategy for engaging audiences and allowing them to explore data in a more dynamic way. Interactive visualizations allow users to interact with the data, such as by hovering over data points for more details, filtering the data based on specific criteria, or zooming in and out of a visual representation. This level of interactivity can enhance the user experience and empower individuals to discover insights that may not be immediately apparent in static visualizations.Moreover, storytelling through data visualization is an emerging strategy that focuses on using visuals to convey a narrative or make a compelling argument. By structuring data visualizations in a way that tells a story, analysts can guide their audience through the data, leading them to a specific conclusion or insight. Storytelling through data visualization often involves the use of a sequence of visualizations that build upon each other to communicate a coherent message, engaging the audience and helping them understand the significance of the data.Lastly, the use of dashboards as a data visualization strategy is beneficial for providing a comprehensive overview of key performance indicators, metrics, and trends. Dashboards typically consist of multiple visualizations and data displays that are organized in a single interface, allowing users to monitor and analyze data in real-time. Dashboards are commonly used in business intelligence and analytics to track progress towards goals, identify areas for improvement, and make data-driven decisions. The interactive nature of dashboards also enables users to drill down into specific data points and gain deeper insights into the underlying data.In conclusion, data visualization is a powerful tool for making sense of complex data and communicating insights effectively. By employing various data visualization strategies, such as charts, graphs, maps, infographics, interactive visualizations, storytelling, and dashboards, data analysts can present data in a compelling and informative manner. Each strategy offers unique benefits and can be applied to different types of data and analytical objectives. Ultimately, the choice of data visualization strategy depends on the nature of the data, the audience, and the specific insights that need to be conveyed. As technologycontinues to advance, new data visualization strategies and techniques will undoubtedly emerge, further enhancing the ability to explore and understand data in meaningful ways.。

分块下三角阵 英语

分块下三角阵 英语

分块下三角阵英语Partitioned Lower Triangular MatricesMatrices are fundamental mathematical objects that find applications in various fields, including linear algebra, computer science, physics, and engineering. Among the different types of matrices, lower triangular matrices hold a special place due to their unique structure and properties. In this essay, we will delve into the concept of partitioned lower triangular matrices, exploring their characteristics, applications, and the underlying mathematical principles.A lower triangular matrix is a square matrix in which all the elements above the main diagonal are zero. In other words, the non-zero elements are concentrated in the lower triangular portion of the matrix. Formally, a matrix A = [a_ij] is said to be lower triangular if a_ij = 0 for all i < j, where i and j represent the row and column indices, respectively.Partitioned lower triangular matrices are a generalization of thisconcept, where the matrix is divided into smaller submatrices, each of which is also lower triangular. This partitioning can be achieved by grouping the rows and columns of the original matrix into blocks or submatrices. The resulting partitioned matrix maintains the overall lower triangular structure, with the submatrices satisfying the same property.One of the key advantages of partitioned lower triangular matrices is their ability to simplify complex computations and facilitate efficient matrix operations. By exploiting the lower triangular structure, various algorithms and numerical methods can be optimized, leading to improved computational performance and reduced memory requirements.For instance, in the context of solving systems of linear equations, partitioned lower triangular matrices can be used to implement efficient algorithms, such as the Gaussian elimination method or the LU decomposition. These techniques leverage the lower triangular structure to reduce the computational complexity and improve the numerical stability of the solution process.Another important application of partitioned lower triangular matrices lies in the field of control theory and systems engineering. In the analysis and design of linear dynamical systems, the state-space representation of the system often involves matrices with apartitioned lower triangular structure. This structure can be exploited to study the stability, controllability, and observability of the system, as well as to design optimal control strategies.Furthermore, partitioned lower triangular matrices find applications in the analysis of graph-theoretic structures, such as social networks, transportation networks, and communication networks. The lower triangular structure can be used to model and analyze the relationships and dependencies between different entities or nodes in these networks, enabling the study of network dynamics, centrality measures, and community detection.In the realm of numerical linear algebra, partitioned lower triangular matrices play a crucial role in the development and implementation of efficient numerical algorithms. For instance, in the context of iterative methods for solving large-scale linear systems, the lower triangular structure can be exploited to design preconditioners that accelerate the convergence of the iterative process.The mathematical properties of partitioned lower triangular matrices are also of great interest. These matrices exhibit specific characteristics that can be leveraged in various theoretical and computational contexts. For example, the product of two partitioned lower triangular matrices is also a partitioned lower triangular matrix, which is a fundamental property that underpins many algorithmsand matrix operations.Additionally, the eigenvalues of a partitioned lower triangular matrix are closely related to the eigenvalues of its diagonal submatrices. This property can be utilized in the analysis of the spectral properties of these matrices, with applications in areas such as numerical linear algebra, control theory, and graph theory.In conclusion, partitioned lower triangular matrices are a fascinating and versatile concept in linear algebra, with a wide range of applications across various scientific and engineering disciplines. Their unique structure and properties enable the development of efficient computational algorithms, the analysis of complex systems, and the exploration of intricate mathematical relationships. As the field of matrix computations continues to evolve, the study of partitioned lower triangular matrices will undoubtedly remain an active and important area of research.。

辐照灭菌的过程控制指南(美国医疗器械促进协会)AAMI TIR 29-2002

辐照灭菌的过程控制指南(美国医疗器械促进协会)AAMI TIR 29-2002

AAMI TIR29:2002技术信息报告辐照灭菌过程控制指南AAMI 美国医疗器械促进协会(Association for the Advancement of MEDICALInstrumentation)AAMI 技术信息报告AAMI TIR29:2002辐照灭菌过程控制指南Approved 16 July 2002 by美国医疗器械促进协会摘要: 本技术信息报告增加了ANSI/AAMI/ISO 11137所界定的光子,电子束灭菌的剂量场的建立和规范,过程确认,和常规控制等辐射灭菌。

尽管轫致辐射的要求相似,但在这项工作开始的时候缺乏关于轫致辐射装置的设计和运行的经验。

所以轫致辐射不包括在此指南之内。

关键词: 辐射剂量场, 过程确认, 日常加工,剂量确认美国医疗器械促进协会技术信息报告信息技术报告是美国医疗器械促进协会标准局的刊物,它是为特殊的医疗技术提供。

提交到信息技术报告的材料需要更多专家的意见,发表的信息也得是用的,因为很多行业都急切需要它。

信息技术报告与标准和操作规程建议,读者应该理解这些文件的不同之处。

标准和工业标准由正式的委员会通过收集所有正确的意见和观点,此过程由美国医疗器械促进协会标准局和美国国际标准机构完成。

信息技术报告作为一个标准审核的过程不是一样。

但是,信息技术报告由技术委员会和美国医疗器械促进协会标准出版社发布。

另外一个不同的地方,尽管标准和信息技术报告都需要定期审查,一个标准必须经过重申,修改,或撤回,通常每五年或十年需要正式的被认可。

对于信息技术报告来说,美国医疗器械促进协会和技术委员会达成一致,规定自出版日期五年后(作为一个周期)进行审查报告是否有用,检查信息是否切题和具有实用性,如果信息没有实用性了,此信息技术报告就被删掉。

信息技术报告肯发展,因为它比标准和操作规程建议能更好响应基础安全和性能问题。

或者说因为达成共识是非常困难甚至不可能。

信息技术报告与标准不同,它允许在技术问题上由不同的观点。

人工智能英汉

人工智能英汉

人工智能英汉Aβα-Pruning, βα-剪枝, (2) Acceleration Coefficient, 加速系数, (8) Activation Function, 激活函数, (4) Adaptive Linear Neuron, 自适应线性神经元,(4)Adenine, 腺嘌呤, (11)Agent, 智能体, (6)Agent Communication Language, 智能体通信语言, (11)Agent-Oriented Programming, 面向智能体的程序设计, (6)Agglomerative Hierarchical Clustering, 凝聚层次聚类, (5)Analogism, 类比推理, (5)And/Or Graph, 与或图, (2)Ant Colony Optimization (ACO), 蚁群优化算法, (8)Ant Colony System (ACS), 蚁群系统, (8) Ant-Cycle Model, 蚁周模型, (8)Ant-Density Model, 蚁密模型, (8)Ant-Quantity Model, 蚁量模型, (8)Ant Systems, 蚂蚁系统, (8)Applied Artificial Intelligence, 应用人工智能, (1)Approximate Nondeterministic Tree Search (ANTS), 近似非确定树搜索, (8) Artificial Ant, 人工蚂蚁, (8)Artificial Intelligence (AI), 人工智能, (1) Artificial Neural Network (ANN), 人工神经网络, (1), (3)Artificial Neural System, 人工神经系统,(3) Artificial Neuron, 人工神经元, (3) Associative Memory, 联想记忆, (4) Asynchronous Mode, 异步模式, (4) Attractor, 吸引子, (4)Automatic Theorem Proving, 自动定理证明,(1)Automatic Programming, 自动程序设计, (1) Average Reward, 平均收益, (6) Axon, 轴突, (4)Axon Hillock, 轴突丘, (4)BBackward Chain Reasoning, 逆向推理, (3) Bayesian Belief Network, 贝叶斯信念网, (5) Bayesian Decision, 贝叶斯决策, (3) Bayesian Learning, 贝叶斯学习, (5) Bayesian Network贝叶斯网, (5)Bayesian Rule, 贝叶斯规则, (3)Bayesian Statistics, 贝叶斯统计学, (3) Biconditional, 双条件, (3)Bi-Directional Reasoning, 双向推理, (3) Biological Neuron, 生物神经元, (4) Biological Neural System, 生物神经系统, (4) Blackboard System, 黑板系统, (8)Blind Search, 盲目搜索, (2)Boltzmann Machine, 波尔兹曼机, (3) Boltzmann-Gibbs Distribution, 波尔兹曼-吉布斯分布, (3)Bottom-Up, 自下而上, (4)Building Block Hypotheses, 构造块假说, (7) CCell Body, 细胞体, (3)Cell Membrane, 细胞膜, (3)Cell Nucleus, 细胞核, (3)Certainty Factor, 可信度, (3)Child Machine, 婴儿机器, (1)Chinese Room, 中文屋, (1) Chromosome, 染色体, (6)Class-conditional Probability, 类条件概率,(3), (5)Classifier System, 分类系统, (6)Clause, 子句, (3)Cluster, 簇, (5)Clustering Analysis, 聚类分析, (5) Cognitive Science, 认知科学, (1) Combination Function, 整合函数, (4) Combinatorial Optimization, 组合优化, (2) Competitive Learning, 竞争学习, (4) Complementary Base, 互补碱基, (11) Computer Games, 计算机博弈, (1) Computer Vision, 计算机视觉, (1)Conflict Resolution, 冲突消解, (3) Conjunction, 合取, (3)Conjunctive Normal Form (CNF), 合取范式,(3)Collapse, 坍缩, (11)Connectionism, 连接主义, (3) Connective, 连接词, (3)Content Addressable Memory, 联想记忆, (4) Control Policy, 控制策略, (6)Crossover, 交叉, (7)Cytosine, 胞嘧啶, (11)DData Mining, 数据挖掘, (1)Decision Tree, 决策树, (5) Decoherence, 消相干, (11)Deduction, 演绎, (3)Default Reasoning, 默认推理(缺省推理),(3)Defining Length, 定义长度, (7)Rule (Delta Rule), 德尔塔规则, 18(3) Deliberative Agent, 慎思型智能体, (6) Dempster-Shafer Theory, 证据理论, (3) Dendrites, 树突, (4)Deoxyribonucleic Acid (DNA), 脱氧核糖核酸, (6), (11)Disjunction, 析取, (3)Distributed Artificial Intelligence (DAI), 分布式人工智能, (1)Distributed Expert Systems, 分布式专家系统,(9)Divisive Hierarchical Clustering, 分裂层次聚类, (5)DNA Computer, DNA计算机, (11)DNA Computing, DNA计算, (11) Discounted Cumulative Reward, 累计折扣收益, (6)Domain Expert, 领域专家, (10) Dominance Operation, 显性操作, (7) Double Helix, 双螺旋结构, (11)Dynamical Network, 动态网络, (3)E8-Puzzle Problem, 八数码问题, (2) Eletro-Optical Hybrid Computer, 光电混合机, (11)Elitist strategy for ant systems (EAS), 精化蚂蚁系统, (8)Energy Function, 能量函数, (3) Entailment, 永真蕴含, (3) Entanglement, 纠缠, (11)Entropy, 熵, (5)Equivalence, 等价式, (3)Error Back-Propagation, 误差反向传播, (4) Evaluation Function, 评估函数, (6) Evidence Theory, 证据理论, (3) Evolution, 进化, (7)Evolution Strategies (ES), 进化策略, (7) Evolutionary Algorithms (EA), 进化算法, (7) Evolutionary Computation (EC), 进化计算,(7)Evolutionary Programming (EP), 进化规划,(7)Existential Quantification, 存在量词, (3) Expert System, 专家系统, (1)Expert System Shell, 专家系统外壳, (9) Explanation-Based Learning, 解释学习, (5) Explanation Facility, 解释机构, (9)FFactoring, 因子分解, (11)Feedback Network, 反馈型网络, (4) Feedforward Network, 前馈型网络, (1) Feasible Solution, 可行解, (2)Finite Horizon Reward, 横向有限收益, (6) First-order Logic, 一阶谓词逻辑, (3) Fitness, 适应度, (7)Forward Chain Reasoning, 正向推理, (3) Frame Problem, 框架问题, (1)Framework Theory, 框架理论, (3)Free-Space Optical Interconnect, 自由空间光互连, (11)Fuzziness, 模糊性, (3)Fuzzy Logic, 模糊逻辑, (3)Fuzzy Reasoning, 模糊推理, (3)Fuzzy Relation, 模糊关系, (3)Fuzzy Set, 模糊集, (3)GGame Theory, 博弈论, (8)Gene, 基因, (7)Generation, 代, (6)Genetic Algorithms, 遗传算法, (7)Genetic Programming, 遗传规划(遗传编程),(7)Global Search, 全局搜索, (2)Gradient Descent, 梯度下降, (4)Graph Search, 图搜索, (2)Group Rationality, 群体理性, (8) Guanine, 鸟嘌呤, (11)HHanoi Problem, 梵塔问题, (2)Hebbrian Learning, 赫伯学习, (4)Heuristic Information, 启发式信息, (2) Heuristic Search, 启发式搜索, (2)Hidden Layer, 隐含层, (4)Hierarchical Clustering, 层次聚类, (5) Holographic Memory, 全息存储, (11) Hopfield Network, 霍普菲尔德网络, (4) Hybrid Agent, 混合型智能体, (6)Hype-Cube Framework, 超立方体框架, (8)IImplication, 蕴含, (3)Implicit Parallelism, 隐并行性, (7) Individual, 个体, (6)Individual Rationality, 个体理性, (8) Induction, 归纳, (3)Inductive Learning, 归纳学习, (5) Inference Engine, 推理机, (9)Information Gain, 信息增益, (3)Input Layer, 输入层, (4)Interpolation, 插值, (4)Intelligence, 智能, (1)Intelligent Control, 智能控制, (1) Intelligent Decision Supporting System (IDSS), 智能决策支持系统,(1) Inversion Operation, 倒位操作, (7)JJoint Probability Distribution, 联合概率分布,(5) KK-means, K-均值, (5)K-medoids, K-中心点, (3)Knowledge, 知识, (3)Knowledge Acquisition, 知识获取, (9) Knowledge Base, 知识库, (9)Knowledge Discovery, 知识发现, (1) Knowledge Engineering, 知识工程, (1) Knowledge Engineer, 知识工程师, (9) Knowledge Engineering Language, 知识工程语言, (9)Knowledge Interchange Format (KIF), 知识交换格式, (8)Knowledge Query and ManipulationLanguage (KQML), 知识查询与操纵语言,(8)Knowledge Representation, 知识表示, (3)LLearning, 学习, (3)Learning by Analog, 类比学习, (5) Learning Factor, 学习因子, (8)Learning from Instruction, 指导式学习, (5) Learning Rate, 学习率, (6)Least Mean Squared (LSM), 最小均方误差,(4)Linear Function, 线性函数, (3)List Processing Language (LISP), 表处理语言, (10)Literal, 文字, (3)Local Search, 局部搜索, (2)Logic, 逻辑, (3)Lyapunov Theorem, 李亚普罗夫定理, (4) Lyapunov Function, 李亚普罗夫函数, (4)MMachine Learning, 机器学习, (1), (5) Markov Decision Process (MDP), 马尔科夫决策过程, (6)Markov Chain Model, 马尔科夫链模型, (7) Maximum A Posteriori (MAP), 极大后验概率估计, (5)Maxmin Search, 极大极小搜索, (2)MAX-MIN Ant Systems (MMAS), 最大最小蚂蚁系统, (8)Membership, 隶属度, (3)Membership Function, 隶属函数, (3) Metaheuristic Search, 元启发式搜索, (2) Metagame Theory, 元博弈理论, (8) Mexican Hat Function, 墨西哥草帽函数, (4) Migration Operation, 迁移操作, (7) Minimum Description Length (MDL), 最小描述长度, (5)Minimum Squared Error (MSE), 最小二乘法,(4)Mobile Agent, 移动智能体, (6)Model-based Methods, 基于模型的方法, (6) Model-free Methods, 模型无关方法, (6) Modern Heuristic Search, 现代启发式搜索,(2)Monotonic Reasoning, 单调推理, (3)Most General Unification (MGU), 最一般合一, (3)Multi-Agent Systems, 多智能体系统, (8) Multi-Layer Perceptron, 多层感知器, (4) Mutation, 突变, (6)Myelin Sheath, 髓鞘, (4)(μ+1)-ES, (μ+1) -进化规划, (7)(μ+λ)-ES, (μ+λ) -进化规划, (7) (μ,λ)-ES, (μ,λ) -进化规划, (7)NNaïve Bayesian Classifiers, 朴素贝叶斯分类器, (5)Natural Deduction, 自然演绎推理, (3) Natural Language Processing, 自然语言处理,(1)Negation, 否定, (3)Network Architecture, 网络结构, (6)Neural Cell, 神经细胞, (4)Neural Optimization, 神经优化, (4) Neuron, 神经元, (4)Neuron Computing, 神经计算, (4)Neuron Computation, 神经计算, (4)Neuron Computer, 神经计算机, (4) Niche Operation, 生态操作, (7) Nitrogenous base, 碱基, (11)Non-Linear Dynamical System, 非线性动力系统, (4)Non-Monotonic Reasoning, 非单调推理, (3) Nouvelle Artificial Intelligence, 行为智能,(6)OOccam’s Razor, 奥坎姆剃刀, (5)(1+1)-ES, (1+1) -进化规划, (7)Optical Computation, 光计算, (11)Optical Computing, 光计算, (11)Optical Computer, 光计算机, (11)Optical Fiber, 光纤, (11)Optical Waveguide, 光波导, (11)Optical Interconnect, 光互连, (11) Optimization, 优化, (2)Optimal Solution, 最优解, (2)Orthogonal Sum, 正交和, (3)Output Layer, 输出层, (4)Outer Product, 外积法, 23(4)PPanmictic Recombination, 混杂重组, (7) Particle, 粒子, (8)Particle Swarm, 粒子群, (8)Particle Swarm Optimization (PSO), 粒子群优化算法, (8)Partition Clustering, 划分聚类, (5) Partitioning Around Medoids, K-中心点, (3) Pattern Recognition, 模式识别, (1) Perceptron, 感知器, (4)Pheromone, 信息素, (8)Physical Symbol System Hypothesis, 物理符号系统假设, (1)Plausibility Function, 不可驳斥函数(似然函数), (3)Population, 物种群体, (6)Posterior Probability, 后验概率, (3)Priori Probability, 先验概率, (3), (5) Probability, 随机性, (3)Probabilistic Reasoning, 概率推理, (3) Probability Assignment Function, 概率分配函数, (3)Problem Solving, 问题求解, (2)Problem Reduction, 问题归约, (2)Problem Decomposition, 问题分解, (2) Problem Transformation, 问题变换, (2) Product Rule, 产生式规则, (3)Product System, 产生式系统, (3) Programming in Logic (PROLOG), 逻辑编程, (10)Proposition, 命题, (3)Propositional Logic, 命题逻辑, (3)Pure Optical Computer, 全光计算机, (11)QQ-Function, Q-函数, (6)Q-learning, Q-学习, (6)Quantifier, 量词, (3)Quantum Circuit, 量子电路, (11)Quantum Fourier Transform, 量子傅立叶变换, (11)Quantum Gate, 量子门, (11)Quantum Mechanics, 量子力学, (11) Quantum Parallelism, 量子并行性, (11) Qubit, 量子比特, (11)RRadial Basis Function (RBF), 径向基函数,(4)Rank based ant systems (ASrank), 基于排列的蚂蚁系统, (8)Reactive Agent, 反应型智能体, (6) Recombination, 重组, (6)Recurrent Network, 循环网络, (3) Reinforcement Learning, 强化学习, (3) Resolution, 归结, (3)Resolution Proof, 归结反演, (3) Resolution Strategy, 归结策略, (3) Reasoning, 推理, (3)Reward Function, 奖励函数, (6) Robotics, 机器人学, (1)Rote Learning, 机械式学习, (5)SSchema Theorem, 模板定理, (6) Search, 搜索, (2)Selection, 选择, (7)Self-organizing Maps, 自组织特征映射, (4) Semantic Network, 语义网络, (3)Sexual Differentiation, 性别区分, (7) Shor’s algorithm, 绍尔算法, (11)Sigmoid Function, Sigmoid 函数(S型函数),(4)Signal Function, 信号函数, (3)Situated Artificial Intelligence, 现场式人工智能, (1)Spatial Light Modulator (SLM), 空间光调制器, (11)Speech Act Theory, 言语行为理论, (8) Stable State, 稳定状态, (4)Stability Analysis, 稳定性分析, (4)State Space, 状态空间, (2)State Transfer Function, 状态转移函数,(6)Substitution, 置换, (3)Stochastic Learning, 随机型学习, (4) Strong Artificial Intelligence (AI), 强人工智能, (1)Subsumption Architecture, 包容结构, (6) Superposition, 叠加, (11)Supervised Learning, 监督学习, (4), (5) Swarm Intelligence, 群智能, (8)Symbolic Artificial Intelligence (AI), 符号式人工智能(符号主义), (3) Synapse, 突触, (4)Synaptic Terminals, 突触末梢, (4) Synchronous Mode, 同步模式, (4)TThreshold, 阈值, (4)Threshold Function, 阈值函数, (4) Thymine, 胸腺嘧啶, (11)Topological Structure, 拓扑结构, (4)Top-Down, 自上而下, (4)Transfer Function, 转移函数, (4)Travel Salesman Problem, 旅行商问题, (4) Turing Test, 图灵测试, (1)UUncertain Reasoning, 不确定性推理, (3)Uncertainty, 不确定性, (3)Unification, 合一, (3)Universal Quantification, 全称量词, (4) Unsupervised Learning, 非监督学习, (4), (5)WWeak Artificial Intelligence (Weak AI), 弱人工智能, (1)Weight, 权值, (4)Widrow-Hoff Rule, 维德诺-霍夫规则, (4)。

计算机常用术语

计算机常用术语

第一部分、计算机算法常用术语中英对照Data Structures 基本数据结构Dictionaries 字典Priority Queues 堆Graph Data Structures 图Set Data Structures 集合Kd-Trees 线段树Numerical Problems 数值问题Solving Linear Equations 线性方程组Bandwidth Reduction 带宽压缩Matrix Multiplication 矩阵乘法Determinants and Permanents 行列式Constrained and Unconstrained Optimization 最值问题Linear Programming 线性规划Random Number Generation 随机数生成Factoring and Primality Testing 因子分解/质数判定Arbitrary Precision Arithmetic 高精度计算Knapsack Problem 背包问题Discrete Fourier Transform 离散Fourier变换Combinatorial Problems 组合问题Sorting 排序Searching 查找Median and Selection 中位数Generating Permutations 排列生成Generating Subsets 子集生成Generating Partitions 划分生成Generating Graphs 图的生成Calendrical Calculations 日期Job Scheduling 工程安排Satisfiability 可满足性Graph Problems -- polynomial 图论-多项式算法Connected Components 连通分支Topological Sorting 拓扑排序Minimum Spanning Tree 最小生成树Shortest Path 最短路径Transitive Closure and Reduction 传递闭包Matching 匹配Eulerian Cycle / Chinese Postman Euler回路/中国邮路Edge and Vertex Connectivity 割边/割点Network Flow 网络流Drawing Graphs Nicely 图的描绘Drawing Trees 树的描绘Planarity Detection and Embedding 平面性检测和嵌入Graph Problems -- hard 图论-NP问题Clique 最大团Independent Set 独立集Vertex Cover 点覆盖Traveling Salesman Problem 旅行商问题Hamiltonian Cycle Hamilton回路Graph Partition 图的划分Vertex Coloring 点染色Edge Coloring 边染色Graph Isomorphism 同构Steiner Tree Steiner树Feedback Edge/Vertex Set 最大无环子图Computational Geometry 计算几何Convex Hull 凸包Triangulation 三角剖分Voronoi Diagrams Voronoi图Nearest Neighbor Search 最近点对查询Range Search 范围查询Point Location 位置查询Intersection Detection 碰撞测试Bin Packing 装箱问题Medial-Axis Transformation 中轴变换Polygon Partitioning 多边形分割Simplifying Polygons 多边形化简Shape Similarity 相似多边形Motion Planning 运动规划Maintaining Line Arrangements 平面分割Minkowski Sum Minkowski和Set and String Problems 集合与串的问题Set Cover 集合覆盖Set Packing 集合配置String Matching 模式匹配Approximate String Matching 模糊匹配Text Compression 压缩Cryptography 密码Finite State Machine Minimization 有穷自动机简化Longest Common Substring 最长公共子串Shortest Common Superstring 最短公共父串DP——Dynamic Programming——动态规划recursion ——递归第二部分、编程词汇A2A integration A2A整合abstract 抽象的abstract base class (ABC)抽象基类abstract class 抽象类abstraction 抽象、抽象物、抽象性access 存取、访问access level访问级别access function 访问函数account 账户action 动作activate 激活active 活动的actual parameter 实参adapter 适配器add-in 插件address 地址address space 地址空间address-of operator 取地址操作符ADL (argument-dependent lookup)ADO(ActiveX Data Object)ActiveX数据对象advancedaggregation 聚合、聚集algorithm 算法alias 别名align 排列、对齐allocate 分配、配置allocator分配器、配置器angle bracket 尖括号annotation 注解、评注API (Application Programming Interface) 应用(程序)编程接口app domain (application domain)应用域application 应用、应用程序application framework 应用程序框架appearance 外观append 附加architecture 架构、体系结构archive file 归档文件、存档文件argument引数(传给函式的值)。

编程英语词汇汇总

编程英语词汇汇总

:JDK(Java Development Kit) java开发工具包JVM(Java Virtual Machine) java虚拟机Javac 编译命令java 解释命令Javadoc 生成java文档命令classpath 类路径Version 版本author 作者public 公共的class 类static 静态的void 没有返回值String 字符串类System 系统类out 输出print 同行打印println 换行打印JIT(just-in-time) 及时处理第二章:byte 字节char 字符boolean 布尔short 短整型int 整形long 长整形float 浮点类型double 双精度if 如果else 否则switch 多路分支case 与常值匹配break 终止default 默认while 当到循环do 直到循环for 已知次数循环continue结束本次循环进行下次跌代length 获取数组元素个数第三章:OOP object oriented programming 面向对象编程Object 对象Class 类Class member 类成员Class method 类方法Class variable 类变量Constructor 构造方法Package 包Import package 导入包第四章:Extends 继承Base class 基类Super class 超类Overloaded method 重载方法Overridden method 重写方法Public 公有Private 私有Protected 保护Static 静态Abstract 抽象Interface 接口Implements interface 实现接口第五章:Exception 意外,异常RuntimeExcepiton 运行时异常ArithmeticException 算术异常IllegalArgumentException 非法数据异常ArrayIndexOutOfBoundsException 数组索引越界异常NullPointerException 空指针异常ClassNotFoundException 类无法加载异常(类不能找到)NumberFormatException 字符串到float类型转换异常(数字格式异常)IOException 输入输出异常FileNotFoundException 找不到文件异常EOFException 文件结束异常InterruptedException (线程)中断异常try 尝试catch 捕捉finally 最后throw 投、掷、抛throws 投、掷、抛print Stack Trace() 打印堆栈信息get Message()获得错误消息get Cause()获得异常原因method 方法able 能够instance 实例check 检查第六章:byte(字节)char(字符)int(整型)long(长整型)float(浮点型)double(双精度)boolean(布尔)short(短整型)Byte (字节类)Character (字符类)Integer(整型类)Long (长整型类)Float(浮点型类)Double (双精度类)Boolean(布尔类)Short (短整型类)Digit (数字)Letter (字母)Lower (小写)Upper (大写)Space (空格)Identifier (标识符)Start (开始)String (字符串)length (值)equals (等于)Ignore (忽略)compare (比较)sub (提取)concat (连接)replace (替换)trim (整理)Buffer (缓冲器)reverse (颠倒)delete (删除)append (添加)Interrupted (中断的)第七章:Date 日期,日子After 后来,后面Before 在前,以前Equals 相等,均等toString 转换为字符串SetTime 设置时间Display 显示,展示Calendar 日历Add 添加,增加GetInstance 获得实例getTime 获得时间Clear 扫除,清除Clone 克隆,复制Util 工具,龙套Components 成分,组成Month 月份Year 年,年岁Hour 小时,钟头Minute 分钟Second 秒Random 随意,任意Next Int 下一个整数Gaussian 高斯ArrayList 对列LinkedList 链表Hash 无用信息,杂乱信号Map 地图Vector 向量,矢量Size 大小Collection 收集Shuffle 混乱,洗牌RemoveFirst 移动至开头RemoveLast 移动至最后lastElement 最后的元素Capacity 容量,生产量Contains 包含,容纳Copy 副本,拷贝Search 搜索,查询InsertElementAt 插入元素在某一位置第八章:io->in out 输入/输出File 文件import 导入exists 存在isFile 是文件isDirectory 是目录getName 获取名字getPath 获取路径getAbsolutePath 获取绝对路径lastModified 最后修改日期length 长度InputStream 输入流OutputStream 输出流Unicode 统一的字符编码标准, 采用双字节对字符进行编码Information 信息FileInputStream 文件输入流FileOutputStream文件输出流IOException 输入输出异常fileobject 文件对象available 可获取的read 读取write 写BufferedReader 缓冲区读取FileReader 文本文件读取BufferedWriter 缓冲区输出FileWriter 文本文件写出flush 清空close 关闭DataInputStream 二进制文件读取DataOutputStream二进制文件写出EOF 最后encoding 编码Remote 远程release 释放第九章:JBuider Java 集成开发环境(IDE)Enterprise 企业版Developer 开发版Foundation 基础版Messages 消息格Structure 结构窗格Project 工程Files 文件Source 源代码Design 设计History 历史Doc 文档File 文件Edit 编辑Search 查找Refactor 要素View 视图Run 运行Tools 工具Window 窗口Help 帮助Vector 矢量addElement 添加内容Project Winzard 工程向导Step 步骤Title 标题Description 描述Copyright 版权Company 公司Aptech Limited Aptech有限公司author 作者Back 后退Finish 完成version 版本Debug 调试New 新建ErrorInsight 调试第十章:JFrame 窗口框架JPanel 面板JScrollPane 滚动面板title 标题Dimension 尺寸Component 组件Swing JAVA轻量级组件getContentPane 得到内容面板LayoutManager 布局管理器setVerticalScrollBarPolicy 设置垂直滚动条策略AWT(Abstract Window Toolkit)抽象窗口工具包GUI (Graphical User Interface)图形用户界面VERTICAL_SCROLLEARAS_NEEDED 当内容大大面板出现滚动条VERTICAL_SOROLLEARAS_ALWAYS 显示滚动条VERTICAL_SOROLLEARAS_NEVER 不显示滚动条JLabel 标签Icon 图标image 图象LEFT 左对齐RIGHT 右对齐JTextField 单行文本getColumns 得到列数setLayout 设置布局BorderLayout 边框布局CENTER 居中对齐JTextArea 多行文本setFont 设置字体setHorizontalAlignment 设置文本水平对齐方式setDefaultCloseOperation 设置默认的关闭操作add 增加JButton 按钮JCheckBox 复选框JRadioButton单选按钮addItem 增加列表项getItemAt 得到位置的列表项getItemCount 得到列表项个数setRolloverIcon 当鼠标经过的图标setSelectedIcon 当选择按钮的图标getSelectedItem 得到选择的列表项getSelectedIndex 得到选择的索引ActionListener 按钮监听ActionEvent 按钮事件actionPerformed 按钮单击方法计算机编程英语大全关键字: 计算机编程英语大全算法常用术语中英对照Data Structures 基本数据结构Dictionaries 字典Priority Queues 堆Graph Data Structures 图Set Data Structures 集合Kd-Trees 线段树Numerical Problems 数值问题Solving Linear Equations 线性方程组Bandwidth Reduction 带宽压缩Matrix Multiplication 矩阵乘法Determinants and Permanents 行列式Constrained and Unconstrained Optimization 最值问题Linear Programming 线性规划Random Number Generation 随机数生成Factoring and Primality Testing 因子分解/质数判定Arbitrary Precision Arithmetic 高精度计算Knapsack Problem 背包问题Discrete Fourier Transform 离散Fourier变换Combinatorial Problems 组合问题Sorting 排序Searching 查找Median and Selection 中位数Generating Permutations 排列生成Generating Subsets 子集生成Generating Partitions 划分生成Generating Graphs 图的生成Calendrical Calculations 日期Job Scheduling 工程安排Satisfiability 可满足性Graph Problems -- polynomial 图论-多项式算法Connected Components 连通分支Topological Sorting 拓扑排序Minimum Spanning Tree 最小生成树Shortest Path 最短路径Transitive Closure and Reduction 传递闭包Matching 匹配Eulerian Cycle / Chinese Postman Euler回路/中国邮路Edge and Vertex Connectivity 割边/割点Network Flow 网络流Drawing Graphs Nicely 图的描绘Drawing Trees 树的描绘Planarity Detection and Embedding 平面性检测和嵌入Graph Problems -- hard 图论-NP问题Clique 最大团Independent Set 独立集Vertex Cover 点覆盖Traveling Salesman Problem 旅行商问题Hamiltonian Cycle Hamilton回路Graph Partition 图的划分Vertex Coloring 点染色Edge Coloring 边染色Graph Isomorphism 同构Steiner Tree Steiner树Feedback Edge/Vertex Set 最大无环子图Computational Geometry 计算几何Convex Hull 凸包Triangulation 三角剖分Voronoi Diagrams Voronoi图Nearest Neighbor Search 最近点对查询Range Search 范围查询Point Location 位置查询Intersection Detection 碰撞测试Bin Packing 装箱问题Medial-Axis Transformation 中轴变换Polygon Partitioning 多边形分割Simplifying Polygons 多边形化简Shape Similarity 相似多边形Motion Planning 运动规划Maintaining Line Arrangements 平面分割Minkowski Sum Minkowski和Set and String Problems 集合与串的问题Set Cover 集合覆盖Set Packing 集合配置String Matching 模式匹配Approximate String Matching 模糊匹配Text Compression 压缩Cryptography 密码Finite State Machine Minimization 有穷自动机简化Longest Common Substring 最长公共子串Shortest Common Superstring 最短公共父串DP——Dynamic Programming——动态规划recursion ——递归编程词汇A2A integration A2A整合abstract 抽象的abstract base class (ABC)抽象基类abstract class 抽象类abstraction 抽象、抽象物、抽象性access 存取、访问access level访问级别access function 访问函数account 账户action 动作activate 激活active 活动的actual parameter 实参adapter 适配器add-in 插件address 地址address space 地址空间address-of operator 取地址操作符ADL (argument-dependent lookup)ADO(ActiveX Data Object)ActiveX数据对象advanced 高级的aggregation 聚合、聚集algorithm 算法alias 别名align 排列、对齐allocate 分配、配置allocator分配器、配置器angle bracket 尖括号annotation 注解、评注API (Application Programming Interface) 应用(程序)编程接口app domain (application domain)应用域application 应用、应用程序application framework 应用程序框架appearance 外观append 附加architecture 架构、体系结构archive file 归档文件、存档文件argument引数(传给函式的值)。

关于连通度的无三圈图的划分

关于连通度的无三圈图的划分

㊀R e c e i v e dd a t e :2018G07G01;㊀M o d i f i e dd a t e :2018G09G05㊀F u n d p r o j e c t s :N a t u r a l S c i e n c eF o u n d a t i o no f J i a n g s uP r o v i n c e (B K 20170862);N S F C (11701142)㊀A u t h o r i n t r o d u c t i o n :L IR u i (1982-),m a l e ,D o c t o r o fM a t h e m a t i c s ,m a j o r i n g r a p h t h e o r y.E m a i l :l i r u i @h h u .e d u .c n 第34卷第5期大㊀学㊀数㊀学V o l .34,ɴ.52018年10月C O L L E G E MA T H E MA T I C S O c t .2018P a r t i t i o n s o fT r i a n g l e Gf r e eG r a p h sw i t h R e s t r i c t i o no nC o n n e c t i v i t yL IR u i (D e p a r t m e n t o fM a t h e m a t i c s ,C o l l e g e o f S c i e n c e s ,H o h a iU n i v e r s i t y ,N a n j i n g 211100,C h i n a )㊀㊀A b s t r a c t :K üh na n dO s t h u s p r o v e d t h a t f o r e v e r yp o s i t i v e i n t e g e r l ,t h e r e e x i s t s a n i n t e g e r k (l )ɤ216l 2,s u c h t h a t t h ev e r t e xs e to fe v e r y k (l )Gc o n n e c t e d g r a p h s G c a nb e p a r t i t i o n e di n t os u b s e t s S a n d T w i t ht h e p r o p e r t i e s t h a t b o t h G [S ]a n d G [T ]a r e l Gc o n n e c t e d a n d e v e r y v e r t e x i n S h a s a t l e a s t l n e i g h b o r s i n T .I n t h i s p a p e r ,w e c o n s i d e r t h eu p p e rb o u n do f k (l )o nt r i a n g l e Gf r e e g r a p h s .A f t e rs h o w i n g t h a te v e r y t r i a n gl e Gf r e e g r a p ho f a v e r a g ed e g r e ea t l e a s t 8l /3h a sa n l Gc o n n e c t e ds u b g r a ph ,w e p r o v et h a t k (l )ɤ216 3-3 l 2o n t r i a n g l e Gf r e e g r a p h s .K e y wo r d s :c o m b i n a t o r i a l p r o b l e m s ;g r a p h p a r t i t i o n s ;c o n n e c t i v i t y ;t r i a n g l e Gf r e e C L CN u m b e r :O 157.5㊀㊀D o c u m e n t C o d e :A㊀㊀A r t i c l e I D :1672G1454(2018)05G0001G061㊀I n t r o d u c t i o nA l l g r a p h s c o n s i d e r e d i n t h i s p a p e r a r e f i n i t e ,u n d i r e c t e d a n d s i m p l e .F o r a g r a p h ,w e d e n o t eb y V (G ),E (G ),d (G )a n d δ(G )t h e v e r t e x s e t ,e d g e s e t ,a v e r a g e d e g r e e a n d t h em i n i m u md e gr e e o f G ,r e s p e c t i v e l y .W eu s e |G |a n d e (G ),r e s p e c t i v e l y ,t od e n o t e t h en u m b e r so f v e r t i c e s a n de d g e s i na g r a p h G .F o r a s u b s e t S ⊆V (G ),w eu s e G [S ]t od e n o t e t h e s u b g r a p ho f G i n d u c e db y S ,a n du s e e S ()t od e n o t et h en u m b e ro fe d g e s i n G [S ].F o rt w od i s j o i n ts u b s e t s S a n d T o f V (G ),w eu s e e (S ,T )t od e n o t e t h en u m b e r o f e d ge sw i t ho n e e n d i n S a n d t h e o t h e r i n T .G i v e na g r a p h G ,a p a r t i t i o nof G i s a f a m i l y o f p a i r w i s ed i s j o i n t s u b s e t s V 1, ,V k o f V (G )s u c h t h a t V (G )=ɣk i =1.G r a p h p a r t i t i o n p r o b l e m sa s kf o ra p a r t i t i o no f t h ev e r t e xs e to fag r a ph wi t h v a r i o u s r e q u i r e m e n t s .O n em a y a s k t h e s m a l l e s t n u m b e r k o f p a r t i t i o n i n g V (G )i n t o k s u b s e t s o fw h i c h e a c h i n d u c e s a p a t h (T h i s i sc a l l e dt h e p a t h p a r t i t i o n p r o b l e m.T h e r ea r e l i n e a r Gt i m ea l g o r i t h m s f o r s o m e s p e c i a l f a m i l y o f g r a p h s [1,15],b u t i t i s N P Gc o m p l e t ei n g e n e r a l ).T h e m a x i m a lb a l a n c e d c o n n e c t e d p a r t i t i o n p r o b l e m a s k sf o ra p a r t i t i o n o f V (G )i n t ot w os u b s e t s V 1,V 2e a c hi n d u c e sa c o n n e c t e d s u b g r a p h s a n dm a x i m i z e sm i n {V 1,V 2}(i t s a p p r o x i m a b i l i t y w a s s t u d i e d i n [3]).T h e m a x i m u mb i p a r t i t es u b g r a p h p r o b l e m a s k sf o rab i p a r t i t i o no f V (G )t h a tm a x i m i z e st h en u m b e ro f e d ge sb e t w e e n t h e t w o s u b s e t s (r e a d e r s a r e r ef e r r e d t o [10]f o rd e t a i l s ).Al o t o f o t h e r p r o b l e m s i ng r a ph t h e o r y c a na l s ob e p r e s e n t e da s g r a p h p a r ti t i o n s .F o r i n s t a n c e ,v a r i o u s c o l o r i n gp r o b l e m s a s k s f o r p a r t i t i o n so f V (G )i n t oi n d e pe n d e n ts e t s w i t hs o m ef u r t h e rr e s t r i c t i o n s (s e e [2,8,14,16]f o r e x a m p l e s ).2大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第34卷H e r ew e c o n c e r nw i t ha p a r t i t i o n p r o b l e mt h a t a s k s f o ra p a r t i t i o no f V(G)i n t ot w os u b s e t so f w h i c he a c h i n d u c e s a s u b g r a p hw i t h p r e s c r i b e dc o n n e c t i v i t y(r e s p.m i n i m u md e g r e e).G yör i p o s e da p r o b l e mi n1981:f o r e a c h p a i r s,t o f p o s i t i v e i n t e g e r s,d o e s t h e r e e x i s t a p o s i t i v e i n t e g e r s g(s,t)s u c h t h a t t h e v e r t e x s e t o f e a c h g r a p h o f c o n n e c t i v i t y a t l e a s t g(s,t)c a nb e p a r t i t i o n e d i n t o t w o s e t s S a n d T w h i c h i n d u c e s u b g r a p h s o f c o n n e c t i v i t y a t l e a s t S a n d T,r e s p e c t i v e l y(s e e[5,13]).T h o m a s s e n[13], a n d i n d e p e n d e n t l y S z e g e d y[5]e s t a b l i s h e d t h e e x i s t e n c e o f t h e f u n c t i o n g(s,t).T h o m a s s e n s p r o o f i sb a s e do nar e s u l to fM a d e r[9]c l a i m i n g t h a t s u f f i c i e n t l y l a r g em i n i m u m d e g r e ew i l l g u a r a n t e e t h ee x i s t e n c eo fh i g h l y c o n n e c t e ds u b g r a p h s.H es h o w e dt h a t f o re a c h p a i ro f p o s i t i v e i n t e g e r s S a n d T,t h e r ee x i s t sa f u n c t i o n f(s,t)s u c ht h a t t h ev e r t e xs e to f a n yg r a p h w i t h m i n i m u md e g r e e a t l e a s t f(s,t)h a sa p a r t i t i o n S,T w h i c h i n d u c es u b g r a p h so fm i n i m u m d e g r e ea t l e a s t s a n d t,r e s p e c t i v e l y,a n dh e f u r t h e r c o n j e c t u r e d t h a t f(s,t)=s+t+1.I n1983,H a j n a l[5] p r e s e n t e du p p e rb o u n d sf o rb o t h f(s,t)a n d g(s,t).T h o m a s s e n sc o n j e c t u r e w a sc o n f i r m e d b y S t i e b i t z[11]i n1996.T h e o r e m1.1(S t i e b i t z,[11])㊀L e t G b e a g r a p h a n d s,tȡ0b e i n t e g e r s.I fδ(G)ȡs+t+1,t h e n t h e r e i s a p a r t i t i o n S,T o f V(G)s u c h t h a tδ(G[S])ȡs a n dδ(G[T])ȡt.K s+t+1s h o w s t h a t o n e c a n n o t d e c r e a s e t h em i n i m u md e g r e e f u r t h e rm o r e.L e t S,T b ea p a r t i t i o no fa g r a p h G.W eu s e(S,T)G t od e n o t et h eb i p a r t i t es u b g r a p ho f G c o n s i s t i n g o f t h e e d g e s b e t w e e n S a n d T.I t i sw e l l k n o w nt h a t t h em i n i m u md e g r e eo f t h eb i p a r t i t e s u b g r a p h(S,T)G o f G c a nb e g r e a t e rt h a nh a l ft h e m i n i m u m d e g r e eo f G.S oi t i sa ni n t e r e s t i n g q u e s t i o n t o s e e t h a tw h e t h e r G[S],G[T]a n d(S,T)G c a nh a v e l a r g em i n i m u md e g r e e o r c o n n e c t i v i t y s i m u l t a n e o u s l y.I n[6],Küh n a n dO s t h u s g a v e a n e g a t i v e a n s w e r t o t h i s q u e s t i o nb y s h o w i n g t h a t f o r e a c h p o s i t i v e i n t e g e r k,t h e r e e x i s t s a kGc o n n e c t e d g r a p h G w h o s e v e r t e x s e t c a n n o t b e p a r t i t i o n e d i n t o n o n e m p t y s e t s S a n d T s u c h t h a t e a c hv e r t e xo f G h a s n e i g h b o r s i nb o t h S a n d T.T h e n i t i s w o r t hc o n s i d e r i n g w h e t h e ro n es i d eo f(S,T)G c a nh a v el a r g e m i n i m u m d e g r e eo r c o n n e c t i v i t y w h i l e t h e m i n i m u m d e g r e ea n dc o n n e c t i v i t y o f G[S],G[T]a r eb o t hl a r g e.Küh na n d O s t h u s a n s w e r e di ta f f i r m a t i v e l y[6].T h e y p r o v e dt h a tf o re a c h p o s i t i v ei n t e g e r l,t h e r ee x i s t i n t e g e r s kᶄ(l)ɤ211 3l2a n d k(l)ɤ216l2,s u c ht h a tδ(G)ȡkᶄ(l)g u a r a n t e e st h ee x i s t e n c eo fa p a r t i t i o no f V(G)i n t o S a n d T s u c h t h a tδ(G[S]),δ(G[T])ȡ1a n d e v e r y v e r t e xo f S h a sa t l e a s t l n e i g hb o r s i n T,a n dc o n n e c t i v i t y a t l e a s t k(l)g u a r a n t e e st h e e x i s t e n c e o f a p a r t i t i o no f V(G)i n t o Sᶄa nd Tᶄs u c ht h a tb o t h G[Sᶄ]a n d G[Tᶄ]a re lGc o n n e c t e da n d e v e r y v e r t e xof Sᶄh a s a t l e a s t l n e igh b o r si n Tᶄ.I n t h i s p a p e r,w e f o c u so nt r i a n g l eGf r e e g r a p h s,c o n s i d e r t h e p a r t i t i o n p r o b l e m sw i t hr e s t r i c t i o n o n c o n n e c t i v i t y,a n d p r o v e t h e f o l l o w i n g t h e o r e m.T h e o r e m1.2㊀F o r g i v e n p o s i t i v e i n t e g e r s sȡt,t h ev e r t e xs e to fe v e r y216 3-3l2Gc o n n e c t e d t r i a n g l eGf r e e g r a p h G c a nb e p a r t i t i o n e di n t on o n e m p t y s e t s S a n d T s u c ht h a t G[S]a n d G[T]a r e sGc o n n e c t e d a n d tGc o n n e c t e d,r e s p e c t i v e l y,a n d e v e r y v e r t e x i n S h a s a t l e a s t t n e i g h b o r s i n T.B y t a k i n g s=t=1,w e s e e t h a t k(l)ɤ216 3-3l2o n t r i a n g l eGf r e e g r a p h s.T h e p r o o f t e c h n i q u e o fT h e o r e m1.2i s s i m i l a r t o t h a t u s e db y Küh na n dO s t h u s.2㊀T r i a n g l eGf r e e g r a p h sI n t h i s s e c t i o n,w e f o c u so nt r i a n g l eGf r e e g r a p h s,c o n s i d e r i t s p a r t i t i o n p r o b l e m w i t hr e s t r i c t i o n o n c o n n e c t i v i t y,a n d p r o v eT h e o r e m1.2.O u r p r o o f s a r e a l s ob a s e do na t h e o r e mo fM a d e r.I n1972,M a d e r p r o v e d t h e f o l l o w i n g r e s u l t t h a t g i v e s a s u f f i c i e n t c o n d i t i o n f o r a g r a p h c o n t a i n i n ga k Gc o n n e c t e d s ub g r a p h .T h e o r e m2.1(M a d e r ,[9])㊀L e t k ȡ1a n d μȡ-1b e i n t e g e r s ,a n d l e t G b ea g r a p hs uc ht h a t |G |ȡk +μ+2a nde (G )>k +μ()|G |-k +1(),a n d s u c h t h a t e H ()ɤk +μ()H -k +1()f o r e a c hs u bg r a ph H o f G wi t h k +μ+2v e r t i c e s .T h e n ,G h a s a k Gc o n n e c t e d s u b g r a p h .A s ad i r e c t c o n s e q u e n c e o fT h e o r e m2.1(b y t a k i n g μ=k -3),f o r g i v e n i n t e g e r k ȡ1,e v e r y g r a p hw i t ha v e r a g e d e g r e e a t l e a s t 4k -6h a s a k Gc o n n e c t e ds u b g r a p h (s e eT h e o r e m1.4.2o f [4]).T h i s b o u n d i s s h a r p a se v i d e n c e db y t h ec y c l e s .B u to nt r i a n g l e Gf r e e g r a p h s ,t h ea v e r a g ed e g r e e f o r g u a r a n t e e i n g t h e e x i s t e n c eo f k Gc o n n e c t e ds u b g r a p h sm a y b er e d u c e dt o 8k /3.T ob e p r e c i s e l y ,w e h a v e t h e f o l l o w i n g T h e o r e m2.2㊀L e t G b ea t r i a n g l e Gf r e e g r a p h ,a n d k b ea p o s i t i v e i n t e g e r .I f d (G )ȡ8k /3-2,t h e n G c o n t a i n s a k Gc o n n e c t e d s u b g r a p h .P r o o f ㊀W h i l e k =1o r 2,t h e c o n c l u s i o nh o l d s t r i v i a l l y .S o ,w e s u p p o s e t h a t k ȡ3,a n da p p l y T h e o r e m1.2w i t h μ=k /3-1.S i n c e d (G )ȡ8k /3-2,|G |ȡ8k /3-1>4k /3+1=k +μ+2,a n d e (G )ȡ8k /3-2()|G |/2=4k /3-1()|G |>k +μ()|G |-k +1().L e t H b e a s u b g r a p ho f G w i t h H =k +μ+2.S i n c e G i s t r i a n gl e Gf r e e ,e H ()ɤ14k +μ+2()2=4k 2/9+2k /3+1/4ɤ4k 2/9+7k /3-2=k +μ()H -k +1().B y T h e o r e m2.1,G c o n t a i n s a k Gc o n n e c t e d s u b g r a p h .T h e p r o o f i s c o m p l e t e .W h i l e t a k i n g k =1,8k /3-2=1.S i n c e δ(G )ȡ1i s a n e c e s s a r y c o n d i t i o n f o r G c o n t a i n i n g a n o n t r i v i a l c o n n e c t e d s u b g r a p h ,t h eb o u n d i nT h e o r e m2.2i s a l m o s t s h a r pi n t h i s s e n s e .T h o m a s s e n p r o v e d [13]t h a t ,f o r e a c h p a i r s ,t o f p o s i t i v e i n t e g e r s ,t h e r e e x i s t s a n i n t e g e r f s ,t ()s u c ht h a t e a c h s +t -1Gc o n n e c t e d g r a p hw i t hm i n i m u md e g r e e a t l e a s t f s ,t ()h a s a p a r t i t i o n i n t o t w o s e t sw h i c h i n d u c e s u b g r a p h s o f c o n n e c t i v i t y a t l e a s t s a n d t ,r e s p e c t i v e l y .C o m b i n i n g T h e o r e m1.1a n d T h e o r e m2.2,w e g i v ea m i n i m u m d e g r e ec o n d i t i o nt od e a lw i t ht r i a n g l e Gf r e e g r a p h s .T h e p r o o f t e c h n i q u e i s t h e s a m e a s t h a t u s e db y Th o m a s s e n i n [13].T h e o r e m2.3㊀I f G i s a n s +t -1Gc o n n e c t e d t r i a n g l e Gf r e e g r a p hw i t h δ(G )ȡ8/3s +t ()-2,t h e n t h e r e e x i s t s a p a r t i t i o n S ,T o f V (G )s u c h t h a t G [S ]a n d G [T ]a r e s Gc o n n e c t e da n d t Gc o n n e c t e d ,r e s p e c t i v e l y.P r o o f ㊀S i n c e (8s /3-2)+8t /3-2()+1ɤ8s +t ()/3-2f o r a n yp o s i t i v e i n t e g e r s s a n d t ,b y T h e o r e m1.1,w em a y o b t a i n a p a r t i t i o n S ᶄ,T ᶄo f V (G )s u c h t h a t δG S ᶄ[]()ȡ8s /3-2a n d δG S ᶄ[]()ȡ8t /3-2.B y T h e o r e m2.2,S ᶄc o n t a i n s a s u b s e t S s u c h t h a t G [S ]i s s Gc o n n e c t e d ,a n d T ᶄc o n t a i n s a s u b s e t T s u c h t h a t G [T ]i s t Gc o n n e c t e d .C h o o s e S a n d T s a t i s f y i n g t h o s e p r o p e r t i e ss u c ht h a t S ɣT i s m a x i m u m.W e s h o wt h a t S ɣT =V (G ).S u p p o s e t h a t i t i s n o t t h e c a s e ,i .e .,S ɣT ʂV (G ).W e s e t C =V (G )\(S ɣT ).T h e n ,C ʂ∅.B y t h e c h o i c e o f S ,G S ɣC []i s n o t s Gc o n n e c t e d .F o r o t h e r w i s e ,w eh a v e (S ɣC )ɣT >S ɣTc o n t r ad i c t i n g t h em a x i m a l i t y o f S ɣT .S o G S ɣC []c o n t a i n s a c u t Gse t A s u c h t h a t |A |ɤs -1.S i n c e G [S ]i s s Gc o n n e c t e d ,t h e r e e x i s t s a c o m p o n e n t H of G [(S ɣC )]\A s u c h t h a t V (H )=S \A .S i m i l a r l y ,G T ɣC []i s n o t t Gc o n n e c t e d ,a n d i t c o n t a i n s a c u t Gs e t B s u c h t h a t B ɤt -1.T h e r e a l s o e x i s t s a c o m p o n e n t s H ᶄo f G [T ɣC ]\B s u c h t h a t V (H ᶄ)=T \B .I t i s e a s y t o v e r i f y t h a t H a n d H ᶄa r e 3第5期㊀㊀㊀L IR u i :P a r t i t i o n s o fT r i a n g l e Gf r e eG r a p h sw i t hR e s t r i c t i o no nC o n n e c t i v i t ys e p a r a t e db y A ɣB i n g r a p h G .T h i s i m p l i e s t h a t A ɣB i s a c u t Gs e t o f G .B u t |A ɣB |ɤs +t -2,c o n t r a d i c t i n g t h e s +t -1()Gc o n n e c t i v i t y of G .B e f o r e p r o v i ng Th e o r e m1.2,w e s ti l l n e e d t h e f o l l o w i n g l e m m a c o n c e r n i n g w i t h t h e p a r t i t i o n s o f t r i a n g l e Gf r e e g r a p h s i n t o t w o s u b s e t s o fw h i c ho n e i n d u c e s a s u b g r a p hw i t hh i g h c o n n e c t i v i t y ,a n d t h e o t h e r i n d u c e s a s u b g r a p hw i t hn o t o n l y h i g hc o n n e c t i v i t y b u t a l s o l o w e r a v e r a g e d e g r e e .L e m m a2.4㊀F o r g i v e n p o s i t i v e i n t e g e r s s ȡt ,t h ev e r t e xs e to f e v e r y 16s /3+t ()Gc o n n e c t e d t r i a n g l e Gf r e e g r a p h G c a nb e p a r t i t i o n e d i n t on o n Ge m p t y s e t s S a n d T s u c ht h a t G [S ]i s s Gc o n n e c t e d ,G [T ]i s t Gc o n n e c t e d ,a n d e v e r y s u b g r a p ho f G [S ]h a s a v e r a g e d e g r e e l e s s t h a n 128s /9.P r o o f ㊀B y T h e o r e m2.3,V (G )c a nb e p a r t i t i o n e d i n t on o n Ge m p t y s e t s S a n d T s u c ht h a t G [S ]i s s Gc o n n e c t e d ,G [T ]i s t Gc o n n e c t e d ,r e s p e c t i v e l y .C h o o s e S a n d T s a t i s f y i n g t h e p r o p e r t i e s s u c h t h a t S i s m i n i m a l .W ew i l l s h o wt h a t S a n d T a r e a s d e s i r e d .S i n c e G [T ]i s t r i a n g l e Gf r e ea n d δ(G [T ])ȡt ,f o r t h e t w oe n dv e r t i c e so f e v e r y e d g e i n E (G ),t h e i r n e i g h b o r s h a v en ov e r t e x i n c o m m o n ,h e n c ew e h a v e T ȡ2t .T h e s a m e a r gu m e n t s h o w s t h a t S ȡ2s ȡ2t .F i r s tw e c l a i mt h a t G [S ]i sn o t 16s /3Gc o n n e c t e d .F o ro t h e r w i s e ,S c a nb e p a r t i t i o n e d i n t ot w o n o n Ge m p t y s e t s S 1a n d S 2,b y T h e o r e m2.3,s u c h t h a t e a c h G S i []i s s Gc o n n e c t e d ,a n dh e n c e S i ȡ2s ȡ2t .S i n c e G i s 4t Gc o n n e c t e d ,t h e r e a r e a t l e a s t 2t i n d e p e n d e n t e d g e sb e t w e e n S a n d T i n G .S ow e m a y a s s u m e t h a t S 2c o n t a i n sa t l e a s t t e n d v e r t i c e so f t h e s ee d g e s .W es e et h a t G S 2ɣT []i sa l s o t Gc o n n e c t e d ,t h e n t h e p a r t i t i o n S 1,S 2ɣT c o n t r a d i c t s t h em i n i m a l i t y o f S .N o w w e s h o wt h a t e v e r y s u b g r a p ho f G [S ]i sa v e r a g ed e g r e e l e s s t h a n 128s /9.S u p p o s e t ot h e c o n t r a r y t h a t G [S ]h a s a s u b g r a p ho f a v e r a g e d e g r e e a t l e a s t 128s /9.B y T h e o r e m2.2,G [S ]c o n t a i n s a 16s /3Gc o n n e c t e d s u b g r a p h ,s a y H .S i n c e G [S ]i s n o t 16s /3Gc o n n e c t e d ,t h e r e i s a c u t Gs e t X o f G [S ]w i t h X ɤ16s /3.L e t C b e t h e c o m p o n e n t o f G [S ]-X s u c h t h a t V H ()⊆X ɣV C ().L e t S ᶄ=C ɣX ,㊀T ᶄ=V (G )\S ᶄ.T h e n ,S ᶄi s a p r o p e r s u b s e t o f S .W e f u r t h e r c l a i mt h a t G [T ᶄ]i s t Gc o n n e c t e d .I f i t i sn o t t h ec a s e ,t h e r em u s t e x i s tac u t Gs e t Y o f G [T ᶄ]w i t h Y <t .B e c a u s e G [T ]i s t Gc o n n e c t e d ,s ot h e r eh a sa u n i q u e c o m p o n e n t D o f G [T ᶄ]-Y s u c h t h a t T ⊆D ɣY .S e t F =T ᶄ\D ɣY ().T h e n t h e r e i s n o p a t h f r o m F t o C i n G -X ɣY ().I t f o l l o w s t h a t X ɣY i sac u t Gs e to f G w i t h |X ɣY |<16s /3+t ,c o n t r a d i c t i n g t h a t G i s (16s /3+t )Gc o n n e c t e d .S i n c e G [T ᶄ]i s t Gc o n n e c t e d ,w em a y s u c c e s s i v e l y m o v e v e r t i c e s f r o m S ᶄt o T ᶄi f t h e y h a v e l e s s t h a n 16s /3n e i g h b o r s i nt h es u b s e to f G [S ᶄ]a l r e a d y c o n s t r u c t e d (n o t et h a t t h e s ev e r t i c e sh a v ea t l e a s t t n e i g h b o r s i n t h e s u p e r s e t o f T ᶄw h i c h p r e s e r v e s t Gc o n n e c t e d n e s so f T ᶄ).B y th e c h o i c eo f S ᶄ,G [S ᶄ]c o n t a i n s H a s a s u b g r a p h ,a n dh e n c e t h e p r o c e s sm u s t t e r m i n a t e a t s o m e s u b g r a p h H ᶄo f G [S ᶄ]w i t h m i n i m u md e g r e e a t l e a s t 16s /3.T h e n ,t h e p a r t i t i o n V H ᶄ(),V (G )\V H ᶄ()c o n t r a d i c t s t h em i n i m a l i t yo f S .T h e r e f o r e ,e v e r y s u b g r a p ho f G [S ]h a sa v e r a g ed e g r e e l e s s t h a n 128s /9.T h i sc o m p l e t e s t h e p r o o f .T h e r e s u l t s o fK ün do s t h u s a r eb a s e do na t e c h n i q u e l e m m a (L e m m a11o f [6]).B e l o w L e m m a 2.5i sar e v i s i o n o f L e m m a11o f [6].B y as l i g h t l y d e t a i l e dc a l c u l a t i o n ,w e m a y de d u c et h e r e q u i r e m e n t o n t h em i n i m u md e g r e e of G f r o m26c l r t o 23c l r .L e m m a 2.5㊀L e t c ȡ2b e a r e a l ,k ,l ,r b e p o s i t i v e i n t eg e r s s u ch t h a t l ȡr a n d k ȡ23c l r .L e t G b e a g r a p ho fmi n i m u m d e g r e ea t l e a s t k a n dl e t S ,T b ea p a r t i t i o no f V (G )s u c ht h a t d (G [S ])ȡl ,δ(G [S ])ȡr a n de v e r y s u b g r a p ho f G [S ]h a s a v e r a g ed e gr e e l e s s t h a n c l .T h e nt h e r ee x i s t s S ᶄ⊆S s u c h t h a t ,w r i t i n g T ᶄ=V (G )\S ᶄ,e v e r y v e r t e x i n S ᶄh a s a t l e a s t r n e i g h b o r s i n T ᶄ,d (G [S ᶄ])ȡl /8a n d δ(G [T ᶄ])ȡr .M o r e o v e r ,T ᶄc a nb eo b t a i n e df r o m T b y s u c c e s s i v e l y a d d i n g v e r t i c e sh a v i n g a t l e a s t r n e i g h b o r s i n t h e s u p e r s e t o f T a l r e a d y c o n s t r u c t e d .4大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第34卷N o w ,w e a r e r e a d y t o p r o v eT h e o r e m1.2.P r o o f o f T h e o r e m1.2㊀S i n c e 8/364s /3+t ()<3-3216s t ,s ob y T h e o r e m2.3,w em a yp a r t i t i o n V (G )i n t o S ᵡ,T ᵡs u c h t h a t G S ᵡ[]i s 64s /3Gc o n n e c t e d ,G T ᵡ[]i s t Gc o n n e c t e d a n de v e r y s u b g r a p ho f G S ᵡ[]h a sa v e r a g ed e g r e e l e s st h a n128/9 64s /3.N o w a p p l y L e m m a 2.5w i t h p a r a m e t e r s l =64s /3,r =t a n d c =128/9,w e o b t a i n a p a r t i t i o n S ᶄa n d T ᶄs u c h t h a t e v e r y v e r t e x i n S ᶄh a sa t l e a s t t n e i g h b o r s i n T ᶄ,d (G [S ᶄ])ȡ8s /3,δ(G [T ᶄ])ȡt a n d T ᶄc a nb e o b t a i n e d f r o m T ᵡb y s u c c e s s i v e l y a d d i n g v e r t i c e sh a v i n g a tl e a s t t n e i g h b o r si nt h es u p e r s e to f T ᵡa l r e a d y c o n s t r u c t e d .T h u s G [T ᶄ]i s t Gc o n n e c t e d s i n c e G T ᵡ[]i s .T h e nb y T h e o r e m2.2,G S ᶄ[]h a s a n s Gc o n n e c t e d s u b g r a p h H .A s e a c hv e r t e xo f S ᶄ\V (H )h a s a t l e a s t t n e i g h b o r s i n T ᶄ,s o G -V (H )i s a l s o t Gc o n n e c t e d .T h e r e f o r e ,S =V (H ),T =V (G )\S i s a p a r t i t i o na s r e qu i r e d .3㊀R e m a r kR e c a l l t h a t f o r e a c h p a i r s ,t o f p o s i t i v e i n t e g e r ,g s ,t ()d e n o t e s a n i n t e g e r s s u c h t h a t t h e v e r t e x s e t o f e a c h g s ,t ()Gc o n n e c t e d g r a p hc a nb e p a r t i t i o n e d i n t ot w os e t s S a n d T w h i c h i n d u c es u b g r a p h so f c o n n e c t i v i t y a t l e a s t s a n d t ,r e s p e c t i v e l y .W em a y c o n s i d e r g s ,t ()f o r K r Gf r e e g r a p h s s i m i l a r l y .W e f i n d t h a t e v e r y K r Gf r e e g r a p h w i t ha v e r a g ed e g r e ea t l e a s t 4r -1()k /r -2c o n t a i n sa k Gc o n n e c t e d s u b g r a p h .S o l e t G b e a K r Gf r e e g r a ph ,i f δ(G )ȡ4r -1()/r s +t ()-2,t h e n V (G )c a nb e p a r t i t i o n e d i n t o t w on o n e m p t y s e t s S a n d T s u c ht h a t G [S ],G [T ]a r e s Gc o n n e c t e d a n d t Gc o n n e c t e d ,r e s p e c t i v e l y .I n c r e a s e t h em i n i m u md e g r e e o f G u n t i l δ(G )ȡ4r -1()/r s +t ()+t ,t h e n t h e r e i sn o s u b g r a p ho f G [S ]h a s a v e r a g ed e g r e em o r e t h a n 32(r -1)2s /r 2.F i n a l l y ,w ed e d u c e t h a tw h e n g s ,t ()ȡ213 r -1()3s t /r 3,T h e o r e m1.2a l s oh o l d s f o r K r Gf r e e g r a p h s .[R e f e r e n c e s][1]㊀A r i k a t i S ,P a n d uR a n g a nC .L i n e a r a l g o r i t h mf o ro p t i m a l p a t h p r o b l e mo n i n t e r v a l g r a ph s [J ].I n f o r m.P r o c e s s .L e t t .,1990,35:149-153.[2]㊀C h a n g GJ ,H o uJ ,R o u s s e lN.O nt h et o t a lc h o o s a b i l i t y o f p l a n a r g r a p h sa n do fs p a r s e g r a ph s [J ].I n f o r m.P r o c e s s .L e t t .,2010,110:849-853.[3]㊀C h l e b i k o v áJ .A p p r o x i m a t i n g t h em a x i m a l l y b a l a n c e dc o n n e c t e d p a r t i t i o n p r o b l e mi n g r a ph s [J ].I n f o r m.P r o c e s s .L e t t .,1996,60:225-330.[4]㊀D i e s t e lR.G r a p hT h e o r y [M ].B e r l i n :S p r i n ge r ,1997.[5]㊀H a j n a l P .P a r t i t i o nofg r a ph swi t hc o n d i t i o no nt h ec o n n e c t i v i t y a n d m i n i m u m d e gr e e [J ].C o m b i n a t o r i c a ,1983,3:95-99.[6]㊀K üh nD ,O s t h u sD.P a r t i t i o n s o f g r a p h sw i t hh i g h m i n i m u md e g r e eo r c o n n e c t i v i t y [J ].J .C o m b i n a t o r i a lT h e o r yS e r .B ,2003,88:29-43.[7]㊀L iR ,B a o g a n g X.O na g r a ph p a r t i t i o n r e s u l t o fK üh na n dO s t h u s [J ].A r sC o m b i n .,2012,103:491-495.[8]㊀L u oX.T h e 4-c h o o s a b i l i t y o f t o r o i d a l g r a p h sw i t h o u t i n t e r s e c t i n g t r i a n gl e s [J ].I n f o r m.P r o c e s s .L e t t .,2007,102:85-91.[9]㊀M a d e r W.E x i s t e n zn -f a c hz u s a m m e n h än g e n d e r t e i l g r a p h e n i n g r a p h e n g e n üge n d g r o ße rk a n t e n d i c h t e [J ].A b h .M a t h .S e r e .H a m b u r g Ut t i v .,1972,37:86-97.[10]㊀P o l j a kS ,T u z aZ .M a x i m u mc u t s a n d l a r g eb i p a r t i t e s u b g r a ph s [J ].D I MA C SS e r i e s i nD i s c r e t eM a t h e m a t i c s a n d T h e o r e t i c a l C o m p u t e r S c i e n c e ,1995,20:181-244.[11]㊀S t i e b i t zM.D e c o m p o s i n gg r a p h su n d e r d e g r e e c o n s t r a i n t s [J ].J .G r a p hT h e o r y ,1996,23:321-324.5第5期㊀㊀㊀L IR u i :P a r t i t i o n s o fT r i a n g l e Gf r e eG r a p h sw i t hR e s t r i c t i o no nC o n n e c t i v i t y6大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第34卷[12]㊀T u ránP.E i n eE x t r e m a l a u f g a b e a u s d e rG r a p h e n t h e o r i e[J].M a t.F i z.L a p o k.,1941,48:436-452.[13]㊀T h o m a s s e n C.G r a p hd e c o m p o s i t i o n w i t hc o n s t r a i n t so nt h ec o n n e c t i v i t y a n d m i n i m u m d e g r e e[J].J.G r a p h T h e o r y,1983,7:165-167.[14]㊀W a n g Y,L uH,C h e n M.An o t eo n3-c h o o s a b i l i t y o f p l a n a r g r a p h s[J].I n f o r m.P r o c e s s.L e t t.,2008,105:206-211.[15]㊀Y a n JH,C h a n g CJ.T h e p a t h-p a r t i t i o n p r o b l e mi nb l o c k g r a p h s[J].I n f o r m.P r o c e s s.L e t t.,1994,52:317-322.[16]㊀Z h a n g H.O n3-c h o o s a b i l i t y o f p l a n a r g r a p h sw i t hn e i t h e ra d j a c e n t t r i a n g l e sn o r5-,6-a n d9-c y c l e s[J].I n f o r m.P r o c e s s.L e t t.,2010,110:1084-1087.关于连通度的无三圈图的划分李㊀锐(河海大学理学院数学系,南京211100)[摘㊀要]Küh n和O s t h u s证明了对每个正整数l,都存在一个整数k(l)ɤ216l2,使得每个k(l)-连通图G的顶点集都可以划分成两个子集S,T满足G[S],G[T]都是l-连通的,且S中的每个点在T中都有l个邻点.本文主要考虑无三圈图的划分问题,主要关注连通度k(l)的上界.通过证明每个平均度至少为8l/3的无三圈图都存在一个lG连图子图,我们证明了对无三圈图,k(l)ɤ216 3-3l2.[关键词]组合问题;划分;连通度;无三圈。

Finding community structure in networks using the eigenvectors of matrices

Finding community structure in networks using the eigenvectors of matrices
Finding community structure in networks using the eigenvectors of matrices
M. E. J. Newman
Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109–1040
We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity” over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in neteasure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.

基于图论的图像分割算法研究

基于图论的图像分割算法研究

基于图论的图像分割算法研究重庆大学硕士学位论文(学术学位)学生姓名:***指导教师:葛亮副教授专业:计算机软件与理论学科门类:工学重庆大学计算机学院二O一四年四月Research of Image Segmentation Algorithms based on Graph TheoryA Thesis Submitted to Chongqing Universityin Partial Fulfillment of the Requirement for theMaster’s Degree of EngineeringByJunduo YangSupervised by Associate Professor Liang GeSpecialty: Computer Software and TheoryCollege of Computer Science ofChongqing University, Chongqing, ChinaApril 2014摘要图像分割是计算机视觉中一个基本而关键的研究方向。

图像分割是将图像划分成若干个区域的过程,以便于人类理解图像内容或计算机处理图像信息。

迄今为止,大量的图像分割算法已被提出,其中基于图论的图像分割算法由于具有成熟严谨的图论理论的支撑以及良好的分割结果近年来备受关注。

本文回顾了图论的基础知识,并将图像与图的对应方式进行了描述,在此基础上,分类详细介绍基于图论的图像分割算法,并挑选每一类中有代表性的算法进行了比较和分析。

基于图论的图像分割将图像映射为带权无向的图,在图结构上,利用图论的知识将图划分成若干个子图,从而完成图像分割。

图的最小生成树、图割准则、图的最短路径等都已成功地应用于图像分割。

归一化切分(Normalized Cut,NCut)是一种基于图割准则的图像分割算法,它构建了一个全局优化的图分割准则并利用谱聚类进行求解。

NCut的分割结果体现了图像的全局特征,而且NCut倾向于对图像进行比较均衡的分割,这是它的优点。

CAP理论中,P(partitiontolerance,分区容错性)的合理解释

CAP理论中,P(partitiontolerance,分区容错性)的合理解释

CAP理论中,P(partitiontolerance,分区容错性)的合理解释在CAP理论中, ⽹上搜到的对 Partition Tolerance 的解释往往不够准确, 在 Henry Robinson 的⽂章, (已经⽆法访问) 对这个此进⾏了分析, 并说明了在不同规模分布式系统中的重要性.现在通常把 Partition Tolerance 翻译为分区容错性, 这个⽂字表意是不准确的, Partition 实际指的是"被隔离"的含义, 即表⽰"允许部分节点被隔离".The ‘CAP’ theorem is a hot topic in the design of distributed data storage systems. However, it’s often widely misused. In this post I hope to highlight why the common consistency, availability and partition tolerance: pick two formulation is inadequate for distributed systems. In fact, the lesson of the theorem is that the choice is almost always between sequential consistency and high availability.It’s very common to invoke the CAP theorem when designing, or talking about designing, distributed data storage systems. The theorem, as commonly stated, gives system designers a choice between three competing guarantees:Consistency – roughly meaning that all clients of a data store get responses to requests that ‘make sense’. For example, if Client A writes 1 then 2 to location X, Client B cannot read 2 followed by 1.⼀致性 - ⼤致的含义是这个分布式结构中所有节点的请求和响应都是⼀致的, 合乎逻辑的, 例如节点A往X写⼊1然后写⼊2, 节点B不会先读出2再读出1Availability – all operations on a data store eventually return successfully. We say that a data store is ‘available’ for, e.g. writeoperations.可⽤性 - 分布式系统中所有的操作都会成功, 我们说⼀个系统"可⽤", 指的是, 例如"写操作".Partition tolerance – if the network stops delivering messages between two sets of servers, will the system continue to work correctly?隔离容忍性 - 如果分布式系统中两个节点之间的⽹络断了, 系统是否还能正常⼯作?This is often summarised as a single sentence: “consistency, availability, partition tolerance. Pick two.”. Short, snappy and useful.At least, that’s the conventional wisdom. Many modern distributed data stores, including those often caught under the ‘NoSQL’ net, pride themselves on offering availability and partition tolerance over strong consistency; the reasoning being that short periods of application misbehavior are less problematic than short periods of unavailability. Indeed, Dr. Michael Stonebraker posted an article on the ACM’s blog bemoaning the preponderance of systems that are choosing the ‘AP’ data point, and that consistency and availability are the two to choose. However for the vast majority of systems, I contend that the choice is almost always between consistency and availability, and unavoidably so.Dr. Stonebraker’s central thesis is that, since partitions are rare, we might simply sacrifice ‘partition-tolerance’ in favour of sequential consistency and availability – a model that is well suited to traditional transactional data processing and the maintainance of the good old ACID invariants of most relational databases. I want to illustrate why this is a misinterpretation of the CAP theorem.We first need to get exactly what is meant by ‘partition tolerance’ straight. Dr. Stonebraker asserts that a system is partition tolerant if processing can continue in both partitions in the case of a network failure.“If there is a network failure that splits the processing nodes into two groups that cannot talk to each other, then the goal would be to allow processing to continue in both subgroups.”This is actually a very strong partition tolerance requirement. Digging into the history of the CAP theorem reveals some divergence from this definition.Seth Gilbert and Professor Nancy Lynch provided both a formalisation and a proof of the CAP theorem in their 2002 SIGACT paper. We should defer to their definition of partition tolerance – if we are going to invoke CAP as a mathematical truth, we should formalize our foundations, otherwise we are building on very shaky ground. Gilbert and Lynch define partition tolerance as follows:“The network will be allowed to lose arbitrarily many messages sent from one node to another”⽹络允许节点间通讯时丢失任意多的消息Note that Gilbert and Lynch’s definition isn’t a property of a distributed application, but a property of the network in which it executes. This is often misunderstood: partition tolerance is not something we have a choice about designing into our systems. If you have a partition in your network, you lose either consistency (because you allow updates to both sides of the partition) or you lose availability (because you detect the error and shutdown the system until the error condition is resolved). Partition tolerance means simply developing a coping strategy by choosing which of the other system properties to drop. This is the real lesson of the CAP theorem – if you have a network that may drop messages, then you cannot have both availability and consistency, you must choose one. We should really be writing Possibility of Network Partitions => not(availability and consistency), but that’s not nearly so snappy.Dr. Stonebraker’s definition of partition tolerance is actually a measure of availability – if a write may go to either partition, will it eventually be responded to? This is a very meaningful question for systems distributed across many geographic locations, but for the LAN case it is less common to have two partitions available for writes. However, it is encompassed by the requirement for availability that we already gave – if your system is available for writes at all times, then it is certainly available for writes during a network partition.So what causes partitions? Two things, really. The first is obvious – a network failure, for example due to a faulty switch, can cause the network to partition. The other is less obvious, but fits with the definition from Gilbert and Lynch: machine failures, either hard or soft. In anasynchronous network, i.e. one where processing a message could take unbounded time, it is impossible to distinguish between machine failures and lost messages. Therefore a single machine failure partitions it from the rest of the network. A correlated failure of several machines partitions them all from the network. Not being able to receive a message is the same as the network not delivering it. In the face of sufficiently many machine failures, it is still impossible to maintain availability and consistency, not because two writes may go to separate partitions, but because the failure of an entire ‘quorum’ of servers may render some recent writes unreadable.所以这就是为什么说定义P为"允许被隔离的各组保持可⽤"是误导 This is why defining P as ‘allowing partitioned groups to remain available’is misleading – machine failures are partitions, almost tautologously, and by definition cannot be available while they are failed. Yet, Dr. Stonebraker says that he would suggest choosing CA rather than P. This feels rather like we are invited to both have our cake and eat it. Not ‘choosing’ P is analogous to building a network that will never experience multiple correlated failures. This is unreasonable for a distributed system – precisely for all the valid reasons that are laid out in the CACM post about correlated failures, OS bugs and cluster disasters – so what a designer has to do is to decide between maintaining consistency and availability. Dr. Stonebraker tells us to choose consistency, in fact, because availability will unavoidably be impacted by large failure incidents. This is a legitimate design choice, and one that the traditional RDBMS lineage of systems has explored to its fullest, but it implicitly protects us neither from availability problems stemming from smaller failure incidents, nor from the high cost of maintaining sequential consistency.When the scale of a system increases to many hundreds or thousands of machines, writing in such a way to allow consistency in the face of potential failures can become very expensive (you have to write to one more machine than failures you are prepared to tolerate at once). This kind of nuance is not captured by the CAP theorem: 从吞吐量和延迟的⾓度, 维持⼀致性的代价往往⽐可⽤性⾼得多 consistency is often much more expensive in terms of throughput or latency to maintain than availability. 类似于 Zookeeper 这样的系统能实现⼀致性是因为它们的集群往往⾜够⼩, 以⾄于写⼊仲裁的代价很⼩. Systems such as ZooKeeper are explicitly sequentially consistent because there are few enough nodes in a cluster that the cost of writing to quorum is relatively small. The Hadoop Distributed File System (HDFS) also chooses consistency – three failed datanodes can render a file’s blocks unavailable if you are unlucky. Both systems are designed to work in real networks, however, where partitions and failures will occur, and when they do both systems will become unavailable, having made their choice between consistency and availability. That choice remains the unavoidable reality for distributed data stores.下⾯说我对CAP的理解:1. A可⽤性, 主要是在⾼负载下的可⽤性, 以及低延迟响应. 这个在当前的系统设计中是排在第⼀位的, 尽量保证服务不会失去响应2. C⼀致性, 强⼀致性, 或是时序⼀致性, 或是滞后的最终⼀致性. 分别代表了系统需要保障A和P的能⼒时, 在⼀致性上的妥协.3. P隔离容忍性, 在节点间通信失败时保证系统不受影响. 对允许隔离的要求提⾼会降低对可⽤性或⼀致性的期望, 要么停⽌系统⽤于错误恢复, 要么继续服务但是降低⼀致性在现今的⼤型分布式系统, 对ACP的取舍已经很明显, 因为伴随着分布式的结构, P是必然存在的, ⽽业务往往要求很⾼的可⽤性, 所以对强⼀致性的要求就需要让步, 过渡为最终⼀致性。

图论中的正则性引理

图论中的正则性引理

Regularity Lemmas and Extremal Graph TheoryMikl´o s SimonovitsR´e nyi Institute,BudapestLecture on Endre Szemer´e di’s70th birthdayStreamlined versionThe most important thing: Happy birthday,Endre!Streamlined?Possible updated version on my homepage:www.renyi.hu/˜miki This is basically identical with the one I used for my lecture(Endre Szemerédi’s70th birthday,Budapest,2010August)The differences:Several misprints are corrected.Certain references are added.Certain explanations are added,often IN BLACK.Some repetitions(needed in the lecture)are eliminatedStepping is(mostly)eliminated.“Improved”colouring.Disclaimer:There is no way to mention all the important results.I do not even try here!Extremal graph theory Abstract is one of the oldest areas of Graph Theory.In the1960’s it started evolving into a wide and deep,connected theory.As soon as Szemerédi has proved his Regularity Lemma,several aspects of the extremal graph theory have completely changed.Several deep results of extremal graph theory became accessible only through the application of this central result,the Regularity Lemma Also,large part of Ramsey Theory is very strongly connected toExtremal graph theory.Application of the Regularity Lemma in these area was also crucial.Thefirst difficult result of in Ramsey–Tur´an theory was also provedusing(an earlier version of)the Regularity Lemma,by Szemerédi.I will survey this area.Map to the lecture/slidesSome references, homepagesGeneral asymptotics Very superficially:Szemeredi Regularity Lemma How to use RL?New developmentsHypergraphsAlgorithmic aspectsSubgraphs of random graphsClassification of problemsStability of extremal structuresFiner asymptotics, decompositionErdos−Stone−SimonovitsIntroduction, Extremal graph theory in generalThe Bollobas−Erdos constructionConjectures Ramsey−Turan problems Ramsey−Turan problemsSome referencesKOML´OS-S IMONOVITS,Szemer´e di regularity lemma,and its applications in graph theory,Combinatorics,Paul Erd˝o s is eighty,V ol.2 (Keszthely,1993),295–352,J´a nos Bolyai Math.Soc.,Budapest,1996;;LOV´ASZ,L´ASZL´O;S ZEGEDY,B AL´AZS:Szemer´e di’s lemma for the analyst.Geom.Funct.Anal.17(2007),no.1,252–270.V.R¨ODL,M.S CHACHT:Regularity Lemmas for graphs,Bolyai volume,MS20.(Lov´a sz Birthday)N.ALON,E.F ISCHER,M.K RIVELEVICH,M.S ZEGEDY,Efficient testing of large graphs,Combinatorica20(2000),451–476.K¨u hn,Daniela and Osthus,Deryk:Embedding large subgraphs intodense graphs.Surveys in combinatorics2009,137–167,London Math.Soc. Lecture Note Ser.,365,Cambridge Univ.Press,Cambridge,2009.Some references II:end of a long listY oshi Kohayakawa and Vojta Rödl:Szemerédi’s regularity lemmaand quasi-randomness,Recent Advances in Algorithmic Combinatorics(B. Reed and C.Linhares-Sales,eds.),CMS Books Math./Ouvrages Math. SMC,vol.11,Springer,New Y ork,2003,pp.289-351......T.C.TAO,A variant of the hypergraph removal lemma,preprint; /abs/math.CO/0503572T.C.TAO,Szemerédi’s regularity lemma revisited,preprint;/abs/math.CO/0504472What is left out,or just mentioned?Sparse regularity lemmaMany applicationsConnection to Quasi-randomnessHypergraph regularitySome homepages onRegularityN OGA A LON:http://www.tau.ac.il/˜nogaaY OSHI K OHAYAKAWA:p.br/˜yoshiD ERYK O STHUS:/D.Osthus/bcc09dkdo2.pdf Erd˝os homepage(s),e.g.www.renyi.hu/˜pExtremal Graph Theory G n ,is always a graph on n vertices.T n,p =Turán graph ,K r (m 1,...,m r )is the complete r -partite graph withm i vertices in its i thclass.ex (n ,L )=max L ⊆G nfor L ∈Le (G n )Turán TheoremDetermine or estimate ex (n ,L ).Describe the structure of extremal graphs Describe the structure of almost extremal graphs =Stability ResultsErd˝o s-Stone-Sim.Putχ(L)−1.p:=minL∈LThenex(n,L)= 1−1some DigraphErd ˝os-Simonovits structural description of the extremal graphs.Role of the Decomposition Class Given L ,if S n is L -extremal,then it has an optimal vertex-partition (U 1,...,U p )such that e (U i )=o (n 2),(few horizontal edges)the number of vertices of horizontal degrees >εn is h =O ε(1).Here optimal means thate (U i )is minimal.The general picture:Exluded!High horiz. degrees W W W 123The finer structure is governed by the Decomposition class M :Definition of the Decomposition class M .M is in M =M (L )if there are some L ∈L and t for which L ⊂M ⊗K p −1(t,...,t ).Structure of(almost)extremal graphsE RD˝OS-S IM:StabilityThe almost-extremal graphs are almost T n,pDistance of graphs,ρ(G n,H n):How many edges of G n should be changed to get a G′isomorphic to H n?Putχ(L)−1p:=minL∈LIf p>1and(S n)is an extremal sequence for L,thenρ(S n,T n,p)=o(n2)as n→∞.My favourite problem is:When is S n a p-chromatic K(n1,...,n p)+edges?i.e.one has to add only,not to delete edges...Density,ε-regularityDensitye(X,Y)d(X,Y)=The regularity lemmaAs soon as Szemerédi has proved his Regularity Lemma,several aspects of the extremal graph theory have completely changed.Theorem≈(Szemerédi)For everyε>0every graph G n has a vertex-partition into a bounded number of classes U1,...,U k of almost equal sizes so that for all but at mostε k2 pairs i,j the bipartite graph(generated by G n) isε-regularThe regularity lemma,precisely(A) Theorem(Szemerédi)For everyε>0and integer k every graph G nhas a vertex-partition into the classes U1,...,U k of almost equal sizes,for someκ<k<K(ε,κ)so that for all but at mostε k2 pairs i,j the bipartite graphs(generated by G n)areε-regular.Originally there was an exceptional class U0and all the other classes had exactly the same size.The vertices of the U0can be distributed among the other classes,in the original version all the other classes were of exactly the same size.The meaning of the regularity lemma All graphs can be approximated by generalized random graphs (in some sense)whereDefinition of Generalized Random Graphs:Given an r ×r matrix of probabilities,(p ij )r ×r and a vector (n 1,...,n r )take r groups of vertices,U i and for each pair of vertices x i ∈U i and x j ∈U j ,join them independently,with probability p ij .U U r1U U j i ijpThe reduced(or cluster)graph Fix two parameters:εandτ≫εStart with the Szemerédi partition U1,...,U p.Where does Regularity Lemma comefrom?There was an earlier “complicated”versionThe quantitative Erd ˝os–Stone problem:Given a graph G n withe (G n )≥ 1−1The“complicated”version(A) To prove the famous Szemerédi theorem on arithmetic progressions Endre used a more complicated Regularity Lemma:It was applied to dense bipartite graphs G[A,B]where one had apartition(U1,...,U k)of A and for each i,B had a partition(W i,1,...,W i,ℓ) so that almost all pairs of classes(U i,W i,j)wereε-regular.This was enough for the famous theoremr k(n)=o(n),i.e.for anyfixed k,Szemerédi:every infinite sequence of integers of positive upper density contains a k-term arithmetic progression.This was used in many early applications,not the“new”regularityChvátal,V.;Szemerédi,E.Notes on the Erd˝o s–Stone theorem.Let m=m(c,d,n)be the largest natural number such that every graph with)+cn2edges contains a K d+1(m,...,m)). n vertices and at least1dErd˝os–Stone:m(c,d,n)→∞.Very weak estimateErd˝os–Bollobás:m≥η(d,c)log n.Theorem(Bollobás,Erd˝os,Sim.)For some positive constant a,m(c,d,n).d log(1/c)Conjecture(Bollobás,Erd˝os,Sim.)For some positive constant b,t(c,d,n).log(1/c)Chvátal,V.;Szemerédi,E.Notes on the Erd˝o s–Stone theorem.(cont)Erd˝os–Stone:m(c,d,n)→∞.Very weakestimateErd˝os–Bollobás:m≥η(d,c)log n.Theorem(Bollobás,Erd˝os,Sim.)For some positive constant a,m(c,d,n)d log(1/c).Conjecture(Bollobás,Erd˝os,Sim.)For some positive constant b,m(c,d,n)log(1/c).Chvátal Szemerédi:J.London Math.Soc.(2)23(1981),no.2,207–214;Proves the B-E-S conjecture:limn→∞m(c,d,n)(500log(1/c)).Success?Several deep results of extremal graph theory became accessible only through the application of this central result.Some proofs are more “transparent”if we use the Regularity Lemma,though they can be proved also without it.Ramsey-Tur´an of K4Let RT(n,L,o(n))denotes the maximum edge-density of agraph-sequence G n with L⊆G n and with independencenumberα(G n)=o(n).Determine RT(n,K4,o(n)). (Many similar questions were solved by Erd˝os-Brown-Sós.)Independent matching(Ruzsa-Szemerédi),f(n,6,3)Brown,Erd˝os,and T.Sós asked(among others):How many triples can a3-uniform hypergraph have withoutcontaining6vertices and3edges on this6-tuple?Opens up a gate for elementary proofs of r(n)=o(n)?The secret of success of theRegularity LemmaIt makes possible to reduceembedding into deterministic structurestoembedding into randomlike objects Embedding into a random object is mostly easier.Ramsey TheoryAlso,large part of Ramsey Theory is very strongly connected to Extremal Graph theory.Application of the Regularity Lemma in these area was also crucial.Stability(Expanded)1.The extremal problemWe have a property P,and consider the extremal problem of G n∈P.We conjecture that S n is an extremal graph(hypergraph,...).2.What is the stability?The almost extremal structures(for P)are very similar to the extremal ones.3.Applying the stability method,to prove exact results(a)Pick a very important,characteristic property A of the conjecturedextremal structure S n.(Examples:p-chromatic,...)(b)Show that if a graph(hypergraph,...)G n∈(P∪A)then e(G n)ismuch smaller than e(S n).(c)So we may assume that the extremal graphs S n have property A.(d)Knowing that they have property A,we prove the exact conjecture.Füredi lecture:The regularity lemma would immediately imply theErd˝os-Simonovits Stability results if we knew the stability for K p+1.Direct proofs for this stabilityLovász-Sim.:On the number of complete subgraphs of a graph.II.Studies in puremathematics,459–495,Birkhäuser,Basel,1983.On the number of complete subgraphs of a graph.Proceedings ofthe Fifth British Combinatorial Conference(Univ.Aberdeen,Aberdeen, 1975),pp.431–441.Congressus Numerantium,No.XV,Utilitas Math., Winnipeg,Man.,1976.Füredi:His lecture here,using the Zykov symmetrization(see alsoErd˝os,...)proved the stability directly for K p.This implies theErd˝os-Simonovits Stability results,via the Regularity LemmaOrigins of property testing?Bollobás-Erd˝os-Simonovits-SzemerédiIs it true that if one cannot deleteεn2edges from G n then C2ℓ+1⊆G nfor someℓ=Oε(1)?Solved in two ways:with Regularity Lemmawithout Regularity LemmaThis is an early application of property testing,asked by Erd˝os:those days property testing did not exist.See alsoKomlós:Covering odd binatorica17(1997),no.3,393–400.Ramsey-Turán problemsSimplest case:Problem(Erd˝os-Sós).Given a sample graph L and we assume thatL⊆G n andα(G n)≤m,what is the maximum of e(G n)?RT(n,L,m) Problem(Erd˝os-Sós).Given a sample graph L and and a sequence of graphs,(G n),and we assume thatL⊆G n andα(G n)=o(n),what is the maximum of e(G n)?RT(n,L,o(n))Ramsey-Turán problems IIErd˝os-Sós:they determine RT(n,K2k+1,o(n)).(odd case) Theorem K4(Szemerédi)n2RT(n,K4,o(n))=How to prove...Consider the regular partitiontake the reduced graphShow that it does not contain a K3Show that the densities cannot(really)exceed1Ramsey-Turán problems IV Continuation,among others,multigraph technique Erd˝os-Hajnal-Sim.-Sós-Szemerédi I–Erd˝os-Hajnal-Sim.-Sós-Szemerédi IIErd ˝o s–Sós:For hypergraph questions completely new phenomena occur Hypergraph extremal density (r -uniform):π=π(L )=lim supe (H n ) n r:L ⊆H n and α(H n )=o (n ),where α(H )=maximum number of independent vertices in H .Erd ˝osand Sós asked if there exist r -uniform hypergraphs L for which π(G )>λ(G )>0.Frankl +Rödl Combinatorica 8(1988),no.4,323–332,existence Sidorenko:On Ramsey-Turán numbers for 3-graphs.J.Graph Theory 16(1992),no.1,73–78.Construction L =3-uniform hypergraph,V (L )={1,2,···,7}and E (L )={{1,2,3},{1,4,5},{1,6,7},{2,4,5},{2,6,7},{3,4,5},{3,6,7},{4,6,7},{5,6,7}}satisfies π(G )>λ(G )>0.Mubayi +Rödl Supersaturation for Ramsey-Turán problems.Ramsey-Turán problems:open problemsProblem(Erd˝os-Sós).Is it true thatRT(n,K3(2,2,2),o(n))=o(n2)?(Related constructions of Rödl)Problem(Sim.).Is it true,that for any L,“the”RT(n,L,o(n))-extremal sequence(???)can be approximated by a generalized random graph sequence where all the probabilities are0,1My meta-conjectureMatrix graphs“Conjecture”:Whenever we try to prove a result where the extremal structure is described by a0-1matrix-graph,then the Regularity Lemma can be eliminated from the proof.A counterexample?Ruzsa-Szemerédi:f(n,6,3)=o(n2)Why is this important?–Füredi:Solution of the Murty-Simon(Plešnik)conjecture:The maximum number of edges in a minimal graph of diameter2.J.Graph Theory16(1992),no.1,81–98.Diameter-critical if the deletion of any edge increases the diameter. Theorem1(F¨u redi).Let G n be a simple graph of diameter2on n>n0vertices, for which the deletion of any edge increases the diameter.Then e(G n)≤⌊1⌉,⌊n2Extremal Subgraphs of random graphs Babai-Sim.-Spencer,J.Graph Theory14(1990),no.5,599–622.Theorem BSS(Simplified)There is a constant p0<1What about sparse structures?Kohayakawa-Rödl lemmaRegularity Lemma is applied typically to dense graphs.(G n)is sparse if e(G n)=o(n2).Kohayakawa-Rödl extends Regularity Lemma to some sparse graph sequences,typically to non-random subgraphs of sparse random graph sequences.Connection to quasi-randomnessA sequence of graphs is p-quasi-random iff it has a(sequence of)regular Szemerédi partitions,with densities tending to p.Some of our theorems(Sim.-Sós,on quasirandomness)do not contain anything related to Regularity Lemma.Can one prove it without using the Regularity Lemma?Some new resultsGyárfás-Ruszinkó-Sárközy-SzemerédiRamsey,three colours,pathsKohayakawa-Sim.-SkokanRamsey,three colours,odd cyclesBalogh-Bollobás-Sim.Typical structure of L-free graphsŁuczak-Sim.-Skokanmany colours,odd cyclesProperty Testing?Bollobás-Erd˝os-Simonovits-SzemerédiAlon-Krivelevich...Alon-SchapiraAlon,Noga;Fischer,Eldar;Krivelevich,Michael;Szegedy,Mario:Efficient testing of large binatorica20(2000),no.4,451–476.Lovász-Balázs Szegedy:Szemerédi’s lemma for analyst,Geom.Funct.Anal.17(2007)(1)252–270.ábor Elek,...It turns out that property testing and Regularity Lemma are extremely strongly connected to each other,see e.g.Alon-ShapiraAlgorithmic aspects?Alon-Duke-Leffmann-Rödl-Yuster:The algorithmic aspects of the Regularity Lemma,Proc.33IEEE FOCS, Pittsburgh,IEEE(1992),473-481.see also J.of Algorithms16(1994),80-109.Strange situation:Given a partition,it is co-NPC to decide if it isε-regular,However,One can produce andε-regular partition in polynomial time:Theorem ADLRY(A constructive version of the Regularity Lemma)For everyε>0and every positive integer t there is an integer Q=Q(ε,t)such that every graph with n>Q vertices has anε-regular partition into k+1classes, where t≤k≤Q.For everyfixedε>0and t≥1such a partition can be found in O(M(n)) sequential time,where M(n)is the time for multiplying two n×n matricesWhat about hypergraphs?connected to–Counting lemma–Removal lemmaThe results are much more complicated than for ordinary graphs–Weak hypergraph regularity lemma–Strong version–Counting lemma–Removal lemmaThe applications are also much more complicated–Rödl,Nagle,Skokan,Schacht,...–Tim Gowers,Terrence Tao–Ben GreenDisclaimer again:I have not tried to cover everything!The most important thing,again: Happy birthday,Endre!。

电梯专业英语词汇pq

电梯专业英语词汇pq

oak 橡木object 物体observation cab 观光轿厢observation lift 观光电梯observatory lift 观光电梯occupancy 占用,居住occupant 占用者,居住者occupants of building 大楼居住者,大楼住户off peak 非高峰的,峰值外的off position 断开位置office building 办公大楼off-peak traffic 非高峰交通状态ohmmeter 欧姆计oil 油oil brake 油压制动器oil buffer 油压缓冲器,耗能型缓冲器oil buffer switch 油压缓冲器开关oil can 油壶oil collector 集油器oil cooler 油冷却器oil deflector 挡油圈oil dish 积油盘oil drip pan 接油盘oil filler pipe 充油管oil film 油膜oil filter 滤油器oil gauge 油量表oil immersed transformer 油浸式变压器oil leakage 漏油oil level 油位oil level gauge 油标,油位计oil level indicator 油位指示器oil pan 油盘oil piping 油管oil quench 油淬火oil receiver 油盘oil reservoir 油池oil ring 油环oil seal 油封oil spray 油雾oil sump gasket 油槽垫圈oil tank 油箱oil waste box 油渣盒oil wick 油绳oil wiper ring 挡油环oilier 给油器oil-immersed 浸油的oilless bearing 无油式轴承oil-proof 耐油的oil-tight 油封on inquiry 询问,询价on-board delay 登梯延时,登梯后的等候时间on-board delay in passenger seconds 登梯及等候时间on-call control 呼梯控制one floor run 单层运行one hour rating 小时定额one stage ram 一段式柱塞one way automatic leveling device 单向自动平层装置one way restrictor 单向节流阀(液压梯)one-to-one rope 1:1 绕绳比one-to-two rope 1:2 绕绳比on-line 在线的,联机的onlocking zone 开锁区域on-site assistance 现场帮助opal 乳白的opaque 不透明的opaque balustrade 不透明扶栏open air type elevator 露天电梯open circuit 断路open loop 开环控制open type elevator 敞开式电梯open-close switch 开关操纵器opened-type motor 敞开式电动机open-end wrench 开口扳手open-hearth steel 平炉钢opening angle 张角,开启角opening direction 开启方向operable 可操作的operate 操作operating button 操作按钮operating cam 操作碰头operating device 操作装置operating element 操作元件operating instructions 操作说明书,使用说明书operating magnet 操作磁铁operating panel 操作盘operating pressure 操作压力operating range 操作范围,使用范围operating voltage 操作电压,工作电压operation 操作,运转,控制operation panel 操纵箱,操纵盘operation system 操作系统,操作方式operational amplifier 运算放大器operational brake 操作制动器operational reliability 操作可靠性operative section 操作部分operator 操作碰铁,司机opposed access door 两面开门opposing arrangement 对面布置opposing automatic doors 贯通式自动门opposite car entrance 贯通式轿厢出入口opposite door 贯通式门opposite entrance 贯通式出入门opsition dependent 按位置opsition detector 位置检查器opsition deviation 位置偏差optical 光学的optical fiber 光导纤维optical fiber cable 光缆,光导纤维电缆optical indicator 发光指示器optical signal 发光信号optical-fiber communication 光导纤维通讯optional 可选择的optional specification supervision 可选规格管理opto-coupler 光电耦合optoelectronic 光电耦合OR circuit 或电路OR gate 或门order 订单,订货单,次序order processing 合同(订单)处理ordering documentation 订货文件ordering instruction 订货说明书ordinary lay 普通绳股ordinary lay rope 普通捻股钢丝绳ordinary lift 一般用电梯orifice 节流孔,阻尼孔original 原装的,原件,原图original package 原包装O-ring O型圈ornamental-patterned surface 装饰花纹表面oscillator 示波器oscillograph 示波器oscilloscope 示波器oscillosynchroscope 同步示波器out door use escalator 户外自动扶梯out of balance load 不均衡负载out of phase 相移out of phase 180°相移180°out of phase 90°相移90°out of service 故障,停止运行out of stock 无现货outer deck 外侧盖板outer ledge 外侧边缘outer ledge bracket 外侧架支架outer panel 外侧板outer pipe 出口管outer sheathing 外套outlet 插座,引线,出口outline 轮廓,外形outling of truss 框架外形output 输出output current 输出电流output signal 输出信号output torque 输出扭矩output voltage 输出电压outside 外面,外边outside diameter 外径oval 椭圆形over balance 超平衡over driven worm gear 蜗杆在上方的蜗轮蜗杆传动over heating 过热over power 过负载over run 超程over sling 上吊架over slung type 上悬吊式over speed switch 超速开关overall cost 总成本,总费用overcurrent 过电流overcurrent relay 过流继电器overcurrent release 过电流释放overcurrent vreaker 过流断路器overhang 悬臂式,外伸的overhang traction sheave 悬臂式曳引轮overhaul 大修overhead 顶层空间,顶部overhead beam 顶楔overhead height 顶层高度,顶部高度overhead machine 顶置曳引机overhead pulley 顶部轮overhead sheave 顶部绳轮overhead structure 顶部构件overhead(O/H) 顶房上置overhoisting limit switch 井道上部限位开关overlap 重叠overlay (墙壁等)饰面overload 超载overload buzzer 超载蜂鸣器overload control 超载控制overload device 超载装置overload indicator 超载装置overload lamp 超载灯overload test 超载试验overload warning 超载报警overload weighting microswitch 超载微动开关overrun 越程overshoot 过冲,速度调节过量oversize 大号,超大号oversize reamer bolt 大号螺栓overslung car 上方悬臂轿厢overspeed 超速overspeed governor 限速器overspeed governor switch 超速保护装置overtravel 越层overturn moment 倾倒力矩overturn-proof 房倾倒装置overweight 超重over-wind protection switch 防过卷开关owner 物主,所有者oxidate 氧化p.c. motherboard 印刷电路母板package part 零件组合packaging material 包装材料packed landing bolt 门厅用配套螺栓packing 包装packing charge 包装费用packing cost 包装成本packing ring 密封环pad 衬垫,垫片paddle fan 叶片式通风扇paging service 传呼服务paint 油漆painting 涂漆,涂装pale 踏板pallet type moving walking 平板式自动扶梯pallets 踏板pan 盘panel 板,扇,屏panel door 板式门panorama lift 观光电梯panoramic lift 观光电梯pantagraph 壁杆pantagraph type hydraulic elevator 壁杆式液压梯paraffin 煤油,石蜡parallel 并联parallel circuit 并联电路parallel continuous arrangement 并列设置parallel key 平键parallel lay rope 平行捻钢丝绳parameter 参数parapet 防护栏杆parasitic signal 寄生信号parking 驻停parking car 驻停轿厢parking device 停靠装置parking floor 驻停楼层parking landing 驻停层站parking signal light 驻停信号灯parking switch 驻停开关parking zone 驻停区part 零件part for jamb and sill installation 门套和门坎安装用零件partial load 部分载荷partial view 局部视图partition 分隔,隔板parts for closer installation 关门机安装用零件parts layout 零件配置图parts list 零件清单pass button 直驶按钮,不停按钮pass switch 不停开关,直驶开关passage way 通道passenger 乘客passenger access time 乘客登梯时间passenger arrival rate 乘客到站率passenger car 载客轿厢passenger carried per minute 每分钟载运乘客人数passenger conveyor 自动人行道passenger exit time 乘客出梯时间passenger journey time 乘客乘梯时间passenger lift 乘客电梯passenger loading time 乘客进入电梯时间passenger transfer time 乘客进出电梯时间passenger transit time 乘客转乘电梯时间passenger transported per minute 每分钟载运乘客人数passenger unloading time 乘客走出电梯时间passenger waiting time 乘客候梯时间passenger way 走道passenger/freight elevator 客货两用电梯passenger-and-freight elevator 客货两用电梯passenger-goods lift 客货电梯passing chime 到站钟passive mode 被动模式password 通行令,口令patent 专利patenting 线材(拉后退火)paternoster 链斗式升降机pattern 图形pavement lift 自动人行道pawl 棘爪PC board 印刷电路板PCB (printed circuit board) 印刷电路板PCB assembly frame 印刷电路板组装架PCB bay 印刷电路板抽屉盒PCB connection strip 印刷电路板插接条PCB edge connector 印刷电路板边缘插接器PCB plug-in check 印刷电路板插接通电检查PCB rack 印刷电路板插架peak current 峰值电流peak load 高峰负载peak service 高峰交通服务peak value 峰值pedestal bearing 托架轴承pension fund 退休基金,养老基金penthouse 楼顶机房pentode 五极管perambulator 手推车percenage 百分比percentage load 负载百分比performance 性能performance characteristic 性能特征performance curve 性能曲线performance guaranteed maintenance 性能保证维修performance index 性能指标performance test 性能试验performed rope 预成型钢丝绳period of guarantee 担保期限periodic maintenance 定期维修保养periodic test 周期性试验,定期试验periodical examination and test 定期检查和试验periodical inspection 定期检查peripheral 圆周的peripheral force 圆周力,切线力peripheral speed 圆周速度periphery 圆周,圆柱体表面permanent 永久permanent magnet 永久性磁铁permeability 磁导率,渗透性permissible deviation 允差permissible stress 许用应力permitted stress 许用应力personal code 个人电码petroleum 石油PG (pulse generator) 脉冲发生器,编码器PG constant 编码器解像度,编码器常数PG size 编码器解像度,编码器常数phase 相位phase advance 相移超前phase angle 相位角phase angle control 相位角控制phase difference 相位差phase failure 断相phase failure relay 断相保护继电器phase lagging 相移延迟phase lead 相移超前phase loss 断相phase monitoring relay 相位监控继电器phase reversal 反相,相序逆转phase reversal relay 换相继电器phase reversed 反相phase shifting 相移的,移相的phone connector (通讯线)插头phosphorus 含磷的photo detector 光监测装置photo eye 光电监测器photo switch 光电管开关photocell switch 光电管开关photo-coupler 光电耦合器photo-diode 光电二极管photo-electric cell 光电管photo-electric device 光电管装置photo-electric passenger detector 光电乘客监测器photo-electric protection 光电保护photo-electric safety device 光电保护装置photo-electric switch 光电开关pick-up (继电器)吸合,得到信号picture plane display 画面显示PID (proportional-integral-differential) 比例-积分-微分piece rate 计件单价piece wages 计件工资piercing 冲孔pillow block 架座pilot light 指示灯pilot production 试生产pilot valve 导向阀pin 销钉pin adaptor 插头转接器pincer 钳子pine 松木pinion 小齿轮,齿节pipe 管子pipe bend 弯管pipe clamp 管箍pipe connection 导管连接pipe fitting 管道配件pipe rapture valve 管道破裂保险阀pipe system 管道系统pipe threading 管螺纹pipeline 管道piping 配管,管路piston 活塞,柱塞piston type cylinder 柱塞式油缸pit 底坑pit access door 底坑检修门pit access ladder 底坑出入爬梯pit depth 底坑深度pit ladder 底坑爬梯pit lamp 底坑灯pit protection railing 底坑保护栅栏pit ptotection gred 底坑护栏pit safe plate 底坑安全板pit screen 底坑防护网pit stop switch 底坑停止开关pit switch 底坑开关pit tanking 底坑防水层pitch 螺距pitch circle 齿节pitch diameter 节径pitch line 节距pitch of teeth 齿节距pivot pin 中心销钉pivot point 支点pivoted guuide shoe 活动导靴plain bearing 滑动轴承plane 刨,刨平planetary machine 行星齿轮机器planing machine 刨床plank (轿厢架)底楔plastic foil 塑料薄膜plastic materials 塑料材料plastics 塑料plate 板plate counterweight 板式对重plate glass 平板玻璃plate spring 板簧plate threshold 轿厢地坎plated design 镀金图案platform 轿厢底,轿底platform frame (轿厢)底盘架platform guard 轿厢站台护板platform side brace 轿厢底侧拉条platform sill 轿厢地坎plating 电镀PLC(programable logic controller) 可编程序控制器PLD(programmable logic device) 可编程序逻辑器件pliers 虎钳pllug socket 插座plug 插头转接器plug connection 插塞连接plug pin 插脚,插销plug receptacle 插座plugability 可插接性plug-in module 插接式模块plug-in type 插接式plug-in unit 插接元件plumb 铅垂侧直,铅垂plumb bob 铅垂重物,铅垂plumb line 铅垂线plunger 柱塞,插棒铁芯plunger end-plate 柱塞端板plunger head 柱塞顶部plunger head sheave 柱塞顶部轮plunger limit switch 柱塞限位开关plunger return 柱塞复位plunger runby 柱塞越程plunger sheave 柱塞滑轮plunger stopper 柱塞挡止器,柱塞防脱装置plunger stroke 柱塞行程plunger type cylinder 柱塞式液压缸plus 加,正极plyphase 多相plywood 三合板,胶合板pneumatic 气动的pneumatic door operator 气动开门机point fo common connection (PCC) 普通接点pointer 指针polarity 极性pole 电极pole coil 电极线圈pole core 电极芯子pole piece 极靴pole shader 极帽pole-changing 变换极性的pole-piece lamination 极靴铁芯片polish 抛光population 人口,人数position 位置position actual value 位置实际值position control 位置控制position control loop 位置控制回路position control system 位置控制系统position controller 位置控制器position feed-back loop 位置反馈回路position indicator 位置指示灯position indicator of adjacent car 邻梯指层灯position reference value 位置参照值position reference value generator 位置参照值发生器position regulation 位置调节position regulator 位置调节器position scanner 位置扫描器position sensor 位置传感器position-dependent slowdown 按位置减速positioning trip 定位运行positive 正电positive connection 刚性连接positive drive 强制驱动positive drive service lift 强制驱动杂物梯positive operation 强制操作post 柱potential 电位,电势potentiometer 电位计,电位器pound 磅power 功率,电源power absorption 能量吸收power amplification 功率放大power amplifier 功率放大器power consumption 功率消耗,电力消耗power contactor 电源接触器power converter 变流器power current circuit 动力电路power dissipation 功率消耗,电力消耗power distribution panel 配电盘power door 自动门power door operation 电动门power dumbwaiter 电动杂物梯power factor 功率因素power failure 停电,断电power failure emergency operation 停电应急操作power failure emergency service 停电应急服务power input 功率输入power loss 功率损失power operated door 自动门power operated truck 机动货车power output 功率输出power pack 电源装置power range 功率范围power source 电源power supply 电源power supply fluctuation 电源波动power supply line 供电线路power supply unit 供电装置power unit 电源装置power up 通电,上电powerwalk 自动人行道PPR (pulse per revolution) 每转脉冲数,脉冲/转pre-announcing direction arrow 预告方向箭头pre-assemble 预装置precast concrete 预制混凝土precautionary measure 安全措施precondition 先决条件pre-delivery 提前发货predetermined landing 预定基站pre-drill 预钻孔preduction capacity 生产能力prefabricated 预制的prefabricated concrete 预制混凝土preference 优先权preferential 优先的preferential floor 优先楼层preferential floor service 优先楼层服务preferential landing 优先层站preferential service 优先服务preferred number 优选数字pre-formed groove 预制槽preliminary construction work 土建准备工作preliminary standard 基础标准preload 预负荷pre-locking 预锁定pre-locking control 预锁定控制pre-opening 提前开门pre-opening of door 提前开门preparatory program 预编程序preprinted 预先印刷的prerequisite 前提pre-select 预选pre-selection 预选装置preset 预调,预设定preset time delay 预调延时preset value 预调值press working 预压加工pressing 冲压,加压press-to-talk system 按钮对讲系统pressure 压力pressure gage 压力表,压力计pressure indicator 压力表pressure project 样板项目,样板工程pressure relief valve 压力安全阀pressure-reducing valve 减压阀pretension 预应力,预控力pre-torque 预加力矩preventative maintenance 预防性维修preventive maintenance 预防性维修pre-view 预验,试映pre-warning 预警,预告price calculation 价格决算price increase 提价price list 价格表price quotation 报价price reduction 减价pricing 计价primary circuit 原电路,一次电路primary coil 一次线圈primary fireman’s operation 主消防操作primary machine room 主机房primary position transmitter (PPT) 第一位置传感器primary resistor 主电阻,定子电阻primary wave sensor 地震纵波传感器primary winding 初级绕组prime cost 原价prime finish 底漆面层primer 底漆priming coated 上底漆principle 原则,原理print 印刷print out 打印出printed circuit 印刷电路printed circuit diagram 印刷电路图printed circuit pattern 印刷电路图形printer 打印机priority 优先性priority floor 优先楼层priority recall 优先召呼指令priority travel control 优先运行控制private accommodation 私人住宅private code 私用电码,密码private lift 私用电梯private residence elevator/lift 私宅电梯probability 概率probable number of stops 可能停站数probable stops 可能停站procedure 程序process 工艺过程,程序processing control 处理控制product descritption 产品说明书profile 外形,轮廓profile drawing 外形图profile of groove 槽型图profiled bar 异型钢材profiled groove 型槽profit 利润profit allocation 利润分配program 程序,计划,节目单program controlled 受控程序program counter 程序记数器program library 程序库program linkage 程序逻辑连接program list 程序表,节目单program system 程序系统programmable 可编程序的programmable timer 可编程定时器programmed group control 编程群控programming mode 编程模式progressive 先进的,渐进的progressive safety gear 渐进式安全钳装置progressive step-switching 步进开关,步进切换progressive type safety gear 渐进式安全钳project 项目project network techniques 项目网络管理projection 投影,凸出不分,凸台PROM (programmable ROM) 可编程序只读存储器proof 防止propertional controller 均衡控制器propertional regulator 均衡调节器proportion 比例proportional 成比例proposal 提议protecting cap 防护罩protection 保护,防护protective coating 保护涂层protective device 保护装置protective earthing 保护接地protective grating 防护栅栏protective screen 防护屏protective switch 保护开关protector 保护装置,保护屏protector rail bracket 导轨架防护装置protector wire 防护用铁丝prototype 样机protrusion 凸出,突起,(墙柱)牛腿provision 准备,防备,规定proviso clause 保留条款proximity protection device 近门保护装置proximity switch 接近开关psychological 心理的,精神的pull in 吸合pull strap 拉条pull through governor 拉过式限速器pulley 滑轮pulley room 辅助机房,隔层,滑轮间pullswitch 拉线开关pulse 脉冲pulse amplitude modulation (PAM) 脉幅调制pulse call cancellation 脉冲指令消除pulse encoder 脉冲编码器pulse frequency modulation 脉冲频率调制pulse generator 脉冲发生器pulse signal generator 脉冲信号发生器pump 油泵pump motor 泵马达,泵电动机punch 冲压,冲头punch drill 电锤punch press 冲床punched cad 冲床卡punched tape 冲床带puncture 击穿puncture voltage 击穿电压purchased parts 购进零件purchased price 采购价格purchaser 买方push button (PB) 按钮push button call box 呼梯按钮盒push button control 按钮控制push button operation 按钮控制PWM (pulse width modulation) 脉宽调制quadrant 象限quality 质量quality assurance system (QA system) 质量保证体系quality of service 服务质量quantity 数量quantity unit 数量单位quartplex 四台并联(电梯)quench 淬火queue 排队quiet 安静quiet running 平静运行quotation 报价。

多层分割算法在构建层次道路网络中的应用

多层分割算法在构建层次道路网络中的应用
that emphasize the connection topology of network.Result shows that the or iginal multi—level algor ithms are not suitable to road network,while the thought of“multi—level” process is valuable to refer. Key words:path planning;multi—level algorithms; MLRB; MLKP; graph par tition
(1.College ofResources&Environment,University ofChineseAcademyofSciences,Beijing100049,China;2.BeijingInstituteof Surveying and Mapping,Be ng 100038,China;3.Beijing Digital Huibo Technology Co.,Ltd.,Belting 100098,China)
Application of multi—level algorithms in constructing hierarchical road network
Han Zhiheng , Rui Xiaoping” Dong Chengwei ,Song Xianfeng , W ang Jing , Xu Jiang ,
O 引言
随着现代交通 网络 的急剧扩张 ,为 了在 大规模道 路网络上 实现路径规划服务 ,在构建基础数据结构时 多对道 路网络采用 “分层 ”策略 l2J。道路 网络 分层 技术 可显著 降低 路径 规划算 法可行解搜索空 间,在控制路径规划 问题 的计算 时间 随网络规 模呈非线性增长等方 面的 良好性能 ,已成为求解 大规 模网络 中 路径规划 问题所普遍采 用的技术 .4 。一 般而 言 ,道 路 网络 分 层后 ,高一 层级道路为低一层 级道 路 的子 集 ,较高层 级包含 数 据量小 ,较 低层级的数据规模 逐渐 接近整 个道路 网络 ,路径 规 划算法在调用 较低层 级 道路 时依 然有 加 载大 量数 据 的问题 。 针对这一 问题 ,多将 已分 层数据 再进一 步分 区 。 ,以进一 步 减少搜索时加载 的数据 量。

建筑学专业英文词汇

建筑学专业英文词汇

建筑专业英文词汇1建筑面积Construction2建筑用地Building land3容积率Volume ratio4绿地率Green rate5室外透视效果图Outdoor perspective renderings 6室内透视效果图Interior perspective renderings 7一层平面Layer plan8二层平面Second floor flat9剖面 Section10正北面Is north11正南面Is south12正东面Is east13总平面图General Plan14构图分析Composition analysis15设计理念Design:16设计说明Design Notes:17图纸Drawing18.主入口大门/岗亭(车行&人行) MAIN ENTRANCE GATE/GUARD HOUSE (FOR VEHICLE& PEDESTRIAN ) 19.次入口/岗亭(车行&人行) 2ND ENTRANCE GATE/GUARD HOUSE (FOR VEHICLE& PEDESTRIAN )20.商业中心入口 ENTRANCE TO SHOPPING CTR.21.水景WATER FEATURE22.小型露天剧场 MINI AMPHI-THEATRE23.迎宾景观-1 WELCOMING FEATURE-124.观景木台 TIMBER DECK (VIEWING)25.竹园 BAMBOO GARDEN26.漫步广场 WALKWAY PLAZA27.露天咖啡廊 OUT DOOR CAFE28.巨大迎宾水景-2 GRAND WELCOMING FEATURE-229.木桥 TIMBER BRIDGE30.石景、水瀑、洞穴、观景台 ROCK'SCAPE WATERFALL'S GROTTO/ VIEWING TERRACE31.吊桥 HANGING BRIDGE32.休憩台地(低处) LOUNGING TERRACE (LOWER )33.休憩台地(高处) LOUNGING TERRACE (UPPER )34.特色踏步 FEATURE STEPPING STONE35.野趣小溪 RIVER WILD36.儿童乐园 CHILDREN'S PLAYGROUND37旱冰道 SLIDE38.羽毛球场 BADMINTON COURT39.旱景 DRY LANDSCAPE40wood and metal fences 木头和金属栅栏41aesthetic considerations 审美方面的考虑42climate zones 气候带43collected rainwater 收集起来的雨水44cold 寒带45ecological impact 生态影响46exotic plant species 外来植物物种47garden pool 花园游泳池48landscape planning 景观规划49natural resources 自然资源50monolithic pavement 整体路面,整体铺装51package plants 丛生植物52plants, herbaceous草本的植物53private garden 私家花园54regional commercial 地区性商业55recycled water 循环水56区域规划分析图;district planning analyse drawing57总平面图;overall plangeneral layout ;site plan ;siteplan58交通组织分析图;traffic organization analyse drawing59建筑平面图;architechtural plan60建筑立面图;architechtural elevation drawing61建筑剖面图:architechtural section drawing62建筑内部流线分析图;architechrural interior flown line analyse drawing63鸟瞰图aerial view65流线图circulation drawing ;streamline chart66透视图: rendering67外观及主要功能区的透视图outlooking and key functional districts scenograph68正立面透视图the scenograph of vertical plane目录a. DESIGN BASIS 设计依据b. DESIGN STAGE 设计阶段c. CLIMATE CONDITION 气象条件d. GENERAL ROOM NAME 常用房间名称e. ROOFING & CEILING 屋面及天棚f. WALL(CLADDING) 墙体(外墙板)g. FLOOR & TRENCH 地面及地沟h. DOORS 、GLASS、WINDOWS & IRONMONGERY(HARDWARE)门、玻璃、窗及五金件I. STAIRCASE、LANDING & LIFT(ELEVATOR)楼梯、休息平台及电梯j. BUILDING MATERIAL WORDS AND PHRASES 建筑材料词汇及短语【 Bricks and Tiles 砖和瓦】【Lime, Sand and Stone 灰、砂和石】【Cement, Mortar and Concrete 水泥、砂浆和混凝土】【Facing And Plastering Materials 饰面及粉刷材料】【Asphalt (Bitumen) and Asbestos 沥青和石棉】【Timber 木材】【Metallic Materials 金属材料】【Non-Ferrous Metal 有色金属】【Anti-Corrosion Materials 防腐蚀材料】【Building Hardware 建筑五金】【Paint 油漆】k. OTHER ARCHITECTURAL TERMS 其它建筑术语【Discipline 专业】【Conventional Terms 一般通用名词】【Architectural Physics 建筑物理】【Name Of Professional role 职务名称】【Drafting 制图】a. DESIGN BASIS 设计依据计划建议书 planning proposals设计任务书 design order标准规范standards and codes条件图 information drawing设计基础资料 basic data for design工艺流程图 process flowchart工程地质资料 engineering geological data 原始资料 original data设计进度 schedule of designb. STAGE OF DESIGN 设计阶段方案 scheme, draft草图 sketch会谈纪要summary of discussion谈判 negotiation可行性研究 feasibility study初步设计 preliminary design基础设计 basic design详细设计 detail design询价图 enquiry drawing施工图 working drawing, construction drawing 竣工图 as built drawingc. CLIMATE CONDITION 气象条件日照 sunshine风玫瑰 wind rose主导风向 prevailing wind direction最大(平均)风速 maximum (mean) wind velocity 风荷载 wind load最大(平均)降雨量 maximum (mean) rainfall雷击及闪电 thunder and lightning飓风 hurricane台风 typhoon旋风 cyclone降雨强度rainfall intensity年降雨量 annual rainfall湿球温度 wet bulb temperature干球温度 dry bulb temperature冰冻期 frost period冰冻线 frost line冰冻区 frost zone室外计算温度 calculating outdoor temperature 采暖地区 region with heating provision不采暖地区 region without heating provision 绝对大气压 absolute atmospheric pressure相对湿度 relative humidityd. GENERAL ROOM NAME 常用房间名称办公室 office服务用房 service room换班室 shift room休息室 rest room (break room)起居室 living room浴室 bathroom淋浴间 shower更衣室 locker room厕所 lavatory门厅 lobby诊室 clinic工作间 workshop电气开关室 switchroom走廊 corridor档案室 archive电梯机房 lift motor room车库 garage清洁间 cleaning room会议室(正式) conference room 会议室 meeting room衣柜间 ward robe暖风间 H.V.A.C room饭店 restaurant餐厅 canteen, dining room厨房 kitchen入口 entrance接待处 reception area会计室 accountant room秘书室 secretary room电气室 electrical room控制室 control room工长室 foreman office开关柜室 switch gear前室 antecabinet (Ante.)生产区 production area马达控制中心 Mcc多功能用房 utility room化验室 laboratory room经理室 manager room披屋(阁楼) penthouse警卫室 guard housee. ROOFING AND CEILING 屋面及天棚女儿墙 parapet雨蓬 canopy屋脊 roof ridge坡度 slope坡跨比 pitch分水线 water-shed二毡三油 2 layers of felt & 3 coats of bitumastic 附加油毡一层 extra ply of felt檐口 eave挑檐 overhanging eave檐沟 eave gutter平屋面 flat roof坡屋面 pitched roof雨水管 downspout, rain water pipe)(R.W.P) 汇水面积 catchment area泛水 flashing内排水 interior drainage外排水 exterior drainage滴水 drip屋面排水 roof drainage找平层 leveling course卷材屋面 built-up roofing天棚 ceiling檩条 purlin屋面板 roofing board天花板 ceiling board防水层 water-proof course检查孔 inspection hole人孔 manhole吊顶 suspended ceiling, false ceiling檐板(窗帘盒) cornicef. WALL (CLADDING) 墙体(外墙板)砖墙 brick wall砌块墙 block wall清水砖墙 brick wall without plastering 抹灰墙 rendered wall石膏板墙 gypsum board, plaster board 空心砖墙 hollow brick wall承重墙 bearing wall非承重墙 non-bearing wall纵墙 longitudinal wall横墙 transverse wall外墙 external (exterior) wall内墙 internal (interior) wall填充墙 filler wall防火墙 fire wall窗间墙 wall between window空心墙 cavity wall压顶 coping圈梁 gird, girt, girth玻璃隔断 glazed wall防潮层 damp-proof course (D.P.C)遮阳板 sunshade阳台 balcony伸缩缝 expansion joint沉降缝 settlement joint抗震缝 seismic joint复合夹心板 sandwich board压型单板 corrugated single steel plate 外墙板 cladding panel复合板 composite panel轻质隔断 light-weight partition牛腿 bracket砖烟囱 brick chimney勒脚(基座) plinthg. FLOOR AND TRENCH 地面及地沟地坪 grade地面和楼面 ground and floor素土夯实 rammed earth炉渣夯实 tamped cinder填土 filled earth回填土夯实 tamped backfill垫层 bedding course, blinding面层 covering, finish结合层 bonding (binding) course找平层 leveling course素水泥浆结合层 neat cement binding course混凝土地面 concrete floor水泥地面 cement floor机器磨平混凝土地面 machine trowelled concrete floor 水磨石地面 terrazzo flooring马赛克地面 mosaic flooring瓷砖地面 ceramic tile flooring油地毡地面 linoleum flooring预制水磨石地面 precast terrazzo flooring硬木花地面 hard-wood parquet flooring搁栅 joist硬木毛地面 hard-wood rough flooring企口板地面tongued and grooved flooring防酸地面 acid-resistant floor钢筋混凝土楼板 reinforced concrete slab (R.C Slab) 乙烯基地面 vinyl flooring水磨石嵌条 divider strip for terrazzo地面做2%坡 floor with 2% slope集水沟 gully集水口 gulley排水沟 drainage trench沟盖板 trench cover活动盖板 removable cover plate集水坑 sump pit孔翻边 hole up stand电缆沟 cable trenchh. DOORS,GLASS,WINDOWS & IRONMONGERY(HARDWARE)门、玻璃、窗及五金件木 (钢)门 wooden (steel) door镶板门 panelled door夹板门 plywood door铝合金门 aluminum alloy door卷帘门 roller shutter door弹簧门 swing door推拉门 sliding door平开门 side-hung door折叠门 folding door旋转门 revolving door玻璃门 glazed door密闭门 air-Tight door保温门 thermal insulating door镀锌铁丝网门 galvanized steel wire mesh door 防火门 fire door(大门上的)小门 wicket门框 door frame门扇 door leaf门洞 door opening结构开洞 structural opening单扇门 single door双扇门 double door疏散门 emergency door纱门 screen door门槛 door sill门过梁 door lintel上冒头 top rail下冒头 bottom rail门边木 stile门樘侧料 side jumb槽口 notch木窗 wooden window钢窗 steel window铝合金窗 aluminum alloy window百叶窗 (通风为主) sun-bind, louver (louver, shutter, blind) 塑钢窗 plastic steel window空腹钢窗 hollow steel window固定窗 fixed window平开窗 side-hung window推拉窗 sliding window气窗 transom上悬窗 top-hung window中悬窗 center-pivoted window下悬窗 hopper window活动百叶窗 adjustable louver天窗 skylight老虎窗 dormer window密封双层玻璃 sealed double glazing钢筋混凝土过梁 reinforced concrete lintel钢筋砖过梁 reinforced brick lintel窗扇 casement sash窗台 window sill窗台板 window board窗中梃 mullion窗横木 mutin窗边木 stile压缝条 cover mould窗帘盒 curtain box合页(铰链) hinge (butts)转轴 pivot长脚铰链 parliament hinge闭门器 door closer地弹簧 floor closer插销 bolt门锁 door lock拉手 pull链条 chain门钩 door hanger碰球 ball latch窗钩 window catch暗插销 insert bolt电动开关器 electric opener平板玻璃 plate glass夹丝玻璃 wire glass透明玻璃 clear glass毛玻璃(磨砂玻璃) ground glass (frosted glass) 防弹玻璃 bullet-proof glass石英玻璃 quartz glass吸热玻璃 heat absorbing glass磨光玻璃 polished glass着色玻璃 pigmented glass玻璃瓦 glass tile玻璃砖 glass block有机玻璃 organic glassI. STAIRCASE, LANDING & LIFT (ELEVATOR) 楼梯、休息平台及电梯楼梯 stair楼梯间 staircase疏散梯 emergency stair旋转梯 spiral stair (circular stair)吊车梯 crane ladder直爬梯 vertical ladder踏步 step扇形踏步 winder (wheel step)踏步板 tread档步板 riser踏步宽度 tread width防滑条 non-slip insert (strips)栏杆 railing (balustrade)平台栏杆 platform railing吊装孔栏杆 railing around mounting hole扶手 handrail梯段高度 height of flight防护梯笼 protecting cage (safety cage)平台 landing (platform)操作平台 operating platform装卸平台 platform for loading & unloading楼梯平台 stair landing客梯 passenger lift货梯 goods lift客/货两用梯 goods/passenger lift液压电梯 hydraulic lift自动扶梯 escalator观光电梯 observation elevator电梯机房 lift mortar room电梯坑 lift pit电梯井道 lift shaftj. BUILDING MATERIAL WORDS AND PHRASES 建筑材料词汇及短语Bricks and Tiles 砖和瓦红砖 red brick粘土砖 clay brick瓷砖 glazed brick (ceramic tile)防火砖 fire brick空心砖 hollow brick面砖 facing brick地板砖 flooring tile缸砖 clinkery brick马赛克 mosaic陶粒混凝土 ceramsite concrete琉璃瓦 glazed tile脊瓦 ridge tile石棉瓦 asbestos tile (shingle)波形石棉水泥瓦 corrugated asbestos cement sheet Lime, Sand and Stone 灰、砂和石石膏 gypsum大理石 marble汉白玉 white marble花岗岩 granite碎石 crushed stone毛石 rubble蛭石 vermiculite珍珠岩 pearlite水磨石 terrazzo卵石 cobble砾石 gravel粗砂 course sand中砂 medium sand细砂 fine sandCement, Mortar and Concrete 水泥、砂浆和混凝土波特兰水泥(普通硅酸盐水泥) Portland cement硅酸盐水泥 silicate cement火山灰水泥 pozzolana cement白水泥 white cement水泥砂浆 cement mortar石灰砂浆 lime mortar水泥石灰砂浆(混合砂浆) cement-lime mortar保温砂浆 thermal mortar防水砂浆 water-proof mortar耐酸砂浆 acid-resistant mortar耐碱砂浆 alkaline-resistant mortar沥青砂浆 bituminous mortar纸筋灰 paper strip mixed lime mortar麻刀灰 hemp cut lime mortar灰缝 mortar joint素混凝土 plain concrete钢筋混凝土 reinforced concrete轻质混凝土 lightweight concrete细石混凝土 fine aggregate concrete沥青混凝土 asphalt concrete泡沫混凝土 foamed concrete炉渣混凝土 cinder concreteFacing And Plastering Materials 饰面及粉刷材料水刷石 granitic plaster斩假石 artificial stone刷浆 lime wash可赛银 casein大白浆 white wash麻刀灰打底 hemp cuts and lime as base喷大白浆两道 sprayed twice with white wash分格抹水泥砂浆 cement mortar plaster sectioned 板条抹灰 lath and plasterAsphalt(Bitumen) and Asbestos 沥青和石棉沥青卷材 asphalt felt沥青填料 asphalt filler沥青胶泥 asphalt grout冷底子油 adhesive bitumen primer沥青玛啼脂 asphaltic mastic 沥青麻丝 bitumastic oakum 石棉板 asbestos sheet石棉纤维 asbestos fiber Timber 木材裂缝 crack透裂 split环裂 shake干缩 shrinkage翘曲 warping原木 log圆木 round timber方木 square timber板材 plank木条 batten板条 lath木板 board红松 red pine白松 white pine落叶松 deciduous pine云杉 spruce柏木 cypress白杨 white poplar桦木 birch冷杉 fir栎木 oak榴木 willow榆木 elm杉木 cedar柚木 teak樟木 camphor wood防腐处理的木材 preservative-treated lumber 胶合板 plywood三(五)合板 3(5)-plywood企口板 tongued and grooved board层夹板 laminated plank胶合层夹木材 glue-laminated lumber纤维板 fiber-board竹子 bambooMetallic Materials 金属材料黑色金属 ferrous metal圆钢 steelbBar方钢 square steel扁钢 steel strap,flat steel型钢 steel section (shape)槽钢 channel角钢 angle steel等边角钢 equal-leg angle不等边角钢 unequal-leg angle工字钢 I-beam宽翼缘工字钢 wide flange I-beam丁( 之)字钢 T-bar (Z-bar)冷弯薄壁型钢 light gauge cold-formed steel shape 热轧 hot-rolled冷轧 cold-rolled冷拉 cold-drawn冷压 cold-pressed合金钢 alloy steel钛合金 titanium alloy不锈钢 stainless steel竹节钢筋 corrugated steel bar变形钢筋 deformed bar光圆钢筋 plain round bar钢板 steel plate薄钢板 thin steel plate低碳钢 low carbon steel冷弯 cold bending钢管 steel pipe (tube)无缝钢管 seamless steel pipe焊接钢管 welded steel pipe黑铁管 iron pipe镀锌钢管 galvanized steel pipe铸铁 cast iron生铁 pig iron熟铁 wrought iron镀锌铁皮 galvanized steel sheet镀锌铁丝 galvanized steel wire钢丝网 steel wire mesh多孔金属网 expanded metal锰钢 managanese steel高强度合金钢 high strength alloy steel Non-Ferrous Metal 有色金属金 gold白金 platinum铜 copper黄铜 brass青铜 bronze银 silver铝 aluminum铅 leadAnti-Corrosion Materials 防腐蚀材料聚乙烯 polythene, polyethylene尼龙 nylon聚氯乙烯 PVC (polyvinyl chloride) 聚碳酸酯 polycarbonate聚苯乙烯 polystyrene丙烯酸树酯 acrylic resin乙烯基酯 vinyl ester橡胶内衬 rubber lining氯丁橡胶 neoprene沥青漆 bitumen paint环氧树脂漆 epoxy resin paint氧化锌底漆 zinc oxide primer防锈漆 anti-rust paint耐酸漆 acid-resistant paint耐碱漆 alkali-resistant paint水玻璃 sodium silicate树脂砂浆 resin-bonded mortar环氧树脂 epoxy resinBuilding Hardware 建筑五金钉子 nails螺纹屋面钉spiral-threaded roofing nail环纹石膏板钉 annular-ring gypsum board nail 螺丝 screws平头螺丝 flat-head screw螺栓 bolt普通螺栓 commercial bolt高强螺栓 high strength bolt预埋螺栓 insert bolt胀锚螺栓 cinch bolt垫片 washerPaint 油漆底漆 primer防锈底漆 rust-inhibitive primer防腐漆 anti-corrosion paint调和漆 mixed paint无光漆 flat paint透明漆 varnish银粉漆 aluminum paint磁漆 enamel paint干性油 drying oil稀释剂 thinner焦油 tar沥青漆 asphalt paint桐油 tung oil, Chinese wood oil红丹 red lead铅油 lead oil腻子 puttyk. OTHER ARCHITECTURAL TERMS 其它建筑术语Discipline 专业建筑 architecture土木 civil给排水 water supply and drainage总图 plot plan采暖通风 H.V.A.C (heating、ventilation and air conditioning) 电力供应 electric power supply电气照明 electric lighting电讯 telecommunication仪表 instrument热力供应 heat power supply动力 mechanical power工艺 process technology管道 pipingConventional Terms 一般通用名词建筑原理 architectonics建筑形式 architectural style民用建筑 civil architecture城市建筑 urban architecture农村建筑 rural architecture农业建筑 farm building工业建筑 industrial building重工业的 heavy industrial轻工业的 light industrial古代建筑 ancient architecture现代建筑 modern architecture标准化建筑 standardized buildings 附属建筑 auxiliary buildings城市规划 city planning厂区内 within site厂区外 offsite封闭式 closed type开敞式 open type半开敞式 semi-open type模数制 modular system单位造价 unit cost概算 preliminary estimate承包商 constructor, contractor 现场 site扩建 extension改建 reconstruction防火 fire-prevention防震 aseismatic, quake-proof 防腐 anti-corrosion防潮 dump-proof防水 water-proof防尘 dust-proof防锈 rust-proof车流量 traffic volume货流量 freight traffic volume 人流量 pedestrian volume透视图 perspective drawing建筑模型 building model Architectural Physics 建筑物理照明 illumination照度 degree of illumination亮度 brightness日照 sunshine天然采光 natural lighting光强 light intensity侧光 side light顶光 top light眩光 glaze方位角 azimuth辐射 radiation对流 convection传导 conduction遮阳 sun-shade保温 thermal insulation恒温 constant temperature恒湿 constant humidity噪音 noise隔音 sound-proof吸音 sound absorption露点 dew point隔汽 vapor-proofName Of Professional role 职务名称项目经理 project manager (PM)设计经理 design manager首席建筑师 principal architect总工程师 chief engineer土木工程师 civil engineer工艺工程师 process engineer电气工程师 electrical engineer机械工程师 mechanical engineer计划工程师 planning engineer助理工程师 assistant engineer实习生 probationer专家 specialist, expert制图员 draftsman技术员 technicianDrafting 制图总说明 general specification工程说明 project specification采用标准规范目录 list of standards and specification adopted 图纸目录 list of drawings平面图 plan局部放大图 detail with enlarged scale...平面示意图 schematic plan of......平剖面图 sectional plan of...留孔平面图 plan of provision of holes剖面 section纵剖面 longitudinal section横剖面 cross (transverse) section立面 elevation正立面 front elevation透视图 perspective drawing侧立面 side elevation背立面 back elevation详图 detail drawings典型节点 typical detail节点号 detail No.首页 front page图纸目录及说明 list of contents and description 图例 legend示意图 diagram草图 sketch荷载简图 load diagram流程示意图 flow diagram标准图 standard drawing...布置图 layout of ...地形图 topographical map土方工程图 earth-work drawing展开图 developed drawing模板图 formwork drawing配筋 arrangement of reinforcement表格 tables工程进度表 working schedule技术经济指标 technical and economical index建、构筑物一览表 list of buildings and structures 编号 coding序列号 serial No.行和栏 rows and columns备注 remarks等级 grade直线 straight Line曲线 curves曲折线 zigzag line虚线 dotted line实线 solid line影线 hatching line点划线 dot and dash line轴线 axis等高线 contour Line中心线 center Line双曲线 hyperbola抛物线 parabola切线 tangent Line尺寸线 dimension Line园形 round环形 annular方形 square矩形 rectangle平行四边形 parallelogram 三角形 triangle五角形 pentagon六角形 hexagon八角形 octagon梯形 trapezoid圆圈 circle弓形 sagment扇形 sector球形的 spherical抛物面 paraboloid圆锥形 cone椭圆形 ellipse, oblong面积 area体积 volume容量 capacity重量 weight质量 mass力 force米 meter厘米 centimeter毫米 millimeter公顷 hectate牛顿/平方米 Newton/square meter 千克/立方米 kilogram/cubic meter 英尺 foot英寸 inch磅 pound吨 ton加仑 gallon千磅 kip平均尺寸 average dimension变尺寸 variable dimension外形尺寸 overall dimension展开尺寸 developed dimension 内径 inside diameter外径 outside diameter净重 net weight毛重 gross weight数量 quantity百分比 percentage净空 clearance净高 headroom净距 clear distance净跨 clear span截面尺寸 sectional dimension 开间 bay进深 depth单跨 single span双跨 double span多跨 multi-span标高 elevation, level绝对标高 absolute elevation设计标高 designed elevation 室外地面标高 ground elevation室内地面标高 floor elevation柱网 column grid坐标 coordinate厂区占地 site area使用面积 usable area辅助面积 service area通道面积 passage area管架 pipe rack管廊 pipeline gallery架空管线 overhead pipeline排水沟 drain ditch集水坑 sump pit喷泉 fountain地漏 floor drain消火栓 fire hydrant灭火器 fire extinguisher二氧化碳灭火器 carbon dioxide extinguisher卤代烷灭火器 halon extinguisher跟我们日常设计比较相关的景观英语词汇:1.主入口大门/岗亭(车行 & 人行) MAIN ENTRANCE GATE/GUARD HOUSE (FORVEHICLE& PEDESTRIAN )2.次入口/岗亭(车行 & 人行 ) 2ND ENTRANCE GATE/GUARD HOUSE (FOR VEHICLE& PEDESTRIAN )3.商业中心入口 ENTRANCE TO SHOPPING CTR.4.水景 WATER FEATURE5.小型露天剧场 MINI AMPHI-THEATRE6.迎宾景观-1 WELCOMING FEATURE-17.观景木台 TIMBER DECK (VIEWING)8.竹园 BAMBOO GARDEN9.漫步广场 WALKWAY PLAZA10.露天咖啡廊 OUT DOOR CAFE11.巨大迎宾水景-2 GRAND WELCOMING FEATURE-212.木桥 TIMBER BRIDGE13.石景、水瀑、洞穴、观景台 ROCK'SCAPE WATERFALL'S GROTTO/ VIEWING TERRACE14.吊桥 HANGING BRIDGE15.休憩台地(低处) LOUNGING TERRACE (LOWER )16.休憩台地(高处) LOUNGING TERRACE (UPPER )17.特色踏步 FEATURE STEPPING STONE18.野趣小溪 RIVER WILD19.儿童乐园 CHILDREN'S PLAYGROUND20.旱冰道 SLIDE22.旱景 DRY LANDSCAPE23.日艺园 JAPANESE GARDEN24.旱喷泉 DRY FOUNTAIN25.观景台 VIEWING DECK26.游泳池 SWIMMING POOL27.极可意 JACUZZI28.嬉水池 WADING POOL29.儿童泳池 CHILDREN'S POOL30.蜿蜒水墙 WINDING WALL31.石景雕塑 ROCK SCULPTURE32.中心广场 CENTRAL PLAZA33.健身广场 EXERCISE PLAZA34.桥 BRIDGE35.交流广场 MEDITATING PLAZA36.趣味树阵 TREE BATTLE FORMATION37.停车场 PARING AREA38.特色花架 TRELLIS39.雕塑小道 SCULPTURE TRAIL40.(高尔夫)轻击区 PUTTING GREEN41.高尔夫球会所 GOLF CLUBHOUSE42.每栋建筑入口 ENTRANCE PAVING TO UNIT44.网球场 TENNIS COURT45.阶梯坐台/种植槽 TERRACING SEATWALL/PLANTER46.广场 MAIN PLAZA47.森林、瀑布 FOREST GARDEN WATERFALL48.石景园 ROCKERY GARDEN49.旱溪 DRY STREAM50.凉亭 PAVILION51.户外淋浴 OUTDOOR SHOWER52.拉膜结构 TENSILE STRUCTURE53.台阶 STAIR54.高尔夫球车停车场 PARKING ( GOLF CAR )55.健身站 EXERCISE STATION56.晨跑小路 JOGGING FOOTPATH57.车道/人行道 DRIVEWAY /SIDEWALK58.人行漫步道 PROMENADE59.瀑布及跳舞喷泉(入口广场) WATER FALL AND DANCING FOUNTAIN ( ENTRY PLAZA )60.特色入口 ENTRY FEATURE 61.石景广场 ROCKERY PLAZA。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dα ⊆Ci
θβ φβ (XDβ ∩Ci , xDβ ∩M Bi ) , (2)
D β ⊆B i
2
The generalized mean field (GMF) algorithm
ቤተ መጻሕፍቲ ባይዱ
where Bi denotes the set of cliques that intersect with but are not contained in cluster Ci , and where the lower-case character x denotes a specific assignment to variable X. Without loss of generality, we assume that all the potentials are positively weighted (i.e., θ > 0) and the signs are subsumed in the potential functions. Given a clique Dβ , let Iβ denote the set of indices of clusters that have non-empty intersection with Dβ . Let Iβi denote Iβ \ i. Finally, let us refer to the expectation of the potential φβ (XDβ ) under the mean field cluster marginals indexed by Iβi as a peripheral marginal potential of cluster Ci : φβ (XDβ ∩Ci , qI )
1
Introduction
What are the prospects for fully autonomous algorithms for variational inference in graphical models? Recent years have seen an increasingly systematic treatment of an increasingly flexible range of algorithms for variational inference. In particular, the cluster variational framework has provided a range of algorithms that extend the basic “belief propagation” framework (Yedidia et al., 2000). Similarly, general clusters of variables are also allowed in recent treatments of structured mean field algorithms (Wiegerinck, 2000). Empirical results have shown that both kinds of generalization can yield more effective algorithms. While these developments provide much needed flexibility for the design of effective algorithms, they also
raise a new question—how are the clusters to be chosen? Until now, this issue has generally been left in the hands of the algorithm designer; moreover, the designer has been provided with little beyond intuition for making these choices. For some graphical model architectures, there are only a few natural choices, and these can be explored manually. In general, however, we wish to envisage a general piece of software for variational inference which can be asked to perform inference for an arbitrary graph. In this setting, it is essential to begin to explore automatic methods for choosing clusters. In the setting of structured mean field algorithms (Jordan et al., 1999, Ghahramani and Jordan, 1997) it is meaningful to consider disjoint clusters, and in Xing et al. (2003) we have proposed a generalized mean field (GMF) algorithm for inference based on this assumption, noting that the assumption of disjoint clusters leads to a simple set of inference equations that can be easily implemented. Disjoint clusters have another virtue as well, which is the subject of the current paper—they open the door to a role for graph partitioning algorithms in choosing clusters for inference. There are several intuitions that support a possible role for graph partitioning algorithms in the autonomous choice of clusters for graphical model inference. The first is that minimum cuts are to be preferred, so that as much as possible of the probabilistic dependence is captured within clusters. It also seems likely that the values of parameters should matter because they often reflect the ?coupling strength? of the probabilistic dependences among random variables. Another intuition is that maximum cuts should be preferred, because in this case the mean field acting across a large cut may have an expectation that is highly concentrated, a situation which corresponds to the basic assumption underlying mean field methods. Again, specific values of parameters should matter. In this paper we provide a preliminary formal analysis and a thoroughgoing empirical exploration of these is-
tion function). Given a disjoint variable partitioning, C , the true cluster conditional of each variable cluster Ci given its Markov blanket M Bi is: p(XCi |XM Bi = xM Bi ) ∝ exp θα φα (XDα ) +
sues. We present a theorem that relates the weight of the graph cut to the quality of the bound of GMF approximation, and study random graphs and a variety of settings of parameter values. We compare several different kinds of partitioning algorithms empirically. As we will show, our results turn out to provide rather clear support for a clustering algorithm based on minimal cut, which is consistent with implications drawn from the formal analysis. A more general version of the GMF algorithm that allows non-factorizable potentials is also provide in this paper and possible extensions motivated by our formal analysis are discussed.
相关文档
最新文档