算法分析与设计-N色方柱
算法分析与设计
表中有些数字已经显露出来,还有些用?和*代替。 请你计算出? 和 * 所代表的数字。并把 * 所代表的数字作为本题答 案提交。
素数环问题
素数环是一个计算机程序问题,指的是将从1到n这n个整数围成一 个圆环,若其中任意2个相邻的数字相加,结果均为素数,那么这个环 就成为素数环。现在要求输入一个n,求n个数围成一圈有多少种素数 环,规定第一个数字是1。 143256 165234
例如当n=5,m=4时,面值为1,3,11,15,32的5种邮票可以贴 出邮资的最大连续区间是1到70。
➢ 通用的解题法 ➢ 核心在于构造解空间树:
➢ 子集树 ➢ 排列树 ➢ 回溯法是优化的暴力搜索: ➢ 不满足限制条件; ➢ 当前解与最优解进行预计算; ➢ 学习回溯法:心中有树
回溯法
总结
➢ 动态规划适合两个连续步骤之间有联系的问题; ➢ 回溯法几乎适用于所有的问题,但问题之间最好有明确的层次。
总结
➢ 构造心中的解空间树是关键; ➢ 回溯法与函数的局部变量; ➢ 访问解空间树的优化处理;
迷宫问题中的回溯法
➢ 四邻域 ➢ 八邻域
图论问题
无向图: ➢ 连通 ➢ 不连通
有向图: ➢ 弱连通 ➢ 单向连通 ➢ 强连通
最大团问题
连通子图(分支)
最大团问题
给定无向图G=(V,E),如果UV,且对任意的u,vU, 都有(u,v)E,则称U是G的完全子图。G的完全子图U是G 的一个团当且仅当U不包含在G的更大的完全子图中。G中 的最大团是指G中所含顶点数最多的团。
yes no yes
➢ 通用的解题法 ➢ 核心在于构造解空间树:
(陈慧南 第3版)算法设计与分析——第3章课后习题答案
第三章课后习题姓名:赵文浩学号:16111204082 班级:2016级计算机科学与技术3-2 在如下图所示的二叉搜索树上完成下列运算及随后的伸展操作,画出每次运算加伸展操作后的结果伸展树。
5030601040201585 70901)搜索80从图中可以看出,元素80不存在,因此伸展结点应为搜索过程中遇到的最后一个结点,即70,伸展过程如下图所示:503060104020158570905030601040201585709050301040201585907060状态1状态2状态32)插入80元素80插入后的状态以及将元素8作为伸展结点的伸展过程如下图所示:5030601040201585 709080插入元素80后50306010402015857090805030601040201585709080变换1变换25030601040201585908070变换33)删除30首先,将元素30结点伸展至根结点,然后删除根结点30,并将结点20(左边最大的结点、右边最小的结点)作为伸展结点,伸展过程如下图所示:3010402015709050856030102015709085605040102070908560504015709085605040变换1将30作为根结点删除结点30并变换将20作为伸展结点伸展至根节点102015。
算法分析与设计重点课后习题答案
习题13.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high){int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法设计与分析第三版第四章课后习题答案
算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。
算法思路:本题可以使用快速选择算法来解决。
快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。
具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。
2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。
3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。
4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。
5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。
6. 递归地重复上述步骤,直到找到第k小的元素。
算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。
《算法分析与设计》(李春葆版)课后选择题答案与解析
《算法及其分析》课后选择题答案及详解第1 章——概论1.下列关于算法的说法中正确的有()。
Ⅰ.求解某一类问题的算法是唯一的Ⅱ.算法必须在有限步操作之后停止Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产生确定的结果A.1个B.2个C.3个D.4个2.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是()。
A.T(n)=T(n-1)+1,T(1)=1B.T(n)=2nC.T(n)= T(n/2)+1,T(1)=1D.T(n)=3nlog2n答案解析:1.答:由于算法具有有穷性、确定性和输出性,因而Ⅱ、Ⅲ、Ⅳ正确,而解决某一类问题的算法不一定是唯一的。
答案为C。
2.答:选项A的时间复杂度为O(n)。
选项B的时间复杂度为O(n)。
选项C 的时间复杂度为O(log2n)。
选项D的时间复杂度为O(nlog2n)。
答案为C。
第3 章─分治法1.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。
这要求原问题和子问题()。
A.问题规模相同,问题性质相同B.问题规模相同,问题性质不同C.问题规模不同,问题性质相同D.问题规模不同,问题性质不同2.在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。
A.随机选择一个元素作为划分基准B.取子序列的第一个元素作为划分基准C.用中位数的中位数方法寻找划分基准D.以上皆可行。
但不同方法,算法复杂度上界可能不同3.对于下列二分查找算法,以下正确的是()。
A.intbinarySearch(inta[],intn,int x){intlow=0,high=n-1;while(low<=high){intmid=(low+high)/2;if(x==a[mid])returnmid;if(x>a[mid])low=mid;elsehigh=mid;}return –1;}B.intbinarySearch(inta[],intn,int x) { intlow=0,high=n-1;while(low+1!=high){intmid=(low+high)/2;if(x>=a[mid])low=mid;elsehigh=mid;}if(x==a[low])returnlow;elsereturn –1;}C.intbinarySearch(inta[],intn,intx) { intlow=0,high=n-1;while(low<high-1){intmid=(low+high)/2;if(x<a[mid])high=mid;elselow=mid;}if(x==a[low])returnlow;elsereturn –1;}D.intbinarySearch(inta[],intn,int x) {if(n>0&&x>=a[0]){intlow= 0,high=n-1;while(low<high){intmid=(low+high+1)/2;if(x<a[mid])high=mid-1;elselow=mid;}if(x==a[low])returnlow;}return –1;}答案解析:1.答:C。
算法设计与分析第二版课后习题解答
算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求//输入:一个正整数n 2//输出:。
step1:a=1;step2:若a*a<n 转step 3,否则输出a;step3:a=a+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。
b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。
a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1,0) = 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈1300 与2·14142/11 ≈2600 倍之间。
6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
算法设计技巧与分析答案
算法设计技巧与分析参考答案第1章算法分析基本概念1.1(a)6 (b)5 (c)6 (d)61.4算法执行了7+6+5+4+3+2+1=28次比较1.5(a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b) 算法MODSELECTIONSORT执行的元素赋值的最多次数是3(1)2n n ,元素已按非升序排列的时候达到最小值。
1.7由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11由上图可以得出比较次数为5+6+6+9=26次。
1.13FTF,TTT,FTF,TFF,FTF 1.16(a) 执行该算法,元素比较的最少次数是n-1。
元素已按非降序排列时候达到最小值。
(b) 执行该算法,元素比较的最多次数是(1)2n n -。
元素已按非升序排列时候达到最大值。
(c) 执行该算法,元素赋值的最少次数是0。
元素已按非降序排列时候达到最小值。
(d) 执行该算法,元素赋值的最多次数是3(1)2n n -。
元素已按非升序排列时候达到最大值。
(e)n 用O 符号和Ω符号表示算法BUBBLESORT 的运行时间:2()t O n =,()t n =Ω(f)不可以用Θ符号来表示算法的运行时间:Θ是用来表示算法的精确阶的,而本算法运行时间由线性到平方排列,因此不能用这一符号表示。
1.27不能用关系来比较2n 和2100n 增长的阶。
∵221lim0100100n n n →∞=≠ 2n ∴不是2(100)o n 的,即不能用关系来比较2n 和2100n 增长的阶。
1.32(a)当n 为2的幂时,第六步执行的最大次数是:12,2k k n j -==时,11[log ]log n ni i k n n n ====∑∑(b)由(a)可以得到:当每一次循环j 都为2的幂时,第六步执行的次数最大,则当33,22k kmn j ===(其中32k 取整)时,11[log(31)]log(1)n nkii i m n n ===-=-∑∑(c)用O 符号表示的算法的时间复杂性是(log )O n n 已证明n=2k 的情况,下面证明n=2k +1的情况:因为有⎥⎦⎥⎢⎣⎢+=⎥⎦⎥⎢⎣⎢21222k k所以n=2k +1时,第六步执行的最大次数仍是n log n 。
算法分析与设计-N色方柱
问题分析
模型展示
算法分析
T
代码实现
hank you
性能分析 结束
My a实现
性能分析
结束
bool operation(int h) { int i,j,k,l; bool v; if(h > 4) return true; for(i = 1; i <= 6; i++) { for(j = 0,k = 1; j < h;k++) { if(k == 5){ k = 1;j++;continue;} if(Cube[h][Position[i][k]] == high_cubic[j][k])break; } if(j == h) { for(l = 1; l <= 4; l++) high_cubic[h][l] = Cube[h][Position[i][l]]; v=operation(h + 1); } else v=false; if(v)break; } if(i==8||i>8) return false; else return true; }完整程序见下面备注
色方柱问题
问题描述 设有n个立方体,每个立方体的每一面用红、 黄、蓝、绿等n种颜色之一染色。要把这n个立方体 叠成一个方形柱体,使得柱体的4个侧面的每一侧均 有n种不同的颜色。试设计一个回溯算法,计算出n 个立方体的一种满足要求的叠置方案。
问题描述
问题分析
模型展示
算法分析
代码实现
性能分析
结束
每个立方体有6个面,在不同摆放状态下,四个侧面 颜色也是不一样的,所以必须能表示每一种摆放状态。首 先用数字对小立方体6个面进行编号,如 3 表示前面,4表 示背面,1 表示左面,2表示右面,6 表示顶面。同时对大 立方柱各个侧面进行位置标识,如下所示F 表示前面,B 表示背面。
黄宇《算法设计与分析》课后习题解析(二)精选全文
黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。
解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。
算法设计与分析(第2版)习题答案
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图 1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C ++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
(陈慧南 第3版)算法设计与分析——第5章课后习题答案
(3) 分析算法的时间复杂度 上述算法的时间复杂度为 n 2
(2) 编写 C 程序实现这一算法;
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 1000 struct point { double x; double y; }p1[N],pxSmall[N],pxLarge[N]; double Distance (point a , point b); double min (double a , double b); bool Compare_Y (point a , point b); bool Compare_X (point a , point b); double minDistance (int l, int r); int main() { int n ; double D ; cin>>n;
int main() { int n, x, *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; cin >> x; if (Triple_search(a, 0, n - 1, x) == -1) cout << "NotFound!" << endl; else cout << Triple_search(a, 0, n - 1, x) << endl; delete []a; return 0; } int Triple_search(int a[], int l, int r, int x) { if (l <= r) { int m1 = l + (r-l)/3; int m2 = l + (r-l)*2/3; if (a[m2]<x) return Triple_search(a, m2 + 1, r, x); else if (a[m1] < x && a[m2] > x) return Triple_search(a, m1 + 1, m2 - 1, x); else if (a[m1] > x) return Triple_search(a, l, m1 - 1, x); else if (a[m1] == x) return m1; else if (a[m2] == x) return m2; } return -1; }
【分析】算法分析与设计作业参考答案
【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
2、简答题:1.算法需要满足哪些性质?简述之。
算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。
2)输出:算法产生至少一个量作为输出。
3)确定性:组成算法的每条指令清晰、无歧义。
4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。
1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
算法分析与设计(习题答案)
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
(陈慧南 第3版)算法设计与分析——第8章课后习题答案
8-4 图 8-4 所示的两个可行解是对称的。观察表明,n-皇后问题的解的确存在这 种对偶性。修改算法 NQueens,令 x[0] 1, 2, 些解。 解析: 为了解决对称性的冲突,只需在第一层时,遍历一半的列号即可。 改写后的程序如下:
#include<iostream> #include<cmath> using namespace std; bool Place(int k,int i,int *x); void NQueens(int k,int n,int *x); int main() { int n; cin>>n; int *x=new int[n]; NQueens(0,n,x); return 0; } bool Place(int k,int i,int *x) { int j; for(j=0;j<k;j++) if((x[j]==i)||(abs(x[j]-i)==abs(j-k))) return false; return true; } void NQueens(int k,int n,int *x) {
, n 2 ,使得只求其中不对称的那
int i,j; if(k==0) for(i=0;i<n/2;i++) { if(Place(k,i,x)) { x[k]=i; if(k==n-1) { for(j=0;j<n;j++) cout<<x[j]<<" "; cout<<endl; } else { NQueens(k+1,n,x); } } } else for(i=0;i<n;i++) { if(Place(k,i,x)) { x[k]=i; if(k==n-1) { for(j=0;j<n;j++) cout<<x[j]<<" "; cout<<endl; } else { NQueens(k+1,n,x); } } } }
算法分析与设计习题集答案
算法分析与设计习题集基础篇1、算法有哪些特点?它有哪些特征?它和程序的主要区别是什么?特点:就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算(书上定义)特征:输入、输出、有穷性、明确性、有效性区别:算法是完成特定任务的有限指令集。
程序是用计算机语言编写的写成特定任务的指令序列。
2、算法的时间复杂度指的是什么?如何表示?算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。
这是一个关于代表算法输入值的字符串的长度的函数。
时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。
(百度百科)3、算法的空间复杂度指的是什么?如何表示?一个程序的空间复杂度是指运行完一个程序所需内存的大小。
利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。
一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。
程序执行时所需存储空间包括以下两部分。
(1)固定部分。
这部分空间的大小与输入/输出的数据的个数多少、数值无关。
主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。
这部分属于静态空间。
(2)可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。
这部分的空间大小与算法有关。
一个算法所需的存储空间用f(n)表示。
S(n)=O(f(n))其中n为问题的规模,S(n)表示空间复杂度。
答:最坏情况时间复杂性:最好情况时间复杂性::I*是DN中使T(N, I*)达到Tmax(N)的合法输入;P(I)是在算法的应用中出现输入I的概率10、限界函数的功能是什么?答:用限界函数剪去得不到最优解的子树11、设某一函数定义如下:编写一个递归函数计算给定x的M(x)的值。
本函数是一个递归函数,其递归出口是:M(x)= x-10x>100递归体是:M(M(x+11))x ≤100实现本题功能的递归函数如下:intm ( intx ){ int y;if ( x>100 )return(x-10 );else {y =m(x+11) ;return (m (y ));}procedure M(x)if x>100 thenreturn(x-10)elsereturn M(M(x+11))endifend M12、已知一个顺序表中的元素按元素值非递减有序排列,编写一个函数删除表中多余的值相同的元素。
算法分析与设计作业
算法分析与设计作业
一、冒泡排序
1.1冒泡排序算法
冒泡排序(Bubble Sort)也称为沉底排序,算法的特点是从数组头
部到尾部进行多次遍历,当遍历到一些数时,如果比它前面的数大就交换。
比较 n 个数大小,可以进行 n-1 次交换。
冒泡排序的时间复杂度为
O(n^2),空间复杂度为O(1)。
算法步骤如下:
(1)比较相邻的元素,如果第一个比第二个大,就交换他们两个的
位置;
(2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后
一对,这样在最后循环结束时,最大的数会移动到最后;
(3)重复第一步,直到所有元素排序完成。
1.2冒泡排序算法的优化
冒泡排序的时间复杂度为O(n^2),为提高算法的速度,可以对冒泡
排序算法进行优化。
算法在每一轮排序后会判断是否有可以交换的数据,如果没有就表明
已经全部排序完成,此时可以终止排序。
相比传统的算法,优化后的算法可以大大减少不必要的循环,提高排
序的速度。
二、快速排序
2.1快速排序算法
快速排序(Quick Sort)是一种分治策略,将大问题分解为小问题,同时在排序过程中不断的拆分问题,最终完成排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn)。
算法步骤如下:。
算法设计与分析习题解答(第2版)
第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
算法设计技巧与分析课后习题答案沙特
算法设计技巧与分析课后习题答案沙特【篇一:高级算法设计实验指导书2009(李淑琴)】=txt>一、适用专业计算机科学与技术专业研究生二、实验目的与任务算法分析与设计是计算机科学与技术专业本科学生第八学期专业选修课程。
实验课的目的是通过对一些常见而有代表性算法的上机实践,使学生理解和掌握算法设计的主要方法,培养学生对算法复杂性进行正确分析的能力,从而为独立地设计算法和对给定算法进行复杂性分析奠定坚实的基础。
三、实验内容安排实验一数据的排序算法比较(一)、实验目的1.通过上机实践,进一步理解、掌握几种著名的数据排序算法; 2.对排序算法的时间复杂性学会比较、分析。
(二)、实验内容及要求(1)从已学过的内部排序算法中至少选择4种算法,比较这四种算法的关键字移动次数以及比较次数。
(2)待排序数据用随机数产生程序产生。
(3)数据表的长度不小于100000,并且至少用五组不同的输入数据作比较。
(4)最后对结果作出简单分析,包括对各组数据得出结果波动大小的解释。
(三)、实验步骤1.2.3.4.5. 对于以上题目要认真分析和理解题意,设计出算法;详细写出正确的高级语言源程序;上机录入并调试程序;请指导教师审查程序和运行结果并评定成绩;撰写并上交实验报告。
(四)、实验报告内容1.班级、学号、姓名、实验日期;2.实验题目;3.对于实验题目的理解与说明;4.程序功能与框架;5.设计说明(存储结构、特别构思等);6.调试报告(调试过程中遇到的问题及如何解决此问题,程序设计的得失,对于改进程序的设想、经验、体会等);7.对算法进行比较分析;8.附录:源程序清单(加必要的注释)、测试数据及运行结果。
(五)、实验成绩考核方法实验成绩由实验结果、问题回答以及实验报告综合评定。
实验二递归与分治策略(一)、实验目的通过编程实现递归与分治策略的有关算法,理解递归与分治策略算法的原理,掌握递归与分治策略基本思想与应用技巧。
(二)、实验内容及要求实验内容给定平面上的至少n个点(n〉=20),找出其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建立模型
问题分析
算法分析
代码实现
性能分析
结束
bool operation(int h) { int i,j,k,l; bool v; if(h > 4) return true; for(i = 1; i <= 6; i++) { for(j = 0,k = 1; j < h;k++) { if(k == 5){ k = 1;j++;continue;} if(Cube[h][Position[i][k]] == high_cubic[j][k])break; } if(j == h) { for(l = 1; l <= 4; l++) high_cubic[h][l] = Cube[h][Position[i][l]]; v=operation(h + 1); } else v=false; if(v)break; } if(i==8||i>8) return false; else return true; }完整程序见下面备注
问题描述
问题分析
模型展示
算法分析
代码实现
性能分析
结束
N色方柱问题是一个求路径的问题,只 需要找到一条路径便可以得到解。设每个 状态有k个后继,其搜索树为k叉树,其结 点总数为kn+1–1,遍历的时间为O(kn),这 里n为找到解的路径长度。
问题描述
问题分析
模型展示
算法分析
代码实现
性能分析
结束
问题描述
问题分析
模型展示
算法分析
T
代码实现
hank you
性能分析 结束
My algorithm
色方柱问题
问题描述 设有n个立方体,每个立方体的每一面用红、 黄、蓝、绿等n种颜色之一染色。要把这n个立方体 叠成一个方形柱体,使得柱体的4个侧面的每一侧均 有n种不同的颜色。试设计一个回溯算法,计算出n 个立方体的一种满足要求的叠置方案。
问题描述
问题分析
模型展示
算法分析
代码实现
性能分析
结束
每个立方体有6个面,在不同摆放状态下,四个侧面 颜色也是不一样的,所以必须能表示每一种摆放状态。首 先用数字对小立方体6个面进行编号,如 3 表示前面,4表 示背面,1 表示左面,2表示右面,6 表示顶面。同时对大 立方柱各个侧面进行位置标识,如下所示F 表示前面,B 表示背面。
问题描述
问题分析
模型展示
算法分析
代码实现
性能分析
结束
2 L
4
三个立方体三种状态的数组 存储表示(立方体各侧面颜 色是任意的,左侧各面颜色 一样只是便于展示)。LBiblioteka F R B3 12
3 F
2
3 1
4
2 3
1
4 2
3
1 4
问题分析
问题分析
模型展示
算法分析
代码实现
性能分析
结束
第一层
第二层 第三层
问题描述