Reconstruction Equations and the Karhunen-Loève Expansion for Systems with Symmetry

合集下载

第二类皮奥拉-基尔霍夫应力

第二类皮奥拉-基尔霍夫应力

第二类皮奥拉-基尔霍夫应力
《高级宏观经济学》是一本关于新凯恩斯主义理论的经济学著作,作者是美国哥伦比亚大学的经济学家保罗·罗默。

该书在宏观经济学领域有很高的声誉,是一份详细阐述新凯恩斯主义宏观经济学的全面指南。

新凯恩斯主义是一种对凯恩斯主义的进一步发展,认为在短期内宏观经济政策才有可能影响经济增长和就业。

新凯恩斯主义主张采取积极的货币和财政政策,以控制失业率和通货膨胀。

它的理论关注市场失灵和信息不对称的影响,认为政府可以通过干预市场来促进贸易,而这也体现了罗默等学者对政府干预市场的积极支持。

总之,通过学习《高级宏观经济学》可以更好地了解新凯恩斯主义宏观经济学的理论和实践,以及政府在促进经济增长和就业方面的作用。

克拉伯龙—克劳修斯方程

克拉伯龙—克劳修斯方程

克拉伯龙—克劳修斯方程克拉伯龙—克劳修斯方程(Clausius-Clapeyron equation)是描述气体相变时蒸气压与温度之间的关系的方程。

该方程由克勞修斯 (Benjamin Paul Émile Clapeyron)和克拉伯龙 (Rudolf Clausius) 两位物理学家分别于1834年和1864年独立提出。

克拉伯龙—克劳修斯方程的基本形式为:ln(P2/P1) = (ΔHvap/R) \left(\frac{1}{T1}-\frac{1}{T2}\right)其中,P1和P2分别为相变前和相变后的蒸气压,ΔHvap为相变的摩尔焓变,R为气体常数,T1和T2分别为相变前和相变后的温度。

该方程的推导基于理想气体状态方程和热力学第二定律,假设相变前和相变后的气体均为理想气体。

克拉伯龙—克劳修斯方程可以用来计算蒸气压关于温度的变化。

利用该方程,可以推导出不同物质的蒸气压随温度变化的特征曲线。

一种常见的应用是计算液体的沸点。

根据该方程,当蒸气压等于环境大气压(常常为标准大气压)时,液体开始沸腾。

因此,通过测量液体在不同温度下的蒸气压,可以得到该液体的沸点。

该方程也可用于预测物质的气化和凝结条件。

当两个物质的蒸气压相等时,它们处于饱和状态,蒸气和液体达到动态平衡。

根据克拉伯龙—克劳修斯方程,可以计算出不同温度下两种物质的蒸气压,从而判断它们是否会发生气化或凝结。

在气候学和大气科学中,克拉伯龙—克劳修斯方程也被用于计算水的饱和水汽压和相对湿度之间的关系。

通过测量气温和精确的水汽压力,可以使用克拉伯龙—克劳修斯方程来计算相对湿度。

这对于气象预测、大气湿度监测和气候研究非常重要。

总结而言,克拉伯龙—克劳修斯方程是物理化学中非常重要的一种方程。

它描述了气体相变时蒸气压与温度之间的关系,并可以应用于计算沸点、预测气化和凝结条件,以及研究大气湿度等相关问题。

仿真内窥镜法听骨链重建在中耳炎患者手术中的应用

仿真内窥镜法听骨链重建在中耳炎患者手术中的应用

仿真内窥镜法听骨链重建在中耳炎患者的应用韩正理刘云李郧叶发贵深圳市宝安区福永医院广东省深圳市 518103 【摘要】目的探讨仿真内窥镜法听骨链重建对判断听骨链病变的价值。

方法应用仿真内窥镜法听骨链重建成像与术中所见进行回顾性分析,分析比较仿真内窥镜法听骨链重建与术中病变所见的符合情况。

结果仿真内窥镜法听骨链重建对病变听骨链的诊断准确率与术中对照符合率较高,显示高分辨率CT对砧骨病变的显示与术中所见一致性非常好。

结论应用仿真内窥镜法听骨链重建能对听骨链病变程度做出准确判断。

【关键词】仿真内窥镜法;中耳炎;听骨链;中耳乳突手术Virtual endoscopy method ossicular reconstruction in patients with otitis media applicationsHAN Zheng-li * LIU Yun Li-Yun YE Fa-gui*Department of Otarhinolaryngology , Fuyong Hospital , Shenzhen 518103,China [Abstract] Objective Through the application of otitis media in patients with preoperative virtual endoscopy ossicular reconstruction images with the intraoperative comparative analysis to explore the virtual endoscopy method of ossicular reconstruction to determine the value of ossicular lesions. Methods 48 cases of complete information on chronic suppurative otitis media hospitalized patients into the study, its method of preoperative virtual endoscopy ossicular reconstruction imaging and intraoperative findings were analyzed retrospectively, Analysis and Comparison of virtual endoscopy method ossicular chain reconstruction and intraoperative pathological changes seen in line with the situation, explore the virtual endoscopy method ossicular reconstruction for middle ear ossicular chain lesions in patients with diagnostic accuracy. Results Virtual endoscopy method ossicular ossicular reconstruction for lesions of the diagnostic accuracy rate of intraoperative control in line with the higher rate of incus the kappa value of 0.8286, more than 0.75, indicating HRCT lesions of the incus display with intraoperative see a very good consistency. Malleus, the stapes superstructure, hammer anvil stirrup anvil articular joints and the kappa value of more than 0.40, indicating virtual endoscopy method ossicular ossicular reconstruction in the diagnosis of lesions better consistency. Conclusions data applications using high-resolution CT virtual endoscopy method ossicular ossicular reconstruction can accurately judge the extent of disease and help patients in the preoperative approach to the surgery and methods of selection, and is able to surgery and surgical prognosis of the security assessment to provide a reference.【Key Words】virtual endoscopy method; otitis media; ossicular; middle ear and mastoid surgery慢性化脓性中耳炎治疗以手术治疗为主,术前颞骨影像学检查已成为中耳乳突手术围手术期准备的常规操作指引。

会计学原理约翰·J·怀尔德版上海交通大学

会计学原理约翰·J·怀尔德版上海交通大学

Information useful to help the enterprise achieve its goal, objectives and mission.
Types of Accounting Information
Financial Tax
Managerial
Integrity of Accounting Information
提供商品或服务所有者雇员和供应商顾顾客客债权人人目标和战略投资融资经营短期项目?现金?应收账款?存货长期项目?土地?建筑物?设备?专利?股票和债券短期项目?银行?供应商?员工?政府长期项目?长期债权人?股东采购销售生产管理企业活动概述importanceofaccounting
课程要求--教材与辅助资料
Financial Statements
Internal Users
• • • • • • • •
Board of Directors (董事会) Chief Executive Officer Chief Financial Officer Vice Presidents Business Unit Managers Plant Managers Store Managers Line Supervisors
• Conceptual Chapter Objectives • Analytical Chapter Objectives • Procedural Chapter Objectives
The Accounting Process
Economic Activities
Accounting links decision makers with economic activities and with the results of their decisions.

流体力学核心期刊

流体力学核心期刊

页码,1/3吉林大学牡丹园站 -- Construction精华区文章阅读发信人: arwang (旺旺), 信区: Construction标 题: 流体力学核心期刊发信站: 牡丹园新站 (Sun Dec 21 09:18:46 2003)流体力学核心期刊Journal of Fluid Mechanics = 流体力学杂志 . 英国.527C0001International Journal of Heat and mass Transfer = 国际传热与传质杂志 \ 英国.525C0006AIAA Journal = 美国航空与航天学会志 . 美国.877B0001The Physics of Fluids, A = 流体物理学,A辑 . 美国.527B0002Fluids Dynamics = 流体动力学 ( 英译苏刊). 美国.527B0054Journal of Engineering Physics = 工程物理杂志(英译苏刊). 美国.534B0053Journal of Heat transfer,Transactions of the ASME = 传热杂志,ASME汇刊 . 美国.725B0001The Physics of Fluids, B = 流体物理学,B辑 . 美国.527B0002International Journal for Numerical Methods in Fluids = 国际流体力学数值方法杂志 . 英国.527C0004Fluid MechanicsSoviet Research = 苏联流体力学研究(英译苏刊) . 美国.527B0052International Journal of Multiphase flow = 国际多相流杂志 . 英国.527C0003Zeitschrift fur Angewandte Mathematik und Mechanik = 应用数学与力学杂志 . 德国.519A0001Magnetohydrodynamics = 磁流体动力学(英译苏刊). 美国.527B0053Journal of Applied Mechnaics and Technical physics = 应用力学与技术物理杂志(英译苏刊). 美国.529B0052Journal of Fluids Engineering, Transactions of the ASME = 流体工程杂志,ASME汇刊 . 美国.780B0001Physical Review , A = 物理评论,A辑 . 美国.530B0002Soviet PhysicsDOKLADY = 苏联物理学报告(英译苏刊). 美国.530B0070International Journal of Heat and Fluid Flow = 国际热与流体流杂志 . 英国.527C0053Journal of Non-Newtonian Fluid Mechanics = 非牛顿流体动力学杂志 . 荷兰.527LB0053International Communications in Heat and Mass Transfer = 国际传热与传质通讯. 英国.725C0056Heat Transfer Soviet Research = 苏联传热研究 . 美国.725B0054Physical Review Letters = 物理评论快报 . 美国.530B0003International Journal of Engineering Science = 国际工程科学杂志 . 英国.710C0009Journal of Computational Physics = 计算物理杂志 . 美国.539B0002Waerme-und Stoffuebertragung = 热力学与流体力学 . 德国.710E0008Physica,D = 物理,D辑 . 荷兰.530LB001High Temperature = 高温(英译苏刊). 美国.534B0052JSME International Journal, II = 日本机械工程师学会国际杂志,II辑 . 日本.780D0063Fluid Dynamics Research = 流体动力学研究 . 荷兰.527LB001Journal of the Physical Society of Japan = 日本物理学会志 . 日本.530D0002Computers and Fluids = 计算机与流体 . 英国.--─738C0074Heat Transfer-Japanese Research = 日本传热研究 . 美国.525B0055Chemical Engineering Science = 化学工程科学 . 英国.810C0004Physics Letters, A = 物理快报,A辑 . 荷兰.530LB004Thermal Engineering = 热力工程(英译苏刊). 英国 .721C0058AIChE Journal美国化学工程师协会会志 . 美国.810B0001Applied Mathematics and Mechanics = 应用数学与力学(英译苏刊). 美国.ISSN 0066-5479Applied Scientific Research = 应用科学研究 . 荷兰.500LB002Comptes Rendus de l Acadecie des Sciences , Serie II = 法国科学院报告,II辑. FRA.500F0003Numerical Heat Transfer = 数值传热 . 美国.725B0059Rheologica Acta = 流变学学报 . 德国.526E0051页码,2/3 Soviet Aeronautics = 苏联航空学(英译苏刊) . 美国.877B0298Zeitschrift fur Angewandte Mathematik und Physik = 应用数学与物理杂志 . 瑞士.519LD001Proceedings of the Royal Society of London ,A = 伦敦皇家学会会报,A辑 . 英国.510C0007Revue Roumaine des Sciences Techniques,Serie Mecanique Appliquee = 罗马尼亚科学技术杂志,应用力学辑 . ROM.529AD001Review of Scientific Instruments = 科学仪表评论 . 美国.798B0004Indian Journal of Pure and Applied Mathematics = 印度理论与应用数学杂志 . 印度.510HA056The Journal of Chemical Physics = 化学物理杂志 . 美国.542B0003Journal of Thermophysics and Heat Transfer = 热物理与传热杂志 . 美国.533B0057Physica, A = 物理,A辑 . 荷兰.530LB001Canadian Journal of Physics = 加拿大物理学杂志 . 加拿大.530NA001Europhysics Letters = 欧洲物理快报 . FRA.530F0054Soviet Technical Physics Letters = 苏联技术物理快报(英译苏刊) . 美国. 534B0060Acta Mechanica = 力学学报 . AUT.520LE001International Journal of Engineering Fluid Mechanics = 国际工程流体力学杂志.美国.712B0100Computer Methods in Applied Mechanics and Engineering = 应用力学与工程中的计算方法 . 瑞士.712LD004European Journal of Mechanics ,A = 欧洲力学杂志,A辑 . FRA.Geophysical and Astrophysical Fluid Dynamics = 地球物理与天体物理流体动力学.英国.----562C0056Journal of Physics, E:Scientific Instruments = 物理学杂志,E辑:科学仪表 . 英国.798C0005Journal of Mathematical and Physical Science = 数学与物理学杂志 . 印度.510HA055Power Engineering(USSR Academy of Sciences) = 动力工程(苏联科学院)(英译苏刊). 美国.720B0071Indian Journal of Theoretical Physics = 印度理论物理杂志 . 印度.533HA001Soviet Physics Technical Physics = 苏联物理学技术物理(英译苏刊). 美国.534B0051Journal of Physics, A = 物理学杂志,A辑 . 英国.530C0003Measurement Techniques = 计量技术 . 美国.713B0080Acustica = 声学 . 德国.535E0001Mechanics Research Communications = 力学研究通讯 . 英国.520C0052Combustion, Explosion, and Shock Waves = 燃烧、爆炸与激波(英译苏刊). 美国.816B0083Journal of Applied Physics = 应用物理学杂志 . 美国.539B0001Archive for Rational Mechanics and Analysis = 理性力学与分析文献 . 德国.520E0001Journal of Engineering Mathematics = 工程数学杂志 . 荷兰.712LB002Journal of Statistical Physics = 统计物理学杂志 . 美国.533B0054Mathematics of Computation = 计算数学 . 美国.519B0004Nuclear Physics, B: Proceedings Supplement = 原子核物理学,B辑:会议补篇 . 荷兰.538LB001Soviet Physics JETP = 苏联物理学实验物理与理论物理(英译苏刊) . 美国.533B0006Journal de Physique = 物理学报 . FRA.530F0004Mathematical and Computer Modilling = 数学与计算机模拟 . 英国.513C0058Zeitschrift fut Flugwissenschaften und Weltraumforschung = 飞行科学与宇宙研究杂志 . 德国.877E0006Recherche Aerospatiale = 航空空间研究 . FRA.877F0095Journal of Scientific Computing = 科学计算杂志 . 美国.738B0557Journal of Sound & Vibration = 声与振动杂志 . 英国.535C0002The Quarterly Journal of Mechanics and applied Mathematics = 力学与应用数学季页码,3/3 刊 . 英国.520C0001Journal of Mathematical Analysis & Applications = 数学分析与应用杂志 . 美国.513B0003Lietuvos TSR Mokslu Akademijos Darbai, B =立陶宛科学院院报B辑 . LIT.ISSN 0132-2729Journal of Applied Mechanics, Transactions of the ASME = 应用力学杂志ASME汇刊. 美国. 529B0002Computers & Structures = 计算机与结构 . 英国.538C0070International Journal of Thermophysics = 国际热物理杂志 . 美国.534B0004Journal of Physics, D = 物理学杂志,D辑 . 英国.539C0001Mathematical Modelling and Numerical Analysis = 数学模拟与数值分析 . FRA.Numerische Mathematik = 数值数学 . 德国.513E0002Communications in Mathematical Physics = 数学物理通讯 . 德国.533E0001Computers & Chemical Engineering = 计算机与化工 . 英国.738C0020Comptes Rendus de I Academie des Sciences, Serie I = 法国科学院报告,I辑 . FAR.500F0003IMA Journal of Applied Mathematics = 数学及其应用学会应用数学杂志 . 英国.519C0002Journal of Turbomachinery, Transactions of the ASME = 涡轮机械杂志,ASME汇刊.美国. 784B0012Transactions of the Japan Society for Aeronautical And Space Science = 日本航空宇宙 . 日本.877D0053Applied Optics = 应用光学 . 美国.537B0004Archives of Mechanics = 力学文献集 . 波兰.529AB051Chemical Engineering Research and Design = 化学工程研究与设计 . 美国.810B0128International Journal for Numerical Methods in Engineering = 国际工程数值方法杂志 . 英国.712C0010Modelling, Simulation and Control , B = 模型,模拟与控制B辑 . .FRAInternational Journal of Non-Linear Mechanics = 国际非线性力学杂志 . 英国.520C0002Journal de Mecanique Theorique et Appliquee = 理论与应用力学杂志 . FRA.521F0001Proceedings of the Indian National Science Academy, Part A = 印度国立科学院院报,A辑 . 印度.530HA0003Applied Numerical Mathematics = 应用数值数学 . 荷兰.519LB006Astrophysics and Space Science = 天文物理学与宇宙科学 . 荷兰.550LB002Computer Physics communications = 计算机物理学通讯 . 荷兰.738LB002Israel Journal of Technology = 以色列技术杂志 . ISR.ISSN 0021-2202Journal of Colloid and Interface Science = 胶体与界面科学杂志 . 美国.----542B0004Journal of Differential Equations = 微分方程杂志 . 美国.513B0006Journal of Non-Equillibrium Thermodynamics = 非平衡热力学杂志 . 德国. 542E0006--※ 来源:.牡丹园新站 [FROM: 202.198.154.*][返回上一页] [本讨论区]。

kraus算子分解 -回复

kraus算子分解 -回复

kraus算子分解-回复[Kraus Operator Decomposition]Introduction:In quantum mechanics, Kraus operator decomposition is a powerful mathematical tool used for studying quantum operations. It allows us to decompose a quantum operation into a set of Kraus operators, which describe the different ways a quantum system can evolve under the influence of the operation. In this article, we will delve into the concept of Kraus operator decomposition, exploring its mathematical formulation and practical applications.1. Quantum Operations:To understand Kraus operator decomposition, we first need to grasp the concept of quantum operations. Quantum operations are transformations that act on quantum systems and describe how they evolve over time. These operations can be represented mathematically by a linear map, known as a superoperator, which maps an input density operator to an output density operator.2. Density Operators:In quantum mechanics, a density operator is a mathematical object that represents the state of a quantum system. It is a positive semi-definite Hermitian matrix with trace equal to one. Density operators capture both the pure and mixed states of a quantum system, allowing us to describe both deterministic and probabilistic quantum phenomena.3. Kraus Operators:Now, let's delve into Kraus operators. A Kraus operator is a set of matrices that completely characterize a quantum operation. These matrices act on the input density operator, transforming it into the output density operator. Mathematically, a quantum operation E can be represented as:E(ρ) = ∑iKiρKi†Here, ρ represents the input density operator, Ki are the Kraus operators, and Ki† represents the adjoint of Ki. The sum is taken over all possible values of i, which represents the different ways the quantum system can evolve under the operation.4. Mathematical Formulation:To find the Kraus operators for a given quantum operation, we need to solve the following equation:E(ρ) = ∑iKiρKi†This equation requires that the Kraus operators satisfy the completeness relation:∑iKi†Ki = IHere, I represents the identity operator. The completeness relation ensures that the quantum operation preserves the probability and unitarity of the system.5. Applications:Kraus operator decomposition has several practical applications in quantum information science. It is commonly used in quantum error correction, where it helps to describe and correct quantum errors in quantum computing systems. Additionally, Kraus operators play a crucial role in studying the effects of noise and decoherence in quantum systems, allowing researchers to model and understand the behavior of quantum systems in realisticscenarios.Conclusion:In conclusion, Kraus operator decomposition is a powerful tool in quantum mechanics for understanding quantum operations. By representing a quantum operation as a set of Kraus operators, we can gain valuable insights into the behavior of quantum systems under the influence of the operation. The mathematical formalism of Kraus operators provides a precise framework for studying various quantum phenomena and has numerous applications in the field of quantum information science.。

2.2集合种群

2.2集合种群
大部分情况下是无性繁殖 60-70年一次的竹子大面积开花 有部分保留下来 不同分布区开花也通常不是同步的
竹子开花
竹子为什么要大面积开花?
竹子大面积开花是几百万年来的自然生态过程 竹子大面积开花有利于生态系统的循环、更新、 恢复 竹子的生存策略:复壮和免遭灭顶之灾
• 竹子是很多物种的食物:
集合种群理论的主要研究对象是将空间看成由生境斑块 构成的网络,把种群在空间和时间上的异质性有机地结 合起来,分析其动态效果,包括迁移、消亡和定居等生 态过程。
当物种处于破碎化的生境中时,集合种群模型能够真实 地模拟物种之间、景观与物种之间相互作用的关系,并 对此做出较为准确的预测
集合种群的鉴别 (Hanski )
竹子开花的时候,大熊猫的迁移范围达到了23.1km2。
竹子开花扩大大熊猫食物范围
栖息地的片段化使竹子开花成为大熊 猫绝灭的威胁
为什么? 目前大熊猫由于栖息地分割,导致遗传多样性低
和种群退化。
各山系群体内的遗传多样性十分贫乏 各山系之间则存在明显变化
竹子开花时破碎的栖息地限制了大熊猫的迁移, 食物短缺严重威胁大熊猫生存
离大陆越近,物种多样性>离大陆远 面积越大,物种数目 >面积小 存在一种物种数目平衡 其他很多人由此产生了大量的附加研究
在自然保护中的应用:
①保护区地点的选择。为了保护生物多样性,应首先考虑选择 具有最丰富物种的地方作为保护区,另外,特有种、受威胁种 和濒危物种也应放在同等重要的位置上。
Introduction
种群是指在同一时期内占有一定空间的同种生物个体的 集合。
种群是联系生物个体、群落和生态系统之间的枢纽。
生物种群的个体数量、生理生态特性、演化潜力、种群 生活史特征和自适应性等对群落乃至系统的恢复起决定 性的作用;种群间相互关系对种群扩展和群落发展发育 有着很大的影响。因此,了解种群的生态特征对于指导 生态恢复工作具有重要的理论意义。

物化——热力学四大定律发现者

物化——热力学四大定律发现者

以后英国杰出的物理学家焦耳(James Prescort Joule,1818~1889)德国物 理学家亥姆霍兹(Hermannvon Helmholtz,1821~1894)等人又各自独 立地发现了能量守恒定律
将能量守恒定律应用到热力学上, 就是热力学第一定律
1843年8月21日焦耳在英国科学协会数 理组会议上宣读了《论磁电的热效应 及热的机械值》论文,强调了自然界 的能量是等量转换、不会消灭的,哪 里消耗了机械能或电磁能,总在某些 地方能得到相当的热。焦耳用了近40 年的时间,不懈地钻研和测定了热功 当量。他先后用不同的方法做了400 多次实验,得出结论:热功当量是一 个普适常量,与做功方式无关。他自 己1878年与1849年的测验结果相同。 后来公认值是427千克重· 米每千卡。 这说明了焦耳不愧为真正的实验大师。 他的这一实验常数,为能量守恒与转 换定律提供了无可置疑的证据。
热力学第一定律——能量守恒定律在热学 形式的表现。 热力学第二定律——力学能可全部转换成 热能, 但是热能却不能以有限次的实验操 作全部转换成功 (热机不可得)。 热力学第三定律——绝对零度不可达到但 可以无限趋近
• 法国物理学家卡诺(Nicolas Leonard Sadi Carnot,1796~1823)生于巴黎。 其父L.卡诺是法国有名的数学家、将 军和政治活动家,学术上很有造诣, 对卡诺的影响很大
1911年普朗克也提出了对热力学第三定律的表述即与任何等温可逆过程相联系的熵变随着温度的趋近于零而趋近于零25通常是将热力学第一定律及第二定律作为热力学的基本定律但有时增加能斯特定理当作第三定律又有时将温度存在定律当作第零定律2627热力学第零定律用来作为进行体系测量的基本依据其重要性在于它说明了温度的定义和温度的测量方法

2020年诺贝尔物理学奖——黑洞“吸纳”全部奖金

2020年诺贝尔物理学奖——黑洞“吸纳”全部奖金

走近科学(1)对a b ,在斜面运动过程中,由动量定理得-m gt s i n θ-B L ðI Δt =-m k v 0-m v 0,而全程磁通量变化为零,即通过棒的电荷量q =ðI Δt = E 2R Δt =ΔΦ2R =0,联立解得t =v 0(1+k )gs i n θ.(2)当a b 进入水平轨道后做减速运动,c d 做加速运动,当电路中电流为零时两棒稳定,即有3B l v a =B l v b ,对a b 由动量定理得-3B l ðI a Δt =m v a -m k v 0,对c d 同理可得B l ðI b Δt =m v b ,由于两棒串联,故流过的电荷量有ðI a Δt =ðI b Δt ,联立解得v a =k v 010,v b =3k v 010.(3)对两棒,从开始到稳定,由能量守恒有Q =12m v 20-12m v 2a -12m v 2b ,联立解得Q =m v2020(10-k 2).(4)对a b 进入水平轨道的瞬间,回路中电流是一定的,可视为回路中的电子做匀速运动,对电子有f a =e k v 0B -e u a3l .同理对c d (速度为零)中的电子有f b =e u a l ,而此时u a =3B l k v 02R R =3B l k v 02,联立可得f a =12e k v 0B ,f b =32e k v 0B ,即f a ʒf b =1ʒ3.策略㊀不等长双棒(含阻尼棒和动力棒)切割式,关键是抓住双棒切割磁感线产生电动势(含反电动势),以动量定理为枢纽,以双棒或单棒为载体进行分析.其中有收尾特征:回路电流为零,双棒以不等速匀速运动.总之,电磁感应问题中动量定理应用非常广泛,既要具体问题具体分析,又要善于归类,挖掘其共性单棒或双棒在磁场中切割磁感线运动往往是由众多微小的元过程(如时间㊁位移㊁功等)组成,且所有微元过程遵循相同的规律.因此分析时,只要将微元过程进行数学累积求和或进行物理整体与隔离㊁图象法等思维处理,即可将复杂的物理问题快速求解.要以电阻㊁电源㊁电容器㊁单棒或双棒为载体,以动量定理为枢纽,将闭合电路欧姆定律㊁法拉第电磁感应定律㊁牛顿运动定律㊁能量守恒定律等联系起来,解决速度㊁加速度㊁安培力㊁洛伦兹力㊁电流㊁能量㊁电荷量等相关问题,并注意分析收尾或中间特征.(作者单位:北京市第十八中学)Җ㊀北京㊀郭㊀红㊀㊀北京时间2020年10月6日下午6点左右,诺贝尔物理学奖评选结果揭晓:三位科学家因为他们对宇宙中最奇异的现象之一黑洞而分享了诺贝尔物理学奖.其中一半奖金被授予英国科学家罗杰 彭罗斯(R o ge rP e n r o s e ),他用巧妙的数学方法证明了黑洞是爱因斯坦广义相对论的直接结果,证明了广义相对论星云导致了黑洞的形成.另一半奖金被授予德国科学家莱因哈德 根泽尔(R e i n h a r dG e n z e l )和美国科学家安德里亚 格兹(A n d r e aG h e z ),他们发现了一个不可见且极其重的物体控制着银河系中心恒星的运行轨道,也就是一个超大质量的黑洞.罗杰 彭罗斯是英国数学物理学家㊁科学哲学家,牛津大学数学荣誉退休教授,牛津沃德姆学院荣誉研究员,剑桥圣约翰学院荣誉研究员.彭罗斯对广义相对论和宇宙学的数学物理学发展做出了重要贡献.他曾获得多个奖项,包括1988年因与斯蒂芬 霍金共同得出彭罗斯霍金奇点理论荣获沃尔夫物理学奖.莱因哈德 根泽尔是德国科学家,研究领域为红外和亚毫米波射电天文学,他和他的团队积极开发用于天文学研究的一些地面和空基仪器.他们最先在银河系中心追踪恒星运动的星团(人马座A ∗),并表明它们正在绕着非常大的物体运行,该物体可能是黑洞.此外,他还活跃在对于银河系的形成和演化的研究领域中.安德里亚 格兹是美国天文学家,也是加州大学洛杉矶分校物理与天文学系的教授.截至2020年,共有4名女性科学家获得诺贝尔物理学奖.2004年,«发现»杂志将格兹列为美国20大科学家之一.同年,格兹当选为美国国家科学院院士,2019年,当选为美国物理学会(A P S )院士.格兹目前的研究涉及高空间分辨率成像技术,如自适应光学凯克望远镜,以研究恒星形成区和位于银河系中心的人马座A ∗黑洞.通过在红外波长对银河系中心成像,格兹和她的同事们能够窥视阻挡可见光的重尘,得到银河系中心的图像.今年获奖者的发现在研究致密和超大质量天体05走近科学方面开辟了新的领域.但是,这些奇异的物体仍然引出了许多问题,这些问题需要得到答案,并促进未来的研究. 诺贝尔物理学奖委员会主席戴维 哈维兰德(D a v i dH a v i l a n d )表示: 这些问题不仅包括它们的内部结构,还包括如何在黑洞附近的极端条件下验证我们的引力理论.黑洞理论最初是由英国地理学家约翰 米歇尔(J o h nM i c h e l l )提出的.他在1783年写给亨利 卡文迪什的一封信中提出了这个想法,他认为一个和太阳同等质量的天体,如果半径只有3千米,那么这个天体是不可见的,因为光无法逃离天体表面.除此之外,法国物理学家拉普拉斯曾在1796年预言: 如果一颗天体质量约为太阳的250倍,直径和地球相当,那么这个天体表面的引力将变得非常大,连光也不能逃脱. 之后科学家们普遍认为宇宙中存在这么一种 可怕 的天体,任何物质包括宇宙中最快的光也逃脱不了它的引力,只要靠近它就会瞬间化为乌有.1916年广义相对论问世后,德国的史瓦西根据广义相对论计算出了黑洞,这是现代的黑洞概念的来源.在20世纪30年代末,美国的原子弹之父奥本海默和他的学生提出了一种学说:恒星在死亡塌缩的时候有可能塌缩成一个致密的奇点,并推导出了这个质量的下限(3 2个太阳质量左右).20世纪60年代,黑洞的研究迎来了两项突破性进展:1963年新西兰的数学家罗伊 克尔通过数学求解的方式第一次精确得到了爱因斯坦场方程带有旋转黑洞的精确解.1964年,用观测方法发现了第一颗恒星级的黑洞.正是理论和观测同时的突破,使得黑洞研究领域迎来了它的黄金时代.在接下来的二三十年,一大批天文学家㊁物理学家投身这个领域.现在人们所知道的关于黑洞的知识基本上都是在这段时间内得到的.在这一时期,黑洞这个名字经过普林斯顿大学教授约翰 惠勒的推广,才得以被众人所知.1965年1月,也就是爱因斯坦去世10年后,罗杰 彭罗斯证明了黑洞确实可以形成,并详细描述了它们(在黑洞的核心,隐藏着一个奇点,在这个奇点中,所有已知的自然法则都停止了).他那篇具有开创性的文章仍然被认为是继爱因斯坦之后对广义相对论最重要的贡献.1974年,英国著名天体物理学家霍金提出 霍金辐射 理论,至此,黑洞存在成为物理学界的主流观点.莱因哈德 根泽尔和安德里亚 格兹各自带领着一个天文学家小组,从20世纪90年代早期开始,对银河系中心一个叫作人马座A ∗的区域进行重点研究.在他们的努力下,最靠近银河系中心的最亮恒星的轨道已经以越来越高的精度被绘制出来.这两个小组的测量结果一致,都发现了一个非常重的㊁看不见的物体,它牵引着混乱的恒星,使它们以令人眩晕的速度奔跑.大约400万个太阳质量聚集在一个不比太阳系大的区域里.2012年10月,安德里亚 格兹的研究小组在加州大学洛杉矶分校确认了第二颗环绕银河中心运行的恒星.根据开普勒定律,格兹的团队利用轨道运动证明了人马座A ∗的质量为4 1ʃ0.6百万太阳质量.因为人马座A ∗比下一个最近的已知超大质量黑洞M 31∗(位于M 31的中心)的质量大近一百倍,所以它现在是超大质量黑洞的最佳例证之一.2018年7月,莱因哈德 根泽尔等人报告,S 2(恒星)轨道人马座A ∗的记录速度为7650k m s -1(光速的2 55%),这使他们从相对论速度的可辨别红移中确认了广义相对论.2019年4月,人类首次通过照片知道了黑洞的模样,确认了黑洞是真实存在的.黑洞是引力非常强的天体,它是宇宙中最神奇,也是最简单的一类天体.只需要3个物理量就可以描述黑洞 质量㊁转动㊁电荷.在宇宙中,气体几乎都以等离子体状态存在,会存在非常多的自由电荷.如果一个黑洞带电,那很容易吸附周围的带电粒子而达到电离平衡,所以只剩下两个物理量 质量和转动,这样就可以通过所谓的克尔度规来完整描述天体物理学当中的黑洞.科学家的主要任务就是测量黑洞的这两个基本量.据推测在银河系中还应该存在上亿个恒星量级的黑洞.到目前为止,人类仅仅探测到了几十个黑洞,而且只有不到20个恒星量级的黑洞有非常精确的质量测量.根据质量可以把黑洞分为三大类:一类是恒星量级的黑洞,也就是说它的质量在3倍太阳质量到100倍太阳质量之间.第二类称为超大质量的黑洞,它的质量起点是几十万倍的太阳质量,最多可以到几十亿倍甚至上百亿倍的太阳质量.介于二者之间的黑洞,称为中等质量黑洞,但是对于它们,现在观测的直接证据非常少,仅能根据理论研究证明它们是存在的,所以寻找中等质量的黑洞也是现在和将来要研究的热门课题.(作者单位:清华大学附属中学永丰学校)15。

Arrhenius equation - Wikipedia

Arrhenius equation - Wikipedia

Where
k is the rate constant T is the absolute temperature (in kelvin) A is the pre-exponential factor, a constant for each chemical reaction that defines the rate due to frequency of
Arrhenius equation
Contents
1 2 3 4 Equation Arrhenius plot Modified Arrhenius' equation Theoretical interpretation of the equation 4.1 Arrhenius' Concept of Activation Energy 4.2 Collision theory 4.3 Transition state theory 4.4 Limitations of the idea of Arrhenius activation energy See also References Bibliography External links
frequency factor
attempt frequency
Given the small temperature range kinetic studies occur in, it is reasonable to approximate the activation energy as being independent of the temperature. Similarly, under a wide range of practical conditions, the weak temperature dependence of the pre-exponential factor is negligible compared to the temperature dependence of the factor; except in the case of "barrierless" diffusion-limited reactions, in which case the pre-exponential factor is dominant and is directly observable.

algebra thomas w.hungerford 简介 -回复

algebra thomas w.hungerford 简介 -回复

algebra thomas w.hungerford 简介-回复Thomas W. Hungerford is a highly renowned mathematician and author who has made significant contributions to the field of algebra. His works and publications have greatly influenced students and researchers around the world. In this essay, we will explore the life, achievements, and impact of Thomas W. Hungerford, focusing on his contributions to the field of algebra.Thomas W. Hungerford was born on October 15, 1936, in Chicago, Illinois, United States. He developed an early interest in mathematics and pursued it further during his academic career. Hungerford attended the University of Chicago, where he earned his undergraduate degree in 1958. He then went on to complete his Ph.D. in mathematics at Princeton University under the guidance of the eminent mathematician John Tukey in 1963.After completing his doctorate, Hungerford embarked on his career as a mathematician. His research primarily focused on algebra, with an emphasis on ring theory and homological algebra. Hungerford made significant contributions to these areas, particularly in commutative algebra and the theory of rings and modules.One of Hungerford's most notable achievements in algebra is the book "Abstract Algebra: An Introduction," which is widely recognized as one of the most comprehensive and influential textbooks in the field. First published in 1974, this book provides a rigorous introduction to the fundamental concepts of abstract algebra. It covers a wide range of topics, including group theory, ring theory, field theory, and Galois theory. The book has been widely used as a textbook in undergraduate and graduate courses in algebra, and it continues to be highly regarded for its clarity, rigor, and depth.In addition to "Abstract Algebra: An Introduction," Hungerford has authored several other books and research papers in algebra. Some of his other notable works include "Algebra," "Algebraic Geometry: A First Course," and "Introduction to Algebraic Structures." These works have further solidified Hungerford's reputation as an authority in the field and have continued to serve as valuable resources for students and researchers alike.Apart from his research and publications, Hungerford has also made significant contributions as an educator. He has taughtmathematics at various prestigious institutions, including the University of Rochester, Ohio State University, and Western Illinois University. Hungerford's teaching style is known for its clarity and precision, allowing students to grasp complex algebraic concepts with ease. Many of his former students have gone on to become successful mathematicians and researchers themselves, further highlighting the impact of his teaching and mentorship.Hungerford's contributions to the field of algebra extend beyond his own research and teaching. He has served as the editor or associate editor for several mathematical journals, including the "Journal of Algebra" and "Communications in Algebra." He has also been actively involved in various professional societies, such as the American Mathematical Society, serving on committees and contributing to the advancement of algebraic research.In recognition of his contributions to the field, Hungerford has received numerous awards and honors throughout his career. He was elected as a Fellow of the American Mathematical Society in 2012 for his contributions to teaching and research in algebra. His works continue to be referenced and studied by mathematicians worldwide, making him a highly respected figure in the field ofalgebra.In conclusion, Thomas W. Hungerford is an esteemed mathematician who has made significant contributions to the field of algebra. Through his research, publications, and teaching, he has greatly influenced the study and understanding of algebraic concepts. Hungerford's books, particularly "Abstract Algebra: An Introduction," continue to be widely used and revered in the mathematical community. His impact as an educator and mentor has also been significant, with many of his students going on to make their mark in the field. Overall, Thomas W. Hungerford's work and influence have solidified his place among the leading figures in the field of algebra.。

乳液聚合胶束成核机理谁提出来的对应的英文文章

乳液聚合胶束成核机理谁提出来的对应的英文文章

乳液聚合胶束成核机理谁提出来的对应的英文文章乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的。

该理论在1971年由他在《Journal of Colloid and Interface Science》发表的一篇名为"Polymerization of Micelles: A Phenomenological Approach"的英文文章中详细阐述。

后附译文Introduction:Emulsion polymerization is a widely used technique for the synthesis of various polymers. The process involves the formation of polymer particles in a water-insoluble monomer phase dispersed in water through the use of surfactants and emulsifiers. The understanding of the nucleation mechanism in this process is crucial for optimizing the synthesis and controlling the particle size and morphology. In this regard, the groundbreaking work of Jean-Pierre Chapel on the mechanism of micelle nucleation in emulsion polymerization provides valuable insights and has been of significant interest to researchers.Brief Background:Emulsion polymerization involves the formation of micelles, which are colloidal aggregates of surfactant molecules, to stabilize the monomer droplets in water. These micelles act as the nucleation sites for the polymerization reaction. Jean-Pierre Chapel proposed a phenomenological approach to explain the micelle nucleation process in emulsion polymerization. His work focused on understandingthe role of surfactants and their interactions with the monomer molecules in the nucleation process.Chapel's Phenomenological Approach:Chapel's approach involved the use of classical thermodynamics to model the micelle nucleation mechanism in emulsion polymerization. He considered the system as a two-phase mixture of monomer droplets dispersed in water and the impact of surfactant molecules on the nucleation process. Chapel formulated his theory based on well-established thermodynamic principles and made a few key assumptions.Assumptions:1. The surfactant molecules are assumed to spontaneously adsorb at the monomer-water interface due to the hydrophobicity of the monomers.2. The adsorption of surfactant at the monomer-water interface leads to the formation of a monolayer around the monomer droplet, stabilizing it against coalescence.3. Polymerization occurs within the surfactant-stabilized monomer droplets.Theoretical Explanation:Chapel's phenomenological approach involved the use of classical nucleation theory and the Gibbs free energy change associated with micelle formation. He derived equations that describe the change in free energy due to the adsorption of surfactant molecules at the monomer-water interface, the deformation of the surfactant monolayer, and the formation of micelles. Chapel recognized that the monomer-water interfaceequilibrium must be considered in the calculations. His model allowed for the prediction of the critical micelle concentration (CMC) and the rate of polymerization based on the thermodynamic parameters of the system.Significance of Chapel's Work:Chapel's model provided a deeper understanding of the nucleation process in emulsion polymerization. His approach allowed for the prediction and control of the CMC, which is a critical parameter in determining the stability of the emulsion and the particle size distribution. Chapel's work also highlighted the importance of surfactant properties, such as hydrophobicity and molecule structure, in the nucleation and stabilization processes. This knowledge has been invaluable for the design and synthesis of emulsion polymerization systems with desired properties.Further Research and Applications:Since Chapel's seminal work, researchers have built upon his model and expanded the understanding of emulsion polymerization mechanisms. The development of more efficient and versatile surfactants, advancements in experimental techniques, and computational modeling have further enhanced the understanding of the nucleation process. This knowledge has led to the development of new emulsion polymerization techniques and the synthesis of polymers with tailored properties for a wide range of applications, including coatings, adhesives, and biomaterials.Conclusion:Jean-Pierre Chapel's phenomenological approach to understanding the micelle nucleation mechanism in emulsion polymerization has provided valuable insights into the roleof surfactants in this process. His work has laid the foundation for further research in the field and has contributed significantly to the design and synthesis of polymer particles with controlled properties. The understanding of the nucleation mechanism is crucial for optimizing emulsion polymerization processes and enables the production of polymers for diverse applications.乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的.该理论在1971年由他在《胶体和界面科学杂志》发表的一篇名为“胶束聚合:现象学方法”的英文文章中详细阐述。

卡娜赫尔平滑算法

卡娜赫尔平滑算法

卡娜赫尔平滑算法第一篇:卡娜赫尔平滑算法1.算法简介卡娜赫尔平滑算法(Kane-Heller Smoothing),也称卡尔赫尔平滑算法,是一种用于历史数据处理的统计分析方法,由美国数学家凯恩(Kane)和海勒(Heller)于1969年提出。

卡恩-海勒平滑法是一种数据处理方法,用于从历史数据中预测未来状况的大致趋势。

2.算法的基本思想卡尔赫尔平滑算法的基本思想是利用历史记录中的移动平均数来进行平滑处理,并结合当前新数据给出预测结果。

该算法可用于单调和双调处理两类不同的时间序列,也可用于数据处理。

此外,该算法可按照不同的参数灵活使用,在不同时间段的模型数据处理中可以给出比较准确的预测结果。

3.算法的应用卡尔赫尔平滑算法最广泛的应用就是对金融市场的预测,比如期货价格预测,证券市场行情分析等,这些都是有根据历史数据得出未来趋势的金融分析。

而卡尔赫尔平滑算法的强大之处正在于可以以较高的精度提取出金融市场行情的走势,从而进行准确的预测和分析。

此外,卡尔赫尔平滑算法还可以用于消费者行为分析、供应链管理等领域,解决企业在市场营销以及物流管理时的数据分析问题。

4.算法的优缺点(1)优点:1)卡尔赫尔平滑算法针对各种不同的时间序列的大致趋势进行平均处理,从而可以准确反映出指定的行业的复杂情况,可以更好地满足市场的需求;2)该算法的参数可以根据实际情况针对不同模型的数据处理,从而得到更加精确的预测结果;3)该算法的处理过程简单,容易实现,且可以按照不同的参数灵活使用。

(2)缺点:1)该算法需要较多的历史数据,如果没有足够的可用数据,可能会对预测结果造成较大影响;2)该算法仅适用于单变量时间序列,不能有效处理多变量情况,甚至对复杂的混合时间序列也效果不好。

诺贝尔化学奖得主及获奖理由盘点

诺贝尔化学奖得主及获奖理由盘点

诺贝尔化学奖得主及获奖理由盘点文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)1901年-2016年诺贝尔化学奖得主及获奖理由盘点诺贝尔化学奖是以瑞典着名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔(1833-1896)的部分遗产作为基金创立的5项奖金之一。

诺贝尔化学奖由瑞典皇家科学院从1901年开始负责颁发,总共被颁发了107次。

期间只有1916、1917、1919、1924、1933、1940、1941和1942八年没有颁发。

诺贝尔奖奖项空缺,除了受到两次世界大战影响之外,还受到了诺贝尔奖组委会“宁缺毋滥”的评奖理念的影响。

到目前为止,诺贝尔化学奖共有172位获奖者。

其中英国生物化学家弗雷德里克·桑格(Frederick Sanger)在1958年和1980年两次获得诺贝尔奖,因此历史上获得诺贝尔奖的总共只有171人。

诺贝尔化学奖获奖者的平均年龄是58岁。

其中有32人获奖年龄介于50岁和54岁之间,几乎占到了总获奖人数的20%。

历届诺贝尔化学奖得主及其获奖原因1901年--1910年1901年:雅克布斯?范特霍夫(荷)发现了化学动力学法则和溶液渗透压。

1902年:赫尔曼?费歇尔(德)合成了糖类和嘌呤衍生物。

1903年:阿累尼乌斯(瑞典)提出了电离理论,促进了化学的发展。

1904年:威廉?拉姆齐爵士(英)发现了空气中的稀有气体元素,并确定他们在周期表里的位置。

1905年:阿道夫?拜耳(德)对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展。

1906年:穆瓦桑(法)研究并分离了氟元素,并且使用了后来以他名字命名的电炉。

1907年:爱德华?毕希纳(德)对酶及无细胞发酵等生化反应的研究。

1908年:欧内斯特?卢瑟福爵士(新西兰)对元素的蜕变以及放射化学的研究。

1909年:威廉?奥斯特瓦尔德(德)对催化作用,化学平衡以及化学反应速率的研究。

计算化学基本原理

计算化学基本原理

300000
0000000
000000000000
黑盒处理
Use a set of “accepted” approximations
to solve the corresponding equations on a computer
NO EMPIRICAL INPUT
Chemical composition
Gromacs, CPMD , Lammps
Calypso USPEX
只需要指定成分,化学计量比
三、 密度泛函理论的应用以及意义
1.材料力学性质模拟
Material
SWNTE Armchair SWNTT
Zigzag SWNTT Chiral SWNT
MWNTE SteelE E : 实验观察值
Young's modulus (TPa)
Brillouin Zone
It is possible to represent electronic wave functions over a region of k-space by the wave function at a single kpoint.
Compute sets of spetial k-points
Monkh Equation
H(k )C(k ) S(k )C(k )E(k )
Thank your for you attention !

Born-Oppenheimer 近似
(1)
mn me
1 Nuclei are much slower than electrons
Electron/nuclei decoupling (2)

热力学状态函数及其关系式

热力学状态函数及其关系式

Cp 1 H T T p T
G T H 1T p
CP S T T p
H G T T T 2 p
基尔霍夫(Kirchhoff)公式
由于U、H、F、G为状态函数 U=U(S,V),H=(S,p),F=F(T,V),G=G(T,p)
U U dU dS dV S V V S H H dH dS dp S V V S F F dF dT dV T V V T G G dG dp dT T V p T
U p T p V T T T
定义:
1 V T V T p
S V p T T V p T
dH TdS Vdp
H S p T p V V (1 T T ) T T
H G p p V S T F G S T V Mamwell)关系式
麦克斯维(Mamwell)关系式应用
dU TdS pdV
U S T p V T V T
体积功 W pdV
第一定律
dU Q W
可逆过程 dS Q / T
dU TdS pdV
H U pV
微分
dH dU pdV Vdp
F=U-TS G=H-TS
热力学基本公式
dH TdS Vdp
dF SdT pdV dG SdT Vdp

二十一世纪初全合成的科学艺术翻译

二十一世纪初全合成的科学艺术翻译

二十一世纪初全合成的科学艺术摘要二十一世纪初,化学合成的科学和艺术仍保持着过去健康、蓬勃发展的状态。

1828年,Wohler合成得到尿素标志着这门振奋人心的、多元化的、未来无限的科学的诞生。

这以现在的标准看来似乎是再平凡不过的小事却是全合成科学史上的里程碑式的事件——它为“自然启蒙”做出了重要贡献,照亮了科学前进的道路,带领人类走上了一个新高度,为人类提供了无数丰厚的回报。

作为一门精确的科学和精美的艺术,它是由自然中优美分子结构的不断流动推动的,同时该学科又成为推动有机合成一般领域的引擎。

有机合成被认为是20世纪在化学、生物学和医学上最令人激动、最重要的发现。

在随后的发展中,它带动药物的开发研究,此过程产生了无数的合成过程以及化合物,都是生物医学领域的新突破和应用。

本文将对其历史过程进行阐述,对发展现状进行评价,并对合成的科学与艺术的未来进行展望。

从二战前,到Woodward和Corey时代,再到20世纪90年代,悉数全合成的历史,也可看出这个引擎在不断的加强。

今天看来,天然产物的全合成已是在力求更好地与生物重要靶分子相结合;新的合成方法和技术的发现与发明;分子设计与机理研究的化学生物学探索的基础上经过审慎判断的富有挑战的选择。

未来在该领域的进展很有可能在新的分子靶点的分离和性质、新试剂的有效性和合成方法、信息和自动化技术的可用性等方面。

这样的进展是注定要使有机合成的力量更接近,甚至超越自然的界限,尽管目前这条道路看起来很遥远。

关键词:药物研究天然产物合成方法全合成1.前言“尊敬的王后陛下以及皇室成员,女士们,先生们。

在当今时代,人们对天然产物化学有着极其浓厚的兴趣。

人们一直在不断的发现和研究新物质,无论有多复杂,无论是否有用。

现在我们经常利用物理化学中非常强大的工具来测定化合物的结构和分子式。

1990年的有机化学界如果听到现在使用的研究方法,一定会大为吃惊。

然而,到现在也没有谁会说这是一个简单的工作。

贝尔曼最优公式的证明

贝尔曼最优公式的证明

贝尔曼最优公式的证明贝尔曼最优公式,又称为贝尔曼方程或贝尔曼方程组,是马尔可夫决策过程中的重要概念。

它是由美国数学家Richard E. Bellman在20世纪中期提出的,被广泛应用于优化问题和强化学习中。

贝尔曼最优公式的证明是一个精妙而复杂的过程,本文将以人类的视角进行叙述,让读者更好地理解和感受这个公式的含义。

我们来介绍一下马尔可夫决策过程。

马尔可夫决策过程是一种数学模型,用于描述具有随机性的决策问题。

在这个模型中,决策问题可以被分解为一系列的状态和决策,每个状态都有一个关联的价值,决策的目标就是使得累计的价值最大化。

贝尔曼最优公式就是用来计算每个状态的最优价值的。

假设我们有一个马尔可夫决策过程,其中包含有限个状态和决策。

我们定义一个函数V(s),表示在状态s下的最优价值。

贝尔曼最优公式的核心思想就是,一个状态的最优价值等于该状态下所有可能决策的预期价值的最大值。

具体来说,对于每个状态s,我们考虑在该状态下的所有可能决策。

假设我们选择了某个决策a,那么在下一个状态s'的最优价值就是V(s')。

根据马尔可夫性质,s'的最优价值又等于V(s')。

所以在状态s 下,决策a的预期价值就是当前的收益加上下一个状态的最优价值,即R(s,a) + V(s')。

由于我们不知道下一个状态是什么,只能根据概率分布来估计。

所以我们将所有可能的下一个状态的最优价值乘以对应的概率,并将它们相加,得到决策a在状态s下的预期价值。

这个过程可以用一个求和符号来表示。

状态s的最优价值V(s)就是在所有可能决策的预期价值中取最大值。

这个过程可以用一个求最大值的运算来表示。

通过不断迭代计算,我们可以逐步求得所有状态的最优价值。

最后,我们就可以根据最优价值来选择最优决策,使得累计的价值最大化。

贝尔曼最优公式的证明过程虽然复杂,但它的思想是清晰而直观的。

它告诉我们,在一个马尔可夫决策过程中,我们可以通过计算每个状态的最优价值来得到最优决策。

扩展卡诺定理

扩展卡诺定理
因为甲烷有一系列的有机 烷类同系物 , 不可能完全 生成甲烷 . 生命体中能量 转换效率往往很高 , 也根 本不需要“可逆”.
Dept. of Microelectronics, Fudan University. Aug. 17, 2009
8
Dept. of Microelectronics, Fudan University. Aug. 17, 2009
5
三. 扩展卡诺定理(2005)
扩展卡诺定理认为: 非耗散能量转换的效率最高 . 可逆不是能量转换效率最高的必要条件, 而非耗散才 是能量转换效率最高的充分必要条件. 卡诺定理只适 用于卡诺循环等循环过程 . 扩展卡诺定理是普适的 , 也包含了卡诺定理, 但不能反过来说. 卡诺定理是扩 展卡诺定理的一个特例.
王季陶 (复旦大学, 微电子学系; jtwang@) [2009年高校 “热力学与统计物理”研讨会8月17日, 厦门]
1989 年至今作者著有 6 本原创性专著 , 4 本已出版 (1 本 Springer英文版), 今年中英文各1本即将出版. 20年研究 成果可以归纳为一句话 -- 扩展卡诺定理: “非耗散”(而 不是 “可逆”)能量转换是效率最高的充分必要条件.
卡诺定理 ( 可逆热机的效率 最高 ), 只适用于卡诺循环等 循环过程 , 而扩展卡诺定理 适用于任何宏观过程 ( 包括 卡诺循环等循环过程).
Dept. of Microelectronics, Fudan University. Aug. 17, 2009
2
四本已出版的现代热力学系列原创性专著
现代热力学---基于扩展卡诺定理
(中英文版同名新书的简介)
王季陶 (复旦大学, 微电子学系; jtwang@) [2009年高校 “热力学与统计物理”研讨会8月17日, 厦门]
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Physica D 142 (2000), 1-19 Reconstruction Equations and the Karhunen-Lo`e veExpansion for Systems with SymmetryClarence W.Rowley∗Jerrold E.Marsden†February8,2000AbstractWe present a method for applying the Karhunen-Lo`e ve decomposition to systems with continuous symmetry.The techniques in this paper contribute tothe general procedure of removing variables associated with the symmetry of aproblem,and related ideas have been used in previous works both to identifycoherent structures in solutions of PDEs,and to derive low-order models viaGalerkin projection.The main result of this paper is to derive a simple andeasily implementable set of reconstruction equations which close the system ofODEs produced by Galerkin projection.The geometric interpretation of themethod closely parallels techniques used in geometric phases and reconstructiontechniques in geometric mechanics.We apply the method to the Kuramoto-Sivashinsky equation and are able to derive accurate models of considerablylower dimension than are possible with the traditional Karhunen-Lo`e ve expan-sion.Keywords:Karhunen-Lo`e ve expansion,proper orthogonal decomposition,sym-metry,reduction,reconstruction,Kuramoto-Sivashinsky equationPACS:03.40.Gc;47.11.+j;05.45.+b;02.70.DhContents1Introduction22Reduction and Reconstruction:Translational Symmetry42.1Template Fitting (5)2.2Galerkin Projection (6)2.3Reconstruction Equation (7)2.4Summary of the method (7)∗Mechanical Engineering104-44,California Institute of Technology,Pasadena,CA91125, clancy@†Control and Dynamical Systems107-81,California Institute of Technology,Pasadena,CA 91125,marsden@13Geometric Interpretation83.1Orthogonality Condition (8)3.2Reconstruction Equation from Slices (9)4Application:the Kuramoto-Sivashinsky Equation114.1Numerical Details (12)4.2Full Simulations and Template Fitting (13)4.3Reduced-order Simulations (14)5Discussion16 A Centering:an alternative shifting procedure17A.1Reconstruction equation:centering (17)A.2Limitations (18)B The General Reconstruction Equation19B.1Equivariant Dynamical Systems (20)B.2Reconstruction (20)1IntroductionKLE for Symmetric Systems.The Karhunen-Lo`e ve expansion(KLE), also known as the proper orthogonal decomposition or the method of empiricaleigenfunctions,has been widely recognized as a useful tool both for identifyingand analyzing coherent structures in turbulentfluids,and for determining low-order models for complex dynamical systems(see,for example,Sirovich[20]and Holmes et al[9]).The principal idea behind the Karhunen-Lo`e ve(KL)method is that,given an ensemble of data,one canfind a basis of a givendimension that spans that data optimally,in the L2sense.Much of the literature on symmetry and the KL method addresses howto handle discrete symmetries.These discrete group considerations werefirstaddressed by Sirovich in[20],who suggested enlarging the dataset by symme-try operations.These ideas were later applied by Sirovich and Park[19,21],who studied a Rayleigh-B´e nard problem,respecting the dihedral group D2k.Symmetrized data sets were further studied by Aubry,Lian,and Titi[2],whoshowed that when the data is averaged over the symmetry group,the resultingGalerkin system is equivariant with respect to the symmetry group.This isimportant because certain dynamical features are structurally stable only inthe presence of symmetries.Berkooz and Titi[4]generalize these results to thecase of general,compact Abelian groups;for discrete groups,they also suggest ameans for computational savings,which was later demonstrated by Smaoui andArmbruster[23]in a study of Kolmogorovflow.The complete symmetry groupfor the Kolmogorov equations is the semidirect product D2k SO(2),but the methods in[23]focus on the discrete part D2k.Dellnitz et al[6]expand furtheron these ideas,considering non-Abelianfinite groups,and presenting a modi-fication to the KL procedure which ensures that the Galerkin system retainsprecisely the same symmetry as the original system,without introducing anynew symmetries.There has also been some workon how to handle continuous symmetrieswith the KL method.It is well known that for systems with periodic or trans-lational symmetry,the optimal basis consists of Fourier modes(see[20]).In2systems with more general continuous symmetry groups,more complicated sets of modes can arise(see[4]),but are nevertheless determined completely by harmonic analysis,and not from data.Such a basis normally gives no informa-tion about coherent structures in the data,and furthermore,a reduced-order model based on Fourier modes must typically retain many modes to adequately capture the dynamics.The references mentioned previously treat discrete sym-metries in an efficient way,but while recognizing the importance of continuous symmetry groups and their limitations,they do not attempt to deal with these limitations.Various methods have been developed to overcome these fundamental lim-itations of the KL method for systems with continuous symmetries.Such sys-tems typically exhibit traveling structures,and several techniques have been proposed to handle them,notably those in Kirby and Armbruster[12],Arm-bruster et al[1],and Glavaˇs ki et al[7,8].In these works,symmetry is typically incorporated into the expansion,using for instance traveling KL modes.Travel-ing structures have also been considered by Cutler and Stone[5]in the context of archetypal analysis,and by Basdevant et al[3],who present an efficient, general method for discretizing partial differential equations(PDEs)using a traveling wavelet basis.In the traveling frame,the KL eigenfunctions are no longer forced to be Fourier modes.As a result,information about coherent structures can be ob-tained,and usually many fewer modes are required to accurately capture the dynamics.More generally,it is expected that if one makes use of spatial and temporal structure when applying the Karhunen-Lo`e ve technique,then one can achieve significant computational savings.The simplest of these situations is the efficient use of symmetry methods for continuous symmetry groups,which is the subject of the present paper.The Main Result of this Paper.The main result of the present paper is the development of a simple and computationally efficient method for the re-construction of traveling KL modes from their corresponding symmetry-reduced modes.This result allows one to decouple the dynamics of the mode shapes from their location and to then determine the locations by a separate integration.We demonstrate the effectiveness of the procedure using the Kuramoto-Sivashinsky equation.The Karhunen-Lo`e ve Procedure.Given an ensemble of data(func-tions of space taken at various snapshots in time),the Karhunen-Lo`e ve method determines a basis set of orthogonal functions of space which span the data optimally,in the L2sense.More precisely,if u(x,t)is a function of space and time,the KL method determines functionsϕn(x),n=1,2,...,such that the projection onto thefirst N functionsˆu(x,t)=Nn=1a n(t)ϕn(x)(1.1)has a minimum error,defined byEu−ˆu 2.(1.2) 3Here,E(·)denotes time average,and · denotes the L2norm on functions of space.The functionsϕn are computed by solving the integral equationK(x,y)ϕ(y)dy=λϕ(x),(1.3)where the kernel K(x,y)=Eu(x,t)u(y,t).The functionsϕn are called theKarhunen-Lo`e ve eigenfunctions(also called POD modes,or empirical eigenfunctions).If the function u(x,t)is the solution to a PDE which has translational symmetry,then our method considers,instead of(1.1),the expansionˆu(x,t)=Nn=1a n(t)ϕn(x+c(t)),(1.4)which is just a spatial translation of(1.1)by the amount c(t).If the function u consists of a traveling structure,for instance,this expansion can be interpreted as viewing the data in the frame of reference of the traveling structure.If a Galerkin projection is to be performed on the governing PDE using the new expansion(1.4),then it is necessary to specify the evolution of the symmetry variable c(t).Reconstruction.The main contribution of this workmay now be stated more precisely:we provide a simple,general method forfinding reconstruction equations for the symmetry variable c(t).The terminology“reconstruction equations”is borrowed from the geometric phase literature,as the geometric interpretation of the method closely resembles similar techniques in that liter-ature;see,for example,Marsden et al[15],Marsden and Ostrowski[16],and references therein.In our workas well as in the geometric phase literature,one of the main ideas is that one gets well defined dynamical equations on the phase space modulo the symmetry group(these are called the reduced equations on the reduced phase space)and the problem is then how to put backinto the dynamics the missing group,or phase variables.These additional equations are usually called the reconstruction equations.Outline of the Paper.First,in§2,we illustrate our method of sym-metry reduction and reconstruction on a PDE that is equivariant under one-dimensional translations.The geometric interpretation of the method is then discussed in§3,and indicates how the method may be generalized to arbitrary continuous symmetry groups.In§4,we apply the method to the Kuramoto-Sivashinsky equation,which was studied in[12],and we derive low-order models which capture the dynamics over parameter ranges which are poorly modeled by the traditional methods used in[12].2Reduction and Reconstruction: Translational SymmetryFirst,we describe the procedure we use for determining the shift amount c(t)in the expansion(1.4),essentially the position of the traveling structure.The shift-ing procedure we use,called templatefitting,was introduced by Kirby and4Armbruster [12]as an algorithm for preprocessing data before performing KLE.Template fitting was also used by Cutler and Stone [5]in the related context of archetypal analysis.A similar but distinct shifting procedure,called centering ,was introducedby Glavaˇs ki et al [7,8].This work was the first to address the dynamics of the projected system (1.4)(i.e.,the system of ODEs obtained by Galerkin projection onto the traveling modes).In [7,8],attention was focused on PDEs of the formu t +ωu x =D (u )(2.1)where D (·)is a nonlinear spatial differential operator.For this case,solutions typically propagate with speed ω,so the shift variable c (t )was chosen to satisfy ˙c (t )=−ω.This is an example of a simple reconstruction equation;the purpose of the present section is to develop simple reconstruction equations for more general translation-invariant PDEs than the advection equations considered in [7,8].Either template fitting or centering may be used with the reduction tech-niques presented in this section,but here we focus on template fitting,which generalizes,in our view,more naturally to arbitrary symmetry groups.Cen-tering works well for some problems,but for other problems it can lead to complicated reconstruction equations and can even fail catastrophically.We discuss centering and its limitations in Appendix A.2.1Template FittingThe strategy in template fitting is to shift the data so that at each time the data matches up best with a preselected template.Let f :R →R be a 2π-periodic function,so f (x )=f (x +2π)for all x .Let f 0(x )be a fixed 2π-periodic function,which will be referred to as the template .In [12],the shift amount c is defined to be the solution to the problem min c 2π0[f (x −c )−f 0(x )]2dx,(2.2)where the minimization is over c in the range 0≤c <2π.Note that solving (2.2)for c is equivalent to solvingmax c f (x ),f 0(x +c ) ,(2.3)where ·,· denotes the standard inner product on L 2[0,2π],defined by f,g = 2πf (x )g (x )dx.(2.4)If c solves (2.3),then assuming differentiability,we have a critical point∂c f (x ),f 0(x +c ) =0,(2.5)which is equivalent tof (x ),f 0(x +c ) =0i.e., f (x −c ),f 0(x ) =0.(2.6)We shall use equation (2.6)to determine the shift amount c when template fit-ting is used.This characterization in terms of the inner product leads to a very nice geometric interpretation of template fitting,as we will see in subsequent sections.52.2Galerkin ProjectionConsider a PDE of the form∂t u(x,t)=D(u)(2.7)for0≤x≤2π,with periodic boundary conditions and appropriate initial conditions,where D(·)is a nonlinear spatial differential operator that is equiv-ariant under spatial translations;i.e.,for each periodic function v(·)and each real number c,D(S c[v])=S c[D(v)],where S c[v](x)=v(x+c)is the shift operator on periodic functions.Consider the functionˆu defined by a truncated series expansionˆu(x,t)=Nn=1a n(t)ϕn(x)+¯u(x),(2.8)where theϕn are known orthonormal periodic functions(for us,these will be the Karhunen-Lo`e ve eigenfunctions),and¯u is a known periodic function(for us this will be the meanfield of the shifted solution).Tofind an approximate solution to equation(2.7),we consideru(x,t)=ˆu(x+c(t),t)(2.9)where c(t)is a shift amount.If u(x,t)is thought of more generally as an arbitrary set of data,this procedure can be thought of as preprocessing the data,to get a shifted version of the data,ˆu(x,t),and then performing KLE on the shifted data.Inserting the expression(2.9)into the PDE givesˆu t(x+c,t)+ˆu x(x+c,t)˙c=D(ˆu(x+c,t)).(2.10)Note that from(2.8),we haveˆu t(x,t)=Nn=1˙a n(t)ϕn(x)(2.11)andˆu x(x,t)=Nn=1a n(t)ϕ n(x)+¯u (x).(2.12)Multiplying(2.10)byϕj(x+c),integrating from0to2π,and using the equiv-ariance of D gives˙a j= D(ˆu),ϕj −˙c ˆu x,ϕj ,j=1,...,N.(2.13) This system of ordinary differential equations(ODEs)does not depend on c, but it does depend on˙c,so to close the system we need an additional(recon-struction)equation to determine˙c(t).62.3Reconstructi on EquationIf we choose a template function u0(x)and define the symmetry variable c(t) by templatefitting,as in(2.6),then c(t)satisfiesu(x−c,t),u 0(x) =0.(2.14) Differentiating with respect to t givesu t(x−c,t),u 0(x) − u x(x−c,t),u 0(x) ˙c=0.(2.15) Solving for˙c,substituting u(x,t)=ˆu(x+c,t),and using equivariance of D,we obtain the reconstruction equation˙c= D(ˆu),u 0ˆu x,u 0 .(2.16)This equation may be used as a closure for the system(2.13)when template fitting is used.An analogous equation may be obtained when centering is used to define the shift amount,and is discussed in Appendix A.2.4Summary of the method.The method consists of two main steps.Step1:Computing the reduced KL eigenfunctions.Given an en-semble of data u(x,t),onefirst chooses a template u0(x),and applies template fitting,forming the shifted dataˆu(x,t)=u(x+c(t),t).Here,c(t)is determined by applying equation(2.6)at each time t.The time average¯u(x)=E(ˆu(x,t)) is then computed,and the symmetry-reduced KL eigenfunctionsϕn are found by computing the standard KLE for the zero-mean shifted dataˆu(x,t)−¯u(x). Step2:Forming the reduced model.The dynamics ofˆu(x,t)= Nn=1a n(t)ϕn(x)+¯u(x)is given by˙a j= D(ˆu),ϕj − D(ˆu),u 0ˆu x,u 0ˆu x,ϕj ,(2.17)where j=1,...,N(this equation is independent of c and˙c)and then the solution is given(approximately forfinite N and exactly as N→∞)by u(x,t)=ˆu(x+c(t),t),wherec(t)=t0 D(ˆu),u 0x,u 0(s)ds.(2.18)Note that from(2.14),ˆu(x,t)belongs to a restricted class of functions sat-isfying the orthogonality conditionˆu(x,t),u 0(x) =0.(2.19) The geometric meaning of this condition will be discussed in the following section.73Geometri c InterpretationIn this section,we discuss the geometric interpretation of the above procedures, and show how the method may be generalized to arbitrary symmetry groups. Examples where more complicated symmetry groups arise include waves on a surface,where the symmetry could be the special Euclidean group SE(2) if the surface is a plane,the circle S1if the surface is a disk,or the special orthogonal group SO(3)if the surface is a sphere.Other interesting examples include rotatingflexible structures,such as a tumbling space station,where the symmetry is again the rotation group SO(3).3.1Orthogonality ConditionIn§2.2,we wrote the solution u in terms of the spatial translation of a function ˆu,namely u(x,t)=ˆu(x+c(t),t).When the translation amount c(t)is defined by(2.14)thenˆu(x,t)satisfies the orthogonality conditionˆu,u 0 =0,(3.1) where u0(x)is the chosen template.Since this relation holds at any time t,this in turn implies that¯u,the meanfield of the shifted solution,is also orthog-onal to u 0,and hence each of the Karhunen-Lo`e ve eigenfunctionsϕn is also orthogonal to u 0.In writing the solution u(x,t)as a group translation ofˆu(x,t),and solving for the dynamics ofˆu,we have projected the solution u(x,t),which lies in the set of all functions of space and time,onto a restricted set of functionsˆu which are orthogonal to u 0.This procedure has the following general geometric interpretation.Consider a dynamics problem˙u=X(u)for a dynamical variable u,lying in a space M, and assume that there is a continuous symmetry group G that acts on M.We will assume that M is a linear inner product space for simplicity and that the group action is linear.(The constructions hold more generally,but this is a simple case that meets our present needs.)Assume that the dynamics is given by an equivariant dynamical system on M.In the above examples,M is the space of periodic functions,the dynamics is given by our evolution equation(that is,X is the operator D),the inner product is the L2inner product and G is the group of spatial translations.Equivari-ance just means that the equations and boundary conditions are translation invariant.Whenever one has equivariant dynamics on M,one gets a well defined dy-namical system on the quotient(or orbit)space M/G which consists,in our case,of the space in which two functions related by a translation are identified. When M is an inner product space and the group action is by isometries,there is a natural way to identify,at least locally in function space,the quotient space with a subspace of ly we picka point u0∈M and lookat the affine space through the point u0orthogonal to the group orbit through that point.1We call this affine space a slice and denote it by S u0.In our case,the orthogonality condition defining the space S u0is exactly thecondition in equation(3.1).Indeed,the tangent space to the group orbit is the 1See,for example,Marsden and Ratiu[17]for an elementary discussion of these group theoretic concepts.8one-dimensional space(since G=R is one-dimensional)given by differentiating the translation of the function u0by an amount c with respect to c at theidentity,c=0.This is,of course,just the function u 0.The affine space S u0isthen defined asS u0=u0+ˆuˆu,u 0 =0(3.2)or,equivalently,S u0=ˆuˆu,u 0 =0(3.3)since u0,u 0 =0(this identity holds for all periodic functions u0).In the more general theory,assuming that the point u0has no isotropy (in our case this means that the function u0is not symmetric with respect to any nontrivial translations by amounts strictly between0and2π),the mapthat identifies an element of S u0with its equivalence class in M/G is a localdiffeomorphism.One can also identify(modulo points with isotropy)M,atleast locally,with the product space M/G×G,that is,with S u0×G.Theidentification takes an element(r,g)∈S u0×G and maps it to the element ofM given by the action of g on r.One wants now to reconstruct the dynamics on M from the dynamics on M/G and the reconstruction equation provides the missing dynamics for the group elements.This is exactly what we are doing here.In the reconstruction and geometric phase literature in mechanics,one often exploits an inner product structure as well via a connection,and in that theory the reconstruction equations have the sameflavor as those we have obtained here.In the next section,we give a reconstruction equation in a simplified setting appropriate to our needs and give the reconstruction equation using connections in Appendix B.3.2Reconstruction Equation from Slices.The general procedure is indicated in Figure1.Consider a dynamical system which evolves in a space M,and which admits a continuous symmetry group G.In particular,for u(t)∈M,u(t)satisfies˙u=X(u),(3.4) where the differential operator X is equivariant under the action of G.(This corresponds to the operator D in preceding sections).To derive reconstruction equations,we begin by generalizing the orthogonal-ity condition(3.1).The above discussion of the geometric viewpoint suggests a natural way of generalizing this condition.We begin by choosing a point u0∈M(the template),and constructing the tangent space to the group orbit, defined byT u0Orb(u0)=ξM(u0)ξ∈g(3.5)where g is the Lie algebra of G,andξM:M→T M(a vectorfield on M) denotes the infinitesimal generator of the action corresponding toξ.Then,theslice S u0consists of all functions r(corresponding toˆu previously),which areorthogonal to this tangent space,so thatS u0=u0+rr,ξM(u0) =0,for allξ∈g.(3.6)9MFigure 1:The geometry of the reconstruction equation.Now we identify the quotient space (locally in the space M )with the slice,as explained above.In other words,we define r (t )∈S u 0by translating u (t )until it hits the slice.The general theory (see also Appendix B)guarantees that the function r inherits well defined dynamics.We verified this directly for our example in the preceding section.The resulting quotient dynamics will be denoted˙r (t )=X S u 0(r ),(3.7)(in the setting of Appendix B,this is denoted [X ]).We now start with a solution of the quotient dynamics r (t )and attempt to reconstruct the solution u (t ).To do this,we seeka group element g (t )such that u (t )=g (t )r (t )(the group action is denoted by concatenation)satisfies the given equation (3.4).To derive the equation for g (t ),substitute u (t )=g (t )r (t )into ˙u (t )=X (u (t ))to give an equation in ˙r and ˙g which we denote˙gr +g ˙r =X (gr ).(3.8)(Appendix B gives a more general formula).Using (3.7)and equivariance of X (i.e.,X (gr )=gX (r )),(3.8)is equivalent tog −1˙g ·r +X S u 0(r )=X (r ).(3.9)As shown in Appendix B,the precise way to interpret this equation is as follows.Let ξ(t )=g (t )−1˙g (t )(left translation of ˙g (t )to the identity),which is a curve in the Lie algebra g .The first term of the left hand side of (3.9)is exactly (ξ(t ))M (r (t )).10Consider now the orthogonal projection map P:M→S u0.The orthogonalprojection to the complement,namely Id−P,takes a vector v in M and pro-duces a vector tangent to the group orbit through u0.We now apply Id−P to equation(3.9).Since,by construction,(Id−P)X Su0(r(t))=0,we get(Id−P)(ξ(t)·r(t))=(Id−P)X(r(t)),(3.10) which may be regarded as an algebraic equation to be solved forξ.This gives the reconstruction equation;denote it byξ=ξ(r)(3.11) which then yields a differential equation for˙g.The equation for the dynamics of r itself is then obtained from(3.9):˙r=X Su0(r)=X(r)−ξ(r)·r.(3.12) Special Case:One-dimensional Translational Symmetry.We now show that the template reconstruction equation(2.16)is indeed a special case of equation(3.10),when G is the group of one-dimensional translations or rotations,so the Lie algebra is simply g=R.In this case,the group actions and generators are given by(gu)(x,t)=u(x+g,t)(ξ·u)(x,t)=ξu x(x,t)where g∈G andξ∈g.The slice S u0is defined by equation(3.3),and theorthogonal projection to the complement of the slice is given by(Id−P)(v)= v,u 0u 0,u 0 u.In our case,ξ=˙c,so(3.10)becomes˙c ˆu x,u 0u 0,u 0 u=D(ˆu),u 0u 0,u 0 u,which,after taking an inner product with u 0,agrees with(2.16).Substituting this equation into(3.12)gives,as before,the dynamics ofˆu itself.4Application:the Kuramoto-Sivashinsky Equa-tionWe now apply the symmetry reduction procedure described above to a sample problem,the Kuramoto-Sivashinsky(KS)equationu t+uu x+u xx+νu xxxx=0(4.1) for0≤x≤2π,with periodic boundary conditions.Several versions of the KS equation have been studied—perhaps the most common form isvτ+4v xxxx+αv xx+12(v x)2=0,(4.2) 11which is equivalent to(4.1)withu=v xt=ατν=4/α.(4.3)The dynamics of(4.2),for a wide range of the parameterα,have been exten-sively investigated by Hyman et al[10],and traditional KLE and Galerkin pro-jection were applied to this form of the equation by Kirby and Armbruster[12]. One reason the form(4.2)is often preferred in the dynamics literature is that it has greater symmetry,since(4.2)is O(2)-equivariant,while(4.1)is only SO(2)-equivariant.However,despite the loss of symmetry,the form(4.1)has several nice features.First,it bears closer resemblance to other model problems of fluid dynamics,such as Burger’s equation.In addition,the spatial averageu m(t):=2πu(x,t)dxremains constant in time,while for the form(4.2)the corresponding mean quan-tity is not constant,and simulations of this equation typically add a correction term to keep the mean value from growing unbounded(see,e.g.,[10]).Here,we begin by computing an accurate numerical solution to(4.1),for several different values of the parameterν.Details of the computation are included in§4.1,along with the Galerkin ODEs and reconstruction equations for the KS equation.We then apply templatefitting to the data,compute the KL eigenfunctions from the shifted data,andfinally solve the low-order system, and compare solutions of the reduced system to those of the full system.4.1Numerical DetailsWefirst compute a highly accurate solution to(4.1)using a20-mode(com-plex)Fourier-Galerkin representation,and using a Crank-Nicholson scheme to advance the linear terms and2nd-order Adams-Bashforth to advance the non-linear terms.Because of the sensitive dependence on initial conditions,all computations were performed in double precision,and through a careful study of convergence in space and time,we determined that20modes and a timestep of10−4were sufficient to accurately compute a solution for the parameter values we investigated.We then shift the data,using templatefitting,and in our examples we take the template to be thefirst snapshot(i.e.,u0(x)=u(x,t0)).We subsequently subtract the meanfield of the shifted data¯u(x)=1t1−t0t1t0ˆu(x,t)dt(4.4)where t0and t1are the times of thefirst and last snapshots used,and then compute the standard KL eigenfunctionsϕn(x)for the shifted,zero-mean data. Because the computational data is given in terms of Fourier modes,the KL eigenfunctions are also computed in terms of their Fourier coefficients,using the method of snapshots(see,e.g.,Sirovich[20]).Once we have the spatial modesϕn(x),we may apply the Galerkin projec-tion discussed in§2.2.TakingD(u)=−uu x−u xx−νu xxxx(4.5)12and writing u as the Karhunen-Lo`e ve expansionu (x,t )=Nn =1a n (t )ϕn (x +c (t ))+¯u (x +c (t )),(4.6)the Galerkin projection of §2.2yields the system of ODEs˙a k =−Nm,n =1b kmn a m a n −N n =1c kn a n −d k −N n =1e kn a n ˙c −f k ˙c (4.7)for k =1,...,N ,whereb kmn = ϕn ϕ m ,ϕke kn = ϕ n ,ϕk c kn = ¯u ϕ n +¯u ϕn +ϕ n +νϕ n ,ϕkf k = ¯u ,ϕkd k = ¯u ¯u +¯u +ν¯u ,ϕkare constants which may be computed before solving (4.7).The derivatives inthese coefficients may be computed exactly (without finite differencing),sincethe KL modes,mean field,and template are all known in terms of their Fouriercoefficients.To close this system,we use the reconstruction equation (2.16),which takes the form ˙c =− N m,n =1p mn a m a n +N n =1q n a n +r N n =1s n a n +t (4.8)wherep mn = ϕn ϕ m ,u 0s n = ϕ n ,u 0q n = ¯u ϕ n +¯u ϕn +ϕ n +νϕ n ,u 0 t = ¯u ,u 0r = ¯u ¯u +¯u +ν¯u ,u 0 .We solve this reduced system using a 4–5th order variable-timestep Runge-Kutta method,with an error tolerance of 10−6,and compare the solution ofthe reduced system to the solution of the full system,obtained from the 20-complex-mode Fourier-Galerkin procedure.4.2Full Simulations and Template FittingWe study numerical solutions of the KS equation for two different values of theparameter:α=84.25and α=87,where ν=4/αis the parameter in (4.1).This regime has been studied extensively in [10],and low-order models werederived in [12].For 72<α<89there exists a strange 2fixed point which isglobally attracting.Solutions in the vicinity of the fixed point consist of beatingwaves,which are stationary for α<86and traveling for α>86.Figure 2shows the a contour plot of the beating wave for α=84.25.Thecontour levels for all plots are between −10and 10,equally spaced at intervalsof 5.0.Also shown is the solution after template fitting has been performed (i.e.,the left plot shows u (x,t ),and the right plot shows ˆu (x,t )=u (x −c,t )).Asstated earlier,in all cases the template u 0was chosen to be the first snapshot.2As coined in [10],this fixed point is called “strange”because it is not a cellular state,and has a broad Fourier spectrum.This should not be confused with the notion of a strange (i.e.,chaotic)attractor encountered in nonlinear ODEs.13。

相关文档
最新文档