2013年山东高中数学会考复习必背知识点必修1-5

合集下载

高中数学必修一至必修五知识点总结(最新最全)

高中数学必修一至必修五知识点总结(最新最全)

⾼中数学必修⼀⾄必修五知识点总结(最新最全)必修1第⼀章集合与函数概念⼀、集合有关概念1、集合的含义:某些指定的对象集在⼀起就成为⼀个集合,其中每⼀个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的⽆序性⾮负整数集(即⾃然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常⽤⼩写的拉丁字母表⽰,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA⼆、集合间的基本关系任何⼀个集合是它本⾝的⼦集。

AA②真⼦集:如果AB,且BA那就说集合A是集合B的真⼦集,记作AB(或BA)3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的⼦集,空集是任何⾮空集合的真⼦集。

三、集合的运算1.交集的定义:⼀般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.(即找公共部分)记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:⼀般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

(即A和B中所有的元素)记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.4、全集与补集(1)补集:设S是⼀个集合,A是S的⼀个⼦集(即),由S中所有不属于A的元素组成的集合,叫做S中⼦集A的补集(或余集)(即除去A剩下的元素组成的集合)四、函数的有关概念定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次⽅根的被开⽅数不⼩于零;(3)对数式的真数必须⼤于零;(4)指数、对数式的底必须⼤于零且不等于1.(5)如果函数是由⼀些基本函数通过四则运算结合⽽成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(⼜注意:求出不等式组的解集即为函数的定义域。

高中数学必修1-5-知识点总汇+公式大全

高中数学必修1-5-知识点总汇+公式大全

数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。

记作A B ⊆真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 AB交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为AB补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数 1、幂的运算法则:(1)a m • a n = a m + n ,(2)n m n m a a a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n m na a =(9)m n m naa 1=-2、根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)alog a N= N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N = aNb b log log(10)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 …)2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .例如: y = x 2 21x x y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。

2013年山东省高中数学会考复习必背知识点

2013年山东省高中数学会考复习必背知识点

高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔= 第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a n a log log =,b mnb a n a m log log =。

第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;)(3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 4、同角三角函数基本关系式:1cos sin 22=+αα αααc o ss i nt a n =5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2t a n1t a n 22t a n -= 212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量的模||:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,)(=-+(4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤)(2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 一正、二定、三相等 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0; 第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --= 2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率BA k -=,y 轴截距为B C-3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线1、椭圆标准方程:)0(12222>>=+b a by a x ,半焦距c :222b a c -= ,离心率e 的范围:10<<e .2、双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距c :222b a c +=,离心率e 的范围:1>e渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p;px y 22-=:准线方程2px =焦点坐标)0,2(p - py x 22=:准线方程2p y -=焦点坐标)2,0(p;py x 22-=:准线方程2p y =焦点坐标)2,0(p - 第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 3、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =。

高中数学必修1-5_知识点总汇+公式大全

高中数学必修1-5_知识点总汇+公式大全

数学必修 1-5 常用公式及结论必修 1: 一、集合 1、含义与表示: ( 1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 ( 3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ,都有 x B ,则称 A 是 B 的子集。

记作 AB真子集:若 A 是 B 的子集,且在B 中至少存在一个元素不属于A ,则 A 是B 的真子集,记作 AB 集合相等:若:A B,BA ,则 AB3. 元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B 交集:由集合 A 和集合 B 中的公共元素组成的集合叫交集,记为 A B补集:在全集 U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C U A5.集合 { a 1, a 2 , , a n } 的子集个数共有 2n个;真子集有 2n–1 个;非空子集有 2n–1 个;6. 常用数集:自然数集: N 正整数集: N *整数集: Z有理数集: Q 实数集: R二、函数的奇偶性1、定义: 奇函数<=> f (–x ) = –f ( x ) ,偶函数<=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;( 2)偶函数的图象关于 y 轴成轴对称图形;( 3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;( 4)如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D 的函数 f ( x ),若任意的 x 1, x 2∈ D ,且 x 1 < x 2 ① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) –f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 )<=> f ( x 1 ) –f ( x 2 ) > 0<=> f ( x )是减函数2、复合函数的单调性 : 同增异减三、二次函数 y = ax2+bx + c ( a 0 )的性质b 4ac b2b 4ac b 21、顶点坐标公式:,, 对称轴: x,最大(小)值:2a4a2a4a2. 二次函数的解析式的三种形式(1) 一般式 f ( x) ax2bx c(a 0) ; (2) 顶点式 f (x) a( x h)2k(a 0) ;(3) 两根式f ( x) a( x x 1 )( x x 2 )(a0) .四、指数与指数函数1、幂的运算法则:(1) a m ? a n = am + n,( 2) amanam n,( 3) ( a m ) n = am n( 4)( ab ) n = a n ? bnnnn(5)a a n( 6)a 0= 1 ( a ≠0)(7) a n1 (8) a m ma n( 9) am1bbnanma n2、根式的性质( 1) ( na )na .( 2)当 n 为奇数时, nana ; 当 n 为偶数时, n an| a | a, a 0 .a,a 04、指数函数 y = ax(a > 0 且 a ≠ 1) 的性质:(1)定义域: R ; 值域: (0,+∞)( 2)图象过定点( 0,1)YYa > 10 < a < 111XX5. 指数式与对数式的互化: log a N ba bN (a0, a 1, N 0) .五、对数与对数函数1 对数的运算法则:(1) a b= N <=> b = loga N ( 2)log a 1 = 0( 3) log a a = 1( 4) log a a b= b ( 5) a loga N= N(6) log a (MN) = log a M + log a NM( 7) log a () = log a M -- log a NN(8) log a N blog b N = b log a N (9)换底公式: log a N =alog b(10)推论log a m b n nlog a b ( a 0 ,且 a 1 , m, n 0 ,且 m 1, n 1, N 0 ). m1( 12)常用对数: lg N = log 10 N(13)自然对数:ln A = log e A (11)log a N =log N a(其中 e = 2.71828, )2、对数函数 y = log a x (a > 0 且 a≠ 1) 的性质:(1)定义域: ( 0 , +∞) ;值域:R ( 2)图象过定点(1,0)Ya >1 Y0 < a < 101 X1 X六、幂函数 y = x a的图象 : (1)根据 a 的取值画出函数在第一象限的简图.a > 10 < a < 1 a < 011 x 1 例如: y = x2 y x x 2 yx七. 图象平移:若将函数y f ( x) 的图象右移a、上移 b 个单位,得到函数 y f (x a) b 的图象;规律:左加右减,上加下减八. 平均增长率的问题如果原来产值的基础数为N,平均增长率为p ,则对于时间x的总产值y ,有1( ) x.y N p九、函数的零点: 1. 定义:对于y f ( x) ,把使 f (x) 0 的X叫 y f (x) 的零点。

高中数学复习全册知识总结,必修1-5重点归纳,赶快背

高中数学复习全册知识总结,必修1-5重点归纳,赶快背

高中数学复习全册知识总结,必修1-5重点
归纳,赶快背
高中数学必修1-5重点归纳如下:
一、必修一:函数与导数
1、定义域,值域;函数的分类以及函数的性质判断;
2、延拓函数定义及延拓函数的图象;
3、定义导数,求解一次函数的导数,包括指数函数和对数函数的导数;
4、求极限,利用极限的运算求导数;
5、求多变量函数的偏导数,梯度和方向导数;
二、必修二:应用类函数几何
1、单调函数,偶函数,周期函数及其变换;
2、指数函数,对数函数及其变换;
3、不定积分,定积分,面积函数及其在定义域上的性质;
4、反函数及其图象;
三、必修三:统计与概率
1、实践统计,频率表;
2、概率的定义及其分类,概率的计算;
3、随机事件的相互独立性,正、多项式分布,正态分布;
四、必修四:空间初步
1、定义空间中的点,直线,平面;
2、平行线,平行平面,非平行线,空间的顶点;
3、空间的距离,空间的弦长,空间的体积;
4、垂心线,平面斜率,直线斜率,平面及直线的相交;
五、必修五:曲面与向量
1、曲线求法,勒让德定理;
2、向量的定义,向量的运算;
3、平行四边形,平行四边形内角和;
4、向量积,叉积及其共面与垂直;。

山东高中数学人教A版必修1至必修5基础知识汇总(新课改)

山东高中数学人教A版必修1至必修5基础知识汇总(新课改)

必修一 (一)集合1.集合的概念(1)集合是数学中的一个不加定义的原始概念,它是指某些指定对象的全体.集合中的每个对象叫做这个集合的元素,它具有三个性质,即确定性、无序性和互异性. (2)根据集合所含元素个数的多少,集合可分为有限集、无限集和空集;根据集合所含元素的性质,集合又可为点集、数集等.空集是不含任何元素的集合,用∅表示. (3)我们约定用N 表示自然数集,用*N 表示正整数集,用Z 表示整数集,用Q 表示有理数集,用R 表示实数集. (4)集合的表示方法有列举法、描述法和图示法(venn 图).2.集合间的基本关系 (1)集合与元素的关系表示元素和集合之间的关系,有属于“∈”和不属于“∉”两种情形.(2)集合与集合之间的关系集合与集合之间有包含、真包含、不包含、相等等几种关系.若有限集A 中有n 个元素,集合A 的子集个数为2n,非空子集的个数为21n-,真子集的个数为21n -,非空真子集的个数为22n-.3.集合的运算集合与集合之间有交、并、补集三种运算. 4.集合运算中两组常用的结论 (1)①()()()UU UA B A B =; ②()()()U U UA B A B =.(2)①A B A B A ⊆⇔=; ②A B A B B ⊆⇔=.(二)函数的概念(1)函数的定义设A ,B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x 在集合B 中都有唯一确定的数f (x )和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}()|f x x A ∈叫做函数的值域.值域是集合B 的子集.③·映射:设A ,B 是两个集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个元素在集合B 中都有唯一确定的元素和它对应,那么这样的对应就称为从集合A 到集合B 的映射,记作:f A B →.函数实际上是一种特殊的映射.而映射是一种特殊的对应:一对一,多对一.(2)函数的三要素:定义域、对应关系及值域称为函数的三要素.在函数的三要素中其决定性作用的是定义域及对应关系,定义域及对应关系确定了,这个函数就唯一确定了.(3)相等函数:定义域相同,并且对应关系完全一致的两个函数就称为相等函数. 2.函数的表示方法函数的表示方法主要有三种:解析法、图象法、列表法.分段函数:在定义域的不同部分上有不同的解析式,这样的函数称为分段函数.(三)函数单调性1.增函数、减函数 设函数()f x 的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.2.单调性、单调区间如果函数()y f x =在区间D 上是增函数或减函数,那么就说函数()y f x =在这一区间上具有(严格的)单调性,区间D 叫做()y f x =的单调区间. 3.利用定义判断(证明)函数单调性的一般步骤: ①设出自变量;②作差(商);③判号;④写出结论. 2.函数最值的几何意义是对应函数图像上点的纵坐标的最大值或最小值,即图像的最高点或最低点.3.函数的最值与求函数的值域从概念上看是不同的,函数值域的一些边界值不一定是函数值,函数的最值是函数值域中的一个值,函数取得最值时,一定有相应的x 值. 4.判断函数单调性的常见方法①定义法;②图象法;③导数法. ④ 5.求函数最值或值域的方法①单调性法;②配方法;③换元法;④判别式法;⑤图象法;⑥不等式法等.5.一些重要函数的单调性1y x x=+的单调区间:增区间(,1),(1,)-∞-+∞; 减区间(1,0),(0,1)-. ()0,0by ax a b x=+>>的单调区间:增区间(,)-∞+∞;减区间( (四)函数奇偶性1.奇偶性(1)奇函数、偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数.如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数.(2)奇偶性 如果函数()f x 是奇函数或偶函数,那么就说函数()f x 具有奇偶性.(3)奇函数、偶函数的性质①奇函数、偶函数的定义域皆关于原点对称(此条件是函数具有奇偶性的必要不充分条件); ②奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;③若奇函数()f x 在x =0处有定义,那么一定有(0)0f =.④在定义域的公共部分内,两个偶函数的和、差、积、商(分母不为零)仍是偶函数;两个奇函数的和、差仍是奇函数;奇数个奇函数的积为奇函数;偶数个奇函数的积为偶函数;一个奇函数与一个偶函数的积为奇函数;一个奇函数与一个偶函数(均不恒为零)的和与差既不是奇函数,也不是偶函数.⑤奇函数在关于原点对称的区间上具有相同的单调性,偶函数在关于原点对称的区间上具有相反的单调性.(五)基本函数:一次二次函数1. 函数(0)y kx b k =+≠叫做一次函数,它的定义域和值域皆为R2. 一次函数性质3. ①当k >0时,为增函数,当k <0时,为减函数;②当b =0时,函数(0)y kx k =≠为正比例函数;③直线y =kx +b 与x 轴的交点为(,0)(0)bk k-≠与y 轴的交点为(0,)b .3.二次函数的解析式的三种形式: ①一般式c bx ax x f ++=2)(; ②顶点式k h x a x f +-=2)()(;③零点式))(()(21x x x x a x f --=;4.二次函数的图象与性质 ①()222424b ac b f x ax bx c a x a a -⎛⎫=++=++⎪⎝⎭(0)a ≠的图象是一条抛物线,顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴方程为2bx a =-,当0a >时开口向上, 当0a <时开口向下;②()2400,0b ac ∆=->∆=∆<时,抛物线与x轴有2个(1个、无)交点. ③单调性:当0a >时,()f x 在(,]2ba-∞-减函数; 在(,)2ba-+∞上是增函数.0a <,相反. ④奇偶性:()0当时,为b f x =偶函数;()0当时,b f x ≠既不是奇函数也不是偶函数;(六)指数函数1.幂的有关概念 正整数指数幂:n aa aa =个n a ; 零指数幂:0a=1(0a ≠) ;负整数指数幂:pa-=1pa(0,a p N +≠∈); 正分数指数幂:m na=0,1a m n N n +>∈>、且);负分数指数幂:m na-=1m na(0,1am n N n +>∈>、且);0的正分数指数幂等于0,0的负分数指数幂无意义. 2.幂的运算法则(0,0,ab r s Q >>∈、)r s a a =r s a +;()r s a =rs a ;()r ab =r r a b3.指数函数图像及性质4.指数函数()x f x a =具有性质:()()()(),1(0,1)f x y f x f y f a a a +==>≠(七)对数函数1.定义:如果)1,0(≠>a aa 且的b 次幂等于N ,就是b a N=,那么数b称以a为底N 的对数,记作log a b N=,其中a 称对数的底,N 称真数.①以10为底的对数称常用对数,N 10log 记作Nlg ,②以无理数( 2.71828)e e =为底的对数称自然对数,N e log 记作N ln2.基本性质:①真数N 为正数(负数和零无对数), ②log 10a =,③log 1a a =, ④对数恒等式:log a N a N =.3.运算性质:如果,0,0,1,0>>≠>N M a a 则①log ()log log a a a MN M N=+;②log log log aa a MM N N=-; ③log log n aa M n M=.4.换底公式:log log log m a m NN a=(0,1,0,1,0),a a m m N >≠>≠>①log log 1a b b a ⋅=,②log log m n a a nb b m=. 5.对数函数的图像与性质(八)幂函数:,y x =2y x =3,y x =1y x=12y x =的图像1.当0a>时,幂函数()y x R αα=∈有下列性质:(1)图像都通过点(1,1);(2)在第一象限内,随x 的增大而增大; (3)在第一象限内,1α>时图像下凸,01α<<时图像上凸. (4)在第一象限内,过()1,1点后,图像向右上方无限伸展.2.当a<0时,幂函数()y x R αα=∈有下列性质:(1)图像都通过点(1,1);(2)在第一象限内,函数值随x 的增大而减小,图像是向下凸的;(3)在第一象限内,图像向上与y 轴无限地接近,向右与x 轴无限地接近; (4)在第一象限内,过()1,1点后,α越大,图像下落的速度越快.(九)函数图像变换1.平移变换 ⑴水平平移:()()0y f x a a =±> 的图象,可由()y f x = 的图象向左()+ 或向右()- 平移a 个单位而得到;⑵竖直平移:()()0y f x b b =±> 的图象可由()y f x = 的图象向上()+ 或向下()- 平移b 个单位而得到;注:对于左、右平移变换,往往容. ()y f x =- 与()y f x = 的图象关于y 轴对称; ()y f x =- 与()y f x = 的图象关于x 轴对称;()y f x =-- 与()y f x = 的图象关于原点对称; ()1y f x -= 与()y f x = 的图象关于直线y=x 对()y f x = 的图象可将()y f x = 的图象在x 轴下方的部分以x 轴为对称轴翻折上去,其余部分不变; ⑹()y f x = 的图象可将()y f x = ,()0x ≥ 的部分作出,再利用偶函数的图象关于y 轴对称,作出0x < 的部分.3.伸缩变换 ⑴()()0y Af x A => 的图象,可将()y f x = 图象上所有点的纵坐标变为原来的A 倍,横坐标不变而得到; ⑵()()0y f ax a => 的图象,可将()y f x = 图象上所有点的横坐标变为原来的1a,纵坐标不变而得到.(十)函数的应用1.函数零点的定义:对于函数()()(),0y f x x D f x =∈=使成立的_实数x _叫做函数()()y f x x D =∈的零点 .2.二分法定义:对于区间[],a b 上连续,且()()0f a f b < 的函数()y f x =,通过不断把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而得到零点近似值的方法,叫做二分法.注:该法一般求的是近似解.3.解函数应用题,一般可按以下四步进行. (1)阅读理解,认真审题. (2)引进数学符号,建立数学模型.(3)利用数学的方法将得到的常规数学问题给出解答,求得结果.(4)转译成具体问题做出回答.必修二(一)多面体和旋转体1.多面体和旋转体的概念(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱.(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.(4)圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.(5)圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.(6)圆台:①用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.②圆台还可以看成是以直角梯形的直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体.(7)球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.2.多面体和旋转体的面积和体积公式 (1)圆柱的侧面积:S=2πrl ;(2)圆锥的侧面积:S=πrl ;(3)圆台的侧面积:S =π(r+ r ′)l ; (4)球的表面积:24πV R =; (5)柱体的体积:V=Sh ; (6)锥体的体积:13V Sh =; (7)台体的体积:1()3V S S h '=; (8)球的体积:24π3V R =. (二)画法1.我们把光由一点向外散射形成的投影,叫做中心投影,中心投影的投影线交于一点.2.我们把在一束平行光线照射下形成的投影,叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.3.光线从几何体的前面向后面正投影,得到投影图叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图叫做几何体的侧视图;光线从几何体的上面向下面正投影,得到投影图叫做几何体的俯视图;几何体的正视图、侧视图和俯视图统称为几何体的三视图.一般地,一个几何体的侧视图和正视图高度一样,俯视图与正视图长度一样,侧视图与俯视图宽度一样.一般地,侧视图在正视图的右边,俯视图在正视图的下边.4.斜二测画法的步骤:(1)在已知图形中取互相垂直的x 轴和y 轴,两轴交于点O .画直观图时,把它们画成对应的x '轴与y '轴,两轴交于点O ',且使x O y '''∠=45°(或135°),它们确定的平面表示水平平面.(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段.(3)已知图形中平行于x 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的一半.(三)点线面位置关系1.四个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内;用符号表示为:A lB l A B l ααα∈∈∈∈⇒⊂,,且,;公理2 过不在一条直线上的三点,有且只有一个平面;公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;用符号表示为:P P l αβαβ∈∈⇒=,且;公理4 平行于一条直线的两条直线互相平行; 用符号表示为:m l n l m n ⇒∥,且∥∥; 2.异面直线(1)我们把不同在任何一个平面内的两条直线叫做异面直线.(2)空间两条直线的位置关系:⎧⎧⎪⎨⎨⎩⎪⎩ 直 线:同一平面内,有且只有一个公共点;共面直线 直 线:同一平面内,没有公共点; 直 线:不同在任何一个平面内,没有公共点.(3)已知两条异面直线a 、b ,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(4)定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.3.空间中直线与平面之间的位置关系: (1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点; (3)直线与平面平行——没有公共点;直线与平面相交或平行的情况统称为直线在平面外. 4.平面与平面之间的位置关系: (1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线.(四)平行问题1.定义:直线与平面没有公共点,则称此直线l 与平面α平面,记作l ∥α;2.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;用符号表示:a b a b a αβα⊄⊂⇒,,且∥∥. 2.直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;用符号表示:a a b a b αβαβ⊂=⇒∥,,∥.3.平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;用符号表示:a b a b P a b ββααβα⊂⊂=⇒,,,∥,∥∥.几个结论:①如果两个平面同垂直于一条直线,那么这两个平面平行;②平行于同一平面的两个平面平行;③如果一个平面内的两条相交直线都平行于另一个平面内的两条相交直线,那么这两个平面平行;4.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;且符号表示:a b a b αβαγβγ==⇒∥,,∥.5.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.用符号表示:a b a b αα⊥⊥⇒,∥.(五)垂直问题1.定义:如果直线l 和平面α内的所有直线都垂直,那么直线l 和平面α垂直,记作l ⊥α.直线l 叫做平面α的垂线,平面α叫做直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫做垂足.2.直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.用符号表示:l a b a b A a αααα⊥⊂⊂=⇒⊥,,,且.3.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.用符号表示:a b a b αα⊥⊥⇒,∥.4.平面与平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直;用符号表示:a a αβαβ⊂⊥⇒⊥,. 5.平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.用符号表示:l a a l a αβαβαβ⊥=⊂⊥⇒⊥,,,.几个结论:①如果两个相交平面同时垂直于第三个平面,那么它们的交线必垂直于第三个平面;②如果两个平面互相垂直,那么过第一个平面内的一点且垂直于第二个平面的直线,在第一个平面内.(六)角问题1.已知两条异面直线a 、b ,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).两异面直线所成角范围02π⎛⎤⎥⎝⎦,.2.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.直线和平面所成角范围02π⎡⎤⎢⎥⎣⎦,.3.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.在二面角α-l -β的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.二面角的大小可以用它的平面角来衡量.平面角是直角的二面角叫做直二面角.二面角范围[0]π,.(七)直线的概念与方程1、直线倾斜角的概念:当直线l 与x 轴相交时,我们取x 轴为基准, x 轴的正方向与直线l 向上的方向所成的角α叫做直线l 的倾斜角.并规定:直线l 与x 轴平行或重合时,它的倾斜角为0.直线的倾斜角的取值范围是[)180,0.2、直线斜率的概念:把一条直线倾斜角的正切值叫做这条直线的斜率,斜率常用小写字母k 表示.直线倾斜角α与斜率k 的关系式为αtan =k.当k=0时,直线平行于x 轴或者与x 轴重合;当k>0时,直线的倾斜角为锐角;当k<0时,直线的倾斜角为钝角;倾斜角为90的直线没有斜率.3、两点斜率公式 :直线上两点A(1x ,1y ),B(2x ,2y ),当1x =2x 时,直线的斜率不存在,当1x ≠2x 时,直线的斜率为1212x x y y k--=.4、直线方程的点斜式:设直线l 经过点),(000y x P ,且斜率为k ,则方程)(00x x k y y -=-称为直线方程的点斜式.当直线的斜率不存在时,不能够用点斜式来表示,直线方程此时为0x x=。

高中数学必修1-5知识点归纳

高中数学必修1-5知识点归纳

必修1数学知识点§1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

高中数学必修1-5知识点归纳及公式大全

高中数学必修1-5知识点归纳及公式大全

必修 1 数学知识点会合间的基本运算1 、 一般地,由全部属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与B 的并集.记作: A B .2 、 一般地,由属于会合 A且属于会合 B 的全部元素构成的会合,称为A 与B 的交集 .记作: AB子集:对随意 x A ,都有 xB ,则称 A 是 B 的子集。

记作 A B 真子集:若 A 是 B 的子集,且在 B 中起码存在一个元素不属于 A ,则 A 是 B 的真子集,记作 AB 会合相等:若:AB, BA ,则A B自然数集: N 正整数集: N *整数集: Z 有理数集: Q 实数集: R奇偶性1 、 f x f x ,那么就称函数 fx 为偶函数 .偶函数图象对于 y 轴对称 .2 、 fxf x ,那么就称函数f x 为奇函数 .奇函数图象对于原点对称 .第二章、基本初等函数(Ⅰ) §、指数与指数幂的运算1、 一般地,假如 x na ,那么 x 叫做 a 的 n 次方根。

此中 n 1,n N .2、 当 n 为奇数时, n a na ;当 n 为偶数时, n a n a .n1⑴ a mma n am n N *m;⑵n0 ;0, ,,1aan n⑴ arasar sa 0, r , s Q ;⑵ a rsarsa 0, r , s Q ⑶ ab ra rb ra 0,b 0, r Q .§、指数函数及其性质1、 记着图象: ya x a 0, a1复合函数的单一性 : 同增异减三、二次函数 y = ax 2 +bx + c ( a0 )的性质1、极点坐标公式:b , 4ac b 2 , 对称轴:xb ,最大(小)值: 4ac b 22a 4a2a 4a2.二次函数的分析式的三种形式 (1)一般式 (3)两根式f ( x) ax 2 bx c(a 0) ; (2)极点式 f ( x) a( x h)2 k (a 0) ; f ( x) a( x x 1 )( x x 2 )(a 0) .§、对数与对数运算1、 a xN log a N x ;2、 a log a Na .3、 log a 1 0 ,log a a 1.4、当 a0, a 1, M0, N0 时:⑴log a MNlog a M log a N ;⑵ log a M log a M log a N ;⑶ log a M n nlog a M .N换底公式:log c b1log a b a 0, a 1, c 0, c 1, b 0 .;log a b a 0, a 1, b 0, b 1 .log c a log b a记着图象:y log a x a 0, a1§、幂函数1、几种幂函数的图象:1、幂的运算法例:( 1) a m a n = a m + n,( 2)a m a n a m n,(3)( a m)n= a m n(4)( ab )n= a n b nna n n n1( 5)a(6) a 0= 1 ( a ≠0)()an1() a m m a n()amb b n7a n89m a n必修 2 数学知识点⑴圆柱侧面积;S侧面 2 r l⑵圆锥侧面积:S侧面r l⑶圆台侧面积: S侧面r l R l⑷体积公式:V柱体S h; V锥体1S h ;V台体1S上S上S下S下 h 33⑸球的表面积和体积:S球 4 R2,V球4R3. 3第三章:直线与方程y2y1 1、倾斜角与斜率:k tanx2x12、直线方程:⑴点斜式:y y0k x x0⑵斜截式:y kx b⑶两点式:y y1x x1 y2y1x2x1⑷一般式:Ax By C0⑴ l 1 // l 2A1B2A2B1 ;B1C2B2 C1⑵ l1和 l 2订交A1B2A2B1;⑶ l1和 l 2重合A1 B2A2B1 ;B1C2B2 C1⑷ l 1l 2A1 A2B1B20 .5、两点间距离公式:P1 P2x2x12y2y12 6、点到直线距离公式:3、对于直线:d Ax0By0CA2B2l1 : y k1x b1 , l 2 : y k2 x b2有:⑴ l 1 // l 2k1k 2 ;b1b2⑵ l 1和 l 2订交k1k2⑶ l 1和 l 2重合k1k 2 ;b1b2⑷ l 1 l 2k1 k21.4、对于直线:l1 : A1x B1 y C10,有:l 2 : A2 x B2 y C20第四章:圆与方程1、圆的方程:⑴标准方程:x a 2y b 2r 2⑵一般方程: x 2y 2Dx Ey F0.2、两圆地点关系: d O1O2⑴外离: d R r ;⑵外切: d R r ;⑶订交: R r d R r ;⑷内切: d R r ;⑸内含: d R r .3、空间中两点间距离公式:P1 P2x2x12y2y12z2z12必修 4 数学知识点第一章、三角函数2、l.§、随意角r1、正角、负角、零角、象限角的观点.3、弧长公式:l n RR .2、与角终边同样的角的会合:1802k , k Z .n R 21 lR .4、扇形面积公式:S§、弧度制3602 1、把长度等于半径长的弧所对的圆心角叫做 1 弧度§、随意角的三角函数1、设是一个随意角,它的终边与单位圆交于点P x, y,那么:2、设点A x0, y0为角终边上随意一点,那么:(设 r x02y02)siny 0, cosx 0 , tan y0 .rrx 03、 sin , cos , tan在四个象限的符号和三角函数线的画法.4、 引诱公式一:sin 2k sin ,§、同角三角函数的基本关系式cos 2k cos , (此中: k Z )、 平方关系: sin 22tan2ktan .1cos1.sin2 、 商数关系: tan.cos§、三角函数的引诱公式 1 、 引诱公式二:sin sin , coscos ,tantan .2 、引诱公式三:§、两角和与差的正弦、余弦、正切公式1 、 coscos cos sin sin2 、 sinsin cos cos sin3 、 sin sin coscos sin4 、 tan tan tan .1 tan tan5 、 tantan tan .1 tan tan§、二倍角的正弦、余弦、正切公式1 、 sin 22 sin cos,变形: sincos 12 sin 2 .2 、 cos2cos 2 sin 22 cos 211 2sin 2,变形 1: cos 21 cos2 ,2 变形 2: sin21 cos2 .2 3 、 tan 22 tan.1 tan2sin sin ,cos cos ,tantan .3、引诱公式四:sin sin ,cos cos ,tantan .4、引诱公式五:sincos ,2cossin .25、引诱公式六:sincos ,2cossin .2必修 5 数学知识点函数正弦函数余弦函数正切函数图象定义域R R{x| x ≠ +k π,k∈ Z}2值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数增区间 [- π +2kπ , 2k π]减区间 [2k π ,π+2k π ]增区间 [-+2kπ ,( k ∈Z )增区间+2kπ ]单一性22(-+k π , +k π) 3减区间 [+2kπ ]22 +2kπ ,( k∈ Z ) 22对称轴x =+ k π( k∈ Z )x = k π ( k ∈ Z )无2对称中( kπ ,0 ) ( k ∈ Z )(+ k π ,0 )( k ∈ Z )( k ,0 ) ( k ∈ Z )心22二、平面向量1、向量的模计算公式:( 1)向量法: | a | =a a2 a;( 2)坐标法:设a =( x,y),则 |a | =x 2y 2 2、单位向量的计算公式:( 1)与向量a =( x,y)同向的单位向量是x,y;x2x2y 2y 2( 2)与向量a =( x,y)反向的单位向量是x,y;x2y 2x 2y 23、平行向量规定:零向量与任一直量平行。

高中数学必修一至必修五知识点总结完整版

高中数学必修一至必修五知识点总结完整版

高中数学必修1知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作 aA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。

山东省高中数学会考复习必背知识点

山东省高中数学会考复习必背知识点

高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U 第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a na log log =,b mnb a n a m log log =。

第三章 数列1、数列的前n 项和:n n a a a a S ++++=Λ321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=ο180弧度,1弧度'1857)180(οο≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a(4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 一正、二定、三相等 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0; 第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率BA k -=,y 轴截距为B C-3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线1、椭圆标准方程:)0(12222>>=+b a b y a x ,半焦距c :222b a c -= ,离心率e 的范围:10<<e .2、双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距c :222b a c +=,离心率e 的范围:1>e渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p ;px y 22-=:准线方程2px =焦点坐标)0,2(p - py x 22=:准线方程2p y -=焦点坐标)2,0(p;py x 22-=:准线方程2p y =焦点坐标)2,0(p - 第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 3、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =。

高中数学必修1—必修5知识点总结

高中数学必修1—必修5知识点总结

∪B
x ∈ B}
{x | x ∈ U , 且x ∉ A}
A∩ A = A A∩ ∅ = ∅ (3) A ∩ B ⊆ A A∩ B ⊆ B (1) A ∪ A = A (2) A ∪ ∅ = A (3) A ∪ B ⊇ A A∪ B ⊇ B
(1) (2) 1 A ∩ (ð U A) = ∅
U
A
B
A
B
2 A ∪ (ð U A) = U
(3)集合与元素间的关系 对象 a 与集合
M 的关系是 a ∈ M ,或者 a ∉ M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{
x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合 叫做空集( ∅ ).

中都有唯一确定的数 叫做集合
f ( x ) 和它对应, 那么这样的对应 (包括集合 A , B 以及 A 到 B 的对应法则 f
A 到 B 的一个函数,记作 f : A → B .
②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法 ①设 a , b 是两个实数,且 a
(7)已知集合
n
A 有 n (n ≥ 1) 个元素,则它有 2 n 个子集,它有 2 n −1 个真子集,它有 2 n −1 个非空子集,
它有 2
− 2 非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集 意义 性质 示意图

2013年高中数学学业水平考试知识点(必修1-5)太经典了要点

2013年高中数学学业水平考试知识点(必修1-5)太经典了要点

2013年高中数学学业水平测试知识点必修一一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。

记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。

1、集合{}n a a a ,...,,21的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子有2n–2个2、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x f y -=的定义域;函数图象关于y=x 对称。

3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>. 4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。

5、奇函数:是()()f x f x -=-,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x -=,函数图象关于y 轴对称。

6、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x 且叫做指数函数。

(2)指数函数(0,1)x y a a a =>≠当 01a <<为减函数,当 1a >为增函数; ①rsr sa a a+⋅=;②()r s rs a a =;③()(0,0,,)r r r ab a b a b r s Q =>>∈。

(3)指数函数的图象和性质7、对数函数的含义及其运算性质:(1)函数log (0,1)a y x a a =>≠叫对数函数。

(2)对数函数log (0,1)a y x a a =>≠当 01a <<为减函数,当 1a >为增函数;①负数和零没有对数;②1的对数等于0 :01log =a ;③底真相同的对数等于1:1log =a a , (3)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:①N M MN a a a log log log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a n a ∈=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n2个 第二章 函数 1、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a,③、底的对数等于1:1log=a a,④、积的对数:N M MN aaalog log )(log+=, 商的对数:N M NMaaalogloglog-=,幂的对数:M n Manaloglog =;b mn b a namlog log=,第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n n n2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

(2)通项公式:11-=n n qa a (其中:首项是1a ,公比是q )(3)前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a q q a a q na S nn n第四章 三角函数 1弧度制:(1)π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yr xr yx xy rx ry ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin22=+αα αααc o ss i n t a n =1c o t t a n =αα5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααt a n )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααt a n )t a n (c o s )c o s (s i n )s i n (-=-=--=- 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a bx b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)α2S : αααcos sin 22sin = α2C : ααα22sincos 2cos -= 1cos 2sin 2122-=-=ααα2T : ααα2t a n 1t a n 22t a n -=(2)、降次公式:(多用于研究性质)ααα2sin 21cos sin =212cos 2122cos 1sin2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα 9、三角函数:ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 21sin 21sin 21===∆(2)正弦定理:sin2sin 2,sin 2,2sin sin sin R c B R b A R a R Cc Bb Aa ======, 边用角表示:(3)余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a cBac c a b A bc c b a +-+=-+=⋅-+=⋅-+=求角: abcbaC acbcaB bcacbA 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量1、坐标运算:(1)设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→ 数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a(4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b aab +≤)(2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 一正、二定、三相等2、解指数、对数不等式的方法:同底法,同时对数的真数大于0; 第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率BA k -=,y 轴截距为BC -3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200BACBy Ax d +++=(直线方程必须化为一般式)6、圆的方程: (2)圆的一般方程022=++++F Ey Dx y x0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F ED42122-+的圆;第九章 直线 平面 简单的几何体 1、长方体的对角线长2222c b a l++=;正方体的对角线长a l 3=2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;3、球的体积公式:334 RV π=,球的表面积公式:24 RS π=4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十一章:概率:1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0) 2、等可能性事件的概率:()m P A n=.3、互斥事件有一个发生的概率:A ,B 互斥: P(A +B)=P(A)+P(B);A 、B 对立:P (A )+ P(B)=14、独立事件同时发生的概率:独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 次独立重复试验中某事件恰好发生k 次的概率()(1).kkn kn n P k C P P -=-。

相关文档
最新文档