2.1.1曲线与方程练习题

合集下载

曲线与方程练习题

曲线与方程练习题

曲线与方程练习题一、填空题1. 向上凹曲线的二次函数方程一般可以表示为 ________。

2. 直线 y = a 与 x 轴的交点为 _________。

3. 曲线 y = x^3 - 2x^2 - 3x + 2 的对称轴方程为 ________。

4. |a| > 1 时,二次函数 y = ax^2 + bx + c 的图像开口向 _________。

5. 一条直线 y = mx + c 与双曲线 xy = k (k > 0) 相交于两个点时,m 的取值范围为 ________。

6. 一条直线 y = kx 与椭圆 (x^2)/(a^2) + (y^2)/(b^2) = 1 相切于点 (x1, y1),则 k 的取值范围为 ________。

二、选择题1. 曲线 y = (x + 2)^2 - 3 的对称轴为:A. x = 2B. y = 2C. x = -2D. y = -22. 函数 y = (x - 3)(x - 1) 的图像与 x 轴的交点为:A. (3, 0) 和 (1, 0)B. (3, 0) 和 (-1, 0)C. (0, 3) 和 (0, 1)D. (0, 3) 和 (0, -1)3. 下列函数中,是抛物线的是:A. y = x^3 - 2x + 6B. y = 3x^2 + 4x - 1C. y = x^2 / 2 + 5D. y = 2x + 14. 随着 a 的增大,函数 y = ax^2 的图像:A. 变宽B. 变窄C. 上移D. 下移5. 一次函数 y = mx + c 和二次函数 y = ax^2 相交于两个交点时,m 和 a 的关系为:A. m = aB. m > aC. m < aD. 无法确定三、解答题1. 求下列函数的对称轴、顶点和图像开口的方向:a) y = 2x^2 + 4x - 3b) y = -3x^2 + 6x - 12. 给定函数 y = x^3 + ax^2 + bx + 2,已知该函数的图像过点 (-1, 2),x = 2 和 y = 4 和曲线的对称轴平行,则 a 和 b 的值分别为多少?3. 已知一条直线将椭圆 (x - 3)^2/4 + (y - 4)^2/9 = 1 和双曲线 (x -1)^2/9 - (y - 5)^2/4 = 1 分成两部分,求此直线方程。

(完整版)双曲线基础练习题

(完整版)双曲线基础练习题

(完整版)双曲线基础练习题
1. 引言
该练题旨在帮助读者巩固并提高对双曲线的理解。

通过一系列的基础练题,读者将能够熟悉双曲线的基本特征、图像以及相关的数学概念。

2. 练题
2.1 双曲线图像的分析
给定下列双曲线的方程,请绘制出相应的图像,然后回答相关问题。

1. 双曲线方程:$y = \frac{1}{x}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。

- 该双曲线是否对称于原点?解释原因。

2. 双曲线方程:$y = \frac{2}{x+1}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。

- 该双曲线是否对称于原点?解释原因。

2.2 数学概念的应用
回答下列问题,注意要用双曲线的相关概念来解释答案。

1. 为什么双曲线的渐近线可以帮助我们理解双曲线图像的特征?
2. 双曲线的离心率是什么?如何确定一个双曲线的离心率?
3. 通过改变双曲线方程中的参数,如何调整双曲线的形状?
3. 结论
通过完成上述练习题,读者应该能够更深入地理解双曲线的基
本概念和性质。

这些练习题不仅帮助读者熟悉双曲线的图像和方程,还能够加深对双曲线的数学概念的理解。

继续探索和练习双曲线,
将有助于读者在更高级的数学领域中应用这些概念。

【重点推荐】2019高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1

【重点推荐】2019高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1

2.1.1 椭圆及其标准方程[基础达标]1.椭圆2x 2+y 2=8的焦点坐标是( ) A .(±2,0) B .(0,±2) C .(±23,0) D .(0,±23)解析:选B.椭圆标准方程为x 24+y 28=1,∴椭圆焦点在y 轴上,且c 2=8-4=4, ∴焦点坐标为(0,±2).2.椭圆x 225+y 2m=1的一个焦点坐标为(3,0),那么m 的值为( )A .-16B .-4C .16D .4解析:选C.焦点在x 轴且c =3,由25=m +9,∴m =16.3.已知方程x 2k +1+y23-k=1(k∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是( )A .k <1或k >3B .1<k <3C .k >1D .k <3 解析:选B.由题意知k +1>3-k >0,∴1<k <3.4.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆的方程是( )A.x 215+y 210=1B.x 2225+y 2100=1C.x 210+y 215=1 D.x 2100+y 2225=1 解析:选A.c 2=9-4=5,由题意可设所求椭圆方程为x 2b 2+5+y 2b 2=1,代入(-3,2)得9b 2+5+4b 2=1,∴b 2=10,椭圆方程为x 215+y 210=1. 5.如图,椭圆x 225+y 29=1上的点M 到焦点F 1的距离为2,N 为MF 1的中点,则|ON |(O 为坐标原点)的值为( )A .8B .2C .4 D.32解析:选C.由椭圆定义知|MF 1|+|MF 2|=2a =10,又|MF 1|=2,∴|MF 2|=8,由于N 为MF 1的中点,ON 为中位线,∴|ON |=12|MF 2|=4.6.已知两定点F 1(-1,0),F 2(1,0),且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹方程是________.解析:由题意得:|PF 1|+|PF 2|=2|F 1F 2|=4>|F 1F 2|=2, ∴动点P 是以F 1、F 2为焦点的椭圆,且a =2,c =1,∴b 2=a 2-c 2=3,轨迹方程为x 24+y 23=1.答案:x 24+y 23=17.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析:由于|AB |+|F 2A |+|F 2B |=4a =20,∴|AB |=20-(|F 2A |+|F 2B |)=20-12=8. 答案:88.若方程x 2k -2+y 25-k=1表示椭圆,则实数k 的取值范围是________.解析:由方程x 2k -2+y 25-k=1表示椭圆,可得⎩⎪⎨⎪⎧k -2>0,5-k >0,k -2≠5-k ,解得2<k <5且k ≠72.即当2<k <72或72<k <5时,方程x 2k -2+y 25-k=1表示椭圆.答案:(2,72)∪(72,5)9.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,(1)PF 1⊥PF 2,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值. (2)当∠F 1PF 2为钝角时,|PF 2|的取值范围.解:(1)∵PF 1⊥PF 2,∴∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2.∴⎩⎪⎨⎪⎧20=|PF 1|2+|PF 2|2,|PF 1|+|PF 2|=6, 解得|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2.(2)设|PF 1|=r 1,|PF 2|=r 2,则r 1+r 2=6. ∵∠F 1PF 2为钝角,∴cos ∠F 1PF 2<0.又∵cos ∠F 1PF 2=r 21+r 22-202r 1r 2<0,∴r 21+r 22<20,∴r 1r 2>8,∴(6-r 2)r 2>8,∴2<r 2<4.即|PF 2|的取值范围是(2,4).10.(1)等腰直角三角形ABC 中,斜边BC 长为42,一个椭圆以C 为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过A ,B 两点,求该椭圆的标准方程.(2)在△ABC 中, ∠A ,∠B ,∠C 所对的三边分别是a ,b ,c ,且|BC |=2,求满足b ,a ,c 成等差数列且c >a >b 的顶点A 的轨迹.解:(1)如图,设椭圆的方程为x 2a2+y 2b2=1(a >b >0),有|AM |+|AC |=2a ,|BM |+|BC |=2a , 两式相加,得8+42=4a ,∴a =2+2,|AM |=2a -|AC |=4+22-4=2 2.在直角三角形AMC 中,∵|MC |2=|AM |2+|AC |2=8+16=24, ∴c 2=6,b 2=4 2. 故所求椭圆的标准方程为x 26+42+y 242=1.(2)由已知条件可得b +c =2a ,则|AC |+|AB |=2|BC |=4>|BC |,结合椭圆的定义知点A 在以B ,C 为焦点的一个椭圆上,且椭圆的焦距为2.以BC 所在的直线为x 轴,BC 的中点为原点O ,建立平面直角坐标系,如图所示.设顶点A 所在的椭圆方程为x 2m 2+y 2n 2=1(m >n >0),则m =2,n 2=22-12=3,从而椭圆方程为x 24+y 23=1.又c >a >b 且A 是△ABC 的顶点,结合图形,易知x >0,y ≠0.故顶点A 的轨迹是椭圆x 24+y 23=1的右半部分(x >0,y ≠0).[能力提升]1.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P关于y 轴对称,O 为坐标原点,若BP →=2PA →,且OQ →·AB →=1,则P 点的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A.由题意Q 坐标为(-x ,y )(x >0,y >0),设A (x 0,0),B (0,y 0), 由BP →=2PA →得(x ,y -y 0)=2(x 0-x ,-y ),∴⎩⎪⎨⎪⎧x =2x 0-2xy -y 0=-2y ,即⎩⎪⎨⎪⎧y 0=3y x 0=32x . 由OQ →·AB →=1得(-x ,y )·(-x 0,y 0)=1,∴x 0x +y 0y =1,把⎩⎪⎨⎪⎧y 0=3y x 0=32x 代入上述得32x 2+3y 2=1(x >0,y >0).2.设α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.解析:方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.∵椭圆的焦点在y 轴上,∴1cos α>1sin α>0.又∵α∈(0,π2),∴sin α>cos α>0, ∴π4<α<π2. 答案:(π4,π2)3.已知F 1,F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点.(1)若∠F 1PF 2=π3,求△F 1PF 2的面积;(2)求|PF 1|·|PF 2|的最大值.解:(1)设|PF 1|=m ,|PF 2|=n (m >0,n >0). 根据椭圆的定义,得m +n =20. 在△F 1PF 2中,由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos∠F 1PF 2=|F 1F 2|2,即m 2+n 2-2mn ·cos π3=122,∴m 2+n 2-mn =144,即(m +n )2-3mn =144.∴202-3mn =144,即mn =2563.又∵S △F 1PF 2=12|PF 1|·|PF 2|·sin∠F 1PF 2=12mn ·sin π3,∴S △F 1PF 2=12×2563×32=6433.(2)∵a =10,∴根据椭圆的定义,得|PF 1|+|PF 2|=20.∵|PF 1|+|PF 2|≥2|PF 1|·|PF 2|,∴|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=⎝ ⎛⎭⎪⎫2022=100,当且仅当|PF 1|=|PF 2|时,等号成立, ∴|PF 1|·|PF 2|的最大值是100.4.(2014·玉溪一中高二期末)已知F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,O 是坐标原点,过F 2作垂直于x 轴的直线MF 2交椭圆于M ,设|MF 2|=d .(1)证明:d ,b ,a 成等比数列;(2)若M 的坐标为()2,1,求椭圆C 的方程;(3)在(2)的椭圆中,过F 1的直线l 与椭圆C 交于A 、B 两点,若OA →·OB →=0,求直线l 的方程.解:(1)证明:由条件知M 点的坐标为()c ,y 0,其中|y 0|=d ,∴c 2a 2+d 2b2=1,d =b ·1-c 2a 2=b 2a ,∴d b =ba,即d ,b ,a 成等比数列. (2)由条件知c =2,d =1,∴⎩⎪⎨⎪⎧b 2=a ·1a 2=b 2+2,∴⎩⎨⎧a =2b =2,∴椭圆方程为x 24+y 22=1.(3)设点A (x 1,y 1)、B (x 2,y 2),当l ⊥x 轴时,A (-2,-1)、B (-2,1),所以OA →·OB →≠0. 设直线l 的方程为y =k (x +2),代入椭圆方程得(1+2k 2)x 2+42k 2x +4k 2-4=0.所以⎩⎪⎨⎪⎧x 1+x 2=-42k21+2k 2,x 1·x 2=4k 2-41+2k2,由OA →·OB →=0得x 1·x 2+y 1·y 2=0, x 1·x 2+k 2(x 1+2)(x 2+2)=(1+k 2)x 1·x 2+2k 2(x 1+x 2)+2k 2=0,代入得(1+k 2)(4k 2-4)1+2k 2-42k 2·2k 21+2k2+2k 2=0,解得k =± 2. 所以直线l 的方程为y =±2(x +2).。

课件3:2.1.1曲线与方程的概念

课件3:2.1.1曲线与方程的概念

曲线与方程
1.曲线的方程与方程的曲线的定义
在平面直角坐标系中,如果曲线C与方程F(x,y)=0 之间具有如下关系:
(1)曲线C上点的坐标都是方程F(x,y)=0的解;
(2)以方程F(x,y)=0的解为坐标的点都在曲线C 上.那么,曲线C叫做方程F(x,y)=0的曲线,方程 F(x,y)=0叫做曲线C的方程.
以上两点说明了圆上的点与方程x02+y02=r2的解之间有 一一对应关系.
我们知道,圆可以看成是一个动点M的运动轨迹,于 是在坐标平面上,当圆上一个动点M沿着该圆圆周运 动时,点M的坐标(x,y)随之点M的运动而变化, 点M运动的轨迹可以用方程x02+y02=r2来表达.
学习新知
一般地,一条曲线可以看成动点依某种条件运 动的轨迹,所以曲线的方程又常称为满足某种条件 的点的轨迹方程.
【答案】B 【解析】因为点在曲线上等价于点的坐标满足曲线方 程,因此把点的坐标代入方程逐一验证即可.
课堂训练 (3)已知两圆x2+y2-2x-3=0和x2+y2+6y-1=0, 求它们的公共弦所在的直线方程.
解:设经过两圆交点的圆系方程为
x2+y2-2x-3+λ(x2+y2+6y-1)=0,
当λ=-1时,方程为x+3y+1=0.该方程表示两圆公 共弦所在的直线方程.
3.用集合的特征性质描述曲线 如果曲线C的方程是F(x,y)=0,则M(x,y)∈C⇔ F(x,y)=0. 因此,方程F(x,y)=0可以作为描述曲线C的特征性 质.曲线C用集合的特征性质可描述为C={M(x, y)|F(x,y)=0}.
例题解析
例 已知两圆 C1:x2+y2+6x-16=0, C2:x2+y2-4x-5=0,

2.1曲线方程-人教A版高中数学选修2-1课时练习

2.1曲线方程-人教A版高中数学选修2-1课时练习

高二年级(数学)学科习题卷曲线方程 一、选择题:1.已知命题“曲线C 上的点的坐标是方程f (x ,y )=0的解”是正确的,则下列命题中正确的是( ) A .满足方程f (x ,y )=0的点都在曲线C 上 B .方程f (x ,y )=0是曲线C 的方程 C .方程f (x ,y )=0所表示的曲线不一定是C D .以上说法都正确2.方程(x 2-4)(y 2-4)=0表示的图形是 ( )A .两条直线B .四条直线C .两个点D .四个点3.方程(x 2-4)2+(y 2-4)2=0表示的图形是A .两个点B .四个点C .两条直线D .四条直线4.已知A (-1,0),B (1,0),C 为平面内的一动点,且满足||2||AC BC =,则点C 的轨迹方程为 ( )A .22610x y x +++=B .22610x y x +-+=C .2210103x y x +-+= D .2210103x y x +++=5.方程x +|y -1|=0表示的曲线是 ( )6.已知A (1,0),B (-1,0),动点M 满足|MA |-|MB |=2,则点M 的轨迹方程是( ) A .011()y x =-≤≤ B .0(1)y x =≥ C .1)0(y x =≤- D .0(||1)y x =≥7.已知A (-2,0)、B (2,0),△ABC 的面积为10,则顶点C 的轨迹是( )A .一个点B .两个点C .一条直线D .两条直线二、填空题:8.等腰三角形底边的两个顶点是B (2,1),C (0,-3),则另一顶点A 的轨迹方程是______________. 9.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足:4OP OA ⋅=,则动点P 的轨迹方程为______________.10.已知O 为坐标原点,动点M 在椭圆C :2215x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足5NP NM =,则点P 的轨迹方程为______________.三、解答题:11.已知A 、B 分别是直线y x =和y x =上的两个动点,线段AB 的长为P 是AB 的中点,求动点P 的轨迹C 的方程.12.已知点P (2,2),圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及POM △的面积.13.两个定点(2,2),(0,2)P Q -,长为2的线段AB 在直线y x =上移动,求直线PA ,QB 的交点M 的轨迹方程。

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

第二章圆锥曲线与方程2.1 曲线与方程*2.1.1 曲线与方程2.1.2 求曲线的方程基础过关练题组一曲线与方程的概念1.已知曲线C的方程为x3+x+y-1=0,则下列各点中在曲线C上的点是( )A.(0,0)B.(-1,3)C.(1,1)D.(-1,1)2.(2018天津耀华中学高二上学期月考)直线x-y=0与曲线xy=1的交点坐标是( )A.(1,1)B.(-1,-1)C.(1,1),(-1,-1)D.(0,0)3.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为( )A.π3 B.5π3C.π3或5π3D.π3或π64.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2√x”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件题组二 方程的曲线5.方程4x 2-y 2+6x-3y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y+3=0C.直线2x-y=0和直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=06.下列四个选项中,方程与曲线相符合的是( )7.方程|x|+|y|=1表示的曲线所围成图形的面积为 .题组三 求曲线的方程8.设A 为圆(x-1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则点P 的轨迹方程是( )A.(x-1)2+y 2=2B.(x-1)2+y 2=4C.y 2=2xD.y 2=-2x9.在平面直角坐标系中,O 为坐标原点,点A(1,0),B(2,2).若点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ),其中t∈R ,则点C 的轨迹方程为 .10.(2018湖南岳阳一中高二上学期期末)已知M 为直线l:2x-y+3=0上的一动点,A(4,2)为一定点,点P 在直线AM 上运动,且AP ⃗⃗⃗⃗⃗ =3PM ⃗⃗⃗⃗⃗⃗ ,求动点P 的轨迹方程.11.已知△ABC 中,AB=2,AC=√2BC. (1)求点C 的轨迹方程; (2)求△ABC 的面积的最大值.能力提升练一、选择题1.(2018海南海口一中高二上学期月考,★★☆)方程xy 2+x 2y=1所表示的曲线( )A.关于x 轴对称B.关于y 轴对称C.关于原点中心对称D.关于直线y=x 对称 2.(2020鄂东南九校高二期中联考,★★☆)方程(3x-y+1)(y-√1-x 2)=0表示的曲线为( ) A.一条线段和半个圆 B.一条线段和一个圆 C.一条直线和半个圆 D.两条线段3.(2020北京朝阳高三期末,★★☆)笛卡儿、牛顿都研究过方程(x-1)(x-2)(x-3)=xy,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;②该曲线关于原点对称;③该曲线不经过第三象限;④该曲线上有且只有三个点的横、纵坐标都是整数.其中正确的是( ) A.②③ B.①④ C.③ D.③④4.(2019江西南昌高三开学摸底考试,★★☆)在平面直角坐标系xOy 中,已知M(-1,2),N(1,0),动点P 满足|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN ⃗⃗⃗⃗⃗⃗ |,则动点P 的轨迹方程是( )A.y 2=4xB.x 2=4yC.y 2=-4xD.x 2=-4y5.(★★☆)方程x 2+y 2=1(xy<0)表示的曲线形状是( )6.(2018吉林长春五县期末,★★★)已知定点M(-3,0),N(2,0),若动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形的面积等于( )A.100π9 B.142π9C.10π3D.9π二、填空题7.(2020贵州贵阳高二期末,★★☆)以古希腊数学家阿波罗尼斯命名的阿波罗尼斯圆,是指到两定点的距离之比为常数λ(λ>0,λ≠1)的动点M的轨迹.已知A(-2,0),B(2,0),动点M满足|MA||MB|=√2,此时阿波罗尼斯圆的方程为.8.(2020北京房山高二期末,★★☆)已知曲线W的方程为|y|+x2-5x=0.①请写出曲线W的一条对称轴方程: ;②曲线W上的点的横坐标的取值范围是.三、解答题9.(2019贵州铜仁一中高二入学考试,★★☆)已知动点M到点A(-1,0)与点B(2,0)的距离之比为2∶1,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(5,-4)作曲线C的切线,求切线方程.10.(2019上海七宝中学高二期末,★★★)在平面直角坐标系xOy中,曲线Γ:x2+y2=1(y≥0).(1)如图1,点B为曲线Γ上的动点,点A(2,0),求线段AB的中点的轨迹方程;(2)如图2,点B为曲线Γ上的动点,点A(2,0),将△OAB绕点A顺时针旋转90°得到△DAC,求线段OC长度的最大值.答案全解全析 基础过关练1.B 点P(x 0,y 0)在曲线f(x,y)=0上⇔f(x 0,y 0)=0.经验证知点(-1,3)在曲线C 上.2.C 由{x -y =0,xy =1,得{x =1,y =1或{x =-1,y =-1.故选C.3.C 将点P 的坐标代入方程(x-2)2+y 2=3,得(cos α-2)2+sin 2α=3,解得cos α=12.又0≤α<2π,所以α=π3或5π3.4.B 设M(x 0,y 0),由点M 的坐标满足方程y=-2√x ,得y 0=-2√x 0,∴y 02=4x 0,∴点M 在曲线y 2=4x 上.反之不成立,故选B.5.C ∵4x 2-y 2+6x-3y=(2x+y)(2x-y)+3(2x-y)=(2x-y)(2x+y+3)=0, ∴原方程表示直线2x-y=0和2x+y+3=0.6.D 对于A,点(0,-1)满足方程,但不在曲线上,排除A;对于B,点(1,-1)满足方程,但不在曲线上,排除B;对于C,由于曲线上第三象限的点的横、纵坐标均小于0,不满足方程,排除C.故选D.7.答案 2解析 方程表示的图形是边长为√2的正方形(如图所示),其面积为(√2)2=2.8.A 设圆(x-1)2+y 2=1的圆心为C,半径为r,则C(1,0),r=1,依题意得|PC|2=r 2+|PA|2,即|PC|2=2,所以点P 的轨迹是以C 为圆心,√2为半径的圆,因此点P 的轨迹方程是(x-1)2+y 2=2. 9.答案 y=2x-2解析 设点C(x,y),则OC ⃗⃗⃗⃗⃗ =(x,y).因为点A(1,0),B(2,2),所以OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ )=(1+t,2t),所以{x =t +1,y =2t ,消去t,得点C 的轨迹方程为y=2x-2. 10.解析 设M(x 0,y 0),P(x,y), 则AP⃗⃗⃗⃗⃗ =(x-4,y-2),PM ⃗⃗⃗⃗⃗⃗ =(x 0-x,y 0-y), 由题意可得{x -4=3(x 0-x ),y -2=3(y 0-y ),所以{x 0=4x -43,y 0=4y -23.因为点M(x 0,y 0)在直线2x-y+3=0上, 所以2×4x -43-4y -23+3=0,即8x-4y+3=0,所以点P 的轨迹方程为8x-4y+3=0.11.解析 (1)以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=√2BC,得(x+1)2+y 2=2[(x-1)2+y 2],即(x-3)2+y 2=8,又在△ABC 中,y≠0,所以点C 的轨迹方程为(x-3)2+y 2=8(y≠0).(2)因为AB=2,所以S △ABC =12×2×|y|=|y|.因为(x-3)2+y 2=8(y≠0), 所以0<|y|≤2√2,所以S △ABC ≤2√2,即△ABC 的面积的最大值为2√2.能力提升练一、选择题1.D 设P(x 0,y 0)是曲线xy 2+x 2y=1上的任意一点,则x 0y 02+x 02y 0=1.设点P 关于直线y=x 的对称点为P',则P'(y 0,x 0),因为y 0x 02+y 02x 0=x 0y 02+x 02y 0=1,所以P'在曲线xy 2+x 2y=1上,故该曲线关于直线y=x 对称.2.A 由方程(3x-y+1)(y-√1-x 2)=0得y=√1-x 2(y≥0)或3x-y+1=0,且满足-1≤x≤1,即x 2+y 2=1(y≥0)或3x-y+1=0(-1≤x≤1),∴方程(3x-y+1)(y-√1-x 2)=0表示一条线段和半个圆.3.C 将x=-x 代入得到(x+1)(x+2)(x+3)=xy,方程改变,故该曲线不关于y 轴对称; 将x=-x,y=-y 代入得到(x+1)(x+2)(x+3)=-xy,方程改变,故该曲线不关于原点对称; 当x<0,y<0时,(x-1)(x-2)(x-3)<0,xy>0,显然方程不成立,∴该曲线不经过第三象限;令x=-1,易得y=24,即(-1,24)在曲线上,同理可得(1,0),(2,0),(3,0)也在曲线上,∴该曲线上有且只有三个点的横、纵坐标都是整数是错误的.4.A 设P(x,y),因为M(-1,2),N(1,0),所以PM ⃗⃗⃗⃗⃗⃗ =(-1-x,2-y),ON ⃗⃗⃗⃗⃗⃗ =(1,0),PN ⃗⃗⃗⃗⃗⃗ =(1-x,-y),因为|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN⃗⃗⃗⃗⃗⃗ |,所以|1+x|=√(1-x )2+(-y )2, 整理得y 2=4x.5.C 方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分,故选C. 6.A 设P(x,y),则由|PM|=2|PN|,得(x+3)2+y 2=4[(x-2)2+y 2],化简,得3x 2+3y 2-22x+7=0, 即(x -113)2+y 2=1009,所以所求图形的面积S=100π9.二、填空题7.答案 x 2+y 2-12x+4=0 解析 设M(x,y),因为|MA ||MB |=√2, 所以√(x+2)2+y 2√(x -2)+y 2=√2,整理得x 2+y 2-12x+4=0.8.答案 ①y=0(或x =52) ②[0,5]解析 ①由W 的方程知,若(x,y)是曲线上的点,则(x,-y)也是曲线上的点,因此直线y=0是曲线W的一条对称轴.同理,点(52-x,y)与(52+x,y)也都是曲线上的点,因此直线x=52也是曲线W的一条对称轴.②由|y|+x2-5x=0得|y|=-x2+5x,因为|y|≥0,所以-x2+5x≥0,解得0≤x≤5.三、解答题9.解析(1)设动点M的坐标为(x,y),则|MA|=√(x+1)2+y2,|MB|=√(x-2)2+y2所以√(x+1)2+y2√(x-2)+y2=2,化简得(x-3)2+y2=4.因此,动点M的轨迹方程为(x-3)2+y2=4.(2)当过点P的直线斜率不存在时,直线方程为x-5=0,圆心C(3,0)到直线x-5=0的距离等于2,此时直线x-5=0与曲线C相切; 当过点P的切线斜率存在时,不妨设斜率为k,则切线方程为y+4=k(x-5),即kx-y-5k-4=0,由圆心到切线的距离等于半径,得√k2+1=2,解得k=-34.所以切线方程为3x+4y+1=0.综上所述,切线方程为x-5=0和3x+4y+1=0.10.解析(1)设点B的坐标为(x0,y0),则y0≥0,设线段AB的中点为M(x,y), 因为点B在曲线Γ上,所以x02+y02=1.①因为M为线段AB的中点,所以{x=x0+22,y=y02,则{x0=2x-2,y0=2y,代入①式得(2x-2)2+4y2=1,化简得(x-1)2+y2=14,其中y≥0.则线段AB的中点的轨迹方程为(x-1)2+y2=14(y≥0).(2)如图所示,将△OAB绕点A顺时针旋转90°得到△DAC,易知点D(2,2),结合图形可知,点C在曲线(x-2)2+(y-2)2=1(x≥2)上运动,则问题转化为求原点O到曲线(x-2)2+(y-2)2=1(x≥2)上一点C的距离的最大值,连接OD并延长交曲线(x-2)2+(y-2)2=1(x≥2)于点C',当点C与C'重合时,|OC|取得最大值,且|OC|max=|OD|+1=2√2+1.。

曲线与方程练习题

曲线与方程练习题

曲线与方程练习题曲线与方程练习题数学作为一门抽象而又实用的学科,几乎贯穿了我们的整个学习生涯。

其中,曲线和方程是数学中的重要概念,它们在解决实际问题中起着重要的作用。

本文将通过一些练习题,帮助读者更好地理解曲线和方程的关系。

练习题一:给定方程y = 2x + 3,画出它的图像,并说明该图像的特点。

解析:首先,我们可以根据方程中的斜率和截距,找到该直线的两个点。

当x= 0时,y = 3;当x = 1时,y = 5。

因此,我们可以在坐标系中连接这两个点,得到一条斜率为2,截距为3的直线。

这条直线是一条倾斜向上的直线,它的斜率表示了直线上每单位x变化对应的y的变化。

练习题二:给定方程y = x^2,画出它的图像,并说明该图像的特点。

解析:这个方程表示了一个二次函数的图像。

我们可以通过取一些不同的x值,计算出对应的y值,从而得到一系列点。

例如,当x = -2时,y = 4;当x = -1时,y = 1;当x = 0时,y = 0。

将这些点连接起来,我们可以得到一个开口向上的抛物线。

这个抛物线的特点是,它的顶点位于原点,对称轴为y轴,开口向上。

练习题三:给定方程y = sin(x),画出它的图像,并说明该图像的特点。

解析:这个方程表示了一个正弦函数的图像。

正弦函数是一种周期性的函数,它的图像在一个周期内重复出现。

我们可以通过取一些不同的x值,计算出对应的y值,从而得到一系列点。

例如,当x = 0时,y = 0;当x = π/2时,y = 1;当x = π时,y = 0。

将这些点连接起来,我们可以得到一个波浪形的曲线。

这个曲线的特点是,它在每个周期内都有一个最大值和一个最小值,且对称于y轴。

练习题四:给定方程y = e^x,画出它的图像,并说明该图像的特点。

解析:这个方程表示了一个指数函数的图像。

指数函数是一种增长非常快的函数,它的图像呈现出逐渐上升的趋势。

我们可以通过取一些不同的x值,计算出对应的y值,从而得到一系列点。

2.1.1曲线与方程的概念

2.1.1曲线与方程的概念

班级________姓名________ 时间:2011-11-16一、复习回顾1、在数学2“平面解析几何初步”一章的学习中,我们学习过坐标法,用这种方法我们在坐标系中研究了直线和圆的方程,并用方程研究直线和圆的几何性质.用坐标法研究图形性质的基本思路是借助于坐标系,把_______________联系起来,从而达到_________的结合;再通过_____对曲线的几何性质进行研究,把____问题转化为____问题来解决。

2、我们研究了直线和圆的方程,回答:(1)经过点P(0,b)和斜率为k的直线l的方程为____________(2)在直角坐标系中,平分第一、三象限的直线方程是______________(3)圆心为C(a,b) ,半径为r的圆C的方程为_______________________.二、思考与讨论(1)圆及其方程的意义(1)⊙(O,r)的方程是如何得到的?其方程是①;(2)如果有序实数对是方程一个解,为坐标的点M一定在;解,则。

结论:⊙(O,r)上的点与方程的解是的关系。

思考与讨论(2)⊙(O,r)可以看成一个动点M运动的,当动点M运动时,点M的坐标(x,y)随着M的运动而变化,其运动轨迹可以用方程来表达。

结论:一般地,一条曲线可以看成动点运动的轨迹,曲线的方程常称为满足某种条件的点的。

三、曲线与方程的定义一般地,在直角坐标系中,如果某曲线C与一个二元方程F(x,y)=0具有如下的关系:(1)曲线C上点的坐标都是方程F(x,y)=0的解;(2)以方程F(x,y)=0的解为坐标的点都在曲线C上.那么,曲线C叫做方程F(x,y)=0的,方程F(x,y)=0叫做曲线C的。

说明:四、两曲线的交点的求法由两条曲线的方程,可求出这两条曲线的交点的坐标。

已知两条曲线C1和C2的方程分别为F(x,y)=0,G(x,y)=0,则交点的坐标必满足上面的两个方程;反之,若(x0,y0)是上面两个方程的公共解,则以(x0,y0) 为坐标的点必定是两条曲线的交点。

2.1.1-2.1.2曲线与方程

2.1.1-2.1.2曲线与方程
2 2
建立坐标系 设点的坐标
限(找几何条件) 代(把条件坐标化
∴ y = x ( y 4)
2
2 2 2
2
∴ y x y 8 y 16 2 ∴ x 8 y 16 这就是所求的轨迹方程.
化简
思考:( P 练习第 3 题)
37
如图,已知点 C 的坐标是(2 , 2) , 过点 C 直线 CA 与 x 轴交于点 A,过点 C 且与直线 CA 垂直的直线 CB 与 y 轴交于点 B,设点 M 是线段 AB 的中点,求点 M 的 y 轨迹方程. B
f1 ( x, y) f 2 ( x, y) f3 ( x, y) f n ( x, y) 0
则曲线C是由:
f1 ( x, y) 0, f 2 ( x, y) 0, f3 ( x, y) 0,, f n ( x, y) 0
表示的曲线的全体构成的。
例1 :判断下列命题是否正确 (1)过点A(3,0)且垂直于x轴的直线的方程 为︱x︱=3 (2)到x轴距离等于1的点组成的直线方程为y=1 (3)到两坐标轴的距离之积等于1的点的轨迹方 程为︱xy︱=1 (4) △ABC的顶点A(0,-3),B(1,0),C(-1,0), D为BC中点,则中线AD的方程x=0
B
C
D
①表示 B ②表示 C
③表示 D
练习3:若命题“曲线C上的点的坐标满足方程 f(x,y)=0”是正确的,则下列命题中正确的是( ) D A.方程f(x,y)=0 所表示的曲线是C B.坐标满足 f(x,y)=0 的点都在曲线C上 C.方程f(x,y)=0的曲线是曲线C的一部分或是 曲线C D.曲线C是方程f(x,y)=0的曲线的一部分或是 全部
复习回顾:

高中数学 2.1.1曲线与方程

高中数学 2.1.1曲线与方程

曲线与方程(30分钟 50分)一、选择题(每题3分,共18分)(x 0,y 0)=0是点P(x 0,y 0)在曲线f(x,y)=0上的 ( )A.充分没必要要条件B.必要不充分条件C.充要条件D.既不充分也没必要要条件【解析】选C.由曲线与方程的概念可知,假设点P(x 0,y 0)在曲线f(x,y)=0上,那么必有f(x 0,y 0)=0;又当f(x 0,y 0)=0时,点P(x 0,y 0)也必然在方程f(x,y)=0对应的曲线上,应选C.2.下面四组方程表示同一条曲线的一组是 ( )=x 与y=√x =lgx 2与y=2lgxC.y +1x −2=1与lg(y+1)=lg(x-2) +y 2=1与|y|=√1−x 2【解析】选D.要紧考虑x,y 的取值范围,A 中y 2=x 中y ∈R,而y=√x 中y ≥0,B 中y=lgx 2中x ≠0,而y=2lgx 中x>0;C 中y +1x −2=1中y ∈R,x ≠2,而lg(y+1)=lg(x-2)中y>-1,x>2,故只有D 正确. 3.(2021·石家庄高二检测)方程x 2+y 2=1(xy<0)的曲线形状是 ( )【解析】选C.方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部份.4.(2021·安阳高二检测)曲线y=√1−x 2和y=-x+√2公共点的个数为 ( )B.2 【解析】选C.由{y =√1−x 2,y =−x +√2,得-x+√2=√1−x 2,两边平方并整理得(√2x-1)2=0,因此x=√22,这时y=√22,故公共点只有一个(√22,√22). 【误区警示】解题中易忽略y=√1−x 2中x 的取值范围,而写成x 2+y 2=1,从而解出两组解而致使出错.5.如果曲线C 上点的坐标知足方程F(x,y)=0,那么有( )A.方程F(x,y)=0表示的曲线是CB.曲线C 的方程是F(x,y)=0C.点集{P|P ∈C}⊆{(x,y)|F(x,y)=0}D.点集{P|P ∈C}{(x,y)|F(x,y)=0}【解析】选,B 错,因为以方程F(x,y)=0的解为坐标的点不必然在曲线C 上,假设以方程F(x,y)=0的解为坐标的点都在曲线C 上,那么点集{P|P ∈C}={(x,y)|F(x,y)=0},故D 错,选C.6.(2021·青岛高二检测)方程(x-y)2+(xy-1)2=0表示的是 ( )A.两条直线B.一条直线和一双曲线C.两个点D.圆【解析】选C.由题意,{x −y =0,xy =1,因此x=1,y=1或x=-1,y=-1,因此方程(x-y)2+(xy-1)2=0表示的是两个点(1,1)或(-1,-1).二、填空题(每题4分,共12分)7.(2021·天津高二检测)点P(2,-3)在曲线x 2-ay 2=1上,那么a= .【解析】将(2,-3)代入x 2-ay 2=1,得a=13. 答案:13【变式训练】已知点A(a,2)既是曲线y=mx 2上的点,也是直线x-y=0上的一点,那么m= .【解析】因为点A(a,2)在直线x-y=0上,得a=2,即A(2,2).又点A 在曲线y=mx 2上,因此2=m ·22,得m=12. 答案:12 8.(2021·重庆高二检测)若是直线l :x+y-b=0与曲线C:y=√1−x 2有公共点,那么b 的取值范围是 .【解题指南】此题考查曲线的交点问题,能够先作出曲线y=√1−x 2的图象,利用数形结合解题. 【解析】曲线C:y=√1−x 2表示以原点为圆心,以1为半径的单位圆的上半部份(包括(±1,0)),如图,当l 与l 1重合时,b=-1,当l 与l 2重合时,b=√2,因此直线l 与曲线C 有公共点时,-1≤b ≤√2.答案:[-1,√2]9.方程y=√x 2−4x +4所表示的曲线是 .【解析】原方程可化为:y=|x-2|={x −2,x ≥2,−x +2,x <2.因此方程表示的是射线x-y-2=0(x ≥2)及x+y-2=0(x<2).答案:两条射线【误区警示】此题易轻忽方程自身的条件对y 的约束,即y ≥0,而将方程变形为(x+y-2)(x-y-2)=0,从而得出方程表示的曲线是两条直线.三、解答题(每题10分,共20分)10.方程√1−|x |=√1−y 表示的曲线是什么图形?【解析】原方程可化为{1−y =1−|x |,1−|x |≥0,即{y =|x |,|x |≤1, 因此它表示的图形是两条线段y=-x(-1≤x ≤0)和y=x(0≤x ≤1).如图:11.曲线x 2+(y-1)2=4与直线y=k(x-2)+4有两个不同的交点,求k 的范围,假设有一个交点、无交点呢?【解析】由{y =k (x −2)+4,x 2+(y −1)2=4,得(1+k2)x2+2k(3-2k)x+(3-2k)2-4=0,Δ=4k 2(3-2k)2-4(1+k 2)[(3-2k)2-4]=48k-20.因此Δ>0,即k>512时,直线与曲线有两个不同的交点; Δ=0,即k=512时,直线与曲线有一个交点; Δ<0,即k<512时,直线与曲线没有交点. 【拓展延伸】曲线与直线交点个数的判别方式曲线与直线交点的个数确实是曲线方程与直线方程联立方程组解的组数,而方程组解的组数可利用根的判别式进行判定.此题是判定直线和圆的交点问题,用的是代数法.也可用几何法,即通过圆心到直线的距离与半径的关系求出k 的范围.有些题目,在判定交点个数时,也可用数形结合法.(30分钟 50分)一、选择题(每题4分,共16分)1.已知曲线ax 2+by 2=2通过点A(0,2)和B(1,1),那么a,b 的值别离为 ( )A.12,32B.32,12 32,32 D.12,-32【解析】选B.因为点A(0,2)和B(1,1)都在曲线ax 2+by 2=2上,因此{a ·0+4b =2,a +b =2,解得{a =32,b =12. 2.(2021·临沂高二检测)方程x 2|x |+y 2|y |=1表示的图形是 ( ) A.一条直线B.两条平行线段C.一个正方形D.一个正方形(除去四个极点)【解析】选D.由方程可知,方程表示的图形关于坐标轴和原点对称,且x ≠0,y ≠0,当x>0,y>0时,方程可化为x+y=1,表示第一象限内的一条线段(去掉两头点),因此原方程表示的图形是一个正方形(除去四个极点).3.已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,那么点M(4,-1) ( )A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上【解析】选C.将点M(4,-1)的坐标别离代入圆C及直线l的方程,均知足.4.(2021·成都高二检测)已知方程y=a|x|和y=x+a(a>0)所确信的两条曲线有两个交点,那么a的取值范围是( )>1 <a<1<a<1或a>1 ∈【解题指南】别离作出y=a|x|和y=x+a所表示的曲线.再依照图象求a的取值范围.【解析】选A.因为a>0,因此方程y=a|x|和y=x+a(a>0)的图象大致如图,要使方程y=a|x|和y=x+a(a>0)所确信的两条曲线有两个交点,那么要求y=a|x|在y轴右边的斜率足够大,因此a>1.【变式训练】如下图,定圆半径为a,圆心为(b,c),那么直线ax+by+c=0与直线x-y+1=0的交点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限【解析】选C.由{ax+by+c=0,x−y+1=0,因此{x=−b+ca+b,y=a−ca+b.因为a+b<0,a-c>0,b+c<0,因此x<0,y<0,因此交点在第三象限,选C.二、填空题(每题5分,共10分)5.(2021·济宁高二检测)曲线y=|x-2|-2的图象与x轴所围成的三角形的面积是.【解析】当x-2<0时,原方程可化为y=-x;当x-2≥0时,原方程可化为y=x-4.故原方程表示两条共极点的射线,易患极点为B(2,-2),与x 轴的交点为O(0,0),A(4,0),因此曲线y=|x-2|-2与x 轴围成的三角形面积为S △AOB = 12|OA|·|y B |=4. 答案:46.(2021·石家庄高二检测)曲线y=-√1−x 2与曲线y+|ax|=0(a ∈R)的交点个数为 .【解析】由{y =−√1−x 2,y +|ax |=0,得-|ax|=-√1−x 2,即a 2x 2=1-x 2,因此(a 2+1)x 2=1,解得x=√1a 2+1和x=-√1a 2+1, 代入y=-|ax|,得y=-√a 21+a 2,因此它们有2个交点.答案:2【一题多解】由y=-√1−x 2,得x 2+y 2=1(y ≤0)表示半圆如图:由y+|ax|=0,得y=-|a||x|,表示过原点的两条射线,如图.因此由图象可知,它们有两个交点.答案:2三、解答题(每题12分,共24分)7.已知点P(x 0,y 0)是曲线f(x,y)=0和曲线g(x,y)=0的交点,求证:点P 在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【证明】因为P 是曲线f(x,y)=0和曲线g(x,y)=0的交点,因此P 在曲线f(x,y)=0上,即f(x 0,y 0)=0,P 在曲线g(x,y)=0上,即g(x 0,y 0)=0,因此f(x 0,y 0)+λg(x 0,y 0)=0+λ0=0,故点P 在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【拓展延伸】证明曲线与方程关系的技术 解答本类问题的关键是正确明白得并运用曲线的方程与方程的曲线的概念,明确两条原那么,即假设点的坐标适合方程,那么该点必在方程的曲线上;假设点在曲线上,那么该点的坐标必适合曲线的方程.另外,要证明方程是曲线的方程,依照概念需完成两步:①曲线上任意一点的坐标都是方程的解;②以方程的解为坐标的点都在曲线上.二者缺一不可.8.当曲线y=1+√4−x 2与直线y=k(x-2)+4有两个相异交点时,求实数k 的取值范围.【解析】曲线y=1+√4−x 2是以(0,1)为圆心,2为半径的半圆,如图. 直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC 的斜率为k 0,切线PC 的方程为y=k 0(x-2)+4.圆心(0,1)到直线PC 的距离等于半径2,即0√1+k 0=2, 因此k 0=512,直线PA 的斜率k 1=34, 因此实数k 的取值范围是512<k ≤34.。

2.2.1双曲线及其标准方程 高二上学期数学北师大版选择性必修第一册

2.2.1双曲线及其标准方程 高二上学期数学北师大版选择性必修第一册

2.1 双曲线及其标准方程1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.√22,0 B.√62,0C.√52,0D.(√3,0)2.已知双曲线x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为2√5,则该双曲线的方程为( )A.x 24-y 2=1B.x 23−y 22=1 C.x 2-y 24=1D.x 22−y 23=13.已知双曲线x 2λ-3+y 22-λ=1,焦点在y 轴上,若焦距为4,则λ等于( )A.32B.5C.7D.124.已知双曲线x 24−y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( ) A.3或7 B.6或14C.3D.75.如图,已知双曲线的方程为x 2a 2−y 2b2=1(a>0,b>0),点A ,B 均在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB|=m ,F 1为双曲线的左焦点,则△ABF 1的周长为( ) A.2a+2m B.4a+2mC.a+mD.2a+4m 6.与圆x 2+y 2=1及圆x 2+y 2-8x+12=0都外切的圆P 的圆心在( )A.一个椭圆上B.一个圆上C.一条抛物线上D.双曲线的一支上7.以椭圆x 2+y 2=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是 .8.已知点F 1,F 2分别是双曲线x 29−y 216=1的左、右焦点,若点P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,则△F 1PF 2的面积为 . 9.已知与双曲线x 216−y 29=1共焦点的双曲线过点P -√52,-√6,求该双曲线的标准方程.能力达标10.“mn<0”是方程“mx 2+ny 2=1表示双曲线”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件11.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA|-|MB|=6,则点M 的轨迹方程是( ) A.x 216−y 29=1B.x 216−y 29=1(x ≥4)C.x 29−y 216=1 D.x 29−y 216=1(x ≥3)12.动圆与圆x 2+y 2=1和x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹是( ) A.双曲线的一支 B.圆 C.椭圆D.双曲线13.若双曲线x 2n -y 2=1(n>1)的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=2√n +2,则△PF 1F 2的面积为( ) A.1B.12C.2D.414.已知左、右焦点分别为F 1,F 2的双曲线C :x 2a 2-y 2=1(a>0)过点√15,-√63,点P 在双曲线C 上,若|PF 1|=3,则|PF 2|=( ) A.3B.6C.9D.1215.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .16.焦点在x 轴上的双曲线经过点(4√2,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为 .17.已知双曲线E :x 2−y 2=1的左、右焦点分别为F 1,F 2. (1)若点M 在双曲线上,且MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,求点M 到x 轴的距离;(2)若双曲线C 与双曲线E 有相同的焦点,且过点(3√2,2),求双曲线C 的方程.18.已知△OFQ 的面积为2√6,且OF ⃗⃗⃗⃗⃗ ·FQ ⃗⃗⃗⃗⃗ =m ,其中O 为坐标原点. (1)设√6<m<4√6,求OF ⃗⃗⃗⃗⃗ 与FQ ⃗⃗⃗⃗⃗ 的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF ⃗⃗⃗⃗⃗ |=c ,m=√64-1c 2,当|OQ ⃗⃗⃗⃗⃗⃗ |取得最小值时,求此双曲线的标准方程.1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.√22,0 B.√62,0C.√52,0D.(√3,0)答案B解析将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=1,∴c 2=a 2+b 2=3,∴c=√6,故右焦点坐标为√62,0.2.已知双曲线x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为2√5,则该双曲线的方程为( ) A.x 2-y 2=1 B.x 2−y 2=1 C.x 2-y 2=1 D.x 2−y 2=1答案C解析由题意得{|PF 1|-|PF 2|=2a =b ,c 2=a 2+b 2,2c =2√5,解得{a 2=1,b 2=4,则该双曲线的方程为x 2-y 24=1.3.已知双曲线x 2λ-3+y 22-λ=1,焦点在y 轴上,若焦距为4,则λ等于( ) A.32 B.5 C.7D.12答案D解析根据题意可知,双曲线的标准方程为y 22-λ−x 23-λ=1. 由其焦距为4,得c=2, 则有c 2=2-λ+3-λ=4,解得λ=12.4.已知双曲线x 24−y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( ) A.3或7 B.6或14C.3D.7答案A解析连接ON ,ON 是△PF 1F 2的中位线,∴|ON|=12|PF 2|,∵||PF 1|-|PF 2||=4,|PF 1|=10, ∴|PF 2|=14或|PF 2|=6, ∴|ON|=7或|ON|=3.5.如图,已知双曲线的方程为x 2a 2−y 2b2=1(a>0,b>0),点A ,B 均在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB|=m ,F 1为双曲线的左焦点,则△ABF 1的周长为( ) A.2a+2m B.4a+2mC.a+mD.2a+4m答案B解析由双曲线的定义,知|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a.又|AF 2|+|BF 2|=|AB|,所以△ABF 1的周长为|AF 1|+|BF 1|+|AB|=4a+2|AB|=4a+2m. 6.与圆x 2+y 2=1及圆x 2+y 2-8x+12=0都外切的圆P 的圆心在( ) A.一个椭圆上 B.一个圆上 C.一条抛物线上 D.双曲线的一支上答案D解析由x 2+y 2-8x+12=0, 得(x-4)2+y 2=4,画出圆x 2+y 2=1与(x-4)2+y 2=4的图象如图, 设圆P 的半径为r ,∵圆P 与圆O 和圆M 都外切,∴|PM|=r+2,|PO|=r+1,则|PM|-|PO|=1<4,∴点P 在以O ,M 为焦点的双曲线的左支上.7.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是 . 答案y 2-x 23=1解析由题意知,双曲线的焦点在y 轴上,设双曲线的标准方程为y 2a2−x 2b2=1,则a=1,c=2,所以b 2=3,所以双曲线的标准方程为y 2-x 2=1.8.已知点F 1,F 2分别是双曲线x 2−y 2=1的左、右焦点,若点P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,则△F 1PF 2的面积为 . 答案16解析因为P 是双曲线左支上的点, 所以|PF 2|-|PF 1|=6,两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.9.已知与双曲线x 216−y 29=1共焦点的双曲线过点P -√52,-√6,求该双曲线的标准方程.解已知双曲线x 216−y 29=1, 则c 2=16+9=25,∴c=5. 设所求双曲线的标准方程为x 2a 2−y 2b2=1(a>0,b>0).依题意知b 2=25-a 2,故所求双曲线方程可写为x 2a 2−y 225-a 2=1.∵点P -√52,-√6在所求双曲线上, ∴代入有(-√52) 2a 2−(-√6)225-a 2=1,化简得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254. 当a 2=1254时,b 2=25-a 2=25-1254=-254<0, 不合题意,舍去,∴a 2=1,b 2=24,∴所求双曲线的标准方程为x 2-y 224=1.能力达标10.“mn<0”是方程“mx 2+ny 2=1表示双曲线”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案C解析因为mn<0,所以m ,n 均不为0且异号,方程mx 2+ny 2=1,可化为x 21m+y 21n=1,因为1m 与1n异号,所以方程x 21m+y 21n=1表示双曲线,故“mn<0”是“方程mx 2+ny 2=1表示双曲线”的充分条件;反之,若mx 2+ny 2=1表示双曲线,则其方程可化为x 21m+y 21n=1,可知1m 与1n异号,则必有mn<0,故“mn<0”是“方程mx 2+ny 2=1表示双曲线”的必要条件.综上可得,“mn<0”是方程“mx 2+ny 2=1表示双曲线”的充要条件. 11.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA|-|MB|=6,则点M 的轨迹方程是( ) A.x 2−y 2=1B.x 2−y 2=1(x ≥4)C.x 29−y216=1 D.x29−y216=1(x≥3)答案D解析由|MA|-|MB|=6,且6<|AB|=10,得a=3,c=5,b2=c2-a2=16.故其轨迹为以A,B为焦点的双曲线的右支.所以点M的轨迹方程为x 29−y216=1(x≥3).12.动圆与圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹是()A.双曲线的一支B.圆C.椭圆D.双曲线答案A解析设动圆的圆心为M,半径为r,圆x2+y2=1与x2+y2-8x+12=0的圆心分别为O1和O2,半径分别为1和2,由两圆外切的充要条件,得|MO1|=r+1,|MO2|=r+2.∴|MO2|-|MO1|=1,又|O1O2|=4,∴动点M的轨迹是双曲线的一支(靠近O1).13.若双曲线x 2n-y2=1(n>1)的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2√n+2,则△PF1F2的面积为()A.1B.12C.2D.4答案A解析设点P在双曲线的右支上,则|PF1|-|PF2|=2√n,已知|PF1|+|PF2|=2√n+2,解得|PF1|=√n+2+√n,|PF2|=√n+2−√n,|PF1|·|PF2|=2.又|F1F2|=2√n+1,则|PF1|2+|PF2|2=|F1F2|2,∴△PF1F2为直角三角形,∠F1PF2=90°,∴S△PF1F2=12|PF1|·|PF2|=12×2=1.14.已知左、右焦点分别为F1,F2的双曲线C:x 2a2-y2=1(a>0)过点√15,-√63,点P在双曲线C上,若|PF1|=3,则|PF2|=()A.3B.6C.9D.12答案C解析由左、右焦点分别为F 1,F 2的双曲线C :x 2a2-y 2=1(a>0)过点√15,-√63,可得15a 2−69=1,解得a=3,b=1,c=√10,a+c>3,点P 在双曲线C 上,若|PF 1|=3,可得P 在双曲线的左支上,则|PF 2|=2a+|PF 1|=6+3=9.故选C. 15.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 . 答案(2,+∞)解析由曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,可得x 21m−y 21m -2=1, 即有m>0,且m-2>0,解得m>2.16.焦点在x 轴上的双曲线经过点(4√2,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为 .答案x 216−y 29=1解析设焦点F 1(-c ,0),F 2(c ,0)(c>0), 则由QF 1⊥QF 2,得k QF 1·k QF 2=-1,∴5c ·5-c =-1,∴c=5,设双曲线的标准方程为x 2a 2−y 2b2=1(a>0,b>0),∵双曲线过点(4√2,-3),∴32a 2−9b2=1.又c 2=a 2+b 2=25,∴a 2=16,b 2=9,∴双曲线的标准方程为x 2−y 2=1. 17.已知双曲线E :x 2−y 2=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,求点M 到x 轴的距离;(2)若双曲线C 与双曲线E 有相同的焦点,且过点(3√2,2),求双曲线C 的方程.解(1)如图所示,不妨设点M 在双曲线E 的右支上,点M 到x 轴的距离为h ,MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0, 则MF 1⊥MF 2, 设|MF 1|=m ,|MF 2|=n , 由双曲线定义,知m-n=2a=8,①又m 2+n 2=(2c )2=80, ②由①②得mn=8,∴12mn=4=12|F 1F 2|·h , ∴h=2√55. (2)设所求双曲线C 的方程为x 216-λ−y 24+λ=1(-4<λ<16), 由于双曲线C 过点(3√2,2),∴1816-λ−44+λ=1,解得λ=4或λ=-14(舍去),∴所求双曲线C 的方程为x 212−y 28=1.18.已知△OFQ 的面积为2√6,且OF ⃗⃗⃗⃗⃗ ·FQ ⃗⃗⃗⃗⃗ =m ,其中O 为坐标原点. (1)设√6<m<4√6,求OF⃗⃗⃗⃗⃗ 与FQ ⃗⃗⃗⃗⃗ 的夹角θ的正切值的取值范围; (2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF ⃗⃗⃗⃗⃗ |=c ,m=√64-1c 2,当|OQ ⃗⃗⃗⃗⃗⃗ |取得最小值时,求此双曲线的标准方程.解(1)因为{12|OF ⃗⃗⃗⃗⃗ ||FQ ⃗⃗⃗⃗⃗|sin (π-θ)=2√6,|OF ⃗⃗⃗⃗⃗ ||FQ⃗⃗⃗⃗⃗ |cosθ=m ,所以tan θ=4√6. 又√6<m<4√6, 所以1<tan θ<4,即tan θ的取值范围为(1,4).(2)设双曲线的标准方程为x 2a 2−y 2b2=1(a>0,b>0),Q (x 1,y 1),则FQ⃗⃗⃗⃗⃗ =(x 1-c ,y 1), 所以S △OFQ =12|OF ⃗⃗⃗⃗⃗|·|y 1|=2√6,则y 1=±4√6.又OF⃗⃗⃗⃗⃗ ·FQ ⃗⃗⃗⃗⃗ =m , 即(c ,0)·(x 1-c ,y 1)=√64-1c 2, 解得x 1=√64c ,所以|OQ ⃗⃗⃗⃗⃗⃗ |=√x 12+y 12=√38c 2+96c 2≥√12=2√3,当且仅当c=4时,取等号,此时|OQ ⃗⃗⃗⃗⃗⃗ |最小, 这时Q 的坐标为(√6,√6)或(√6,-√6).因为{6a 2-6b 2=1,a 2+b 2=16,所以{a 2=4,b 2=12.于是所求双曲线的标准方程为x 24−y 212=1.。

双曲线新课习题集

双曲线新课习题集

双曲线及其方程 (第一课时)一、 教学目标:掌握双曲线的定义、标准方程及其推导。

二、 重点:双曲线的定义和标准方程。

难点:标准方程的推导。

三、 基本概念:1、双曲线的定义: 叫做双曲线的焦点。

叫做双曲线的焦距。

2、注意:0〈2a<21F F =2c3、思考:当2a=2c 时轨迹如何? ,当2a>2c 时又如何?四、 双曲线的标准方程及其推导。

(一) 双曲线的标准方程的推导: 1.建立直角坐标系:2.写出适合条件的动点M 的集合:3.列方程:4.化简方程:(二) 双曲线的标准方程:1、焦点在X 轴上时: 2、焦点在Y 轴上时: 3、a 、 b 、 c 的关系 五、典型例题:例1、根据下列条件,求双曲线的标准方程:(1) 两个焦点的坐标分别是(-5,0),(5,0), 双曲线上的点与两个焦点的距离的差的绝对值等于8; (2) 两个焦点的坐标分别是(0,-6),(0,6),且双曲线经过点A (-5,6).思考:如果已知点M (x,y )与点F 1(-5,0)的距离比它与点F 2(5,0)的距离大8,求M 点的轨迹方程。

并与例1(1)比较有什么联系和区别?例2、已知双曲线1453622=-y x (1)求此双曲线的左、右焦点F 1,F 2的坐标;(2) 如果此双曲线上一点P 与焦点F 1的距离等于16,求点P 与焦点F 2的距离六、基本练习:1、根据下列条件,求双曲线的标准方程: (1)a=3,b=4, 焦点在X 轴上;(2)两个焦点的坐标分别是F 1(0,-6), F 2 (0,6), 经过点A (2,-5).(3) 焦点在X 轴上,经过点P (4,-2)和点Q (2,622);(4) a=5,c=8;2、已知双曲线方程1201622=-x y (1)求双曲线的焦点F 1,F 2的坐标。

(2)如果此双曲线上一点P 与焦点F 1的距离等于8,求点P 与焦点F 2的距离。

七、巩固提高:1、若11222=+++λλy x 表示双曲线,则λ的取值范围2、求中心在原点,两对称轴都在坐标轴上,并且经过P (3,415)和Q (,3165)两点的双曲线方程。

人教版 高中数学【选修 2-1】2.1曲线与方程课后习题

人教版 高中数学【选修 2-1】2.1曲线与方程课后习题

人教版高中数学精品资料【优化设计】高中数学 2.1曲线与方程课后习题新人教A版选修2-1课时演练·促提升A组1.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“曲线C上的点的坐标都是方程f(x,y)=0的解”时,不一定能得到“方程f(x,y)=0是曲线C的方程”,但反之,如果“方程f(x,y)=0是曲线C的方程”,必能得出“曲线C上的点的坐标都是f(x,y)=0的解”.答案:B2.方程y=3x-2(x≥1)表示的曲线为()A.一条直线B.一条射线C.一条线段D.不能确定解析:方程y=3x-2表示的曲线是一条直线,当x≥1时,它表示一条射线.答案:B3.曲线xy=2与直线y=x的交点是()A.()B.(-,-)C.()或(-,-)D.不存在解析:由解得即交点坐标为()或(-,-).答案:C4.如图所示的曲线方程是()A.|x|-y=0B.x-|y|=0C.-1=0D.-1=0解析:∵(0,0)点在曲线上,∴C,D不正确.∵x≥0,y∈R,∴B正确.答案:B5.一动点C在曲线x2+y2=1上移动时,它和定点B(3,0)连线的中点P的轨迹方程是()A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.+y2=1解析:设C(x0,y0),P(x,y).依题意有所以因为点C(x0,y0)在曲线x2+y2=1上,所以(2x-3)2+(2y)2=1,即点P的轨迹方程为(2x-3)2+4y2=1.答案:C6.如果方程ax2+by2=4的曲线过点A(0,-2),B,则a=,b=.解析:由已知解得答案:4 17.已知动点M到点A(9,0)的距离是M到点B(1,0)的距离的3倍,则动点M的轨迹方程是.解析:设M(x,y),则|MA|=,|MB|=.由|MA|=3|MB|,得=3,化简得x2+y2=9.答案:x2+y2=98.已知曲线C的方程是y2-xy+2x+k=0.(1)若点(1,-1)在曲线C上,求k的值;(2)当k=0时,判断曲线C是否关于x轴、y轴、原点对称?解:(1)因为点(1,-1)在曲线C上,所以(-1)2-1×(-1)+2×1+k=0,解得k=-4.(2)当k=0时,曲线C的方程为y2-xy+2x=0.以-x代替x,y不变,方程化为y2+xy-2x=0,所以曲线C不关于y轴对称;以-y代替y,x不变,方程化为y2+xy+2x=0,所以曲线C不关于x轴对称;同时以-x代替x,-y代替y,方程化为(-y)2-(-x)(-y)+2(-x)=0,即y2-xy-2x=0,所以曲线C不关于原点对称.9.已知两点A(,0),B(-,0),点P为平面内一动点,过点P作y轴的垂线,垂足为Q,且=2,求动点P的轨迹方程.解:设动点P的坐标为(x,y),则点Q的坐标为(0,y).于是=(-x,0),=(-x,-y),=(--x,-y),=x2-2+y2.由=2,得x2-2+y2=2x2,即y2-x2=2.故动点P的轨迹方程为y2-x2=2.B组1.方程x2+xy=x表示的曲线是()A.一个点B.一条直线C.两条直线D.一个点和一条直线解析:∵x2+xy=x可化为x(x+y-1)=0,即x=0或x+y-1=0,∴原方程表示两条直线.答案:C2.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是()A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析:|AB|==5.∵S△ABC=|AB|·h=10,∴h=4,即顶点C到AB所在直线的距离为4,易求AB所在直线的方程为4x-3y+4=0.设点C(x,y),则=h=4,∴4x-3y+4=±20.故选B.答案:B3.方程|x|+|y|=1所表示的曲线C围成的图形的面积为.解析:方程|x|+|y|=1所表示的曲线C围成的图形是正方形ABCD(如图),其边长为.故方程|x|+|y|=1所表示的曲线C围成的图形的面积为2.答案:24.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.解法一:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).解法二:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则A(-a,0),B(a,0).∵∠ACB=90°,∴点C在以AB为直径的圆上.∵以AB为直径的圆的方程为x2+y2=a2,又∵C与A,B不重合,∴x≠±a.∴顶点C的轨迹方程为x2+y2=a2(x≠±a).5.若直线y=kx+1与曲线mx2+5y2-5m=0(m>0)恒有公共点,求m的取值范围.解:将y=kx+1代入mx2+5y2-5m=0,得(m+5k2)x2+10kx+5(1-m)=0.由题意得,该方程对k∈R总有实数解,∴Δ=20m(m-1+5k2)≥0对k∈R恒成立.∵m>0,∴m≥1-5k2恒成立.∵1-5k2≤1,∴m≥1.故m的取值范围是[1,+∞).6.已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,P是AB的中点.求动点P的轨迹C的方程.解:设P(x,y),A(x1,y1),B(x2,y2).∵P是线段AB的中点,∴∵A,B分别是直线y=x和y=-x上的点,∴y1=x1,y2=-x2,∴又∵|AB|=2,∴(x1-x2)2+(y1-y2)2=12.∴12y2+x2=12.∴动点P的轨迹方程为+y2=1.。

人教A版选修2-1第二章第2课时同步练习§2.1.2求曲线的方程

人教A版选修2-1第二章第2课时同步练习§2.1.2求曲线的方程

§2.1.2 求曲线的方程1.在第四象限内,到原点的距离等于2的点的轨迹方程是( ).(A)x 2+y 2=4 (B) x 2+y 2=4 (x>O)(C)y=24x -- (D) y=24x --(0<x<2)2.等腰直角三角形底边两端点是A(3-,0),B(3,0),顶点C 的轨迹是( ).(A)一条直线 (B)一条直线去掉一点(C)一个点 (D)两个点3.与点A(一1,0)和点B(1,0)连线的斜率之和为一l 的动点P 的轨迹方程是( ).(A)x 2+y 2=3 (B)x 2+2xy=1(x ≠±1)(C)y=21x - (D)x 2+y 2=9(x ≠0)4.已知两点A(一2,0)、B(6,0),三角形ABC 的面积为1 6,则C 点的轨迹方程为 .5.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A ,B ,APB ∠=60,则动点P 的轨迹方程为 .6.在平面直角坐标系中,O 为原点,A(1,0)、B(2,2),若点C 满足)(OA OB t OA OC -+=,其中t ∈R ,则点C 的轨迹方程是 .7.已知B A ),0,21(-是圆421:22=+⎪⎭⎫ ⎝⎛-y x F (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则点P 的轨迹方程为: .8.经过定点())0(,≠a b a A 作互相垂直的两条直线1l 和2l ,分别与x 轴、y 轴交于C B , 两点,求线段BC 的中点M 的轨迹方程.9.已知点M 与x 轴的距离和点M 与点F(O ,4)的距离相等,求点M 的轨迹方程.10.已知一曲线是到两个点O(0,0),A(3,0)距离之比为1:2的点的轨迹,求这条曲线的方程.11.设P 为曲线1422=-y x 上一动点,O 为坐标原点,M 为线段PO 的中点,求点M 的轨迹方程.12.如图,已知F(1,O),直线l :x = -1,P 为平面上的动点,过P 作直线l 的垂线,垂足为Q ,FQ FP QF QP ⋅=⋅,求动点P 的轨迹方程.13.定长为6的线段,其端点A 、B 分别在x 轴、y 轴上移动,线段AB 的中点为M ,求M 点的轨迹方程.14.如图所示,圆O 1和圆O 2的半径都等于1,O 1O 2=4。

人教A版选修2-1第二章第1课时同步练习§2.1.1 曲线与方程

人教A版选修2-1第二章第1课时同步练习§2.1.1  曲线与方程

§2.1.1 曲线与方程1、已知坐标满足方程F (x,y )=0的点都在曲线C 上,那么( )A .曲线C 上的点的坐标都适合方程F (x,y )=0B .凡坐标不适合F (x,y )=0的点都不在C 上C .不在C 上的点的坐标必不适合F (x,y )=0D .不在C 上的点的坐标有些适合F (x,y )=0,有些不适合F (x,y )=02、方程04)1(22=-+-+y x y x 的曲线形状是( )A .圆B .直线C .圆或直线D .圆或两条射线3、到两定点A (0,0)、B (3、4)距离之和为5的点的轨迹是( )A .圆B .AB 所在直线C .线段ABD .无轨迹4、如图所示,方程01=-+y x 表示的曲线是( )5、“曲线C 上的点的坐标都是方程0),(=y x f 的解”是“方程0),(=y x f 是曲线C 的方程”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分条件也非必要条件6、已知直线03:=-+y x l ,曲线2)2()3(22=-+-y x ,则点M (2,1)( )A .在直线l 上,但不在曲线上B .在直线l 上,也在曲线上C .不在直线l 上,也不在曲线上D .不在直线l 上,但在曲线上7、如果曲线C 上点的坐标满足方程0),(=y x F ,则有( )A .方程0),(=y x F 表示的曲线是CB .曲线C 的方程是0),(=y x FC .点集{}{}0),(),(=⊆∈y x F y x C P PD .点集{}C P P ∈≠⊂{}0),(),(=y x F y x8、方程111=-+-y x 表示的图形是( )A..一个点 B .四条直线 C .正方形 D .四个点9、如图所示,方程2x x y =表示的曲线是( )A .B .C .D .10、曲线21x y --=与曲线)(0R a ax y ∈=+的交点个数一定是( )A .2个B .4个C .0个D .与a 的取值有关11、已知抛物线1:2-+-=mx x y C ,点A (3,0)、B (0,3),求C 与线段AB 有两个不同交点的充要条件(用m 的取值范围表示)。

2.1.1曲线与方程

2.1.1曲线与方程
(3)第二、四象限两轴夹角平分线上的点的坐标都满足 x+y =0,反之,以方程 x+y=0 的解为坐标的点都在第二、四 象限两轴夹角的平分线上,因此第二、 四象限两轴夹角平分 线上的点的轨迹方程是 x+y=0.
研一研· 问题探究、课堂更高效
2.1.1
探究点二 由方程判断曲线 例 2 下列方程表示如图所示的直线,对吗? 为什么?不对请改正. (1) x- y=0;(2)x2-y2=0; (3)|x|-y=0.
2.1.1
曲线与方程
1.对于曲线和方程的概念要了解. 2.理解曲线上的点与方程的解之间的一一对应关系,领会 “曲线的方程”与“方程的曲线”的涵义.
通过直线与方程、 圆与方程理解曲线与方程的关系; 利用数形结合,直观体会曲线上点的坐标与方程解的关 系.
研一研· 问题探究、课堂更高效
2.1.1
探究点一 曲线与方程的概念 引言:在必修 2 的直线与方程、圆与方程中,讨论了曲线 与方程的关系,同学们有了一定的感性认识.这一节的主 要目的是对曲线与方程的关系有一个更加系统、完整的认 识. 问题 1 直线 y= x 上任一点 M 到两坐标轴距离相等吗?
解 (1)中曲线上的点不全是方程 x- y=0 的解, 如点 (-1,-1)等,即不符合“曲线上的点的坐标都是方程 的解”这一结论; (2)中,尽管“曲线上的坐标都是方程的解”,但以方程 x2-y2=0 的解为坐标的点不全在曲线上,如点(2,-2) 等,即不符合“以方程的解为坐标的点都在曲线上”这 一结论;
研一研· 问题探究、课堂更高效
2.1.1
跟踪训练 2 方程 x2+xy=x 的曲线是 A.一个点 C.一条直线 B.一个点和一条直线 D.两条直线
( D )
解析 ∵方程可化为 x(x+y)=x,即 x(x+y-1)=0, ∴x=0 或 x+y-1=0,因此方程的曲线是两条直线

学案8:2.1.1曲线与方程

学案8:2.1.1曲线与方程

2.1.1曲线与方程学习目标1.结合已知的曲线及其方程实例,了解曲线与方程的对应关系.2.了解数与形结合的基本思想.学习重点:理解曲线的方程和方程的曲线的概念.学习难点:曲线和方程通过曲线上的点的坐标建立起一一对应关系.学习过程自学导引曲线的方程与方程的曲线1.在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做______________;这条曲线叫做________________.2.如果曲线C的方程是f(x,y)=0,点P的坐标是(x0,y0),则①点P在曲线C上⇔____________;②点P不在曲线C上⇔____________.3.求曲线方程的一般步骤(1)建立适当的坐标系,用有序实数对________表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P=__________;(3)用________表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.想一想:如果曲线C的方程是f(x,y)=0,能否认为f(x0,y0)=0是点P0(x0,y0)在曲线上的充要条件?名师点睛曲线的方程与方程的曲线概念的理解(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判定一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.(3)定义的实质是平面曲线的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以求曲线的方程.例题解析例1 证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k .变式训练1、若命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题为真命题的是().A.不是曲线C上的点的坐标,一定不满足方程f(x,y)=0B.坐标满足方程f(x,y)=0的点均在曲线C上C.曲线C是方程f(x,y)=0的曲线D.不是方程f(x,y)=0的解,一定不是曲线C上的点2、判断下列命题是否正确.(1)以坐标原点为圆心,半径为r的圆的方程是y=r2-x2;(2)过点A(2,0)平行于y轴的直线l的方程为|x|=2.3、求方程(x+y-1)x-1=0所表示的曲线.4、方程x2+y2=1(xy<0)的曲线形状是().课堂作业一、选择题1.方程x +|y -1|=0表示的曲线是( )2.已知直线l 的方程是f (x ,y )=0,点M (x 0,y 0)不在l 上,则方程f (x ,y )-f (x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C .与l 平行的一条直线D .与l 平行的两条直线3.下列各对方程中,表示相同曲线的一对方程是( )A .y =x 与y 2=xB .y =x 与x y=1 C .y 2-x 2=0与|y |=|x |D .y =lg x 2与y =2lg x4.已知点A (-2,0),B (2,0),C (0,3),则△ABC 底边AB 的中线的方程是( )A .x =0B .x =0(0≤y ≤3)C .y =0D .y =0(0≤x ≤2)5.在第四象限内,到原点的距离等于2的点的轨迹方程是( )A .x 2+y 2=4B .x 2+y 2=4 (x >0)C .y =-4-x 2D .y =-4-x 2 (0<x <2)6.如果曲线C 上的点的坐标满足方程F (x ,y )=0,则下列说法正确的是( )A .曲线C 的方程是F (x ,y )=0B .方程F (x ,y )=0的曲线是CC .坐标不满足方程F (x ,y )=0的点都不在曲线C 上D .坐标满足方程F (x ,y )=0的点都在曲线C 上二、填空题7.若方程ax 2+by =4的曲线经过点A (0,2)和B ⎝⎛⎭⎫12,3,则a =________,b =________. 8.到直线4x +3y -5=0的距离为1的点的轨迹方程为______________________________.9.已知点O (0,0),A (1,-2),动点P 满足|P A |=3|PO |,则点P 的轨迹方程是________________.三、解答题10.已知平面上两个定点A ,B 之间的距离为2a ,点M 到A ,B 两点的距离之比为2∶1,求动点M 的轨迹方程.11.动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程.课堂小结1.曲线C 的方程是f (x ,y )=0要具备两个条件:①曲线C 上的点的坐标都是方程f (x ,y )=0的解;②以方程f (x ,y )=0的解为坐标的点都在曲线C 上.2.求曲线的方程时,要将所求点的坐标设成(x ,y ),所得方程会随坐标系的不同而不同.3.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.参考答案学习过程知识梳理1.(2)曲线的方程 方程的曲线2.①f (x 0,y 0)=0 ②f (x 0,y 0)≠03.(1)(x ,y ) (2){M |p (M )} (3)坐标想一想: 能.由曲线方程的定义可知,如果曲线C 的方程是f (x ,y )=0,那么点P 0(x 0,y 0)在曲线C 上的充分必要条件是f (x 0,y 0)=0.例题解析例1证明:(1)如图,设M (x 0,y 0)是轨迹上的任意一点.因为点M 与x 轴的距离为 0y ,与y 轴的距离为 0x , 所以00x y k =即(x 0,y 0)是方程xy =±k 的解.设点M 1的坐标(x 1,y 1)是方程xy =±k 的解,则x 1y 1=±k ,即 11x y k =变式训练1、D 【解析】∵题设命题只说明“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,并未指出“以方程f (x ,y )=0的解为坐标的点都是曲线C 上的点”,∴A ,B ,C 都是假命题,如曲线C :平面直角坐标系一、三象限角平分线上的点,与方程f (x ,y )=x 2-y 2=0,满足题设条件,但却不满足选项A ,B ,C 的结论,根据逆否命题是原命题的等价命题知,D 是正确的.2、解 (1)不正确.设(x 0,y 0)是方程y =r 2-x 2的解,则y 0=r 2-x 20,即x 20+y 20=r 2.两边开平方取算术平方根,得x 20+y 20=r 即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r的圆上的一点如点(r 2,-32r )在圆上,却不是y =r 2-x 2的解,这就不满足曲线上的点的坐标都是方程的解.所以,以原点为圆心,半径为r 的圆的方程不是y =r 2-x 2,而应是y =±r 2-x 2.(2)不正确.直线l 上的点的坐标都是方程|x |=2的解.然而,坐标满足|x |=2的点不一定在直线l 上,因此|x |=2不是l 的方程,直线l 的方程为x =2.3、解 依题意可得⎩⎪⎨⎪⎧x +y -1=0x -1≥0或x -1=0, 即x +y -1=0(x ≥1)或x =1.综上可知,原方程所表示的曲线是射线x +y -1=0(x ≥1)和直线x =1.规律方法 判断方程表示什么曲线,需对方程进行同解变形,常用的方法有:配方法、因式分解法或化为我们所熟悉的形式,然后根据方程的特征进行判断.4、C【解析】方程x 2+y 2=1表示以原点为圆心,半径为1的单位圆,而约束条件xy <0则表明单位圆上点的横、纵坐标异号,即单位圆位于第二或第四象限的部分.课堂作业一、选择题1.B 【解析】可以利用特殊值法来选出答案,如曲线过点(-1,0),(-1,2)两点.2.C 【解析】方程f (x ,y )-f (x 0,y 0)=0表示过点M (x 0,y 0)且和直线l 平行的一条直线.故选C.3.C 【解析】考虑x 、y 的范围.4.B 【解析】直接法求解,注意△ABC 底边AB 的中线是线段,而不是直线.5.D 【解析】注意所求轨迹在第四象限内.6.C 【解析】直接法:原说法写成命题形式即“若点M (x ,y )是曲线C 上的点,则M 点的坐标适合方程F (x ,y )=0”,其逆否命题是“若M 点的坐标不适合方程F (x ,y )=0,则M 点不在曲线C 上”,此即说法C.特值方法:作如图所示的曲线C ,考查C 与方程F (x ,y )=x 2-1=0的关系,显然A 、B 、D 中的说法都不正确.7.16-83 28.4x +3y -10=0和4x +3y =0【解析】设动点坐标为(x ,y ),则|4x +3y -5|5=1, 即|4x +3y -5|=5.∴所求轨迹方程为4x +3y -10=0和4x +3y =0.9.8x 2+8y 2+2x -4y -5=010.解以两个定点A ,B 所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示).由于|AB |=2a ,则设A (-a,0),B (a,0), 动点M (x ,y ).因为|MA |∶|MB |=2∶1,所以x +a 2+y 2∶x -a 2+y 2=2∶1,即x +a 2+y 2=2x -a 2+y 2,化简得⎝⎛⎭⎫x -5a 32+y 2=169a 2. 所以所求动点M 的轨迹方程为⎝⎛⎭⎫x -5a 32+y 2=169a 2. 11.解 设P (x ,y ),M (x 0,y 0),∵P 为MB 的中点,∴⎩⎨⎧ x =x 0+32y =y 02,即⎩⎪⎨⎪⎧x 0=2x -3y 0=2y , 又∵M 在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1.∴点P 的轨迹方程为(2x -3)2+4y 2=1.。

2.1.1曲线与方程(张用)

2.1.1曲线与方程(张用)

因而满足方程
x0 2 y0 2 r
,即x2+y2=r2.
这就是说(x0, y0)是此方程的一个解;
如果点(x0, y0)不在⊙(O, r)上,则必有,
x0 y0 r
2 2
即有x2+y2≠r2. (x0, y0)就不会是方程 x2+y2=r2的解。
(2)如果(x0, y0)是方程x2+y2=r2的一个解, 则可以推得, x0 2 y0 2 r
不是 (2)曲线C是顶点在原点的抛物线其方程为x+ y =0;
(3)曲线C是Ⅰ, Ⅱ象限内到x轴,y轴的距离乘积为1 的点集其方程为y= 是
y
1
y
1
y
1
-1
0
x 1
-2 -1 0 1 2
x
-2 -1 0 1 2
x



提问:说明过A(2,0)平行于y轴的直线与方程︱x︱=2的关系
①、直线上的点的坐标都满足方程︱x︱=2
的距离的积为常数k(k>0)的点的轨迹方程.
课堂小结
“曲线方程”的概念 :
(1)曲线上的点的坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线 上的点 那么,这个方程叫做曲线方程;
课堂练习
1.下面各对方程中表示的曲线相同的 一对是( C ). (A) y2=x与y=x
(B)y=x与 y / x=1
果点 M(x0,y0)是这条直线上的任一点,它
到坐标轴的距离相等,
即 x0 = y0,那么,
点 M( x0,y0 )
M(x0,y0)
是方程 x - y=0的解.
(纯粹性)
M(x0,y0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2 3
2 y x =3 > 0 (2)解: 函数 , y x ,在 x 0,
2 3
2 3
为增函数. 又 又
2 3
5 .8 > 4 .1 , 5 .8 > 4 .1
>
2 3
2 3
2 3

2 5
4 .1
2 3
2 3
> 4 .1
2 5
5 .8 > 4 . 1
练习1:
已知函数 f ( x) a 3a 3x 并且是偶函数,求 a的值。
2 a2 2
是幂函数,
解:因为f ( x) a 3a 3 x
2


a2 2
是幂函数
a 3a 3 1 解之得 : a 2或a 1
2
又因为f ( x)是偶函数
a 1不符合题意, 舍去 a 2
小结:
1、学习了幂函数的概念; 2、学习了幂函数的图 像和性质; 3、幂函数的简单应用; 4、利用函数的单调性比较几个“同指 数不同底数”的幂的大小.
作业布置:
联系2.3 1题 A组 10题
x 在[0,+∞)上是增函数.
x1 , x2 [0,),且x1 x2 , 则
f ( x1 ) f ( x2 ) x1 x2 ( x1 x2 )( x1 x2 ) 方法技巧: x1 x2 分子有理化 x1 x2 , x1 x2
x1 x2 0, x1 x2 0, f ( x1 ) f ( x2 ).
所以幂函数 f ( x) x 在[0,+∞)上是增函数.
二、幂函数的图像和性质
1、对于幂函数的图像和性质,我们只讨论 =1 1 1 ,-1,- 时的情形。 2, 3, , 2
2 3
2、在直角坐标系中划出下列函数:
(1) (4)
yx
yx
1 2
(2) (5)
yx
2
(3) y
x
3
yx
1
-1
1
x
名称
图象
y
yx
定义域
奇偶性
单调性
共性
yx
-1
1 O1 -1
x
R
奇函数
y
yx
2
Hale Waihona Puke 1 -1 O -1R
1
x
偶函数
(-∞,+∞)↑ 1、过(0, 0)点、 (1,1) (-∞,0)↓ 点。 (0,+∞)↑
2、在第 一象限 是递增 函数。
y
y x3
1 -1 -1
O y
1
x
R
奇函数
(-∞,+∞)↑
例 2:
已知幂函数 y f ( x)的图像过点 (2, 2 ), 试求出这个函数的解析 式.
解 : 设所求的幂函数为 yx
这种方法 叫待定 系数法

函数的图像过点 (2, 2 )
2 2 , 即2 2
1 2

所求的幂函数为 yx .
1 2
1 2
例3: 证明幂函数 f ( x) 证明:任取
三、练习巩固
例1. 利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8
(2)0.20.3 与 0.30.3
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8
(2)y=x0.3在(0,∞)内是增函数 ∵0.2<0.3∴ 0.20.3 <0.30.3
练习1:判断下列结论的正误,并说明理由. (1)过点A(3,0)且垂直于x轴的直线的方程为x=0; (2)到x轴距离为2的点的直线方程为y=-2; (3)到两坐标轴的距离面积等于1的点的轨迹方程为xy=1; (4)△ABC的顶点A(0,-3),B(1,0),C(-1,0), D为BC中点,则中线AD的方程为x=0. 解:(1)满足曲线方程的定义.∴结论正确. (2)因到x轴距离为2的点的直线方程还有一个:y=2, 即不具备完备性.∴结论错误. (3)到两坐标轴的距离的乘积等于1的点的轨迹方程应 为|x|·|y|=1,即xy=±1.∴所给问题不具备完备 性.∴结论错误. (4)中线AD是一条线段,而不是直线, ∴x=0(-3≤y≤0),∴所给问题不具备纯粹性.∴结论错 误.
幂函数的性质:
幂函数的定义域、奇偶性、单调性,因函 数式中 的不同而各异. 1.所有的幂函数在(0,+∞)都有定义,并且 函数图象都通过点(1,1); 2.如果 >0,则幂函数的图象过点 (0,0),(1,1)并在(0,+∞)上为增函数; 3.如果 <0,则幂函数的图象过点(1,1), 并在(0,+∞)上为减函数;
一、定义
几点说明:
(1)都是以自变量 (2)指数
为常数;
x为底数;

(3)自变量
x前的系数为1;
y x 的函数;
(6)幂函数不像指数函数和 对数函数,其定义域随 的 不同而不同。

(4)只有一项,后面没有其他项; (5)都是形如
判断下列函数是什么函数?
y 0.2
x
yx
1 2
(指数函数)
(幂函数)
yx
1
y 5
5
x
(幂函数)
(指数函数)
y 3
x
y x
(幂函数)
(指数函数)
例1 :已知f ( x) a a 1 x
2


2 a3
是幂函数,
求a的值。
解 : 因为f ( x)是幂函数
a a 1 1
2
解之得: a 2或a 1
a 2或a 1
> 4 .1 .
2 5
练习: 比较下列各组数的大小
(1) 3 和 3.1 ;
1 ( 2) 8 和 ( ) ; 9
7 8 7 8
5 2
5 2
(3) 3 和 5 .
1.4
1.5
利用幂函数的增减性比较两个数的大小. (1) 若能化为同指数,则用幂函数的单性; (2) 若能化为同底数,则用指数函数的单 调性; (3)当不能直接进行比较时,可在两个数 中间插入一个中间数,间接比较上述 两个数的大小.
y x
1
-1 O 1 -1
x
[0,+∞) R
非奇非偶函数
[0,+∞)↑ (-∞,+∞)↑
y
y3 x
1 -1 O -1 1
x
奇函数
名称
图象
y
定义域 (-∞,0)∪ (0,+∞)
奇偶性
单调性 (-∞,0)↓ (0,+∞) ↓
共性 1、过(1, 1)点 2、在第一 象限是递 减函数。
yx
1
-1
1 O -1
列2 比较下列各组数的大小
2 3 (1) ( ) 和 ( ) 3 5

2 3

2 3
(2) 4.1 和 5.8
2 3
2 = 3
2 5
2 3
解 : (1) 函数 y x , 在x 0, 是减函数.
3 ( ) 5
2 3 又 < . 3 5
2 3
0
2 ( ) 3
y x
y
1 -1 -1 O 1
y x2
yx
y x3
y
1
y
x
y x
y
1
y x2
y x3
y
1
x
-1
O
-1
1
x
1
-1 O -1
1
x
-1 O -1
1
x
y
3
y
x
y3 x
yx
y
1 -1 1
y x 2
y
y x 1 y x 2
1 -1
1 -1
O
-1
x
O
-1
1
x
O
1
x
奇函数
y
yx
2
-1
1 O -1 1
x
(-∞,0)∪ (0,+∞)
偶函数
(-∞,0) ↑ (0,+∞) ↓
小结: 幂函数y=xα(α是常数)的共性: 2、α<0时,过(1,1)点,且在第一象限单调递减; 所有幂函数y=xα(α是常数)的共性:过(1,1 )点。
1、α>0时,过(0,0)、(1,1)点,且在第一象限单调递增;
相关文档
最新文档