西工大高数总复习——第10章总复习

合集下载

高数第八、九、十、十一章复习

高数第八、九、十、十一章复习


(A) ( C)
1 48 1
24
; ;
(B) ( D)
1 48 1
24
; .7、设 是锥面 Nhomakorabeaz c
2 2

x a
2 2

y b
2 2
( a 0 , b 0 , c 0 ) 与平面
x 0 , y 0 , z c 所围成的空间区域在第一卦限
的部分,则

xy z
dxdydz
L
).
(A) 4 x 0 , (B) 6 , (C) 6 x 0 . 2、 设 L 为直线 y y 0 上从点 A ( 0 , y 0 ) 到点 B ( 3 , y 0 ) 的有向直线段,则 2 dy =(
L
). (C)0.
(A)6; 3、
(B) 6 y 0 ;
x a cos t , 若 L 是上半椭圆 取顺时针方向,则 y b sin t ,
2

2
6 、设 平 面 方 程 为 Bx Cz D 0 ,且 B , C , D 0 , 则 平面( ).
x 轴;
( A ) 平行于 ( B ) 平行于 ( D ) 垂直于
y 轴; y 轴.
( C ) 经过 y 轴 ;
A1 x B 1 y C 1 z D 1 0 7、 设 直 线 方 程 为 且 B2 y D2 0 A1 , B 1 , C 1 , D 1 , B 2 , D 2 0 , 则 直 线 ( ).
f ( x , y ) dy
0
=( ;
) (B) dy
0 1 0 1 1 x
(A)
1 x

《高等数学》 各章知识点总结——第10章

《高等数学》 各章知识点总结——第10章

第10章 重积分内容总结一、计算二重积分的方法:(,)DI f x y d σ=⎰⎰1、利用直角坐标计算二重积分 d d x d y σ= (1)若12{(,)()(),}=≤≤≤≤D x y x y x a x b ϕϕ,则21()()(,)(,)=⎰⎰⎰⎰bx ax Df x y d dx f x y dy ϕϕσ(2)12{(,)()(),}=≤≤≤≤D x y y x y c y d ψψ,则21()()(,)(,)=⎰⎰⎰⎰dy cy Df x y d dy f x y dx ψψσ2、利用极坐标计算二重积分cos ,sin ,x y d d d ρθρθσρρθ=== (c o s ,s i n )DI f d d ρθρθρρθ=⎰⎰ (1)若12{(,)|,()()}=≤≤≤≤D ρθαθβϕθρϕθ,则21()()(cos ,sin )I d f d βϕθαϕθθρθρθρρ=⎰⎰(2)若{(,)|,0()}=≤≤≤≤D ρθαθβρϕθ,则()(cos ,sin )I d f d βϕθαθρθρθρρ=⎰⎰(3)若{(,)|02,0()}=≤≤≤≤D ρθθπρϕθ,则2()00(cos ,sin )I d f d πϕθθρθρθρρ=⎰⎰(4)若2222{(,)(),0}{(,)0,02cos }D x y x a y a y a πρθθρθ=-+≤≥=≤≤≤≤,则22cos 0(cos ,sin )a I d f d πθθρθρθρρ=⎰⎰(5)若2222{(,)(),0}{(,)0,02sin }Dx y y a x a x a πρθθρθ=-+≤≥=≤≤≤≤,则2sin 0(cos ,sin )a I d f d πθθρθρθρρ=⎰⎰二、计算三重积分的方法(,,)I f x y z dv Ω=⎰⎰⎰1、 利用直角坐标计算三重积分 d v d x d y d z= (1)投影法(先一后二) 若12{(,,)(,),(,)(,)}xy x y z x y D z x y z z x y Ω=∈≤≤ 其中12{(,),()()}xy xy D prj x y a x b y x y y x =Ω=≤≤≤≤ 则2211()(,)()(,)(,,)by x z x y ay x z x y I dx dy f x y z dz =⎰⎰⎰(2)截面法(先二后一)若12{(,,)(,),}z x y z x y D c z c Ω=∈≤≤则21(,,)zc c D I dz f x y z dxdy =⎰⎰⎰2、利用柱面坐标计算三重积分c o s ,s i n ,x y z z ρθρθ===,dvd d dz ρρθ= (cos ,sin ,)I f z d d dz ρθρθρρθΩ=⎰⎰⎰几种特殊情况(1)若222{(,,)0,}{(,,)02,0,0}x y z z H x y R z R z H ρθθπρΩ=≤≤+≤=≤≤≤≤≤≤则20(cos ,sin ,)R HI d d f z dz πθρρρθρθ=⎰⎰⎰(2)若{(,,}{(,,)02,0,}x y z z H z H z H ρθθπρρΩ=≤=≤≤≤≤≤≤则20(cos ,sin ,)HHI d d f z dz πρθρρρθρθ=⎰⎰⎰(3)若Ω是由上半球面z =与上半锥面z =围成的闭区域即{(,,)02,0,z a z ρθθπρρΩ=≤≤≤≤≤≤则20(cos ,sin ,)aId d f z dz πρθρρρθρθ=⎰⎰(4)若Ω是由上半球面z =与旋转抛物面22x y z a+=围成的闭区域即2{(,,)02,0,z a z aρρθθπρΩ=≤≤≤≤≤≤则220(cos ,sin ,)aaId d f z dz ρπθρρρθρθ=⎰⎰⎰3、利用球面坐标计算三重积分2s i n c o s ,s i n s i n ,c o s ,s i n x r y r z r d v r d r d dϕθϕθϕϕϕθ==== 2(sin cos ,sin sin ,cos )sin I f r r r r drd d ϕθϕθϕϕϕθΩ=⎰⎰⎰几种特殊情况(1)若Ω是球域2222{(,,)}{(,,)02,0,0}x y z x y z R r r R θϕθπϕπΩ=++≤=≤≤≤≤≤≤220sin (sin cos ,sin sin ,cos )RI d d f r r r r dr ππθϕϕϕθϕθϕ=⎰⎰⎰(2)若Ω是球域22222{(,,)()}{(,,)02,0,02cos }x y z x y z R R r r R πθϕθπϕϕΩ=++-≤=≤≤≤≤≤≤ 222cos 2000sin (sin cos ,sin sin ,cos )R I d d f r r r r dr ππϕθϕϕϕθϕθϕ=⎰⎰⎰(3)若Ω是由不等式2222()x y z R R ++-≤与222x y z +≤围成的闭区域4{(,,)02,0,02cos }}Ω=≤≤≤≤≤≤r r R πθϕθπϕϕ 22cos 2000sin (sin cos ,sin sin ,cos )R I d d f r r r r dr ππϕθϕϕϕθϕθϕ=⎰⎰⎰。

高等数学总复习12010.12西北工业大学.pdf

高等数学总复习12010.12西北工业大学.pdf
总复习(一)
一、主要内容 二、典型例题
作业集重点题
练习册(上册)
(10 ) p .22 , 10
(1) p.3, 3
(11 ) p .23 , 2
(2) p.7, 5
(12 ) p .26 , 8 ( 3 ),
(3) p.8, 4
(13 ) p .27 , 10
( 4 ) p .10 , 7 , 8
(12 ) p .13 , 10 (13 ) p .17 , 1(10 ), 2 ,3 (14 ) p .18 , 1, 2 ,3 ( 2 ) (15 ) p .19 , 4 , 5 (1 ), 6 (16 ) p .20 , 7 − 9 (17 ) p .21 , 10 − 12 (18 ) p .22 , 4 (19 ) p .23 , 5 , 6 ( 20 ) p .24 , 8
( 26 ) p .44 , 4 , 6
( 39 ) p .64 ,5
( 27 ) p .45 , 1(1)、( 2 ) ( 40 ) p .65 , 10
( 28 ) p .48 , 5
( 41 ) p .66 , 11
( 29 ) p .51 , 3(1), ( 3 ) ( 42 ) p .71 , 1 ( 30 ) p .52 , 4 ( 3 ), ( 4 )
x→0−
x→0− x − arcsin x
(0) 0
= lim
ax 3
x→0− x − arcsin x
= lim 3ax2 x→0− 1 − 1 1− x2
=
lim
x→0−
1⋅ 2
6ax − 2x (1 − x2 )32
= −6a
f (0+ ) = lim f ( x) = x→0+

西北工业大学高数期末试题10-11二学期B卷及答案

西北工业大学高数期末试题10-11二学期B卷及答案

共6页第1页班级:学号:姓名:班级:学号:姓名:高等数学2009--2010第二学期期终考试试题答案及评分标准A卷一、1、-8,2、,3、,4、8π,5、,6、。

二、1, 2、,3、,4、,5、3,6、[]2121+-,,缺闭区间扣一分。

三、1、解:设切点…………………2分由已知条件得:,得到.………..4分切平面方程为即……………..6分2、解:……………..3分……………..6分3、解:………………4分………………6分四、1、解:g f fy xx u v∂∂∂=+∂∂∂,g f fx yy u v∂∂∂=-∂∂∂,…………….2分vfvfxvufxyufyx∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222g,vfvfyvufxyufxy∂∂-∂∂+∂∂∂-∂∂=∂∂2222222222g, ………………..5分222222g gx yx y∂∂+=+∂∂………………6分2.解:设dydppyp=''=',y,………………………2分得到舍去)(,0y==+ppdydp,解得ycp1=,100(,)dy f x y dx⎰83π12eπ+1415-{}00000(,,),,2,1P x y z n x y=-224000sind d drππθϕϕ⎰⎰143π0021221x y-==-2230x y z+--=2200002,1, 3.2xx y z y===+=2(2)2(1)(3)0x y z-+---=231131()12y yyydy e dxy y e dy e∂=-=-⎰⎰⎰8232008222336dz d drz dzπθππ==⎰⎰⎰2y1=-由初始条件yy 21,21c 1='=, ………………………4分 22c x y +=, 由初12=c ,其特解为1,12+=+=x y x y 或。

……………………..6分 3.、解:由xQy p ∂∂=∂∂,得x e x f x f x f =-'-'')()()(,………………2分 x x x e y e c e c Y 21,221-=+=*-,由初始条件61,3221-==c c , x x x e e e x f 216132)(2--=- ……….4分(1,1)(0,0)()2()()x f x f x e ydx f x dy ''⎡⎤+++⎣⎦⎰ =⎰-+=-+--101212216134216134e e e dy e e e ). ……………….6分五、解:1151lim lim (1)55n n n n n na n a n ++→∞→∞⋅==+⋅, ∴收敛半径为5R =…………………..2分 当5x =-时, 15n n∞=∑发散; 当5x =时,11(1)5n n n -∞=-⋅∑收敛 ∴收敛区间为(5,5]-…………………………………………………4分 设和函数1111111100110(1)()(1)55 [(1)][(1)()]5551 ln(1), (5,5]5515n n n n nn n n n xx n n n n n n x x S x x x n n t x t x dt dt n x x dt x x t -∞∞+-==∞∞---==-==-⋅⋅'=-=-⋅==+∈-+∑∑∑∑⎰⎰⎰………..…7分 …………………….8分六、解:设旋转曲面S 的方程为 12222=++z y x ,--------------------1分给定的方向 )0,21,21(0-=l方向导数函数)(2c o s c o s c o s y x zf y f x f l f -=∂∂+∂∂+∂∂=∂∂γβα --------2分 设)12()(2222-+++-=z y x y x L λ, ---------------3分令 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++==∂∂=+-=∂∂=+=∂∂1202022042222z y x z z Ly y L x x Lλλλ ------------------4分解之得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=02242z y x λλ 23±=λ ------------------6分23=λ,得S 上的点为)0,36,66(-,此时3-=∂∂l f 23-=λ,得S 上的点为)0,36,66(-,此时3=∂∂lf所以,所求的S 上的点为)0,36,66(- ------------------7分 七、解:……………………3分000()()(x)lim()(1)()lim lim x x x x x f x x f x f x f x e f x e x x∆→∆∆→∆→+∆-'=∆-∆=+∆∆(x)()(0),(),(0)0,0..xx x f f x f e y ax c e f c y axe ''=+=+=∴== 111100(x)(1)(1)(1)!!x x x x n n n n f axe aexe ae x e aee x x ae ae n n ---+∞∞=====-+--=+∑∑………………………6分………………………7分(2009)(1)2010ae f =n=100(1)(1)=ae (1)!!(1)(1),.!n nn nn x x ae n n n x ae x R n ∞∞=∞=--+-+-=∈∑∑∑。

最新西工大—高数答案—曲线积分与曲面积分

最新西工大—高数答案—曲线积分与曲面积分

第十章 曲线积分与曲面积分第一节 第一类曲线积分1.设xOy 平面内有一分布着质量的曲线弧L ,在点(,)x y 处它的线密度为(,)x y ρ,用对弧长的曲线积分表示:(1)这曲线弧L 的长度_______S =; (2)这曲线弧L 的质量_______M =;(3)这曲线弧L 的重心坐标:___x =;___y =;(4)这曲线弧L 对x 轴,y 轴及原点的转动惯量____x I =;____y I =;0____I =. 解 (1)d LS s =⎰;(2)(,)d LM x y s μ=⎰;(3)(,)d (,)d L Lx x y s x x y sμμ=⎰⎰, (,)d (,)d L Ly x y s y x y sμμ=⎰⎰, (4)2(,)d x LI y x y s μ=⎰, 2(,)d y LI x x y s μ=⎰, 220()(,)d LI x y x y s μ=+⎰2.(1)设L 为椭圆22143x y +=,其周长为a ,求⎰+L s y x d )43(22. (2)设L 为圆周2264x y +=,求⎰+Ls y x d 22.解 (1)L :22143x y +=,即223412x y +=, 从而⎰+Ls y xd )43(22=⎰Ls d 12=⎰Ls d 12=12a .(2)L :2264x y +=, 从而⎰+Ls y x d 22=⎰Ls 8d =⎰Ls d 8=8π28⋅⋅=128π.3.计算22()d Lx y s +⎰,其中L 是以(0,0),(2,0),(0,1)为顶点的三角形. 解 如图10.1所示,1L :0y =,x 从02→,2L :0x =,y 从01→, 3L :22x y =-,y 从01→,图 10.1d s y y ==. 从而22()d Lxy s +⎰=122()d L x y s +⎰+222()d L x y s +⎰+322()d L x y s +⎰=21122220d d [(22)]d x x y y y y y +-+⎰⎰=12081(485)d 33y y y +-+=3+4.计算s ⎰,其中L 为曲线222x y x +=.解1 L 的参数方程为 L :1cos ,sin ,x y θθ=+⎧⎨=⎩ 02πθ≤≤. 计算出d d s θ=,于是s ⎰=20θ⎰=2π02cos d 2θθ⎰2u θ=π4cos d u u ⎰=π208cos d u u ⎰=8.解2 在极坐标系下,L :2cos ,r θ= ππ22θ-≤≤.计算出d s θ==2d θ,于是s ⎰=222cos 2d ππθθ-⋅⎰=208cos d πθθ⎰=8.5.求空间曲线e cos tx t -=,e sin ty t -=,e (0)tz t -=<<+∞的弧长.解 d s t =td tt -,从而 0e d t s t +∞-==.6.有一铁丝成半圆形cos x a t =,sin y a t =,0t π≤≤,其上每一点处的密度等于该点的纵坐标,求铁丝的质量.解 d s t =t =d a t . d L m s ρ=⎰=d L y s ⎰=πsin d a t a t ⋅⎰=π2sin d a t t ⎰=22a . 7.计算22()d Lxy z s +-⎰,其中L 为球面222x y z a ++=与平面0x y z ++=的交线.解 由于222x y z a ++=与0x y z ++=对x ,y ,z 都具有轮换对称性,故 2d Lx s ⎰=2d Ly s ⎰=2d Lz s ⎰,d Lx s ⎰=d Ly s ⎰=d Lz s ⎰.于是2d L x s ⎰=2221(d d d )3LL L x s y s z s ++⎰⎰⎰ =2221()d 3Lx y z s ++⎰=2d 3L a s ⎰=22π3a a ⋅=32π3a . 其中d Ls ⎰为圆周2222x y z a x y z ⎧++=⎨++=⎩的周长,显然平面0x y z ++=过球面2222x y z a ++=的球心(0,0,0)O ,所以L 为该球面上的大圆,即半径为a ,故周长为2a π.又因为()d Ly z s -⎰=d d LLy s z s -⎰⎰=0,所以22()d Lx y z s +-⎰=32π3a .第二节 第二类曲线积分1.计算⎰+--+Lyx y y x x y x 22d )(d )(,其中L 为圆周222x y a +=(按逆时针方向绕行). 解 L :cos ,sin x a t y a t ==,t 由0到2π, 从而I =⎰+--+L y x yy x x y x 22d )(d )(=20[(cos sin )(sin )(cos sin )cos ]d t t t t t t t π+---⎰=20d t π-⎰=2π-.2.计算22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧.解 I =22()d Lx y x -⎰=2240()d x x x -⎰=5615-. 3.计算(2)d d La y x x y -+⎰,其中L 为摆线(sin )x a t t =-,(1cos )y a t =-上对应t 从0到π2的一段弧(图10.2). 图 10.2解 I =(2)d d La y x x y -+⎰=20{[2(1cos )](1cos )(sin )sin }d a a t a t a t t a t t π---+-⎰=22sin d a t t t π⎰=22πa -.4.计算22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰,其中L 为上半椭圆221(0)x xy y y ++=≥,从点(1,0)-到点(1,0)的一段弧.解 由221x xy y ++=可得221xy y x +=-,221x xy y +=-,代入积分式,得22[1()sin ]d [()sin ]d Lxy y x x xxy y y ++++⎰=22[1(1)sin ]d (1)sin d Lx x x y y y +-+-⎰=10221[1(1)sin ]d (1)sin d x x x y y y -+-+-⎰⎰=2.5.计算222d d d x x y y z z Γ++⎰,其中Γ是从点(1,1,1)到点(2,3,4)的直线段.解 Γ的点向式方程为:111123x y z ---==,从而Γ得参数方程为 1x t =+,12y t =+,13z t =+,t 由0到1.I =12220[(1)2(12)3(13)]d t t t t +++++⎰=111333000111(1)(12)(13)333t t t +++++=32.6.计算⎰Γ+-z y y x d d d ,其中Γ为有向闭折线ABCA ,这里的A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1).解 如图10.3,AB :1x y =-,0z =,y 由0到1.d d d ABx y y z -+⎰=12d y -⎰=2-;BC :1y z =-,0x =,z 由0到1;d d d BC x y y z -+⎰=10(2)d z z -⎰=32; CA :1z x =-,0y =,x 由0到1;d d d CAx y y z -+⎰=1d x ⎰=1,图 10.3故 I =()d d d AB BC CAx y y z ++-+⎰⎰⎰=3212-++=12. 7.有一质量为m 的质点,除受重力的作用外,还受到一个大小等于该质点到原点的距离,方向指向原点的力f 的作用,设该质点沿螺旋线:cos L x t =,sin y t =,z t =从点π(0,1,)2A 移动到点(1,0,0)B 移动到点,求重力与力f 的合力所作的功. 解 依据题意,力f =x y z ---i j k ,故质点所受的合力 ()mg x y z mg =-=---+F f k i j k 在螺旋线L 上,起点A 对应于π2t =,终点B 对应于0t =,即π:02t →. 因此,力F 所作的功 d d ()d LW x x y y z mg z =---+⎰=0π2[cos (sin )sin cos ()]d t t t t t mg t ----+⎰=π20()d t mg t +⎰=2ππ82mg +.第三节 格林公式1.设xOy 平面上闭曲线L 所围成的闭区域为D ,将给定的二重积分与其相应的曲线积分用线连接起来. (1)d d Dx y ⎰⎰ (a) ⎰-Lx y y x d d(2) 2d d Dx y ⎰⎰ (b)⎰-L y x x x d d 21(3)d d Dx y -⎰⎰ (c)⎰-L x y y x d d 212.利用曲线积分计算星形线3cos x a t =,3sin y a t =所围成图形的面积.解 如图10.4,因为33cos sin x a tx a t⎧=⎨=⎩ t 由0到2π. 从而S =d Dσ⎰⎰=⎰-Lx y y x d d 21图 10.4=2π32321[cos 3sin cos sin (3cos sin )]d 2a t a t t a t a t t t ⋅--⎰=2π22203sin cos d 2a t t t ⎰=2π2203sin 2d 8a t t ⎰=2π231cos 4d 82t a t -⎰=23π8a .3.证明2322(6)d (63)d Lxy y x x y xy y -+-⎰只与L 的起始点有关,而与所取路径无关,并计算积分(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰.解 236P xy y =-,2263Q x y xy =-,2123P Qxy y y x∂∂=-=∂∂,所以积分与路径无关, 故(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰=34212(248)d (549)d x x y y y -+-⎰⎰=2323412[128][273]x x y y -+-=80156236+=. 或者 (3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰ =(3,4)2232(1,2)(6d 6d )(d 3d )xy x x y y y x xy y +-+⎰=(3,4)223(1,2)d(3)x y xy -⎰=223(3,4)(1,2)[3]x y xy -=236. 4.计算e (1cos )d e (sin )d x x LI y x y y y =-+-⎰,其中L 为从(0,0)O 到(,0)A π的正弦曲线sin y x =. 解 如图10.5所示,由格林公式 I =e (1cos )d e (sin )d x xLy x y y y -+-⎰=y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d 0xDy x y ---⎰⎰=πsin 0e d d x xx y y ⎰⎰=π201e sin d 2x x x ⎰=π01e (1cos 2)d 4xx x -⎰=ππ0011e d e cos 2d 44x x x x x -⎰⎰=ππ11(e 1)(e 1)420---=π1(e 1)5-. 图 10.5其中π0e cos 2d xx x ⎰=πcos 2de x x ⎰=ππ0e cos 2|e dcos 2xx x x -⎰=π0e 12sin 2d x e x x π-+⎰=ππ0e 12sin 2de x x -+⎰=πππ00e 12e sin 2|2e dsin 2x x x x -+-⎰=ππ0e 14e cos2d x x x --⎰.移项解之,得ππ01e cos 2d (e 1)5x x x =-⎰.注意 本题易犯两个错误: (1)I =y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d x Dy x y -⎰⎰.产生错误的原因是,没有注意格林公式使用时的条件:⎰⎰⎰+=∂∂-∂∂DL y Q x P y x yPx Q d d d d )(,其中C 是D 的取正向的边界曲线.而本题的闭曲线L AO +是D 的取负向的边界曲线,所以二重积分()d d DQ Px y x y∂∂-∂∂⎰⎰前面必须添加负号. (2)计算定积分π0e cos 2d x x x ⎰是连续两次使用部分积分法后移项解出来的.对此积分有些同学束手无策,有些则在连续使用分布积分法d d u v uv v u =-⎰⎰时,每次选取函数()u x ,不注意必须是同类函数(如选三角函数作为()u x 就一直选三角函数,如选e x作为()u x 就一直选e x),结果就出现了恒等式d d u v u v =⎰⎰,即前进一步又倒退一步,致使积不出来.5. 已知()x ϕ'连续,且(0)(1)0ϕϕ==,(0,0)A ,(1,1)B ,计算⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ其中AMB 是以AB 线段为直径的上半圆周.解 如图10.6所示⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ=⎰⎰+-'+--BAAMB BA x x y y x y y d ]1e )([d ]e )(][[ϕϕ=d d [()e ]d [()e 1]d x xABDx y y y x y y ϕϕ'-+-+-⎰⎰⎰ 图 10.6=10π[(()())e (1)]d 4xx x x x ϕϕ'-++-+⎰=111000π()e d ()e d (1)d 4x xx x x x x x ϕϕ'-++-+⎰⎰⎰=1100π3()e d e d ()42x x x x x ϕϕ-++-⎰⎰ =111000π3()e d e ()|()e d 42x x x x x x x x ϕϕϕ--++-⎰⎰ =π342--=π3()42-+. 本题需注意两点:(1)同上题一样,使用格林公式时要注意边界曲线的方向,本题因是负向,故二重积分前必须添上负号;(2)因()x ϕ是抽象函数,不可能直接将11()e d ()e d x x x x x x ϕϕ'+⎰⎰积出来,请不要先急于积分,先用分布积分法将10()e d x x x ϕ'⎰表示为11100e d ()e ()|()e d x x xx x x x ϕϕϕ=-⎰⎰,则两项抽象函数的定积分就抵消了,问题就可得到解决,因此在解题过程中一定要善于思考,从中 发现解题技巧.6.证明22()d ()d x y x x y yx y-+++在右半平面(0)x >内为某一函数(,)u x y 的全微分,并求出一个这样的函数(,)u x y .解 22x y P x y -=+,22x yQ x y +=+,由于222222()P y xy x Q y x y x ∂--∂==∂+∂,所以 22()d ()d x y x x y yx y -+++为某一函数(,)u x y 的全微分.取定点0(1,0)M ,对于右半平面上任一点(,)M x y ,令 (,)u x y =(,)22(1,0)()d ()d x y x y x x y yx y -+++⎰=222100d d 0x y x x y x y x x y -++++⎰⎰ =22221001d d d xy y x yx y y x x y x y++++⎰⎰⎰ =221ln arctan ln()ln 2y x x y x x +++- =221arctanln()2y x y x ++.7.已知曲线积分⎰-++Ly x x x y d )9(d )1(33,其中L 为圆周222()x a y a -+= (0)a >,取逆时针方向,求a 的值,使得对应曲线积分的值最大.解 显然31P y =+,39Q x x =-在区域:D 222()x a y a -+≤内有一阶连续的偏导数,由格林公式()I a =⎰+Ly Q x P d d =()d d DQ Px y x y ∂∂-∂∂⎰⎰=22(933)d d Dx y x y --⎰⎰ =229d d 3()d d DDx y x y x y -+⎰⎰⎰⎰=2cos 232029π3d d a a r r πθπθ--⎰⎰=244229π34cos d a a ππθθ--⎰=2442924cos d a a ππθθ-⎰=2431π9π24422a a -⋅⋅⋅=2499ππ2a a -. 2()18π(1)I a a a '=-,令()0I a '=,解得1a =(依题意设0a >,故将0a =和1a =-舍去),因为1a =是()I a 在(0,)+∞内唯一的驻点,且()18π54πI a ''=-=36π0-<,故()I a 在1a =处取得最大值,因此1a =,即当积分路径为22(1)1x y -+=时,对应曲线积分 的值最大.8.求⎰+---Lyx yx x y 22)1(d )1(d ,其中 (1)L 为圆周2220x y y +-=的正向;(2)L 为椭圆22480x y x +-=的正向.解 令22(,)(1)y P x y x y =-+,22(1)(,)(1)x Q x y x y--=-+,则当22(1)0x y -+≠时,有22222(1)[(1)]Q x y Px x y y∂--∂==∂-+∂, 记L 所围成的闭区域为D ,(1)L :2220x y y +-=,即22(1)1x y +-=, 此时(1,0)D ∉,(如图10.7(a)所示). 图 10.7(a)图 10.7(b)由于Q Px y∂∂=∂∂,由格林公式, 0)1(d )1(d 22=+---⎰Ly x yx x y .(2)L :22480x y x +-=,即22(1)14y x -+=,此时(1,0)D ∈,以(1,0)为圆心,以充分小的0ε>为半径作圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,θ由0到2π,取逆时针方向(如图10.7(b)所示).记L 和C 所围成的闭区域为1D ,对复连通区域1D 应用格林公式,得 0)1(d )1(d 22=+---⎰-+C L yx yx x y , 从而I =⎰+---Ly x y x x y 22)1(d )1(d =⎰+---C y x yx x y 22)1(d )1(d =2π2sin (sin )cos cos d εθεθεθεθθε--⋅⎰=2π0d θ-⎰=2π-.注意 (2)中由于点(1,0)位于L 所围成的闭区域D 内,需用复连通域上的格林公式,以避开(1,0)点,考虑到被积函数的分母为22(1)x y -+,故取圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,有同学不考虑“洞”,即点(1,0),直接用格林公式,得到0)1(d )1(d 22=+---⎰Lyx yx x y 是错误的. 9.求[esin ()]d (e cos )d xx LI y b x y x y ax y =-++-⎰,其中a 、b 为正常数,L 为从点(2,0)A a 沿曲线y =(0,0)O 的弧.解 添加从点(0,0)O 沿0y =到点(2,0)A a 的有向直线段1L ,则⎰⎰-++---++-=+11d )cose (d )](sin e [d )cos e (d )](sin e [L x x L L x x yax y x y x b y y ax y x y x b y I =20[(e cos )(e cos )]d d d a x x Dy a y b x y bx x -----⎰⎰⎰=20()d d d a Db a x y b x -+⎰⎰⎰=22π()(2)22bb a a a -+=23ππ(2)22a b a +-.第四节 第一类曲面积分1.设有一分布着质量的曲面∑,在点(,,)x y z 处它的面密度为(,,)x y z ρ.用曲面积分表示:(1)这曲面∑的面积A =______; (2)这曲面∑的质量M =______;(3)这曲面∑的重心坐标为x =______,y =______,z =______; (4)这曲面∑对于x 轴,y 轴,z 轴及原点的转动惯量x I =__,y I =__,z I =______,0I =______.解 (1)A =d S ∑⎰⎰.(2)M =(,,)d x y z S μ∑⎰⎰.(3)x =(,,)d (,,)d x x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,y =(,,)d (,,)d y x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,z =(,,)d (,,)d z x y z Sx y z Sμμ∑∑⎰⎰⎰⎰.(4)x I =22()(,,)d y z x y z S μ∑+⎰⎰, y I =22()(,,)d x z x y z S μ∑+⎰⎰, z I =22()(,,)d xy x y z S μ∑+⎰⎰, 0I =222()(,,)d x y z x y z S μ∑++⎰⎰.2.计算4(2)d 3z x y S ∑++⎰⎰,其中∑为平面1234x y z++=在第一卦限中的部分. 解 如图10.8所示,∑:1234x y z ++=,2zx ∂=-∂,43z y ∂=-∂,d d S x y ==d d 3x y , 在积分曲面上,被积函数423z x y ++=4()4234x y z++=,303:202xy y xD x ⎧≤≤-⎪⎨⎪≤≤⎩,从而4(2)d 3z x y S ∑++⎰⎰=4d 3xyD x y ⋅⎰⎰图 10.8=461d d xyD x y ⎰⎰=46133⋅=461. 3.计算⎰⎰∑+S y xd )(22,其中∑是锥面22z x y =+及平面1z =所围成的区域的整个边界曲面. 解 如图10.9所示,1∑:22z x y =+,22zxx y∂=∂+,22z yx y∂=∂+,22d 1()()d d z z S x y x y∂∂=++∂∂=2d d x y ,22:1xy D x y +≤. 2∑:1z =,d d d S x y =,22:1xy D x y +≤,⎰⎰∑+S y x d )(22=122222()d ()d x y S x y S ∑∑+++⎰⎰⎰⎰ =2π12π1220d ρ2ρd ρd ρρd ρθθ+⎰⎰⎰⎰=11330022πρd ρ2πρd ρ+⎰⎰=π(21)2+. 4.计算I =()d xy yz zx S ∑++⎰⎰,其中∑为锥面22z x y =+被柱面222x y ax +=所截成的部分(0)a >.解 因为积分曲面∑关于zOx 坐标面(即0y =平面)对称,xy yz +()y x z =+是关于y 的奇函数,所以I =()d d y x z S zx S ∑∑++⎰⎰⎰⎰=0d zx S ∑+⎰⎰此外,在∑上,22z x y =+,d 2d d S x y =,且∑在xOy 面上的投影为22:2xy D x y ax +≤,因此I =d zx S ∑⎰⎰=22d x x y S ∑+⎰⎰=222d d xyD x x y x y +⎰⎰=π2cos 32π022d cos d a r r θθθ-⎰⎰=452082cos d aπθθ⎰=4428253a ⋅⋅=464215a . 图 10.95.计算d S ∑⎰⎰,其中∑为抛物面222()z xy =-+在xOy 面上方的部分.解 如图10.10所示,222()z x y =-+,2zx x∂=-∂,2z y y ∂=-∂,22d 1()()d d z z S x y x y∂∂=++∂∂=22144d d x y x y ++, 22:2xy D x y +≤,d S ∑⎰⎰=22144d d xyD x y x y ++⎰⎰=2π220d 14ρρd ρθ+⎰⎰=12222012π(14ρ)d(14ρ)8++⋅⎰=2223π2(14ρ)|43⋅+=13π3. 6.计算()d x y z S ∑++⎰⎰,其中∑为球面2222x y z a ++=上(0)z h h a ≥<<的部分. 解 ∑在xOy 面上的投影为圆域:2222:xy D x y a h +≤-, d S =222222221()()d d x y x y a x ya x y--++----=222d d x y a x y--,故()d x y z S ∑++⎰⎰=222222()d d xyD x y a x y x y a x y++--⋅--⎰⎰由积分区域的对称性可得:222d d xy D x x y a x y⋅--⎰⎰=0,222d d xyD y x y a x y⋅--⎰⎰=0,又积分区域xy D 的面积为22π()a h -,故()d x y z S ∑++⎰⎰=d d xyD a x y ⎰⎰=22π()a a h -. 7.求柱面220x y ax +-=在球面2222x y z a ++=内部的部分的表面积(0)a >. 解 由对称性,所求面积A 为其位于第一卦限部分面积的4倍,即4d A S ∑=⎰⎰,其中曲面∑为2y ax x =-,求得面积元素图 10.10d d S x z =d x z ,由22z x y ax⎧⎪=⎨+=⎪⎩,消去y ,得z =由此得∑在zOx 坐标面上的投影为::0xz D z ≤≤0x a ≤≤,因此,曲面∑的面积 4d A S ∑=⎰⎰=4d xzD x z=02d a ax ⎰⎰=02a ax ⎰=02ax ⎰=24a . 8.设S 为椭球面222122x y z ++=的上半部分,点(,,)P x y z S ∈,π为S 在点P 处的切平面,(,,)f x y z 为点(0,0,0)O 到平面π的距离,求d (,,)SzS f x y z ⎰⎰解 设(,,)X Y Z 为π上任意一点,则π的方程为122xX yY zZ ++=,从而知 (,,)f x y z =12222()44x y z -++,由z =有z x ∂∂,z y∂∂d Sd x yd x y ,从而d (,,)Sz S f x y z ⎰⎰=221(4)d d 4Dx y x y --⎰⎰=2π201d ρ)ρd ρ4θ-⎰⎰=3π2.第五节 第二类曲面积分1.当∑是xOy 面内的一个闭区域D 时,(,,)d f x y z S ∑⎰⎰与二重积分的关系为(1)(,,)d f x y z S ∑⎰⎰=____d d D x y ⎰⎰,(2)(,,)d R x y z S ∑⎰⎰=____d d Dx y ⎰⎰.解 (1)(,,0)f x y , (2)(,,0)R x y ±.注意 因第一类曲面积分与所给曲面的侧无关,所以(1)中应填(,,0)f x y ;而第二类曲面积分与曲面的侧有关,所以(2)中应填(,,0)R x y ±,有个别同学常疏忽这一点,只填(,,0)R x y ,这是不对的.2.计算222d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为半球面z =. 解 记1∑:x =取前侧,2∑:x =,1∑与2∑在yoz面的投影区域相同,记为yz D .2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰ =222222()d d ()d d yzyzD D a y z y z a y z y z -----⎰⎰⎰⎰=0. 同理2d d y z x ∑⎰⎰=0,而 2d d z x y ∑⎰⎰=222222()d d x y a a x y x y +≤--⎰⎰=2220d (ρ)ρd ρaa πθ-⎰⎰=4π2a . 从而I =222d d d d d d x y z y z x z x y ∑++⎰⎰ =2d d x y z ∑⎰⎰+2d d y z x ∑⎰⎰+2d d z x y ∑⎰⎰=0+0+4π2a =4π2a .注意 常见的错误是:2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰=2222()d d yzD a y z y z --⎰⎰ 或2d d y z x ∑⎰⎰=2222()d d zxD ax z z x --⎰⎰.产生错误的原因是忽视了将第二类曲面积分化为二重积分时,应根据积分曲面的侧选择二重积分前的正、负号.(,,)d d f x y z x y ∑⎰⎰=[,,(,)]d d xyD f x y z x y x y ±⎰⎰,(,,)d d g x y z y z ∑⎰⎰=[(,),,]d d yzD g x y z y z y z ±⎰⎰,(,,)d d R x y z z x ∑⎰⎰=[,(,),]d d zxD R x y z x z z x ±⎰⎰.将第二类曲面积分化为二重积分时,究竟什么时候二重积分前面写正号,什么时候写负号,这与所给曲面的侧有关.切记:上侧取正,下侧取负; 前侧取正,后侧取负; 右侧取正,左侧取负;3.计算⎰⎰∑y x xz d d ,其中∑是平面0x =,0y =,0z =,1x y z ++=所围成的空间区域的整个边界曲面的外侧.解 如图10.11所示,1234∑=∑+∑+∑+∑,其中1234,,,∑∑∑∑各自对应于四面体的一个表面,可表示为1∑:0z = 下侧; 2∑:0y = 左侧;3∑:0x = 后侧; 4∑:1x y z ++= 上侧.由于1∑在0z =平面上,故在1∑上的曲面积分为0; 同理,在2∑,3∑上的曲面积分也都为0,所以,所求积分⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰由4∑得方程得1z x y =--,4∑在xoy 面上的投影域为:01xy D y x ≤≤-,01x ≤≤, 于是⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰=4(1)d d x x y x y ∑--⎰⎰=(1)d d xyD x x y x y --⎰⎰=110d (1)d x x x x y y ---⎰⎰=124. 4.计算d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为球面2222x y z R ++=的外侧. 解 由题设,∑的单位法向量n =(cos ,cos ,cos )αβγ,2,2)x y z =1(,,)x y z R. 由两类曲面积分的关系,可得d d d d d d x y z y z x z x y ∑++⎰⎰=(cos cos cos )d x y z S αβγ∑++⎰⎰=2221()d x y z S R ∑++⎰⎰=21d R S R ∑⎰⎰ =d RS ∑⎰⎰几何意义24πR R ⋅=34πR . 5.计算I =y x z h x z y g z y x f d d )(d d )(d )d (++⎰⎰∑,其中,,f g h 为连续函数,∑为平行六面体:0,0,0x a y b z c Ω≤≤≤≤≤≤表面的外侧. 解⎰⎰∑y x z h d d )(=()d d (0)d d xyxyD D h c x y h x y -⎰⎰⎰⎰=[()(0)]ab h c h -,⎰⎰∑x z y g d d )(=()d d (0)d d xzxzD D g b z x g z x -⎰⎰⎰⎰=[()(0)]ac g b g -,⎰⎰∑z y x f d d )(=()d d (0)d d yzyzD D f a y z f y z -⎰⎰⎰⎰=[()(0)]bc f a f -,从而 I =()(0)()(0)()(0)[]f a f g b g h c h abc a b c---++.注意 本题易犯的错误是利用高斯公式来解,题目中仅告诉我们,,,f g h 为连续函数,又如何对,,f g h 求导呢?6.计算[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰,其中(,,)f x y z 为连续函数,∑是平面1x y z -+=在第四卦限部分的上侧.解 平面1x y z -+=的法线向量为n ={1,1,1}-,方向余弦为cosα=,cos β=cos γ=, 则 I =[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰=[()cos (2)cos ()cos ]d f x f y f z S αβγ∑+++++⎰⎰=[((2)((f x f y f z S ∑++++⎰⎰()dx y z S∑-+=1d3S∑⎰⎰dxyDx y⎰⎰dxyx y⎰⎰=d dxyDx y⎰⎰=12.第六节高斯公式通量与散度1.设计yxxyzxzzxyzyyzx dd)(dd)(d)d(222-+-+-⎰⎰∑,其中∑为平面x=,0,0,,,y z x a y a z a=====所围成的立体的表面的外侧.解由高斯公式,I=yxxyzxzzxyzyyzx dd)(dd)(d)d(222-+-+-⎰⎰∑=(222)dx y z vΩ++⎰⎰⎰=2()dx y z vΩ++⎰⎰⎰设该正方体的形心坐标为(,,)x y z,则2ax y z===,而d ddx v x vxvvΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,d y vyvΩ=⎰⎰⎰,d z vzvΩ=⎰⎰⎰,所以d,x v xvΩ=⎰⎰⎰d,y v yvΩ=⎰⎰⎰d,z v zvΩ=⎰⎰⎰.从而I=2()x y z v++=31112()222a a a a++=43a.本题巧妙地利用了重心坐标公式,将利用高斯公式后得到的三重积分()dx y z vΩ++⎰⎰⎰的计算转化为计算()x y z v++,从而使问题得到解决.2.计算24d d d d2d dxz y z y z x yz x y∑-+⎰⎰,其中∑是球面2222x y z a++=外侧的上半部分(0)a>.解补充平面2221:0()z x y a∑=+≤取下侧,I=yxyzxzyzyxz dd2dddd4)(211+--⎰⎰⎰⎰∑+∑∑=(422)d0z y y vΩ-+-⎰⎰⎰=4d z vΩ⎰⎰⎰=2π0004dρdρdazθ⎰⎰⎰=22ρρ8πρdρ2a a-⋅⎰=4πa.注意 易犯的错误是 (1)I =24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰=(422)d z y y v Ω-+⎰⎰⎰=4zdv Ω⎰⎰⎰=… 产生错误的原因是,没有注意到∑仅是球面的上半部分,∑并非封闭曲面,不能直接用高斯公式.尽管本题中沿曲面1∑的积分:124d d d d 2d d 0xz y z y z x yz x y ∑-+=⎰⎰,致使题目答案未受任何影响,但对不封闭的曲面直接用高斯公式,显然是不对的.(2)有同学在补充平面2221:0()z x y a ∑=+≤时,不写取什么侧,这也不妥.3.计算y x z x z y x f x z y )y x f(y d d d d )(1d d 1++⎰⎰∑,其中()f u 具有一阶连续导数,∑为柱面222()()()2ax a y a -+-=及平面0,1(0)z z a ==>所围成立体的表面外侧.解 利用高斯公式,有I =y x z x z yxf x z y )y x f(y d d d d )(1d d 1++⎰⎰∑=2211[()()1]d x xf f v y y y y Ω''-+⎰⎰⎰=d v Ω⎰⎰⎰ =2π()12a ⋅⋅=2π4a . 4.计算y x z x z y z y x d d d d d d 333++⎰⎰∑,其中∑为球面2222xy z a ++=的内侧.解y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d xy z v Ω-++⎰⎰⎰=2ππ403d sin d ρd ρaθϕϕ-⎰⎰⎰=512π5a -. 注意 易犯的错误是y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d x y z v Ω++⎰⎰⎰ =23d a v Ω⎰⎰⎰=2343π3a a ⋅=54πa . 这里有两个错误:(1) 不注意高斯公式使用的条件:∑应是空间闭区域Ω的整个边界曲面的外侧. 本题所 给的闭曲面是球面的内侧. 因此在将闭曲面上的曲面积分y x z x z y z y x d d d d d d 333++⎰⎰∑化成三重积分2223()xy z dv Ω++⎰⎰⎰时,前面必须写上负号.(2) 将曲面积分与三重积分的计算法混为一谈. 计算三重积分222()d x y z v Ω++⎰⎰⎰时, 因为Ω为球体:2222x y z a ++≤,因此不能将三重积分中的被积函数222x y z ++用2a 代入,这种做法是常犯的错误. 只有计算曲面积分时,才能将曲面方程代入被积函数.5.计算322d d 2d d 3d d I x y z xz z x y z x y ∑=++⎰⎰,其中积分曲面∑为抛物面z =22(01)x y z +≤≤的上侧.解 令221:1(1)z x y ∑=+≤,取下侧,则1∑+∑构成封闭曲面,取内侧. 于是y x y x z xz z y x d zd 3d d 2d d 2231++⎰⎰∑+∑=()d P Q R v x y zΩ∂∂∂-++∂∂∂⎰⎰⎰ =223()d d d xy x y z Ω-+⎰⎰⎰=221223d d ()d xyx yD x y x y z +-+⎰⎰⎰=22π11203d d d r r r r z θ-⎰⎰⎰=13206π(1)d r r r --⎰=π2-.由于1∑在平面1z =上,1∑在,zOx yOz 坐标面上的投影为直线段,故d d z x =d d y z =0,1∑在xOy 坐标面上的投影域为22:1xy D x y +≤,于是322d d 2d d 3d d x y z xz z x y z x y ∑++⎰⎰=123d d y x y ∑⎰⎰=23d d xyD y x y -⎰⎰ =212203d ρρsin d ρπθθ-⋅⎰⎰=212303sin d ρd ρπθθ-⎰⎰=3π4-. 所以11322322d d 2d d 3d d d d 2d d 3d d I x y z xz z x y z x y x y z xz z x y z x y ∑+∑∑=++-++⎰⎰⎰⎰=π3π()24---=π4.6.计算⎰⎰∑++S z y xd )cos cos cos (222γβα,其中∑是由222x y z +=及z h =(0)h >所围成的闭曲面的外侧,cos ,cos ,cos αβγ是此曲面的外法线的方向余弦.解 ∑在xOy 平面上的投影区域为:222x y h +≤. I =⎰⎰∑++S z y x d )cos cos cos (222γβα=⎰⎰∑++y x z x z y z y x d d d d d d 222=(222)d x y z v Ω++⎰⎰⎰=2d d )d xyh D x y x y z z ++⎰⎰=2()d d 2d d d xyxyh h D D x y x y z x y z ++⎰⎰⎰⎰=222()2()(d 2d d 2xy xyD D h x y x y h x y x y -+++⎰⎰⎰⎰=2π2π22202(cos sin )d (ρ)ρd ρd (ρ)ρd ρh hh h θθθθ+-+-⎰⎰⎰⎰=23002π(ρρ)d ρhh +-⎰=442π[]24h h -=4π2h .7.已知向量场22xz x y y z =i +j +k A ,求A 的散度以及A 穿过∑流向∑指定侧的通量,其中∑为2222,1z x y x y =++=以及三个坐标面在第一卦限所围立体全表面的外侧. 解 令22,,P xz Q x y R y z ===,则A 的散度 22div P Q RA z x y x y z∂∂∂=++=++∂∂∂. 通量⎰⎰∑⋅=ΦS d n A =div d v Ω⎰⎰⎰A =22()d z x y v Ω++⎰⎰⎰=22220d d ()d xyx y D x y z x y z +++⎰⎰⎰22(:1,0,0)xy D x y x y +≤≥≥=2223()d d 2xyD x y x y +⎰⎰=142003d d 2r r r πθ⋅⎰⎰=π31226⋅⋅=π8.第七节 斯托克斯公式 环量与旋度1.利用斯托克斯公式计算⎰Γ++z x y z x y d d d ,这里Γ为曲线2222x y z a x y z ⎧++=⎨++=⎩ 从x 轴正向看去,Γ为逆时针方向.解 平面0x y z ++=的上侧法线的方向余弦为cos cos cos αβγ===设∑为平面0x y z ++=上由圆周Γ所围成的面域,取上侧,相应的单位法向量. 于是⎰Γ++z x y z x y d d d =cos cos cos d S x y z yzxαβγ∑∂∂∂∂∂∂⎰⎰=(cos cos cos )d S αβγ∑-++⎰⎰=d S ∑=2a . 2.求向量场(sin )(-cos )z y z x y +A =i -j 的旋度.解 rot sin cos 0x y z z y z x y∂∂∂∂∂∂+-+ij k A ==+i j . 3.求平面向量场22()2x y xy -A =i +j 沿闭曲线L 的环流量,其中L 是0x =,,0,x a y y b ===所围成的正向回路. 解 环向量⎰+-Ly xy x y x d 2d )(22=4d d xyD y x y ⎰⎰=004d d a bx y y ⎰⎰=22ab .4.利用斯托克斯公式计算⎰Lz xyz d ,其中Γ是用平面y z =截球面22xy +21z +=所得的截痕,若逆z 轴正向看去,取逆时针的方向. 解 由斯托克斯公式⎰Lz xyz d =d d d d d d 00y z z x x yx y z xyz∂∂∂∂∂∂=d d d d xz y z yz z x ∑-⎰⎰, 其中∑是平面y z =上以圆Γ为边界的平面,其侧与Γ的正向符合右手规则.显然,∑在yoz 坐标面上的投影为一线段,所以d d 0xz y z ∑=⎰⎰.∑在xoz 坐标面上的投影为一椭圆域22:21D x z +≤,且∑的法向量与y 轴成钝角, 从而2d d d dDyz z x z z x ∑-=⎰⎰⎰⎰=2d z z x ⎰⎰=π22204sin sin cos d zz t t t =⎰π2420(sin sin )d t t t -1π31π2()22422⋅-⋅⋅=π16.第十章 曲线积分与曲面积分(总习题)1.填空.(1)设平面曲线L 为下半圆周y =则曲线积分22()d Lx y s +⎰的值是π;(2)向量场22(,,)ln(1)zx y z xy ye x z =+++u i j k 在点(1,1,0)P 处的散度div 2=u . (3)设L 为取正向的圆周229x y +=,则曲线积分⎰-+-Ly x x x y xy d )4(d )22(2的值是18π-.解 (1)22()d L x y s +⎰=d L s ⎰=12π12⋅⋅=π. (2)div u =P Q R x y z ∂∂∂++∂∂∂=222e 1Zz y x z ++⋅+, 从而 2(1,1,0)22div |e |21zP xzy z =++=+u . (3)⎰-+-Ly x x x y xy d )4(d )22(2=(2422)d d D x x x y --+⎰⎰=2d d Dx y -⎰⎰=22π3-⋅⋅=18π-. 2.计算⎰++ABCDA y x yx d d ,ABCDA 是以点(1,0),(0,1),(1,0),(0,1)A B C D --位顶点的正方形正向边界. 解 法1 ⎰⎰+=++=ABCDA ABCDA y x y x yx I d d d d (00)d d 0Dx y =-=⎰⎰.此法是先将正方形的边界1x y +=代入被积函数后,再用格林公式求解. 法2 因 :1,AB x y += :1,BC y x -= :1,CD x y --=:1DA x y -=.从而d d ()ABBCCDDAx yI x y+=++++⎰⎰⎰⎰=()d d ABBCCDDAx y ++++⎰⎰⎰⎰=01111(11)d (11)d (11)d (11)d x x x x ---+++-++⎰⎰⎰⎰=112d 2d x x -+⎰⎰=0.法2是分段分别计算,比较一下还是法1简便.但切记不可直接对⎰++ABCDA y x yx d d 用格林公式.请同学们动脑筋想一下,这是为什么?3.计算⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222,B A 为螺线cos x ϕ=,y =sin ϕ,z ϕ=由点(1,0,0)到点(1,0,2π)的弧段. 解 ⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222=22220[(cos sin )(sin )(sin cos )cos (sin cos )]d πϕϕϕϕϕϕϕϕϕϕϕϕ--+-+-⎰ =22222222cos dcos cos2d sin dsin d sin dsin πππππϕϕϕϕϕϕϕϕϕϕϕ-++-⎰⎰⎰⎰⎰=33322π2π2π2π0000cos sin sin |0|||3332ϕϕϕϕ-++- =31000(2π)03-++-=38π3. 4.设B A ))为连接点(1,2)A 与(2,3)B 的某曲线弧,又设B A ))与直线段AB 所包围图形的面积等于k ,计算曲线积分y xx x x y B A d )1(d 2⎰-+)).(直线段AB 与曲线弧B A ))除点,A B 外无其它交点,曲线弧B A ))不与y 轴相交,且自身不相交).解 2(,)y P x y x =, 1(,)Q x y x x=-,则 221111Q P x y x x∂∂-=+-=∂∂, 直线段:1BA y x =+,x 由2到1,记B A ))与BA 所围成的闭区域为D ,由于要用到格林公式,所以要分两种情况讨论:B A ))取逆时针方向(如图10.12(a))(1)y x x x x y I B A d )1(d 2⎰-+=))=y xx x x y BAAB BA d )1(d )(2-+-⎰⎰+ =21d d d ()d BA Dy x y x x y x x -+-⎰⎰⎰=12211()d x k x x x x+-+-⎰ =1221()d k x x x-+⎰=2k +. (2)B A ))取顺时针方向(如图10.12(b )所示). y x x x x y I B A d )1(d 2⎰-+=))=y xx x x y BA AB BA d )1(d )(2-+-⎰⎰+ =21d d d ()d BA Dy x y x x y x x--+-⎰⎰⎰=1221()d k x x x --+⎰=2k -+.注意 常见错误是不讨论B A ))是取逆时针方向,还是取顺时针方向,就直接利用了格林公式,这是不对的.5.计算曲线积分⎰++-L y x y x x y 22d d .(1)L 是圆周22(1)(1)1x y -+-=的正向; (2)L 是曲线1x y +=的正向.解 22(,)y P x y x y -=+, 22(,)x Q x y x y=+,当220x y +≠时, 22222()P y x Qy x y x∂-∂==∂+∂, 记曲线L 所围成的闭区域为D . 图 10.12(1) 如图10.13(a )所示,此时(0,0),(,),(,)D P x y Q x y ∉在L 所围成的闭区域D 内有一阶连续偏导数,由格林公式: ⎰⎰⎰==++-=L Dy x y x yxx y I 0d d 0d d 22. c(2)如图10.13(b )所示,此时(0,0),(,),(,)D P x y Q x y ∈在L 所围成的闭区域D 上有不连续点(0,0),以(0,0)为圆心,以充分小0ε>的为半径作圆周:cos ,sin ,02πC x y εθεθθ==≤≤,C 取逆时针方向,记L 和C 所围成的闭区域为1D ,对复连通域1D 应用格林公式,有0d d 22=++-⎰-+C L yx yx x y 从而⎰++-L y x y x x y 22d d =⎰++-C y x y x x y 22d d=2π2sin (sin )cos cos d εθεθεθεθθε--+⋅⎰=20d πθ⎰=2π.6.计算曲线积分⎰+-Cy x xy y x 224d d ,其中C 是(1,0)以为中心,(1)R R ≠为半径的圆周,逆时针方向.解 22(,)4y P x y x y -=+, 22(,)4xQ x y x y =+,当2240x y +≠时,22224P y x Qy x y x∂-∂==∂+∂,C 所围成的闭区域记为D ,(0,0)究竟在不在以为(1,0)中心,R 为半径的圆内,要分两种情况讨论: 图 10.13(1)1R <时,(0,0)D ∉(图10-14(a)),则⎰=+-Cy x xy y x 04d d 22;(2)1R >时,(0,0)D ∈,作足够小的椭圆cos :2sin x L y εθεθ=⎧⎨=⎩,02πθ≤≤,L 取逆时针方向(图10.14(b))于是由格林公式,有04d d 22=+-⎰-+L C yx xy y x , 从而⎰+-Cy x x y y x 224d d =⎰+-L yx xy y x 224d d =2π22220cos 2cos )2sin (sin )d 4cos 4sin εθεθεθεθθεθεθ--+⎰=2π01d 2θ⎰=π. 注意 易犯错误是不分1,1R R <>两种情况讨论,未注意闭曲线L 所围成的闭区域D 内有无“洞”,即D 是否为“单连通域”?7.设曲线积分2d ()d Lxy x y x y ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,计算(1,1)2(0,0)d ()d xy x y x y ϕ+⎰的值.解 2(,)P x y xy =,(,)()Q x y y x ϕ=,因曲线积分与路径无关,P Qy x∂∂=∂∂, 22(),()2,()xy y x x x x x C ϕϕϕ''===+, 由(0)0ϕ=,则0C =,从而2()x x ϕ=. (1,1)2(0,0)d ()d I xy x y x y ϕ=+⎰=(1,1)22(0,0)d d xy x x y y +⎰=1d y y ⎰=12. 8.质点P 沿着以AB 为直径的圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 的作用,F 的大小等于点P 到原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角(a )1R <(b )1R >图 10.14。

西工大—高数答案—曲线积分与曲面积分备课讲稿

西工大—高数答案—曲线积分与曲面积分备课讲稿

西工大—高数答案—曲线积分与曲面积分第十章 曲线积分与曲面积分第一节 第一类曲线积分1.设xOy 平面内有一分布着质量的曲线弧L ,在点(,)x y 处它的线密度为(,)x y ρ,用对弧长的曲线积分表示: (1)这曲线弧L 的长度_______S =; (2)这曲线弧L 的质量_______M =;(3)这曲线弧L 的重心坐标:___x =;___y =; (4)这曲线弧L 对x 轴,y 轴及原点的转动惯量____x I =;____y I =;0____I =.解 (1)d LS s =⎰;(2)(,)d LM x y s μ=⎰;(3)(,)d (,)d LLx x y s x x y s μμ=⎰⎰, (,)d (,)d LLy x y s y x y sμμ=⎰⎰, (4)2(,)d x LI y x y s μ=⎰, 2(,)d y LI x x y s μ=⎰, 220()(,)d LI x y x y s μ=+⎰2.(1)设L 为椭圆22143x y +=,其周长为a ,求⎰+L s y x d )43(22. (2)设L 为圆周2264x y +=,求⎰+Ls y x d 22.解 (1)L :22143x y +=,即223412x y +=, 从而 ⎰+Ls y x d )43(22=⎰Ls d 12=⎰Ls d 12=12a .(2)L :2264x y +=, 从而⎰+Ls y x d 22=⎰Ls 8d =⎰Ls d 8=8π28⋅⋅=128π.3.计算22()d Lx y s +⎰,其中L 是以(0,0),(2,0),(0,1)为顶点的三角形. 解 如图10.1所示,1L :0y =,x 从02→,2L :0x =,y 从01→, 3L :22x y =-,y 从01→,d s y y ==. 从而22()d Lx y s +⎰=122()d L x y s +⎰+222()d L x y s +⎰+322()d L x y s +⎰=21122220d d [(22)]d x x y y y y y +-+⎰⎰=12081(485)d 33y y y +-+=3+4.计算s ⎰,其中L 为曲线222x y x +=.解1 L 的参数方程为 L :1cos ,sin ,x y θθ=+⎧⎨=⎩ 02πθ≤≤. 计算出d d s θ=,于是s ⎰=20θ⎰=2π02cos d 2θθ⎰2u θ=π4cos d u u ⎰=π208cos d u u ⎰=8.解2 在极坐标系下,L :2cos ,r θ= ππ22θ-≤≤.计算出d s θ==2d θ,于是s ⎰=222cos 2d ππθθ-⋅⎰=208cos d πθθ⎰=8.5.求空间曲线e cos t x t -=,e sin t y t -=,e (0)t z t -=<<+∞的弧长. 解d s t =td t t -, 从而e d t s t +∞-==.6.有一铁丝成半圆形cos x a t =,sin y a t =,0t π≤≤,其上每一点处的密度等于该点的纵坐标,求铁丝的质量.图 10.1解 d s t =t =d a t . d Lm s ρ=⎰=d Ly s ⎰=π0sin d a t a t ⋅⎰=π20sin d a t t ⎰=22a .7.计算22()d Lx y z s +-⎰,其中L 为球面222x y z a ++=与平面0x y z ++=的交线.解 由于222x y z a ++=与0x y z ++=对x ,y ,z 都具有轮换对称性,故 2d Lx s ⎰=2d Ly s ⎰=2d Lz s ⎰,d Lx s ⎰=d Ly s ⎰=d Lz s ⎰.于是2d L x s ⎰=2221(d d d )3LL L x s y s z s ++⎰⎰⎰ =2221()d 3Lx y z s ++⎰=2d 3La s ⎰=22π3a a ⋅=32π3a . 其中d Ls ⎰为圆周2222x y z a x y z ⎧++=⎨++=⎩的周长,显然平面0x y z ++=过球面2222x y z a ++=的球心(0,0,0)O ,所以L 为该球面上的大圆,即半径为a ,故周长为2a π.又因为()d Ly z s -⎰=d d LLy s z s -⎰⎰=0,所以22()d Lx y z s +-⎰=32π3a .第二节 第二类曲线积分1.计算⎰+--+L yx y y x x y x 22d )(d )(,其中L 为圆周222x y a +=(按逆时针方向绕行).解 L :cos ,sin x a t y a t ==,t 由0到2π, 从而I =⎰+--+L yx yy x x y x 22d )(d )(=20[(cos sin )(sin )(cos sin )cos ]d t t t t t t t π+---⎰=20d t π-⎰=2π-.2.计算22()d Lx y x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧.解 I =22()d Lx y x -⎰=2240()d x x x -⎰=5615-. 3.计算(2)d d La y x x y -+⎰,其中L 为摆线(sin )x a t t =-,(1cos )y a t =-上对应t 从0到π2的一段弧(图10.2). 解 I =(2)d d La y x x y -+⎰=20{[2(1cos )](1cos )(sin )sin }d a a t a t a t t a t t π---+-⎰=220sin d a t t t π⎰=22πa -.4.计算22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰,其中L 为上半椭圆221(0)x xy y y ++=≥,从点(1,0)-到点(1,0)的一段弧.解 由221x xy y ++=可得221xy y x +=-,221x xy y +=-,代入积分式,得22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰=22[1(1)sin ]d (1)sin d Lx x x y y y +-+-⎰ =1221[1(1)sin ]d (1)sin d x x x y y y -+-+-⎰⎰=2.5.计算222d d d x x y y z z Γ++⎰,其中Γ是从点(1,1,1)到点(2,3,4)的直线段.解 Γ的点向式方程为:111123x y z ---==,从而Γ得参数方程为 1x t =+,12y t =+,13z t =+,t 由0到1. I =12220[(1)2(12)3(13)]d t t t t +++++⎰=111333000111(1)(12)(13)333t t t +++++=32.图 10.26.计算⎰Γ+-z y y x d d d ,其中Γ为有向闭折线ABCA ,这里的A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1).解 如图10.3,AB :1x y =-,0z =,y 由0到1. d d d ABx y y z -+⎰=12d y -⎰=2-;BC :1y z =-,0x =,z 由0到1; d d d BCx y y z -+⎰=1(2)d z z -⎰=32; CA :1z x =-,0y =,x 由0到1; d d d CAx y y z -+⎰=1d x ⎰=1,故 I =()d d d AB BC CA x y y z ++-+⎰⎰⎰=3212-++=12.7.有一质量为m 的质点,除受重力的作用外,还受到一个大小等于该质点到原点的距离,方向指向原点的力f 的作用,设该质点沿螺旋线:cos L x t =,sin y t =,z t =从点π(0,1,)2A 移动到点(1,0,0)B 移动到点,求重力与力f的合力所作的功.解 依据题意,力f =x y z ---i j k ,故质点所受的合力 ()mg x y z mg =-=---+F f k i j k 在螺旋线L 上,起点A 对应于π2t =,终点B 对应于0t =,即π:02t →. 因此,力F 所作的功d d ()d LW x x y y z mg z =---+⎰=0π2[cos (sin )sin cos ()]d t t t t t mg t ----+⎰=π20()d t mg t +⎰=2ππ82mg +.第三节 格林公式1.设xOy 平面上闭曲线L 所围成的闭区域为D ,将给定的二重积分与其相应的曲线积分用线连接起来.图 10.3(1) d d Dx y ⎰⎰ (a) ⎰-Lx y y x d d(2) 2d d Dx y ⎰⎰ (b)⎰-L y x x x d d 21(3)d d Dx y -⎰⎰ (c)⎰-L x y y x d d 212.利用曲线积分计算星形线3cos x a t =,3sin y a t =所围成图形的面积.解 如图10.4,因为33cos sin x a tx a t ⎧=⎨=⎩ t 由0到2π. 从而S =d Dσ⎰⎰=⎰-L x y y x d d 21=2π323201[cos 3sin cos sin (3cos sin )]d 2a t a t t a t a t t t ⋅--⎰=2π22203sin cos d 2a t t t ⎰=2π2203sin 2d 8a t t ⎰=2π2031cos 4d 82t a t -⎰=23π8a .3.证明2322(6)d (63)d Lxy y x x y xy y -+-⎰只与L 的起始点有关,而与所取路径无关,并计算积分(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰.解 236P xy y =-,2263Q x y xy =-,2123P Qxy y y x∂∂=-=∂∂,所以积分与路径无关, 故(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰=34212(248)d (549)d x x y y y -+-⎰⎰=2323412[128][273]x x y y -+-=80156236+=. 或者 (3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰图 10.4=(3,4)2232(1,2)(6d 6d )(d 3d )xy x x y y y x xy y +-+⎰=(3,4)223(1,2)d(3)x y xy -⎰=223(3,4)(1,2)[3]x y xy -=236. 4.计算e (1cos )d e (sin )d x x LI y x y y y =-+-⎰,其中L 为从(0,0)O 到(,0)A π的正弦曲线sin y x =. 解 如图10.5所示,由格林公式 I =e (1cos )d e (sin )d x x Ly x y y y -+-⎰=y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d 0x Dy x y ---⎰⎰=πsin 0e d d x x x y y ⎰⎰=π201e sin d 2x x x ⎰=π01e (1cos 2)d 4xx x -⎰ =ππ0011e d e cos 2d 44x x x x x -⎰⎰=ππ11(e 1)(e 1)420---=π1(e 1)5-. 其中π0e cos 2d x x x ⎰=π0cos 2de x x ⎰=ππ00e cos 2|e dcos 2x x x x -⎰=πe 12sin 2d x e x x π-+⎰=ππ0e 12sin 2de x x -+⎰=πππ00e 12e sin 2|2e dsin 2x x x x -+-⎰=ππ0e 14e cos2d x x x --⎰.移项解之,得 ππ01e cos 2d (e 1)5x x x =-⎰.注意 本题易犯两个错误: (1)I =y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d x Dy x y -⎰⎰.产生错误的原因是,没有注意格林公式使用时的条件:⎰⎰⎰+=∂∂-∂∂DL y Q x P y x yPx Q d d d d )(,图 10.5其中C 是D 的取正向的边界曲线.而本题的闭曲线L AO +是D 的取负向的边界曲线,所以二重积分()d d DQ Px y x y∂∂-∂∂⎰⎰前面必须添加负号. (2)计算定积分π0e cos 2d x x x ⎰是连续两次使用部分积分法后移项解出来的.对此积分有些同学束手无策,有些则在连续使用分布积分法d d u v uv v u =-⎰⎰时,每次选取函数()u x ,不注意必须是同类函数(如选三角函数作为()u x 就一直选三角函数,如选e x 作为()u x 就一直选e x ),结果就出现了恒等式d d u v u v =⎰⎰,即前进一步又倒退一步,致使积不出来.5. 已知()x ϕ'连续,且(0)(1)0ϕϕ==,(0,0)A ,(1,1)B ,计算⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ其中AMB 是以AB 线段为直径的上半圆周.解 如图10.6所示⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ =⎰⎰+-'+--BAAMB BA x x y y x y y d ]1e )([d ]e )(][[ϕϕ=d d [()e ]d [()e 1]d x x ABDx y y y x y y ϕϕ'-+-+-⎰⎰⎰=10π[(()())e (1)]d 4x x x x x ϕϕ'-++-+⎰=111000π()e d ()e d (1)d 4x x x x x x x x ϕϕ'-++-+⎰⎰⎰=1100π3()e d e d ()42x x x x x ϕϕ-++-⎰⎰=111000π3()e d e ()|()e d 42x x xx x x x x ϕϕϕ--++-⎰⎰ =π342--=π3()42-+.本题需注意两点:(1)同上题一样,使用格林公式时要注意边界曲线的方向,本题因是负向,故二重积分前必须添上负号;图 10.6(2)因()x ϕ是抽象函数,不可能直接将11()e d ()e d x x x x x x ϕϕ'+⎰⎰积出来,请不要先急于积分,先用分布积分法将10()e d x x x ϕ'⎰表示为11100e d ()e ()|()e d x x xx x x x ϕϕϕ=-⎰⎰,则两项抽象函数的定积分就抵消了,问题就可得到解决,因此在解题过程中一定要善于思考,从中 发现解题技巧.6.证明22()d ()d x y x x y yx y-+++在右半平面(0)x >内为某一函数(,)u x y 的全微分,并求出一个这样的函数(,)u x y .解 22x y P x y -=+,22x yQ x y +=+,由于222222()P y xy x Q y x y x ∂--∂==∂+∂,所以 22()d ()d x y x x y yx y-+++ 为某一函数(,)u x y 的全微分.取定点0(1,0)M ,对于右半平面上任一点(,)M x y ,令 (,)u x y =(,)22(1,0)()d ()d x y x y x x y yx y -+++⎰=222100d d 0x y x x y x y x x y -++++⎰⎰ =22221001d d d x y y x yx y y xx y x y ++++⎰⎰⎰ =221ln arctan ln()ln 2y x x y x x +++- =221arctanln()2y x y x ++. 7.已知曲线积分⎰-++Ly x x x y d )9(d )1(33,其中L 为圆周222()x a y a -+=(0)a >,取逆时针方向,求a 的值,使得对应曲线积分的值最大.解 显然31P y =+,39Q x x =-在区域:D 222()x a y a -+≤内有一阶连续的偏导数,由格林公式 ()I a =⎰+Ly Q x P d d =()d d DQ Px y x y ∂∂-∂∂⎰⎰=22(933)d d Dx y x y --⎰⎰ =229d d 3()d d DDx y x y x y -+⎰⎰⎰⎰=2cos 232029π3d d a a r r πθπθ--⎰⎰=244229π34cos d a a ππθθ--⎰=24420924cos d a aππθθ-⎰=2431π9π24422a a -⋅⋅⋅=2499ππ2a a -.2()18π(1)I a a a '=-,令()0I a '=,解得1a =(依题意设0a >,故将0a =和1a =-舍去),因为1a =是()I a 在(0,)+∞内唯一的驻点,且()18π54πI a ''=-=36π0-<,故()I a 在1a =处取得最大值,因此1a =,即当积分路径为22(1)1x y -+=时,对应曲线积分 的值最大.8.求⎰+---Ly x yx x y 22)1(d )1(d ,其中(1)L 为圆周2220x y y +-=的正向;(2)L 为椭圆22480x y x +-=的正向. 解 令22(,)(1)y P x y x y =-+,22(1)(,)(1)x Q x y x y--=-+,则当22(1)0x y -+≠时,有22222(1)[(1)]Q x y Px x y y∂--∂==∂-+∂, 记L 所围成的闭区域为D ,(1)L :2220x y y +-=,即22(1)1x y +-=, 此时(1,0)D ∉,(如图10.7(a)所示).由于Q Px y∂∂=∂∂,由格林公式, 0)1(d )1(d 22=+---⎰L y x y x x y . 图 10.7(a) 图 10.7(b)(2)L :22480x y x +-=,即22(1)14y x -+=,此时(1,0)D ∈,以(1,0)为圆心,以充分小的0ε>为半径作圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,θ由0到2π,取逆时针方向(如图10.7(b)所示).记L 和C 所围成的闭区域为1D ,对复连通区域1D 应用格林公式,得 0)1(d )1(d 22=+---⎰-+C L y x yx x y ,从而I =⎰+---Ly x y x x y 22)1(d )1(d =⎰+---C yx yx x y 22)1(d )1(d =2π2sin (sin )cos cos d εθεθεθεθθε--⋅⎰ =2π0d θ-⎰=2π-.注意 (2)中由于点(1,0)位于L 所围成的闭区域D 内,需用复连通域上的格林公式,以避开(1,0)点,考虑到被积函数的分母为22(1)x y -+,故取圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,有同学不考虑“洞”,即点(1,0),直接用格林公式,得到0)1(d )1(d 22=+---⎰Lyx yx x y 是错误的. 9.求[e sin ()]d (e cos )d x x LI y b x y x y ax y =-++-⎰,其中a 、b 为正常数,L 为从点(2,0)A a 沿曲线y (0,0)O 的弧.解 添加从点(0,0)O 沿0y =到点(2,0)A a 的有向直线段1L ,则⎰⎰-++---++-=+11d )cose (d )](sin e [d )cos e (d )](sin e [L x x L L x x yax y x y x b y y ax y x y x b y I =20[(e cos )(e cos )]d d d a x xDy a y b x y bx x -----⎰⎰⎰=20()d d d a Db a x y b x -+⎰⎰⎰=22π()(2)22bb a a a -+=23ππ(2)22a b a +-.第四节 第一类曲面积分1.设有一分布着质量的曲面∑,在点(,,)x y z 处它的面密度为(,,)x y z ρ.用曲面积分表示:(1)这曲面∑的面积A =______; (2)这曲面∑的质量M =______;(3)这曲面∑的重心坐标为x =______,y =______,z =______; (4)这曲面∑对于x 轴,y 轴,z 轴及原点的转动惯量x I =__,y I =__,z I =______,0I =______.解 (1)A =d S ∑⎰⎰.(2)M =(,,)d x y z S μ∑⎰⎰.(3)x =(,,)d (,,)d x x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,y =(,,)d (,,)d y x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,z =(,,)d (,,)d z x y z Sx y z Sμμ∑∑⎰⎰⎰⎰.(4)x I =22()(,,)d y z x y z S μ∑+⎰⎰, y I =22()(,,)d x z x y z S μ∑+⎰⎰,z I =22()(,,)d x y x y z S μ∑+⎰⎰, 0I =222()(,,)d x y z x y z S μ∑++⎰⎰.2.计算4(2)d 3z x y S ∑++⎰⎰,其中∑为平面1234x y z++=在第一卦限中的部分. 解 如图10.8所示,∑:1234x y z ++=,2zx ∂=-∂,43z y ∂=-∂d d S x y =d x y , 在积分曲面上,被积函数423z x y ++=4()4234x y z++=, 303:202xy y xD x ⎧≤≤-⎪⎨⎪≤≤⎩,图 10.8从而4(2)d 3z x y S ∑++⎰⎰=614d d 3xyD x y ⋅⎰⎰ =461d d xy D x y ⎰⎰=46133⋅=461. 3.计算⎰⎰∑+S y x d )(22,其中∑是锥面22z x y =+及平面1z =所围成的区域的整个边界曲面. 解 如图10.9所示,1∑:22z x y =+,22zxx y∂=∂+,22z yx y∂=∂+,22d 1()()d d z z S x y x y∂∂=++∂∂=2d d x y ,22:1xy D x y +≤. 2∑:1z =,d d d S x y =,22:1xy D x y +≤,⎰⎰∑+S y x d )(22=122222()d ()d x y S x y S ∑∑+++⎰⎰⎰⎰ =2π12π1220d ρ2ρd ρd ρρd ρθθ+⎰⎰⎰⎰=11330022πρd ρ2πρd ρ+⎰⎰=π(21)2+.4.计算I =()d xy yz zx S ∑++⎰⎰,其中∑为锥面22z x y =+被柱面222x y ax+=所截成的部分(0)a >.解 因为积分曲面∑关于zOx 坐标面(即0y =平面)对称,xy yz +()y x z =+是关于y 的奇函数,所以I =()d d y x z S zx S ∑∑++⎰⎰⎰⎰=0d zx S ∑+⎰⎰此外,在∑上,22z x y =+,d 2d d S x y =,且∑在xOy 面上的投影为22:2xy D x y ax +≤,因此图 10.9I =d zx S ∑⎰⎰=22d x x y S ∑+⎰⎰=222d d xyD x x y x y +⎰⎰=π2cos 32π022d cos d a r r θθθ-⎰⎰=452082cos d aπθθ⎰=4428253a ⋅⋅=4642a . 5.计算d S ∑⎰⎰,其中∑为抛物面222()z x y =-+在xOy 面上方的部分.解 如图10.10所示,222()z x y =-+,2zx x∂=-∂,2z y y ∂=-∂,22d 1()()d d z z S x y x y∂∂=++∂∂=22144d d x y x y ++, 22:2xy D x y +≤, d S ∑⎰⎰=22144d d xyD x y x y ++⎰⎰=2π220d 14ρρd ρθ+⎰⎰=12222012π(14ρ)d(14ρ)8++⋅⎰=2223π2(14ρ)|43⋅+=13π3.6.计算()d x y z S ∑++⎰⎰,其中∑为球面2222x y z a ++=上(0)z h h a ≥<<的部分.解 ∑在xOy 面上的投影为圆域:2222:xy D x y a h +≤-, d S =222222221()()d d x y x y a x ya x y--++----=222d d x y a x y--,故 ()d x y z S ∑++⎰⎰=222222()d d xyD x y a x y x y a x y++--⋅--⎰⎰图 10.10由积分区域的对称性可得:d xyD x x y ⎰⎰=0,d xyD y x y ⎰⎰=0,又积分区域xy D 的面积为22π()a h -,故()d x y z S ∑++⎰⎰=d d xyD a x y ⎰⎰=22π()a a h -.7.求柱面220x y ax +-=在球面2222x y z a ++=内部的部分的表面积(0)a >. 解 由对称性,所求面积A 为其位于第一卦限部分面积的4倍,即4d A S ∑=⎰⎰,其中曲面∑为y =,求得面积元素d d S x z =d x z ,由22z x y ax⎧⎪=⎨+=⎪⎩,消去y ,得z 由此得∑在zOx 坐标面上的投影为::0xz D z ≤≤0x a ≤≤, 因此,曲面∑的面积 4d A S ∑=⎰⎰=4d xzD x z ⎰⎰=02d aa x ⎰⎰=02a a x ⎰=02a a x ⎰=24a . 8.设S 为椭球面222122x y z ++=的上半部分,点(,,)P x y z S ∈,π为S 在点P 处的切平面,(,,)f x y z 为点(0,0,0)O 到平面π的距离,求d (,,)SzS f x y z ⎰⎰解 设(,,)X Y Z 为π上任意一点,则π的方程为122xX yY zZ ++=,从而知 (,,)f x y z =12222()44x y z -++,由z =有z x ∂∂,z y∂∂d Sd x yd x y ,从而d (,,)Sz S f x y z ⎰⎰=221(4)d d 4Dx y x y --⎰⎰=2π2001d ρ)ρd ρ4θ-⎰⎰=3π2.第五节 第二类曲面积分1.当∑是xOy 面内的一个闭区域D 时,(,,)d f x y z S ∑⎰⎰与二重积分的关系为(1)(,,)d f x y z S ∑⎰⎰=____d d D x y ⎰⎰,(2)(,,)d R x y z S ∑⎰⎰=____d d Dx y ⎰⎰.解 (1)(,,0)f x y , (2)(,,0)R x y ±.注意 因第一类曲面积分与所给曲面的侧无关,所以(1)中应填(,,0)f x y ;而第二类曲面积分与曲面的侧有关,所以(2)中应填(,,0)R x y ±,有个别同学常疏忽这一点,只填(,,0)R x y ,这是不对的.2.计算222d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为半球面z =.解 记1∑:x =取前侧,2∑:x =,1∑与2∑在yoz 面的投影区域相同,记为yz D . 2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰=222222()d d ()d d yzyzD D a y z y z a y z y z -----⎰⎰⎰⎰=0.同理 2d d y z x ∑⎰⎰=0,而 2d d z x y ∑⎰⎰=222222()d d x y a a x y x y +≤--⎰⎰=2220d (ρ)ρd ρaa πθ-⎰⎰=4π2a . 从而I =222d d d d d d x y z y z x z x y ∑++⎰⎰=2d d x y z ∑⎰⎰+2d d y z x ∑⎰⎰+2d d z x y ∑⎰⎰=0+0+4π2a =4π2a .注意 常见的错误是:2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰=2222()d d yzD a y z y z --⎰⎰或 2d d y z x ∑⎰⎰=2222()d d zxD a x z z x --⎰⎰.产生错误的原因是忽视了将第二类曲面积分化为二重积分时,应根据积分曲面的侧选择二重积分前的正、负号.(,,)d d f x y z x y ∑⎰⎰=[,,(,)]d d xyD f x y z x y x y ±⎰⎰,(,,)d d g x y z y z ∑⎰⎰=[(,),,]d d yzD g x y z y z y z ±⎰⎰,(,,)d d R x y z z x ∑⎰⎰=[,(,),]d d zxD R x y z x z z x ±⎰⎰.将第二类曲面积分化为二重积分时,究竟什么时候二重积分前面写正号,什么时候写负号,这与所给曲面的侧有关.切记:上侧取正,下侧取负; 前侧取正,后侧取负; 右侧取正,左侧取负;3.计算⎰⎰∑y x xz d d ,其中∑是平面0x =,0y =,0z =,1x y z ++=所围成的空间区域的整个边界曲面的外侧.解 如图10.11所示,1234∑=∑+∑+∑+∑,其中1234,,,∑∑∑∑各自对应于四面体的一个表面,可表示为1∑:0z = 下侧; 2∑:0y = 左侧;3∑:0x = 后侧; 4∑:1x y z ++= 上侧.由于1∑在0z =平面上,故在1∑上的曲面积分为0;同理,在2∑,3∑上的曲面积分也都为0,所以,⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰ 由4∑得方程得1z x y =--,4∑在xoy 面上的投影域为:01xy D y x ≤≤-,01x ≤≤, 于是⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰=4(1)d d x x y x y ∑--⎰⎰=(1)d d xyD x x y x y --⎰⎰=110d (1)d x x x x y y ---⎰⎰=124. 4.计算d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为球面2222x y z R ++=的外侧.解 由题设,∑的单位法向量 n =(cos ,cos ,cos )αβγ,2,2)x y z =1(,,)x y z R. 由两类曲面积分的关系,可得d d d d d d x y z y z x z x y ∑++⎰⎰=(cos cos cos )d x y z S αβγ∑++⎰⎰=2221()d x y z S R ∑++⎰⎰=21d R S R ∑⎰⎰ =d R S ∑⎰⎰几何意义24πR R ⋅=34πR .5.计算I =y x z h x z y g z y x f d d )(d d )(d )d (++⎰⎰∑,其中,,f g h 为连续函数,∑为平行六面体:0,0,0x a y b z c Ω≤≤≤≤≤≤表面的外侧.解 ⎰⎰∑y x z h d d )(=()d d (0)d d xyxyD D h c x y h x y -⎰⎰⎰⎰=[()(0)]ab h c h -,⎰⎰∑x z y g d d )(=()d d (0)d d xzxzD D g b z x g z x -⎰⎰⎰⎰=[()(0)]ac g b g -,图 10.11⎰⎰∑z y x f d d )(=()d d (0)d d yzyzD D f a y z f y z -⎰⎰⎰⎰=[()(0)]bc f a f -,从而 I =()(0)()(0)()(0)[]f a f g b g h c h abc a b c---++. 注意 本题易犯的错误是利用高斯公式来解,题目中仅告诉我们,,,f g h 为连续函数,又如何对,,f g h 求导呢?6.计算[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰,其中(,,)f x y z 为连续函数,∑是平面1x y z -+=在第四卦限部分的上侧.解 平面1x y z -+=的法线向量为n ={1,1,1}-,方向余弦为cos α=cos β=cos γ=, 则I =[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰=[()cos (2)cos ()cos ]d f x f y f z S αβγ∑+++++⎰⎰=[((2)((f x f y f z S ∑+++++⎰⎰()d x y z S ∑-+=1d 3S ∑⎰⎰d xyD x yd xy x y ⎰⎰=d d xyD x y ⎰⎰=12.第六节 高斯公式 通量与散度1.设计y x xy z x z zx y z y yz x d d )(d d )(d )d (222-+-+-⎰⎰∑,其中∑为平面0x =,0,0,,,y z x a y a z a =====所围成的立体的表面的外侧. 解 由高斯公式,I =y x xy z x z zx y z y yz x d d )(d d )(d )d (222-+-+-⎰⎰∑=(222)d x y z v Ω++⎰⎰⎰=2()d x y z v Ω++⎰⎰⎰设该正方体的形心坐标为(,,)x y z ,则2a x y z ===, 而 d d d x v x vx vvΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,d y vy vΩ=⎰⎰⎰,d z vz vΩ=⎰⎰⎰,所以 d ,x v xv Ω=⎰⎰⎰ d ,y v yv Ω=⎰⎰⎰ d ,z v zv Ω=⎰⎰⎰.从而 I =2()x y z v ++=31112()222a a a a ++=43a .本题巧妙地利用了重心坐标公式,将利用高斯公式后得到的三重积分()d x y z v Ω++⎰⎰⎰的计算转化为计算()x y z v ++,从而使问题得到解决.2.计算24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰,其中∑是球面2222x y z a ++=外侧的上半部分(0)a >.解 补充平面2221:0()z x y a ∑=+≤取下侧,I =y x yz x z y z y xz d d 2d d d d 4)(211+--⎰⎰⎰⎰∑+∑∑=(422)d 0z y y v Ω-+-⎰⎰⎰=4d z v Ω⎰⎰⎰=2π04d ρd ρd az θ⎰⎰⎰=22ρρ8πρd ρ2aa -⋅⎰=4πa . 注意 易犯的错误是(1)I =24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰=(422)d z y y v Ω-+⎰⎰⎰=4zdv Ω⎰⎰⎰=…产生错误的原因是,没有注意到∑仅是球面的上半部分,∑并非封闭曲面,不能直接用高斯公式.尽管本题中沿曲面1∑的积分:124d d d d 2d d 0xz y z y z x yz x y ∑-+=⎰⎰,致使题目答案未受任何影响,但对不封闭的曲面直接用高斯公式,显然是不对的.(2)有同学在补充平面2221:0()z x y a ∑=+≤时,不写取什么侧,这也不妥.3.计算y x z x z yxf x z y )y x f(y d d d d )(1d d 1++⎰⎰∑,其中()f u 具有一阶连续导数,∑为柱面222()()()2ax a y a -+-=及平面0,1(0)z z a ==>所围成立体的表面外侧.解 利用高斯公式,有I =y x z x z y xf x z y )y x f(y d d d d )(1d d 1++⎰⎰∑=2211[()()1]d x xf f v y y y y Ω''-+⎰⎰⎰=d v Ω⎰⎰⎰ =2π()12a ⋅⋅=2π4a .4.计算y x z x z y z y x d d d d d d 333++⎰⎰∑,其中∑为球面2222x y z a ++=的内侧.解 y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d x y z v Ω-++⎰⎰⎰=2ππ403d sin d ρd ρaθϕϕ-⎰⎰⎰=512π5a -. 注意 易犯的错误是y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d x y z v Ω++⎰⎰⎰=23d a v Ω⎰⎰⎰=2343π3a a ⋅=54πa .这里有两个错误:(1) 不注意高斯公式使用的条件:∑应是空间闭区域Ω的整个边界曲面的外侧. 本题所给的闭曲面是球面的内侧. 因此在将闭曲面上的曲面积分y x z x z y z y x d d d d d d 333++⎰⎰∑化成三重积分2223()x y z dv Ω++⎰⎰⎰时,前面必须写上负号.(2) 将曲面积分与三重积分的计算法混为一谈. 计算三重积分222()d x y z v Ω++⎰⎰⎰时,因为Ω为球体:2222x y z a ++≤,因此不能将三重积分中的被积函数222x y z ++用2a 代入,这种做法是常犯的错误. 只有计算曲面积分时,才能将曲面方程代入被积函数.5.计算322d d 2d d 3d d I x y z xz z x y z x y ∑=++⎰⎰,其中积分曲面∑为抛物面z =22(01)x y z +≤≤的上侧.解 令221:1(1)z x y ∑=+≤,取下侧,则1∑+∑构成封闭曲面,取内侧. 于是y x y x z xz z y x d zd 3d d 2d d 2231++⎰⎰∑+∑=()d P Q Rv x y zΩ∂∂∂-++∂∂∂⎰⎰⎰ =223()d d d x y x y z Ω-+⎰⎰⎰=221223d d ()d xyx yD x y x y z +-+⎰⎰⎰=22π112003d d d r r r r z θ-⎰⎰⎰=13206π(1)d r r r --⎰=π2-.由于1∑在平面1z =上,1∑在,zOx yOz 坐标面上的投影为直线段,故d d z x =d d y z =0,1∑在xOy 坐标面上的投影域为22:1xy D x y +≤,于是322d d 2d d 3d d x y z xz z x y z x y ∑++⎰⎰=123d d y x y ∑⎰⎰=23d d xyD y x y -⎰⎰ =212203d ρρsin d ρπθθ-⋅⎰⎰=212303sin d ρd ρπθθ-⎰⎰=3π4-. 所以11322322d d 2d d 3d d d d 2d d 3d d I x y z xz z x y z x y x y z xz z x y z x y ∑+∑∑=++-++⎰⎰⎰⎰=π3π()24---=π4.6.计算⎰⎰∑++S z y x d )cos cos cos (222γβα,其中∑是由222x y z +=及z h =(0)h >所围成的闭曲面的外侧,cos ,cos ,cos αβγ是此曲面的外法线的方向余弦.解 ∑在xOy 平面上的投影区域为:222x y h +≤. I =⎰⎰∑++S z y x d )cos cos cos (222γβα=⎰⎰∑++y x z x z y z y x d d d d d d 222=(222)d x y z v Ω++⎰⎰⎰=2d d )d xyh D x y x y z z ++⎰⎰=2()d d 2d d d xyxyh h D D x y x y z x y z ++⎰⎰⎰⎰=222()2()(d 2d d 2xy xyD D h x y x y h x y x y -+++⎰⎰⎰⎰=2π2π22202(cos sin )d (ρ)ρd ρd (ρ)ρd ρh hh h θθθθ+-+-⎰⎰⎰⎰=23002π(ρρ)d ρhh +-⎰=442π[]24h h -=4π2h .7.已知向量场22xz x y y z =i +j +k A ,求A 的散度以及A 穿过∑流向∑指定侧的通量,其中∑为2222,1z x y x y =++=以及三个坐标面在第一卦限所围立体全表面的外侧.解 令22,,P xz Q x y R y z ===,则A 的散度 22div P Q RA z x y x y z∂∂∂=++=++∂∂∂. 通量⎰⎰∑⋅=ΦS d n A =div d v Ω⎰⎰⎰A =22()d z x y v Ω++⎰⎰⎰=22220d d ()d xyx y D x y z x y z +++⎰⎰⎰22(:1,0,0)xy D x y x y +≤≥≥=2223()d d 2xyD x y x y +⎰⎰=142003d d 2r r r πθ⋅⎰⎰=π31226⋅⋅=π8.第七节 斯托克斯公式 环量与旋度1.利用斯托克斯公式计算⎰Γ++z x y z x y d d d ,这里Γ为曲线2222x y z a x y z ⎧++=⎨++=⎩从x 轴正向看去,Γ为逆时针方向.解 平面0x y z ++=的上侧法线的方向余弦为cos cos cos αβγ===设∑为平面0x y z ++=上由圆周Γ所围成的面域,取上侧,相应的单位法向量. 于是⎰Γ++z x y z x y d d d =cos cos cos d S x y z yzxαβγ∑∂∂∂∂∂∂⎰⎰=(cos cos cos )d S αβγ∑-++⎰⎰=d S ∑=2a .2.求向量场(sin )(-cos )z y z x y +A =i -j 的旋度.解 rot sin cos 0x y z z y z x y∂∂∂∂∂∂+-+ijk A ==+i j . 3.求平面向量场22()2x y xy -A =i +j 沿闭曲线L 的环流量,其中L 是0x =,,0,x a y y b ===所围成的正向回路.解 环向量 ⎰+-Ly xy x y x d 2d )(22=4d d xyD y x y ⎰⎰=004d d a bx y y ⎰⎰=22ab .4.利用斯托克斯公式计算⎰Lz xyz d ,其中Γ是用平面y z =截球面22x y +21z +=所得的截痕,若逆z 轴正向看去,取逆时针的方向.解 由斯托克斯公式⎰Lz xyz d =d d d d d d 00y z z x x yx y z xyz∂∂∂∂∂∂=d d d d xz y z yz z x ∑-⎰⎰, 其中∑是平面y z =上以圆Γ为边界的平面,其侧与Γ的正向符合右手规则.显然,∑在yoz 坐标面上的投影为一线段,所以d d 0xz y z ∑=⎰⎰.∑在xoz 坐标面上的投影为一椭圆域22:21D x z +≤,且∑的法向量与y 轴成钝角, 从而2d d d d Dyz z x z z x ∑-=⎰⎰⎰⎰=2d z z x ⎰⎰=π22204sin cos d zt t t ⎰π2420(sin sin )d t t t -1π31π2()22422⋅-⋅⋅=π16.第十章 曲线积分与曲面积分(总习题)1.填空.(1)设平面曲线L为下半圆周y =则曲线积分22()d Lx y s +⎰的值是π;(2)向量场22(,,)ln(1)z x y z xy ye x z =+++u i j k 在点(1,1,0)P 处的散度div 2=u .(3)设L 为取正向的圆周229x y +=,则曲线积分⎰-+-Lyx x x y xy d )4(d )22(2的值是18π-.解 (1)22()d L x y s +⎰=d L s ⎰=12π12⋅⋅=π.(2)div u =P Q R x y z ∂∂∂++∂∂∂=222e 1Z zy x z++⋅+, 从而 2(1,1,0)22div |e |21z P xzy z=++=+u . (3)⎰-+-Ly x x x y xy d )4(d )22(2=(2422)d d Dx x x y --+⎰⎰=2d d Dx y -⎰⎰=22π3-⋅⋅=18π-.2.计算⎰++ABCDA yx yx d d ,ABCDA 是以点(1,0),(0,1),(1,0),(0,1)A B C D --位顶点的正方形正向边界. 解 法1 ⎰⎰+=++=ABCDA ABCDAy x y x yx I d d d d (00)d d 0Dx y =-=⎰⎰.此法是先将正方形的边界1x y +=代入被积函数后,再用格林公式求解. 法2 因 :1,AB x y += :1,BC y x -= :1,CD x y --=:1DA x y -=. 从而d d ()ABBCCDDAx yI x y+=++++⎰⎰⎰⎰ =()d d ABBCCDDAx y ++++⎰⎰⎰⎰=010111(11)d (11)d (11)d (11)d x x x x ---+++-++⎰⎰⎰⎰=112d 2d x x -+⎰⎰=0.法2是分段分别计算,比较一下还是法1简便.但切记不可直接对⎰++ABCDA yx y x d d 用格林公式.请同学们动脑筋想一下,这是为什么?3.计算⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222,B A 为螺线cos x ϕ=,y =sin ϕ,z ϕ=由点(1,0,0)到点(1,0,2π)的弧段.解 ⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222=22220[(cos sin )(sin )(sin cos )cos (sin cos )]d πϕϕϕϕϕϕϕϕϕϕϕϕ--+-+-⎰=22222222000cos dcos cos2d sin dsin d sin dsin πππππϕϕϕϕϕϕϕϕϕϕϕ-++-⎰⎰⎰⎰⎰=33322π2π2π2π0000cos sin sin |0|||3332ϕϕϕϕ-++-=31000(2π)03-++-=38π3.4.设B A为连接点(1,2)A 与(2,3)B 的某曲线弧,又设B A与直线段AB 所包围图形的面积等于k ,计算曲线积分y x x x x y B A d )1(d 2⎰-+ .(直线段AB 与曲线弧B A 除点,A B 外无其它交点,曲线弧B A不与y 轴相交,且自身不相交).解 2(,)y P x y x =, 1(,)Q x y x x=-,则 221111Q P x y x x∂∂-=+-=∂∂, 直线段:1BA y x =+,x 由2到1,记B A与BA 所围成的闭区域为D ,由于要用到格林公式,所以要分两种情况讨论:B A取逆时针方向(如图10.12(a)) (1)y x x x x y I B A d )1(d 2⎰-+==y xx x x y BA AB BA d )1(d )(2-+-⎰⎰+ =21d d d ()d BA Dy x y x x y x x -+-⎰⎰⎰=12211()d x k x x x x +-+-⎰=1221()d k x x x-+⎰=2k +. (2)B A取顺时针方向(如图10.12(b )所示).y x x x x y I B A d )1(d 2⎰-+==y xx x x y BA AB BA d )1(d )(2-+-⎰⎰+ 图 10.12=21d d d ()d BADy x y x x y x x--+-⎰⎰⎰=1221()d k x x x--+⎰=2k -+. 注意 常见错误是不讨论B A是取逆时针方向,还是取顺时针方向,就直接利用了格林公式,这是不对的.5.计算曲线积分⎰++-L yx yx x y 22d d . (1)L 是圆周22(1)(1)1x y -+-=的正向; (2)L 是曲线1x y +=的正向.解 22(,)y P x y x y -=+, 22(,)x Q x y x y=+,当220x y +≠时, 22222()P y x Qy x y x∂-∂==∂+∂, 记曲线L 所围成的闭区域为D .(1) 如图10.13(a )所示,此时(0,0),(,),(,)D P x y Q x y ∉在L 所围成的闭区域D 内有一阶连续偏导数,由格林公式: ⎰⎰⎰==++-=L Dy x y x yx x y I 0d d 0d d 22.c(2)如图10.13(b )所示,此时(0,0),(,),(,)D P x y Q x y ∈在L 所围成的闭区域D 上有不连续点(0,0),以(0,0)为圆心,以充分小0ε>的为半径作圆周:cos ,sin ,02πC x y εθεθθ==≤≤,图 10.13C 取逆时针方向,记L 和C 所围成的闭区域为1D ,对复连通域1D 应用格林公式,有0d d 22=++-⎰-+C L yx yx x y 从而⎰++-L y x y x x y 22d d =⎰++-C y x y x x y 22d d=2π2sin (sin )cos cos d εθεθεθεθθε--+⋅⎰=20d πθ⎰=2π.6.计算曲线积分⎰+-Cy x xy y x 224d d ,其中C 是(1,0)以为中心,(1)R R ≠为半径的圆周,逆时针方向. 解 22(,)4y P x y x y -=+, 22(,)4xQ x y x y=+, 当2240x y +≠时,22224P y x Qy x y x∂-∂==∂+∂,C 所围成的闭区域记为D ,(0,0)究竟在不在以为(1,0)中心,R 为半径的圆内,要分两种情况讨论: (1)1R <时,(0,0)D ∉(图10-14(a)),则⎰=+-Cyx xy y x 04d d 22; (2)1R >时,(0,0)D ∈,作足够小的椭圆cos :2sin x L y εθεθ=⎧⎨=⎩,02πθ≤≤,L 取逆时针方向(图10.14(b))(a )1R <(b )1R >图 10.14于是由格林公式,有04d d 22=+-⎰-+L C y x x y y x , 从而 ⎰+-C y x x y y x 224d d =⎰+-L y x x y y x 224d d =2π22220cos 2cos )2sin (sin )d 4cos 4sin εθεθεθεθθεθεθ--+⎰=2π01d 2θ⎰=π. 注意 易犯错误是不分1,1R R <>两种情况讨论,未注意闭曲线L 所围成的闭区域D 内有无“洞”,即D 是否为“单连通域”?7.设曲线积分2d ()d Lxy x y x y ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,计算(1,1)2(0,0)d ()d xy x y x y ϕ+⎰的值.解 2(,)P x y xy =,(,)()Q x y y x ϕ=,因曲线积分与路径无关,P Q y x ∂∂=∂∂, 22(),()2,()xy y x x x x x C ϕϕϕ''===+,由(0)0ϕ=,则0C =,从而2()x x ϕ=.(1,1)2(0,0)d ()d I xy x y x y ϕ=+⎰=(1,1)22(0,0)d d xy x x y y +⎰=10d y y ⎰=12. 8.质点P 沿着以AB 为直径的圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 的作用,F 的大小等于点P 到原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于2π,求变力F 对质点P 所做的功. 解 圆弧AB 的方程为22(2)(3)2x y -+-=,其参数方程为23x t y t⎧=+⎪⎨=+⎪⎩, 3π(π)44t -≤≤ y x =-+i j F ,所以434()d d )sin )cos ]d L W y x x y t t t t t ππ-=-+=++⎰⎰2(π1)=-.9.计算⎰⎰∑+S y x d )(22,其中∑为球面2222x y z a ++=.解 :∑2222x y z a ++=对,,x y z 具有轮换对称性,所以⎰⎰∑S x d 2=⎰⎰∑S yd 2=⎰⎰∑S z d 2, 于是⎰⎰∑+S y x d )(22=⎰⎰∑++S z y x d )(32222=⎰⎰∑S a d 322224284π33a a a ⋅=几何意义. 10.计算⎰⎰∑+-+++=y x z yz zf x z y yz yf z y x I d d ])([d d ])([d d 333,其中f 有一阶连续导数,而∑为球面2222x y z Rz ++=的内侧((0)R >.解 令333,(),()P x Q yf yz y R zf yz z ==+=-+,则2223,()()3,()()3P Q R x f yz yzf yz y f yz yzf yz z x y z∂∂∂''==++=--+∂∂∂. 注意到∑取内侧,运用高斯公式,得I =222()d 3()d d d P Q R v x y z x y z y x z ΩΩ∂∂∂-++=-++∂∂∂⎰⎰⎰⎰⎰⎰ =22cos 2220003d d sin d R r r r ππϕθϕϕ-⋅⎰⎰⎰=55206πsin 32cos d 5R πϕϕϕ-⋅⎰=65206πcos 32|56R πϕ⋅⋅=532π5R -. 11.计算d d (1)d d SI y z x z x y =-++⎰⎰,其中S 是圆柱面224x y +=被平面x z +=2和2z =所截出部分的外侧.解 法1 设121,,,,S S S D Ω如图10.15所示,1:2;S x z += 2:0S z =d d (1)d d SI y z x z x y =-++⎰⎰=y x z x z y S S S S S d d )1(d d ][2112++---⎰⎰⎰⎰⎰⎰++ =1122(11)d d d (1)d d (1)d d S S S S V y z x z dxdy y z x z x y Ω-+---+---+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=110(1)d d d d S S z x y x y -+-⎰⎰⎰⎰=11(21)d d d d D D x x y x y --++⎰⎰⎰⎰图 10.15。

高数第10章2讲解

高数第10章2讲解

分成的半波带数: N a sin
注意:
2
①在缝宽a 和波长λ一定时,半波带数N 取决于衍射角 。
②相邻两个半波带叠加时,产生相消干涉。N 为偶数, φ对应
暗纹中心,N 为奇数, φ对应亮纹中心。
O
A a1 •
a2 • b1• 2
N 2k 暗纹中心
A a1 • a2 •
b1 • b2 •
N 2k 1 明纹中心
惠更斯 -- 菲涅耳原理: 波前上任一面积元都可看成发射子波的波源; 其后空间中任一点的光振动是波前上所有面积元发出的 子波在该点相干叠加的结果。
另外菲涅耳还作了一些假设,由假设可得面元dS在P 引
起的振动为:
初相为零
dE( p) C f ( ) cos[t 2r ] dS r
振幅与θ有关
P点合振动:
振幅与r成反比
E( p)
C
Σ
f
( ) cos(t
r
2r )dS
积分法较复杂,我们采用半波带法及振幅矢量法。
二、 单缝的夫琅禾费衍射
1、单缝衍射:
缝平面 透镜L2
透镜L1
S•
a
观察屏

O
S : 单色光源
: 衍射角
AB = a 为缝宽
f1
K
f2
衍射角 : 子波波线与单缝面法线之间的夹角。
P 点的光强取决于衍射角相同的平行光线之间的光程差。 各平行光线经透镜汇聚在屏上形成衍射花样。
爱里斑的半角宽度:
1.22
D
L
D
P
d
f
四、 光学仪器的分辨本领:
1、 问题:
由于衍射,一个物点通过光学仪器成像时,像点不再 是几何点,而是一个有一定大小的衍射斑。

《高等数学 A 》期末辅导材料( 下册 第10,11,12 章).

《高等数学 A 》期末辅导材料( 下册 第10,11,12 章).

《高等数学A 》期末辅导材料( 下册 第10,11,12章)第十章 曲线积分与曲面积分本章重点内容:两类曲线积分的概念及其计算法,格林公式,平面上曲线积分与路径无关的条件,两类曲面积分的概念及其计算法,高斯公式,斯托克斯公式。

本章难点内容:对坐标的曲面积分的概念及其计算法,斯托克斯公式。

复习指导:本部分将直线上的一个区间换为曲线弧段,从而将定积分的概念推广为曲线积分;将平面区域换为曲面,从而将二重积分的概念推广为曲面积分。

曲线积分有两类:对弧长的曲线积分,对坐标的曲线积分;曲面积分有两类:对面积的曲面积分,对坐标的曲面积分; 在学习中,要注意:(1)两类曲线积分都是化为定积分来计算,两类曲面积分都是化为二重积分来计算,关键是:怎样化?要注意各自的化法。

(2)对坐标的曲线积分与曲线的方向有关,对坐标的曲面积分与曲面的侧有关。

(3)计算对坐标曲线积分时,若积分路径是封闭的,可以考虑利用格林公式来求;(但要注意满足格林公式的条件)计算对坐标曲面积分时,若积分曲面是封闭的,可以考虑利用高斯公式来求;(但要注意满足格林公式的条件)(4)计算对坐标的曲线积分时,可以考虑利用积分与路径无关的条件来求。

(5)计算对坐标曲线积分时,若积分曲线是空间闭曲线(一般题目给的是两个曲面的交线),可以考虑利用斯托克斯公式来求;(6)怎样判断是否),(),(),(y x du dy y x Q dx y x P =+?怎样求出原函数。

求出的方法有多种,用公式),(y x u ),(y x u ∫∫+=yy x x dy y x Q dx y x P y x u 00),(),(),(0 来求是最基本的一种,必须掌握。

本部分常考的题型有:两类曲线积分的计算,两类曲面积分的计算;用格林公式计算平面闭曲线上的第二类曲线积分。

用曲线积分与路径无关的条件计算沿平面曲线的第二类曲线积分;用高斯公式计算封闭曲面上的第二类曲面积分;用斯托克斯公式计算空间闭曲线上的第二类曲线积分。

高数复习知识点及提纲

高数复习知识点及提纲

高数复习知识点及提纲第一篇:高数复习知识点及提纲高数复习知识点及提纲1.瑕积分的判别,广义积分和Γ(n)的计算。

6分2.罗必达法则求未定式。

6分3.利用导数研究函数的单调性和极值,凸凹性和拐点。

10’4.利用定积分求解封闭图形的面积7分5.多元函数连续与可微的关系3分6.多元函数的一阶、二阶偏导数的计算;二元函数的全微分,多元函数复合函数的求导及隐函数求导。

20分7.二元函数极值的经济应用7分8.二重积分的计算以及交换积分次序10分9.利用级数的收敛性证明极限,求幂级数的收敛域和函数,函数的幂级数展开18分10.微分方程解的概念,一阶线性的微分方程的求解。

13’--------------------第二篇:高数知识点高等数学B2知识点1、二元函数的极限、连续、偏导数、全微分;微分法在几何上的应用;二元函数的方向导数与梯度;二元函数的极值。

2、二重积分的计算(直角坐标、极坐标);三重积分的计算(直角坐标、柱面坐标)。

3、曲线积分、曲面积分的计算;格林公式;高斯公式。

4、数项级数收敛性的判别;幂级数的收敛半径、收敛域。

第三篇:高数知识点总结高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y ax),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。

x2+xx=lim=13、无穷小:高阶+低阶=低阶例如:limx→0x→0xxsinx4、两个重要极限:(1)lim=1x→0x(2)lim(1+x)=ex→01x⎛1⎫lim 1+⎪=e x→∞⎝x⎭g(x)x经验公式:当x→x0,f(x)→0,g(x)→∞,lim[1+f(x)]x→x0=ex→x0limf(x)g(x) 例如:lim(1-3x)=ex→01xx→0⎝⎛3x⎫lim -⎪x⎭=e-35、可导必定连续,连续未必可导。

例如:y=|x|连续但不可导。

6、导数的定义:lim∆x→0f(x+∆x)-f(x)=f'(x)∆xx→x0limf(x)-f(x0)=f'(x0)x-x07、复合函数求导:df[g(x)]=f'[g(x)]•g'(x)dx例如:y=x+x,y'=2x=2x+1 2x+x4x2+xx1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx x2+y2=1例如:解:法(1),左右两边同时求导,2x+2yy'=0⇒y'=-x ydyx法(2),左右两边同时微分,2xdx+2ydy⇒=-dxy9、由参数方程所确定的函数求导:若⎨⎧y=g(t)dydy/dtg'(t)==,则,其二阶导数:dxdx/dth'(t)⎩x=h(t)d(dy/dx)d[g'(t)/h'(t)]dyd(dy/dx)dtdt===2dxdxdx/dth'(t)210、微分的近似计算:f(x0+∆x)-f(x0)=∆x•f'(x0)例如:计算sin31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y=sinx(x=0x是函数可去间断点),y=sgn(x)(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f(x)=sin ⎪(x=0是函数的振荡间断点),y=数的无穷间断点)12、渐近线:水平渐近线:y=limf(x)=cx→∞⎛1⎫⎝x⎭1(x=0是函xlimf(x)=∞,则x=a是铅直渐近线.铅直渐近线:若,x→a斜渐近线:设斜渐近线为y=ax+b,即求a=limx→∞f(x),b=lim[f(x)-ax]x→∞xx3+x2+x+1例如:求函数y=的渐近线x2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

西工大高等数学上册基础知识点

西工大高等数学上册基础知识点

=1
5. lim ln ( 1 sin x) x0 tan2 x
.
当x 0时 ln(1 sinx) ~ sinx ~ x
tan2x ~ 2x
原式 lim x 1 . x0 2 x 2
6. 求 lim 1 x x 2 1
x0
sin2 x
解 : sin2x ~ 2x
有 f (x) 0
若 lim f ( x) A x x0
当 A > 0 , 则 f (x)局部保号. 当 f (x) > 0 ( 或 0 ), 则 A 0.
(3) 若 lim f ( x) A, x x0 其中 lim α 0 x x0
则 f (x) A .
.
3. 极限求法小结
(1) 利用函数连续性求极限——代入法. (2) 用恒等变形消去零因子法求极限. (3) 用同除一个函数的方法求 型极限.

(4) 利用两个重要极限求极限. (5) 利用无穷小性质求极限. (6) 利用等价无穷小代换求极限. (7) 利用极限存在的两个准则求极限. (8) 从左、右极限求分段函数在分界点处的极限. (9) 用洛必达法则求未定式的极限.
6. 间断点的分类
间断点
第一类
可去型: 若lim f ( x)存在. xa
不可去型: f (a– 0), f (a+0)都存在但不等.
第二类:非第一类(含无穷型、振荡型)

a
a
a
二 基本题型例题
1. 用ε-N 定义证明
1 (1)n
lim
0
n
n
分析: 1 (1)n 0 2
lim2( x 1) 4
x 1

高数第十章习题.docx

高数第十章习题.docx

第十章重积分第二节二重积分计算法习题 一、填空题:1、+ 3兀2歹 + y 3)d(j = _______________ .其中 D: 0 < x < 1,0 < y < 1.D2、 J jxcos(x+yW = ___________________ •其中D 是顶点分别为(0,0),(龙,0),(兀,兀)的三角形闭区域.D3、 将二重积分JJ/(x,yW ,D 是由X 轴及半圆周%4 5 + y 2 = r 2(y>0)所围成的闭区域,化为先对y 后对x 的二次积分,应为D4、将二重积分Jj f(x, y)db ,其中D 是由直线y = x,x = 2及双曲线y = -(x>0)所围成的闭域,化为先对X 后对y 的二次积分, D X应为 ___________________________ ・ sinxx /(匕y)dy 改换积分次序,应为 -sin —2£_2 dyf. f(x, y)dx +〜y)dx 改换积分次序,应为 ____________________________________二、画出积分区域,并计算下列二重积分:1、 J j e x+y d(y,其中D 是由|x| + |^| <1所确定的闭区域.D2、 J J(%2+ /-x)da 其中D 是由直线y = 2y y = xRy = 2兀所围成的闭区域. D训JD三、 设平面薄片所占的闭区域D 由直线x+ y = 2, y = x 和x 轴所围成,它的面密度p(x, y) = x 2 + y 2,求该薄片的质量. 四、 求由曲面z = x 2+ 2y 2及z = 6 — 2+ — y2,所围成的立体的体积. 答案f(x,y)dy ; 4.刃6仕+『创了(兀,以仕;5、(创*: ' /(兀,y 皿;2 7 v_y4、将(心[/(x, y)dy 化为极坐标形式的二次积分为 ______________________________ .5、将£ (x 2 + y 2)^dy 化为极坐标形式的二次积分为 ____________________ ,其值为 ________________二、计算下列二重积分:1、jjln(l + x 2 + y 2)da t 其中D 是由圆周x 2 + y 2 = 1及坐标轴所围成的在第一彖限内的区域.DD4 将JJ f(x, y)dxdy , D 为x 2 + y 2<2x,表示为极坐标形式的二次积分,为 ______________D5 将JJ/(x,y)dxdy 小为05 y 51—兀,05x51,表示为极坐标形式的二次积分为W一]13 5 兀 4 、〜二 1、e-e : 2、—:3、 兀;4、—F —•二 S 一•四、6龙63 2 3极坐标习题一.填空题:arcsin v/•() p/r「1 /•^•-arcsin vr2 r\+x 26、Whc 加(3)如 IM 如/(3心 7、WL f^y )dy.5、将二次积分 MTy)dy 改换积分次序,应为 ___________________________7、将二次积分3' «[”(兀皿=)?叫dy(彳-x )(x-刃3>将X 2 +)労化为极坐标形式的二次积分为 y-x 2 dxdy,其中D : -1 <x<l,0< y <2.2、 Jj(x 2 + y 2)d(m 中 D 是由直线 y 二兀,y = x + a,y = a,y = 3a(a > 0)所罔成的区域. D3、 JJjF 一F — bdb,其中D 是由圆周X 2 + y 2 = Rx 所围成的区域.D4、 j||x 2 + / -2c/cr, Jt 中 D :F + y2s3.D芒/*2acos^三、 试将对极坐标的二次积分I = J/(rcos^,rsin^)rJr 交换积分次序."4°yz 7^ /> ° 四、 设平面薄片所占的闭区域D 是由螺线r = 2 &上一段弧(0<3<-)与直线0 =-所闱成,它的面密度为p(x, y) = x^ + y\求 这薄片的质量.五、计算以xoy 面上的圆周x 2 + y 2 = ax 成的闭区域为底,而以曲面z = x 2 + y 2为顶的曲顶柱体的体积. 答案r — r2cos^r — p(cos^+sin^)"—、1、J :d/(rcos^,rsin 0ydr ; 2、 啊&sineI/(厂cos&rsin&)厂dr ; 5、|4kccOlan*JO4、丄龙.三、/ = £ 1rdr^\ f(rcosO,rsin2 ° "4第三节三重积分习题 一、填空题:1、若Q 由ill 「血z = x 2 + >?2及平血z=l 所围成,则三重积分JJJ/(%, y, z)dxdydz 化为三次积分是 Q222、若O 是由illiiiicz = A ><C >0), * +》〒 = l,z=o 所围成的在第一卦限内的闭区域,则三重积分jjj/(x,z^dxdydz 可化为三61 Q次积分为 ________ ■3、 若Q:0<x< 1,()< y < 1,0<z< 1,则 jj (兀 + y + z)dxdydzQ4、 若 Q :是由 x = 0, z = 0, z = h(h > 0), x + 2y =。

高等数学下册(第10章)重积分及其应用教案

高等数学下册(第10章)重积分及其应用教案
性质6(估值定理) 设, 分别是在闭区域上的最大值与最小值, 是的面积, 则
.
性质7(二重积分中值定理)设在闭区域上连续, 是的面积, 则在上至少存在一点, 使.
性质8(对称性质)设闭区域 关于 轴对.
(1)若被积函数关于变量为奇函数, 即, 则.
(2)若当被积函数关于变量为偶函数, 即时, 则.
性质9(轮换对称性)设闭区域关于轴对称,则.
注 (1)曲顶柱体的体积是函数在上的二重积分, 即=.
(2)平面薄片的质量是面密度在薄片所占平面区域上的二重积分, 即.
(3)如果在闭区域上连续, 则在闭区域上的二重积分必定存在.
(4)若有界函数在有界闭区域D上除去有限个点或有限个光滑曲线外都连续, 则在上可积.
(5)二重积分的几何意义: 当时, 就是曲顶柱体体积; 当时, 柱体在面的下方, 此时二重积分是曲顶柱体体积的相反数; 如果在的若干部分是正的, 而在其他部分都是负的, 则我们可以把面上方的曲顶柱体体积取成正, 面下方的曲顶柱体体积取成负, 则在上的二重积分就等于这些部分区域上的曲顶柱体体积的代数和.
-型区域的特点是:在区域内, 任意平行于轴的直线与的边界至多有两个交点, 且左右边界的曲线方程是的函数.如果一个区域既是-型区域又是-型区域, 称为简单区域.
3.混合型区域 若有界闭区域, 它既不是-型区域又不是-型区域, 则称之为混合型区域.
其特点是:在区域内,存在平行于轴和轴的直线与的边界交点多于两个.
;
(3) 在内任取一点, 过此点作平行于轴的直线穿过区域, 此直线与边界曲面的两交点之竖坐标( 将此竖坐标表示成的函数 )为的变化范围, 即
.
(4) 将三重积分写成关于变量 的三次积分
.
一般地,当积分区域在坐标面上的投影区域是圆域或者扇形区域,被积函数含有或()时, 用柱面坐标计算比较简单.

西安工业大学高数09-10第一学期(1)期末考题及答案分析

西安工业大学高数09-10第一学期(1)期末考题及答案分析

西安⼯业⼤学⾼数09-10第⼀学期(1)期末考题及答案分析⾼等数学(A )期末考试试题⼀、单项选择题(每⼩题3分,共15分)1.当0→x 时,下列变量极限不存在的是(). (A )x arctan ;(B )xx 1sin;(C )xx +-11ln;(D )x e 1.2.0)(,0)(00<''='x f x f 是函数)(x f y =在0x x =处取得极⼤值的⼀个()(A )充分必要条件;(B )充分条件,⾮必要条件;(C )必要条件,⾮充分条件;(D )既⾮充分条件,⼜⾮必要条件.3.下列等式成⽴的是()(A ))()(x f dx x f d =?;(B )dx x f dx x f d )()(=?;(C ))()(x f dx x f ='? (D )dx x f dx x f ?=')()(. 4.设)(x f 在],[b a 上⾮负,在),(b a 内,0)(,0)(>''>'x f x f 记[])()(21b f a f ab I +-=,dxx f I b a=)(2,)()(3a f a b I -=,则()(A )321I I I <<;(B )132I I I <<;(C )123I I I <<;(D )213I I I <<. 5.关于函数dte t xf t)1()(的极值,正确的是()(A )极⼩值为f -=1)1(;(B )极⼩值为 e f -=2)1(;(C )极⼤值为 e f -=1)1(;(D )极⼤值为 e f -=2)1(. ⼆、填空题(每⼩题3分,共15分) 1.设0→x 时,)cos(1ax -与12 -xe是等价⽆穷⼩,则=a .2.设函数)(x f 可导,)(cos 2x f y =,则=dy .3.设曲线的⽅程是)1ln(2x y +=,则曲线的拐点是 .4.不定积分=+?dx x x 1 .5.设曲线)(x f y =上任⼀点),(y x M 处的切线,恒垂直于此点与原点的连线,则y满⾜的微分⽅程是 .三、完成下列各题(每⼩题6分,共36分) 1. 求极限??--→x e xx 111lim 0. 2. 设 ,212=-=tt ey e x 求 22dx yd . 3.设函数)(x y 是由1)1(022=+-?dt t y x y所确定,求dy .4.设xx sin 是)(x f 的⼀个原函数,求dx x f x ?')(.5设?∞+-∞→=+121lim dx xex xaxx ,求a .6.求⼀阶微分⽅程yedxdy x -=-+1)1(的通解.四、(7分)设())1(1ln )(21>++=?x xx dt tt f x ,求dxx f ?)(.五、(7分)已知)(x f 在点6=x 的邻域内为可导函数,且,0)(lim 6=→x f x ,2009)(lim 6='→x f x 求极限 .)6()(lim3666x dtdu u f t x t x -→六、(8分)在抛物线)30(2≤≤=x x y 上求⼀点P ,过P 点作抛物线的切线,使此切线与抛物线及直线3,0==x y 所围成的图形⾯积最⼩.七、(7分)设 ,0<+≥+=x ex x x f x 求?-2)1(dx x f .⼋、(5分)已知函数)(x f 在),2[∞+上可导,0)(>x f ,且满⾜不等式)(])([x f x xf -≤'.试证在),2[∞+上2)(xA x f ≤,其中A 为与x ⽆关的常数.⾼等数学(A )期末考试试题参考答案及评分标准(2010年1⽉5⽇)⼀、单项选择题(每⼩题3分,共15分) 1.D 2.B 3.B 4.C 5.B ⼆、填空题(每⼩题3分,共15分).12±2. xdx sin )x (cosf 22'- 3 . )ln ,(21±4. C )x ()x (++-+2325132152 5.yx dxdy -=三、完成下列各题(每⼩题6分,共36分).1. 解:)e (x )e (x lim x e lim xxx x x 1111100---=??? ?--→→……………………………………………..1分 21x x +-=→………………………………………………..2分xel i mxx 210-=→………………………………………………….....2分2120-=-=→xx limx ………………………………………………….1分2. 解:ttt eee dxdy 1222==………………………………………………………………………3分tttteeee dxy d 322222121-…………………………………...…………………….3分3. 解:两端同时对x 求导得…………………………………………………………………..1分 0122 2=+-+dxdy )y (dxdy xxy ………………………………………………….3分2212x y xy dxdy -+=……………………………………………………………..….1分即dx xy xydy 2212-+=………………………………………..………………………1分4. 解:由题意知2xxsin x cos x )xx sin ()x (f -='=……………………………………2分则)x (df x dx )x (f x ??=' ………………………………………………………. …….…1分 dx )x (f )x (xf ?-=…………………………………………………………….…… 2分C xx sin x cos C xx sin x………………………….1分5解:因为 aaxx axx ex lim x lim 2222121=+=??+∞→∞→………………………………2分[][]+∞-+∞→+∞-+∞-+∞-+∞--+-=+-=-=?111xxxee)ex (lim dx exexdedx xeeeelim e)e (lim xx xx 2111=+-+-=-+∞→+∞→……………..…………………..3分所以 )(l n a eea122122-= =………………………………...………....1分6.解:由题意得y+11,也即dx x dy eeyy 111+=+……………………….2分两端同时积分得C ln )x ln()e ln(dx x dy eeyyy++=+?+=+?11111………3分所以原微分⽅程的通解为 )x (C ey11+=+ 或 []11-+=)x (C ln y ………….....1分四、(7分)解:对()211xx ln dt t)t (f x ++=?两端同时求导得……………………..1分222x (xx x)x (f +=+=++++ =……...2分C x)x(d xdx xx dx )x (f ++=++= +=∴2222111121 1…………...3分五、(7分)解:2 6603666636)x (du)u (f x lim)x x t x --=-→→…………………………2分)x ()x (xf du )u (f limxx --=?→6666………………………………………………2分660-'---=→)x (f x )x (f )x (f limx …………………………………………2分2009= …………………………………………………………………...…1分六、(8分)在抛物线)x (x y 302≤≤=上求⼀点P ,过P 点作抛物线的切线,使此切线与抛物线及直线30==x ,y 所围成的图形⾯积最⼩.解:设切点P 的坐标为)x ()y ,x (30000≤≤,则切线斜率为002x )x (y =',切线⽅程为 )x x (x y y 0002-=-,即2002x x x y -=,…………………………….1分令0=y ,得切线与x 轴交点的横坐标为20x ,令3=x ,得切线与直线3=x 交点的纵坐标为2006x x -,要使此切线与抛物线及直线30==x ,y 所围成的图形⾯积最⼩,既是切线与直线30==x ,y 所围成的图形⾯积最⼤…………………………………………….2分设该⾯积为S ,则)x x )(x ()x (S 2000062321--=………………..……………….2分[]0000020026641262321641x )x ()x ()x )(x ()x x ()x (S ---=--=')x )(x (002643--=………………………..……………………………..2分令00=')x (S ,得惟⼀驻点20=x ,依题意,该驻点就是使)x (S 0取得最⼤值的点,所以所求的点P 的坐标为),()y ,x (4200=…………………………………………...…….1分七、(7分)解:?---======-11111201dx )x (f dt )t (f dx )x (f x t ……………………..2分[]1001100111111111)x ln(de)ee(dx xdx exxxx+++-=+++=--….3分[][][])e (ln )x ln()eln(x x12111001+=+++-=-………….........………2分⼋、(5分)已知函数)x (f 在),[∞+2上可导,0>)x (f ,且满⾜不等式)x (f ])x (xf [-≤'.试证在),[∞+2上2xA )x (f ≤,其中A 为与x ⽆关的常数.证:由于)x (f 在),[∞+2上可导,0>)x (f ,则x)x (f )x (f )x (f )x (f x )x (f )x (f ])x (xf [2-≤'?-≤'+?-≤'…..2分于是当2>x 时有dt t dt )t (f )t (f x x ?-≤'222……………………………….1分即[][]222222442222x)(f )x (f x(f )x (f x ln )(f )x (f ln t ln )t (f ln x x ≤≤≤?-≤-令)(f A 24=,代⼊即证………………………………………………………………2分。

高等数学西工大教材

高等数学西工大教材

高等数学西工大教材高等数学是大学数学的重要组成部分,是培养学生数学思维和解决问题能力的基础课程。

西工大教材是一本经典的高等数学教材,以其严谨的推导过程和清晰的解题思路而备受学生和教师的喜爱。

第一章微积分基础微积分是高等数学的基础,它主要研究函数的变化和量的积分。

在微积分的学习中,我们首先需要掌握极限的概念和性质。

极限是描述函数变化趋势的重要工具,通过极限的定义和运算法则,我们可以求解函数的极限值,进而对其变化趋势有更深入的了解。

第二章导数与微分导数是微积分中的重要概念,它描述了函数曲线在某一点上的斜率。

通过求解导数,我们可以判断函数在不同点上的增减性,并且可以推导函数的最值点和临界点。

微分是导数的一个应用,它可以描述函数在某一点上的近似变化量。

第三章不定积分不定积分是微积分的另一个重要内容,它是对函数的积分运算。

通过不定积分,我们可以求解函数的原函数,并且可以计算曲线下方的面积。

在不定积分的学习中,我们需要掌握换元积分法、分部积分法和定积分的性质与定理。

第四章定积分与应用定积分是对函数在区间上的积分运算,它可以用于求解曲线下面的面积、质量、重心和轴线等物理问题。

在定积分的学习中,我们需要掌握定积分的定义和性质,同时需要掌握常用的定积分计算方法,如分割求和法和换元积分法等。

第五章微分方程微分方程是描述变化率与未知函数之间关系的方程。

在微分方程的学习中,我们需要了解常微分方程的基本概念和解法,包括一阶和高阶微分方程的求解方法。

微分方程可以应用在物理、化学、生物等领域中,通过建立合适的微分方程模型,可以描述和解决实际问题。

通过学习西工大教材,我们可以系统地掌握高等数学的理论和方法。

它的结构清晰,内容丰富,给予学生很好的指导和帮助。

无论是作为自学教材还是课堂教学辅助资料,西工大教材都能够满足学生的学习需求,并帮助他们建立起扎实的数学基础。

总结高等数学是大学数学的重要组成部分,西工大教材以其严谨的推导过程和清晰的解题思路而备受学生和教师的喜爱。

《高等数学(下册)》 第10章

《高等数学(下册)》 第10章

10.2.2 多元函数的极限
例6
证明 lim ( x ,y)(0 ,0)
xy x2 y2
不存在.
证明 取 y kx ( k 为常数),则
lim
( x ,y)(0 ,0)
xy x2 y2
lim ( x ,y)(0 ,kx)
x kx x2 k2x2
10.2 多元函数的概念、极限与连续性
10.2.1 多元函数的基本概念
1.引例
引例 1 矩形面积 S 与边长 x 、宽 y 满足下列关系: S x y (x 0,y 0) ,
其中,长 x 与宽 y 是两个独立的变量,当 x,y 在它们的变化范围内取一定值时,
矩形面积 S 有一个确定的值与之对应.
, P0 (x0
,y0 )

D 的聚点.如果存在 o
常数 A ,对于任意给定的正数 ,总存在正数 ,使得当 P(x ,y) D I U(P0 , ) 时,总有
| f (P) A || f (x ,y) A|
成立,则称常数 A 为函数 f (x ,y) 当 (x ,y) (x0 ,y0 ) 时的极限,记为
高等数学(下册)
第10章 多元函数微分法及其应用
10.1 预备知识
在前面章节中,我们介绍了一元函数的性质、极限、连续性、导数、 微分、不定积分、定积分,以及微积分在几何、物理等领域的一些应 用.这些内容是高等数学的基础知识,所涉及的函数运算都是一元函数 的运算,但在实际应用中,常常要考虑多个变量之间的关系.例如,工 厂生产一件产品,产品的成本包括原材料的成本,也包括工人的工资成 本.因此,我们将在前面章节的基础上,研究一个变量(因变量)与多 个变量(自变量)的关系.
10.2.1 多元函数的基本概念

西工大—高数答案—曲线积分与曲面积分

西工大—高数答案—曲线积分与曲面积分

第十章 曲线积分与曲面积分第一节 第一类曲线积分1.设xOy 平面内有一分布着质量的曲线弧L ,在点(,)x y 处它的线密度为(,)x y ρ,用对弧长的曲线积分表示:(1)这曲线弧L 的长度_______S =; (2)这曲线弧L 的质量_______M =;(3)这曲线弧L 的重心坐标:___x =;___y =;(4)这曲线弧L 对x 轴,y 轴及原点的转动惯量____x I =;____y I =;0____I =. 解 (1)d LS s =⎰;(2)(,)d LM x y s μ=⎰;(3)(,)d (,)d L Lx x y s x x y s μμ=⎰⎰, (,)d (,)d LLy x y s y x y sμμ=⎰⎰, (4)2(,)d x LI y x y s μ=⎰, 2(,)d y LI x x y s μ=⎰, 220()(,)d LI x y x y s μ=+⎰2.(1)设L 为椭圆22143x y +=,其周长为a ,求⎰+L s y x d )43(22. (2)设L 为圆周2264x y +=,求⎰+Ls y x d 22.解 (1)L :22143x y +=,即223412x y +=, 从而⎰+Ls y xd )43(22=⎰Ls d 12=⎰Ls d 12=12a .(2)L :2264x y +=, 从而⎰+Ls y x d 22=⎰Ls 8d =⎰Ls d 8=8π28⋅⋅=128π.3.计算22()d Lx y s +⎰,其中L 是以(0,0),(2,0),(0,1)为顶点的三角形. 解 如图所示,1L :0y =,x 从02→,2L :0x =,y 从01→, 3L :22x y =-,y 从01→,图d s y y ==. 从而22()d Lxy s +⎰=122()d L x y s +⎰+222()d L x y s +⎰+322()d L x y s +⎰=21122220d d [(22)]d x x y y y y y +-+⎰⎰=12081(485)d 33y y y +-+=3+4.计算s ⎰,其中L 为曲线222x y x +=.解1 L 的参数方程为 L :1cos ,sin ,x y θθ=+⎧⎨=⎩02πθ≤≤. 计算出d d s θ=,于是s ⎰=20θ⎰=2π02cos d 2θθ⎰2u θ=π4cos d u u ⎰=π208cos d u u ⎰=8.解2 在极坐标系下,L :2cos ,r θ= ππ22θ-≤≤.计算出d s θ==2d θ,于是s ⎰=222cos 2d ππθθ-⋅⎰=208cos d πθθ⎰=8.5.求空间曲线e cos tx t -=,e sin ty t -=,e (0)tz t -=<<+∞的弧长.解 d s t =td tt -,从而 0e d t s t +∞-==.6.有一铁丝成半圆形cos x a t =,sin y a t =,0t π≤≤,其上每一点处的密度等于该点的纵坐标,求铁丝的质量.解 d s t =t =d a t . d L m s ρ=⎰=d L y s ⎰=πsin d a t a t ⋅⎰=π2sin d a t t ⎰=22a . 7.计算22()d Lx y z s +-⎰,其中L 为球面222x y z a ++=与平面0x y z ++=的交线.解 由于222x y z a ++=与0x y z ++=对x ,y ,z 都具有轮换对称性,故 2d Lx s ⎰=2d Ly s ⎰=2d Lz s ⎰,d Lx s ⎰=d Ly s ⎰=d Lz s ⎰.于是2d L x s ⎰=2221(d d d )3LL L x s y s z s ++⎰⎰⎰ =2221()d 3Lx y z s ++⎰=2d 3L a s ⎰=22π3a a ⋅=32π3a . 其中d Ls ⎰为圆周2222x y z a x y z ⎧++=⎨++=⎩的周长,显然平面0x y z ++=过球面2222x y z a ++=的球心(0,0,0)O ,所以L 为该球面上的大圆,即半径为a ,故周长为2a π.又因为()d Ly z s -⎰=d d LLy s z s -⎰⎰=0,所以22()d Lx y z s +-⎰=32π3a .第二节 第二类曲线积分1.计算⎰+--+Lyx y y x x y x 22d )(d )(,其中L 为圆周222x y a +=(按逆时针方向绕行). 解 L :cos ,sin x a t y a t ==,t 由0到2π, 从而I =⎰+--+L y x yy x x y x 22d )(d )(=20[(cos sin )(sin )(cos sin )cos ]d t t t t t t t π+---⎰=20d t π-⎰=2π-.2.计算22()d Lx y x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧.解 I =22()d Lx y x -⎰=2240()d x x x -⎰=5615-. 3.计算(2)d d La y x x y -+⎰,其中L 为摆线(sin )x a t t =-,(1cos )y a t =-图上对应t 从0到π2的一段弧(图). 解 I =(2)d d La y x x y -+⎰=20{[2(1cos )](1cos )(sin )sin }d a a t a t a t t a t t π---+-⎰=22sin d a t t t π⎰=22πa -.4.计算22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰,其中L 为上半椭圆221(0)x xy y y ++=≥,从点(1,0)-到点(1,0)的一段弧.解 由221x xy y ++=可得221xy y x +=-,221x xy y +=-,代入积分式,得22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰=22[1(1)sin ]d (1)sin d Lx x x y y y +-+-⎰=10221[1(1)sin ]d (1)sin d x x x y y y -+-+-⎰⎰=2.5.计算222d d d x x y y z z Γ++⎰,其中Γ是从点(1,1,1)到点(2,3,4)的直线段.解 Γ的点向式方程为:111123x y z ---==,从而Γ得参数方程为 1x t =+,12y t =+,13z t =+,t 由0到1.I =12220[(1)2(12)3(13)]d t t t t +++++⎰=111333000111(1)(12)(13)333t t t +++++=32.6.计算⎰Γ+-z y y x d d d ,其中Γ为有向闭折线ABCA ,这里的A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1).解 如图,AB :1x y =-,0z =,y 由0到1.d d d ABx y y z -+⎰=12d y -⎰=2-;BC :1y z =-,0x =,z 由0到1;d d d BC x y y z -+⎰=1(2)d z z -⎰=32; CA :1z x =-,0y =,x 由0到1;图d d d CAx y y z -+⎰=1d x ⎰=1,故 I =()d d d AB BC CAx y y z ++-+⎰⎰⎰=3212-++=12. 7.有一质量为m 的质点,除受重力的作用外,还受到一个大小等于该质点到原点的距离,方向指向原点的力f 的作用,设该质点沿螺旋线:cos L x t =,sin y t =,z t =从点π(0,1,)2A 移动到点(1,0,0)B 移动到点,求重力与力f 的合力所作的功.解 依据题意,力f =x y z ---i j k ,故质点所受的合力 ()mg x y z mg =-=---+F f k i j k 在螺旋线L 上,起点A 对应于π2t =,终点B 对应于0t =,即π:02t →. 因此,力F 所作的功 d d ()d LW x x y y z mg z =---+⎰=0π2[cos (sin )sin cos ()]d t t t t t mg t ----+⎰=π20()d t mg t +⎰=2ππ82mg +.第三节 格林公式1.设xOy 平面上闭曲线L 所围成的闭区域为D ,将给定的二重积分与其相应的曲线积分用线连接起来. (1)d d Dx y ⎰⎰ (a) ⎰-Lx y y x d d(2) 2d d D x y ⎰⎰ (b)⎰-L y x x x d d 21(3)d d Dx y -⎰⎰ (c)⎰-Lx y y x d d 212.利用曲线积分计算星形线3cos x a t =,3sin y a t=所围成图形的面积.解 如图,因为33cos sin x a tx a t⎧=⎨=⎩ t 由0到2π. 从而图S =d Dσ⎰⎰=⎰-Lx y y x d d 21=2π32321[cos 3sin cos sin (3cos sin )]d 2a t a t t a t a t t t ⋅--⎰ =2π22203sin cos d 2a t t t ⎰=2π2203sin 2d 8a t t ⎰=2π231cos 4d 82t a t -⎰=23π8a .3.证明2322(6)d (63)d Lxyy x x y xy y -+-⎰只与L 的起始点有关,而与所取路径无关,并计算积分(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰.解 236P xy y =-,2263Q x y xy =-,2123P Qxy y y x∂∂=-=∂∂,所以积分与路径无关, 故(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰=34212(248)d (549)d x x y y y -+-⎰⎰=2323412[128][273]x x y y -+-=80156236+=. 或者 (3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰ =(3,4)2232(1,2)(6d 6d )(d 3d )xy x x y y y x xy y +-+⎰=(3,4)223(1,2)d(3)x y xy -⎰=223(3,4)(1,2)[3]x y xy -=236. 4.计算e (1cos )d e (sin )d x xLI y x y y y =-+-⎰,其中L 为从(0,0)O 到(,0)A π的正弦曲线sin y x =. 解 如图所示,由格林公式 I =e (1cos )d e (sin )d x x Ly x y y y -+-⎰=y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d 0xDy x y ---⎰⎰=πsin 0e d d x x x y y ⎰⎰=π201e sin d 2x x x ⎰=π01e (1cos 2)d 4xx x -⎰图=ππ0011e d e cos 2d 44x x x x x -⎰⎰=ππ11(e 1)(e 1)420---=π1(e 1)5-.其中π0e cos 2d x x x ⎰=πcos 2de x x ⎰=ππe cos 2|e dcos 2xx x x -⎰=π0e 12sin 2d x e x x π-+⎰=ππe 12sin 2de x x -+⎰=πππ0e 12e sin 2|2e dsin 2xx x x -+-⎰=ππ0e 14e cos2d x x x --⎰.移项解之,得ππ01e cos 2d (e 1)5x x x =-⎰.注意 本题易犯两个错误: (1)I =y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d x Dy x y -⎰⎰.产生错误的原因是,没有注意格林公式使用时的条件:⎰⎰⎰+=∂∂-∂∂DL y Q x P y x yPx Q d d d d )(,其中C 是D 的取正向的边界曲线.而本题的闭曲线L AO +是D 的取负向的边界曲线,所以二重积分()d d DQ Px y x y∂∂-∂∂⎰⎰前面必须添加负号. (2)计算定积分π0e cos 2d x x x ⎰是连续两次使用部分积分法后移项解出来的.对此积分有些同学束手无策,有些则在连续使用分布积分法d d u v uv v u =-⎰⎰时,每次选取函数()u x ,不注意必须是同类函数(如选三角函数作为()u x 就一直选三角函数,如选e x 作为()u x 就一直选e x ),结果就出现了恒等式d d u v u v =⎰⎰,即前进一步又倒退一步,致使积不出来.5. 已知()x ϕ'连续,且(0)(1)0ϕϕ==,(0,0)A ,(1,1)B ,计算⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ其中AMB 是以AB 线段为直径的上半圆周.解 如图所示⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ=⎰⎰+-'+--BAAMB BA x x y y x y y d ]1e )([d ]e )(][[ϕϕ=d d [()e ]d [()e 1]d x xABDx y y y x y y ϕϕ'-+-+-⎰⎰⎰ =10π[(()())e (1)]d 4x x x x x ϕϕ'-++-+⎰ =111000π()e d ()e d (1)d 4x x x x x x x x ϕϕ'-++-+⎰⎰⎰ =1100π3()e d e d ()42x xx x x ϕϕ-++-⎰⎰=111000π3()e d e ()|()e d 42x x xx x x x x ϕϕϕ--++-⎰⎰=π342--=π3()42-+. 本题需注意两点:(1)同上题一样,使用格林公式时要注意边界曲线的方向,本题因是负向,故二重积分前必须添上负号;(2)因()x ϕ是抽象函数,不可能直接将11()e d ()e d xx x x x x ϕϕ'+⎰⎰积出来,请不要先急于积分,先用分布积分法将10()e d x x x ϕ'⎰表示为11100e d ()e ()|()e d x x xx x x x ϕϕϕ=-⎰⎰,则两项抽象函数的定积分就抵消了,问题就可得到解决,因此在解题过程中一定要善于思考,从中 发现解题技巧.6.证明22()d ()d x y x x y yx y -+++在右半平面(0)x >内为某一函数(,)u x y 的全微分,并求出一个这样的函数(,)u x y .解 22x y P x y -=+,22x yQ x y +=+,由于222222()P y xy x Q y x y x ∂--∂==∂+∂,所以 22()d ()d x y x x y yx y -+++为某一函数(,)u x y 的全微分.取定点0(1,0)M ,对于右半平面上任一点(,)M x y ,令 (,)u x y =(,)22(1,0)()d ()d x y x y x x y yx y -+++⎰=222100d d 0x y x x y x y x x y -++++⎰⎰ =22221001d d d xy y x yx y y xx y x y ++++⎰⎰⎰ 图=221ln arctan ln()ln 2y x x y x x +++- =221arctanln()2y x y x ++. 7.已知曲线积分⎰-++Ly x x x y d )9(d )1(33,其中L 为圆周222()x a y a -+= (0)a >,取逆时针方向,求a 的值,使得对应曲线积分的值最大.解 显然31P y =+,39Q x x =-在区域:D 222()x a y a -+≤内有一阶连续的偏导数,由格林公式()I a =⎰+Ly Q x P d d =()d d DQ Px y x y ∂∂-∂∂⎰⎰=22(933)d d Dx y x y --⎰⎰ =229d d 3()d d DDx y x y x y -+⎰⎰⎰⎰=2cos 232029π3d d a a r r πθπθ--⎰⎰=244229π34cos d a a ππθθ--⎰=2442924cos d a aππθθ-⎰=2431π9π24422a a -⋅⋅⋅=2499ππ2a a -. 2()18π(1)I a a a '=-,令()0I a '=,解得1a =(依题意设0a >,故将0a =和1a =-舍去),因为1a =是()I a 在(0,)+∞内唯一的驻点,且()18π54πI a ''=-=36π0-<,故()I a 在1a =处取得最大值,因此1a =,即当积分路径为22(1)1x y -+=时,对应曲线积分 的值最大.8.求⎰+---Ly x yx x y 22)1(d )1(d ,其中(1)L 为圆周2220x y y +-=的正向;(2)L 为椭圆22480x y x +-=的正向.解 令22(,)(1)y P x y x y =-+,22(1)(,)(1)x Q x y x y--=-+,则当22(1)0x y -+≠时,有22222(1)[(1)]Q x y Px x y y∂--∂==∂-+∂, 记L 所围成的闭区域为D , (1)L:2220x y y +-=,即22(1)1x y +-=,此时(1,0)D ∉,(如图(a)所示). 由于Q Px y∂∂=∂∂,由格林公式, 0)1(d )1(d 22=+---⎰L y x y x x y . (2)L :22480x y x +-=,即22(1)14y x -+=,此时(1,0)D ∈,以(1,0)为圆心,以充分小的0ε>为半径作圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,θ由0到2π,取逆时针方向(如图(b)所示).记L 和C 所围成的闭区域为1D ,对复连通区域1D 应用格林公式,得 0)1(d )1(d 22=+---⎰-+C L yx yx x y , 从而I =⎰+---Ly x y x x y 22)1(d )1(d =⎰+---C yx yx x y 22)1(d )1(d =2π2sin (sin )cos cos d εθεθεθεθθε--⋅⎰=2π0d θ-⎰=2π-.注意 (2)中由于点(1,0)位于L 所围成的闭区域D 内,需用复连通域上的格林公式,以避开(1,0)点,考虑到被积函数的分母为22(1)x y -+,故取圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,有同学不考虑“洞”,即点(1,0),直接用格林公式,得到0)1(d )1(d 22=+---⎰Lyx yx x y 是错误的. 9.求[esin ()]d (e cos )d xx LI y b x y x y ax y =-++-⎰,其中a 、b 为正常数,L 为从点(2,0)A a 沿曲线22y ax x =-到点(0,0)O 的弧.解 添加从点(0,0)O 沿0y =到点(2,0)A a 的有向直线段1L ,则⎰⎰-++---++-=+11d )cose (d )](sin e [d )cos e (d )](sin e [L x x L L x x yax y x y x b y y ax y x y x b y I 图 (a)图 (b)=20[(ecos )(e cos )]d d d a xxD y a y b x y bx x -----⎰⎰⎰=20()d d d a Db a x y b x -+⎰⎰⎰=22π()(2)22bb a a a -+=23ππ(2)22a b a +-.第四节 第一类曲面积分1.设有一分布着质量的曲面∑,在点(,,)x y z 处它的面密度为(,,)x y z ρ.用曲面积分表示:(1)这曲面∑的面积A =______; (2)这曲面∑的质量M =______;(3)这曲面∑的重心坐标为x =______,y =______,z =______; (4)这曲面∑对于x 轴,y 轴,z 轴及原点的转动惯量x I =__,y I =__,z I =______,0I =______.解 (1)A =d S ∑⎰⎰.(2)M =(,,)d x y z S μ∑⎰⎰.(3)x =(,,)d (,,)d x x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,y =(,,)d (,,)d y x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,z =(,,)d (,,)d z x y z Sx y z Sμμ∑∑⎰⎰⎰⎰.(4)x I =22()(,,)d yz x y z S μ∑+⎰⎰, y I =22()(,,)d x z x y z S μ∑+⎰⎰,z I =22()(,,)d x y x y z S μ∑+⎰⎰, 0I =222()(,,)d x y z x y z S μ∑++⎰⎰. 2.计算4(2)d 3z x y S ∑++⎰⎰,其中∑为平面1234x y z++=在第一卦限中的部分. 解 如图所示,∑:1234x y z ++=,2zx ∂=-∂,43z y ∂=-∂,d d S x y =d x y ,在积分曲面上,被积函数423z x y ++=4()4234x y z++=, 303:202xy y x D x ⎧≤≤-⎪⎨⎪≤≤⎩,从而4(2)d 3z x y S ∑++⎰⎰=614d d xyD x y ⋅⎰⎰ =461d d 3xy D x y ⎰⎰=46133⋅=461. 3.计算⎰⎰∑+S y xd )(22,其中∑是锥面22z x y =+及平面1z =所围成的区域的整个边界曲面. 解 如图所示,1∑:22z x y =+,22zxx y∂=∂+,22z yx y∂=∂+,22d 1()()d d z z S x y x y∂∂=++∂∂=2d d x y ,22:1xy D x y +≤. 2∑:1z =,d d d S x y =,22:1xy D x y +≤,⎰⎰∑+S y x d )(22=122222()d ()d x y S x y S ∑∑+++⎰⎰⎰⎰ =2π12π1220d ρ2ρd ρd ρρd ρθθ+⎰⎰⎰⎰=11330022πρd ρ2πρd ρ+⎰⎰=π(21)2+. 4.计算I =()d xy yz zx S ∑++⎰⎰,其中∑为锥面22z x y =+被柱面222x y ax +=所截成的部分(0)a >.解 因为积分曲面∑关于zOx 坐标面(即0y =平面)对称,xy yz +()y x z =+是关于y 的奇函数,所以 I =()d d y x z S zx S ∑∑++⎰⎰⎰⎰=0d zx S ∑+⎰⎰此外,在∑上,22z x y =+,d 2d d S x y =,且∑在xOy 面上的投影为x图图22:2xy D x y ax +≤,因此I =d zx S ∑⎰⎰=22d x x y S ∑+⎰⎰=222d d xyD x x y x y +⎰⎰=π2cos 32π022d cos d a r r θθθ-⎰⎰=452082cos d aπθθ⎰=4428253a ⋅⋅=464215a . 5.计算d S ∑⎰⎰,其中∑为抛物面222()z x y =-+ 在xOy 面上方的部分.解 如图所示,222()z x y =-+,2zx x∂=-∂,2z y y ∂=-∂,22d 1()()d d z z S x y x y∂∂=++∂∂=22144d d x y x y ++, 22:2xy D x y +≤,d S ∑⎰⎰=22144d d xyD x y x y ++⎰⎰=2π220d 14ρρd ρθ+⎰⎰=12222012π(14ρ)d(14ρ)8++⋅⎰=2223π2(14ρ)|43⋅+=13π3. 6.计算()d x y z S ∑++⎰⎰,其中∑为球面2222x y z a ++=上(0)z h h a ≥<<的部分. 解 ∑在xOy 面上的投影为圆域:2222:xy D x y a h +≤-, d S =222222221()()d d x y x y a x ya x y--++----=222d d x y a x y --,故()d x y z S ∑++⎰⎰=222222()d d xyD x y a x y x y a x y++--⋅--⎰⎰由积分区域的对称性可得:222d d xyD x x y a x y⋅--⎰⎰=0,222d d xyD y x y a x y⋅--⎰⎰=0,图又积分区域xy D 的面积为22π()a h -,故()d x y z S ∑++⎰⎰=d d xyD a x y ⎰⎰=22π()a ah -.7.求柱面220x y ax +-=在球面2222x y z a ++=内部的部分的表面积(0)a >. 解 由对称性,所求面积A 为其位于第一卦限部分面积的4倍,即4d A S ∑=⎰⎰,其中曲面∑为y =求得面积元素d d S x z =d x z ,由22z x y ax⎧⎪=⎨+=⎪⎩,消去y ,得z =由此得∑在zOx 坐标面上的投影为::0xz D z ≤≤0x a ≤≤,因此,曲面∑的面积 4d A S ∑=⎰⎰=4d xzD x z ⎰⎰=02d a ax ⎰⎰=02a ax ⎰=02a ax ⎰=24a . 8.设S 为椭球面222122x y z ++=的上半部分,点(,,)P x y z S ∈,π为S 在点P 处的切平面,(,,)f x y z 为点(0,0,0)O 到平面π的距离,求d (,,)SzS f x y z ⎰⎰解 设(,,)X Y Z 为π上任意一点,则π的方程为122xX yY zZ ++=,从而知 (,,)f x y z =12222()44x y z -++,由z =有z x ∂∂,z y∂∂d Sd x yd x y ,从而d (,,)Sz S f x y z ⎰⎰=221(4)d d 4Dx y x y --⎰⎰=2π201d ρ)ρd ρ4θ-⎰⎰=3π2.第五节 第二类曲面积分1.当∑是xOy 面内的一个闭区域D 时,(,,)d f x y z S ∑⎰⎰与二重积分的关系为(1)(,,)d f x y z S ∑⎰⎰=____d d D x y ⎰⎰,(2)(,,)d R x y z S ∑⎰⎰=____d d Dx y ⎰⎰.解 (1)(,,0)f x y , (2)(,,0)R x y ±.注意 因第一类曲面积分与所给曲面的侧无关,所以(1)中应填(,,0)f x y ;而第二类曲面积分与曲面的侧有关,所以(2)中应填(,,0)R x y ±,有个别同学常疏忽这一点,只填(,,0)R x y ,这是不对的.2.计算222d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为半球面z =. 解 记1∑:x =取前侧,2∑:x =,1∑与2∑在yoz 面的投影区域相同,记为yz D .2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰ =222222()d d ()d d yzyzD D ay z y z a y z y z -----⎰⎰⎰⎰=0.同理2d d y z x ∑⎰⎰=0, 而 2d d z x y ∑⎰⎰=222222()d d x y a a x y x y +≤--⎰⎰=2220d (ρ)ρd ρaa πθ-⎰⎰=4π2a . 从而I =222d d d d d d x y z y z x z x y ∑++⎰⎰=2d d x y z ∑⎰⎰+2d d y z x ∑⎰⎰+2d d z x y ∑⎰⎰=0+0+4π2a =4π2a .注意 常见的错误是:2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰=2222()d d yzD a y z y z --⎰⎰ 或2d d y z x ∑⎰⎰=2222()d d zxD ax z z x --⎰⎰.产生错误的原因是忽视了将第二类曲面积分化为二重积分时,应根据积分曲面的侧选择二重积分前的正、负号.(,,)d d f x y z x y ∑⎰⎰=[,,(,)]d d xyD f x y z x y x y ±⎰⎰,(,,)d d g x y z y z ∑⎰⎰=[(,),,]d d yzD g x y z y z y z ±⎰⎰,(,,)d d R x y z z x ∑⎰⎰=[,(,),]d d zxD R x y z x z z x ±⎰⎰.将第二类曲面积分化为二重积分时,究竟什么时候二重积分前面写正号,什么时候写负号,这与所给曲面的侧有关.切记:上侧取正,下侧取负; 前侧取正,后侧取负; 右侧取正,左侧取负;3.计算⎰⎰∑y x xz d d ,其中∑是平面0x =,0y =,0z =,1x y z ++=所围成的空间区域的整个边界曲面的外侧.解 如图所示,1234∑=∑+∑+∑+∑,其中1234,,,∑∑∑∑各自对应于四面体的一个表面,可表示为1∑:0z = 下侧; 2∑:0y = 左侧;3∑:0x = 后侧; 4∑:1x y z ++= 上侧.由于1∑在0z =平面上,故在1∑上的曲面积分为0; 同理,在2∑,3∑上的曲面积分也都为0,所以,所求积分⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰由4∑得方程得1z x y =--,4∑在xoy 面上的投影域为:01xy D y x ≤≤-,01x ≤≤, 于是⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰=4(1)d d x x y x y ∑--⎰⎰=(1)d d xyD x x y x y --⎰⎰=110d (1)d x x x x y y ---⎰⎰=124. 4.计算d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为球面2222x y z R ++=的外侧. 解 由题设,∑的单位法向量 n =(cos ,cos ,cos )αβγ,2,2)x y z =1(,,)x y z R. 由两类曲面积分的关系,可得d d d d d d x y z y z x z x y ∑++⎰⎰=(cos cos cos )d x y z S αβγ∑++⎰⎰=2221()d x y z S R ∑++⎰⎰=21d R S R ∑⎰⎰ =d RS ∑⎰⎰几何意义24πR R⋅=34πR .5.计算I =y x z h x z y g z y x f d d )(d d )(d )d (++⎰⎰∑,其中,,f g h 为连续函数,∑为平行六面体:0,0,0x a y b z c Ω≤≤≤≤≤≤表面的外侧. 解⎰⎰∑y x z h d d )(=()d d (0)d d xyxyD D h c x y h x y -⎰⎰⎰⎰=[()(0)]ab h c h -,⎰⎰∑x z y g d d )(=()d d (0)d d xzxzD D g b z x g z x -⎰⎰⎰⎰=[()(0)]ac g b g -,⎰⎰∑z y x f d d )(=()d d (0)d d yzyzD D f a y z f y z -⎰⎰⎰⎰=[()(0)]bc f a f -,从而 I =()(0)()(0)()(0)[]f a f g b g h c h abc a b c---++.注意 本题易犯的错误是利用高斯公式来解,题目中仅告诉我们,,,f g h 为连续函数,又如何对,,f g h 求导呢6.计算[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰,其中(,,)f x y z 为连续函数,∑是平面1x y z -+=在第四卦限部分的上侧.解 平面1x y z -+=的法线向量为n ={1,1,1}-,方向余弦为cos α=,cos β=cos γ=, 则 I =[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰=[()cos (2)cos ()cos ]d f x f y f z S αβγ∑+++++⎰⎰=[((2)((f x f y f z S ∑+++++⎰⎰()d x y z S ∑-+=1d 3S ∑⎰⎰d xy x y ⎰⎰d xy x y ⎰⎰=d d xyD x y ⎰⎰=12.第六节 高斯公式 通量与散度1.设计y x xy z x z zx y z y yz x d d )(d d )(d )d (222-+-+-⎰⎰∑,其中∑为平面 0x =,0,0,,,y z x a y a z a =====所围成的立体的表面的外侧. 解 由高斯公式, I =y x xy z x z zx y z y yz xd d )(d d )(d )d (222-+-+-⎰⎰∑=(222)d x y z v Ω++⎰⎰⎰=2()d x y z v Ω++⎰⎰⎰设该正方体的形心坐标为(,,)x y z ,则2ax y z ===, 而 d d d x v x vx vvΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,d y vy vΩ=⎰⎰⎰,d z vz vΩ=⎰⎰⎰,所以d ,x v xv Ω=⎰⎰⎰ d ,y v yv Ω=⎰⎰⎰ d ,z v zv Ω=⎰⎰⎰.从而 I =2()x y z v ++=31112()222a a a a ++=43a . 本题巧妙地利用了重心坐标公式,将利用高斯公式后得到的三重积分()d x y z vΩ++⎰⎰⎰的计算转化为计算()x y z v ++,从而使问题得到解决.2.计算24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰,其中∑是球面2222x y z a ++=外侧的上半部分(0)a >.解 补充平面2221:0()z x y a ∑=+≤取下侧,I =y x yz x z y z y xz d d 2d d d d 4)(211+--⎰⎰⎰⎰∑+∑∑=(422)d 0z y y v Ω-+-⎰⎰⎰=4d z v Ω⎰⎰⎰=2π04d ρd ρd az θ⎰⎰⎰=22ρρ8πρd ρ2aa -⋅⎰=4πa . 注意 易犯的错误是 (1)I =24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰=(422)d z y y v Ω-+⎰⎰⎰=4zdv Ω⎰⎰⎰=…产生错误的原因是,没有注意到∑仅是球面的上半部分,∑并非封闭曲面,不能直接用高斯公式.尽管本题中沿曲面1∑的积分:124d d d d 2d d 0xz y z y z x yz x y ∑-+=⎰⎰,致使题目答案未受任何影响,但对不封闭的曲面直接用高斯公式,显然是不对的.(2)有同学在补充平面2221:0()z x y a ∑=+≤时,不写取什么侧,这也不妥.3.计算y x z x z y x f x z y )y x f(y d d d d )(1d d 1++⎰⎰∑,其中()f u 具有一阶连续导数,∑为柱面222()()()2ax a y a -+-=及平面0,1(0)z z a ==>所围成立体的表面外侧.解 利用高斯公式,有I =y x z x z yxf x z y )y x f(y d d d d )(1d d 1++⎰⎰∑=2211[()()1]d x xf f v y y y y Ω''-+⎰⎰⎰=d v Ω⎰⎰⎰ =2π()12a ⋅⋅=2π4a . 4.计算y x z x z y z y x d d d d d d 333++⎰⎰∑,其中∑为球面2222x y z a ++=的内侧.解y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d xy z v Ω-++⎰⎰⎰=2ππ403d sin d ρd ρaθϕϕ-⎰⎰⎰=512π5a -. 注意 易犯的错误是y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d x y z v Ω++⎰⎰⎰ =23d a v Ω⎰⎰⎰=2343π3a a ⋅=54πa . 这里有两个错误:(1) 不注意高斯公式使用的条件:∑应是空间闭区域Ω的整个边界曲面的外侧. 本题所 给的闭曲面是球面的内侧. 因此在将闭曲面上的曲面积分y x z x z y z y x d d d d d d 333++⎰⎰∑化成三重积分2223()xy z dv Ω++⎰⎰⎰时,前面必须写上负号.(2) 将曲面积分与三重积分的计算法混为一谈. 计算三重积分222()d x y z v Ω++⎰⎰⎰时, 因为Ω为球体:2222x y z a ++≤,因此不能将三重积分中的被积函数222x y z ++用2a 代入,这种做法是常犯的错误. 只有计算曲面积分时,才能将曲面方程代入被积函数.5.计算322d d 2d d 3d d I x y z xz z x y z x y ∑=++⎰⎰,其中积分曲面∑为抛物面 z =22(01)x y z +≤≤的上侧.解 令221:1(1)z x y ∑=+≤,取下侧,则1∑+∑构成封闭曲面,取内侧. 于是y x y x z xz z y x d zd 3d d 2d d 2231++⎰⎰∑+∑=()d P Q Rv x y zΩ∂∂∂-++∂∂∂⎰⎰⎰ =223()d d d xy x y z Ω-+⎰⎰⎰=221223d d ()d xyx yD x y x y z +-+⎰⎰⎰=22π112003d d d r r r r z θ-⎰⎰⎰=13206π(1)d r r r --⎰=π2-.由于1∑在平面1z =上,1∑在,zOx yOz 坐标面上的投影为直线段,故d d z x =d d y z =0,1∑在xOy 坐标面上的投影域为22:1xy D x y +≤,于是322d d 2d d 3d d x y z xz z x y z x y ∑++⎰⎰=123d d y x y ∑⎰⎰=23d d xyD y x y -⎰⎰=212203d ρρsin d ρπθθ-⋅⎰⎰=212303sin d ρd ρπθθ-⎰⎰=3π4-. 所以11322322d d 2d d 3d d d d 2d d 3d d I x y z xz z x y z x y x y z xz z x y z x y ∑+∑∑=++-++⎰⎰⎰⎰=π3π()24---=π4. 6.计算⎰⎰∑++S z y x d )cos cos cos (222γβα,其中∑是由222x y z +=及z h = (0)h >所围成的闭曲面的外侧,cos ,cos ,cos αβγ是此曲面的外法线的方向余弦.解 ∑在xOy 平面上的投影区域为:222x y h +≤. I =⎰⎰∑++S z y x d )cos cos cos (222γβα =⎰⎰∑++y x z x z y z y x d d d d d d 222=(222)d x y z v Ω++⎰⎰⎰=2d d )d xyh D x y x y z z ++⎰⎰=2()d d 2d d d xyxyh h D D x y x y z x y z ++⎰⎰⎰⎰=222()2()(d 2d d 2xy xyD D h x y x y h x y x y -+++⎰⎰⎰⎰=2π2π22202(cos sin )d (ρ)ρd ρd (ρ)ρd ρh hh h θθθθ+-+-⎰⎰⎰⎰=23002π(ρρ)d ρhh +-⎰=442π[]24h h -=4π2h .7.已知向量场22xz x y y z =i +j +k A ,求A 的散度以及A 穿过∑流向∑指定侧的通量,其中∑为2222,1z x y x y =++=以及三个坐标面在第一卦限所围立体全表面的外侧. 解 令22,,P xz Q x y R y z ===,则A 的散度 22div P Q RA z x y x y z∂∂∂=++=++∂∂∂. 通量⎰⎰∑⋅=ΦS d n A =div d v Ω⎰⎰⎰A =22()d z x y v Ω++⎰⎰⎰=22220d d ()d xyx y D x y z x y z +++⎰⎰⎰22(:1,0,0)xy D x y x y +≤≥≥=2223()d d 2xyD x y x y +⎰⎰=142003d d 2r r r πθ⋅⎰⎰=π31226⋅⋅=π8.第七节 斯托克斯公式 环量与旋度1.利用斯托克斯公式计算⎰Γ++z x y z x y d d d ,这里Γ为曲线2222x y z a x y z ⎧++=⎨++=⎩ 从x 轴正向看去,Γ为逆时针方向.解 平面0x y z ++=的上侧法线的方向余弦为cos cos cos αβγ===设∑为平面0x y z ++=上由圆周Γ所围成的面域,取上侧,相应的单位法向量. 于是⎰Γ++z x y z x y d d d =cos cos cos d S x y z yzxαβγ∑∂∂∂∂∂∂⎰⎰=(cos cos cos )d S αβγ∑-++⎰⎰=d S ∑=2a .2.求向量场(sin )(-cos )z y z x y +A =i -j 的旋度.解 rot sin cos 0x y z z y z x y∂∂∂∂∂∂+-+ij k A ==+i j .3.求平面向量场22()2x y xy -A =i +j 沿闭曲线L 的环流量,其中L 是0x =,,0,x a y y b ===所围成的正向回路. 解 环向量⎰+-Ly xy x y x d 2d )(22=4d d xyD y x y ⎰⎰=004d d a bx y y ⎰⎰=22ab .4.利用斯托克斯公式计算⎰Lz xyz d ,其中Γ是用平面y z =截球面22x y +21z +=所得的截痕,若逆z 轴正向看去,取逆时针的方向. 解 由斯托克斯公式⎰Lz xyz d =d d d d d d 00y z z x x yx y z xyz∂∂∂∂∂∂=d d d d xz y z yz z x ∑-⎰⎰, 其中∑是平面y z =上以圆Γ为边界的平面,其侧与Γ的正向符合右手规则.显然,∑在yoz 坐标面上的投影为一线段,所以d d 0xz y z ∑=⎰⎰.∑在xoz 坐标面上的投影为一椭圆域22:21D x z +≤,且∑的法向量与y 轴成钝角, 从而2d d d d Dyz z x z z x ∑-=⎰⎰⎰⎰=2d z z x ⎰⎰=π22204sin cos d zt t t ⎰π2420(sin sin )d t t t -1π31π2()22422⋅-⋅⋅π.第十章 曲线积分与曲面积分(总习题)1.填空.(1)设平面曲线L为下半圆周y =则曲线积分22()d Lx y s +⎰的值是π;(2)向量场22(,,)ln(1)zx y z xy ye x z =+++u i j k 在点(1,1,0)P 处的散度div 2=u . (3)设L 为取正向的圆周229x y +=,则曲线积分⎰-+-Ly x x x y xy d )4(d )22(2的值是18π-.解 (1)22()d L x y s +⎰=d L s ⎰=12π12⋅⋅=π.(2)div u =P Q R x y z ∂∂∂++∂∂∂=222e 1Z z y x z ++⋅+, 从而 2(1,1,0)22div |e |21zP xzy z =++=+u . (3)⎰-+-Ly x x x y xy d )4(d )22(2=(2422)d d D x x x y --+⎰⎰=2d d Dx y -⎰⎰=22π3-⋅⋅=18π-. 2.计算⎰++ABCDA y x yx d d ,ABCDA 是以点(1,0),(0,1),(1,0),(0,1)A B C D --位顶点的正方形正向边界. 解 法1 ⎰⎰+=++=ABCDA ABCDA y x y x yx I d d d d (00)d d 0Dx y =-=⎰⎰.此法是先将正方形的边界1x y +=代入被积函数后,再用格林公式求解. 法2 因 :1,AB x y += :1,BC y x -= :1,CD x y --=:1DA x y -=. 从而d d ()ABBCCDDAx yI x y+=++++⎰⎰⎰⎰=()d d ABBCCDDAx y ++++⎰⎰⎰⎰=01111(11)d (11)d (11)d (11)d x x x x ---+++-++⎰⎰⎰⎰=112d 2d x x -+⎰⎰=0.法2是分段分别计算,比较一下还是法1简便.但切记不可直接对⎰++ABCDA y x yx d d 用格林公式.请同学们动脑筋想一下,这是为什么3.计算⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222,B A 为螺线cos x ϕ=,y =sin ϕ,z ϕ=由点(1,0,0)到点(1,0,2π)的弧段. 解 ⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222=22220[(cos sin )(sin )(sin cos )cos (sin cos )]d πϕϕϕϕϕϕϕϕϕϕϕϕ--+-+-⎰=22222 22200000cos dcos cos2d sin dsin d sin dsin πππππϕϕϕϕϕϕϕϕϕϕϕ-++-⎰⎰⎰⎰⎰=33322π2π2π2π0000 cos sin sin|0||| 3332ϕϕϕϕ-++-=31000(2π)03-++-=38π3.4.设BA))为连接点(1,2)A与(2,3)B的某曲线弧,又设BA))与直线段AB所包围图形的面积等于k,计算曲线积分yxxxxyBAd)1(d2⎰-+)).(直线段AB与曲线弧BA))除点,A B外无其它交点,曲线弧BA))不与y轴相交,且自身不相交).解2(,)yP x yx=,1(,)Q x y xx=-,则221111Q Px y x x∂∂-=+-=∂∂,直线段:1BA y x=+,x由2到1,记BA))与BA所围成的闭区域为D,由于要用到格林公式,所以要分两种情况讨论:BA))取逆时针方向(如图(a))(1)yxxxxyIBAd)1(d2⎰-+=))=yxxxxyBAAB BAd)1(d)(2-+-⎰⎰+=21d d d()dBADyx y x x yx x-+-⎰⎰⎰=12211()dxk x xx x+-+-⎰=1221()dk x xx-+⎰=2k+.(2)BA))取顺时针方向(如图(b)所示).图y x x x x y I BA d )1(d 2⎰-+=))=y x x x x y BA AB BA d )1(d )(2-+-⎰⎰+ =21d d d ()d BA Dy x y x x y x x--+-⎰⎰⎰=1221()d k x x x --+⎰=2k -+.注意 常见错误是不讨论B A ))是取逆时针方向,还是取顺时针方向,就直接利用了格林公式,这是不对的.5.计算曲线积分⎰++-L y x y x x y 22d d .(1)L 是圆周22(1)(1)1x y -+-=的正向; (2)L 是曲线1x y +=的正向.解 22(,)y P x y x y -=+, 22(,)x Q x y x y=+,当220x y +≠时, 22222()P y x Qy x y x∂-∂==∂+∂, 记曲线L 所围成的闭区域为D .(1) 如图(a )所示,此时(0,0),(,),(,)D P x y Q x y ∉在L 所围成的闭区域D 内有一阶连续偏导数,由格林公式: ⎰⎰⎰==++-=L Dy x y x yx x y I 0d d 0d d 22. c(2)如图(b )所示,此时(0,0),(,),(,)D P x y Q x y ∈在L 所围成的闭区域D 上有不连续点(0,0),以(0,0)为圆心,以充分小0ε>的为半径作圆周:cos ,sin ,02πC x y εθεθθ==≤≤,图C 取逆时针方向,记L 和C 所围成的闭区域为1D ,对复连通域1D 应用格林公式,有0d d 22=++-⎰-+C L y x yx x y从而⎰++-L y x y x x y 22d d =⎰++-C y x y x x y 22d d=2π2sin (sin )cos cos d εθεθεθεθθε--+⋅⎰=20d πθ⎰=2π.6.计算曲线积分⎰+-Cyx xy y x 224d d ,其中C 是(1,0)以为中心,(1)R R ≠为半径的圆周,逆时针方向.解 22(,)4y P x y x y -=+, 22(,)4xQ x y x y=+, 当2240x y +≠时,22224P y x Qy x y x∂-∂==∂+∂,C 所围成的闭区域记为D ,(0,0)究竟在不在以为(1,0)中心,R 为半径的圆内,要分两种情况讨论: (1)1R <时,(0,0)D ∉(图10-14(a)),则⎰=+-Cyx xy y x 04d d 22; (2)1R >时,(0,0)D ∈,作足够小的椭圆cos :2sin x L y εθεθ=⎧⎨=⎩,02πθ≤≤,L 取逆时针方向(图(b))于是由格林公式,有(a )1R <(b )1R >图04d d 22=+-⎰-+L C y x xy y x ,从而⎰+-Cy x x y y x 224d d =⎰+-L y x xy y x 224d d=2π22220cos 2cos )2sin (sin )d 4cos 4sin εθεθεθεθθεθεθ--+⎰=2π01d 2θ⎰=π. 注意 易犯错误是不分1,1R R <>两种情况讨论,未注意闭曲线L 所围成的闭区域D 内有无“洞”,即D 是否为“单连通域”7.设曲线积分2d ()d Lxy x y x y ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,计算(1,1)2(0,0)d ()d xy x y x y ϕ+⎰的值.解 2(,)P x y xy =,(,)()Q x y y x ϕ=,因曲线积分与路径无关,P Qy x∂∂=∂∂, 22(),()2,()xy y x x x x x C ϕϕϕ''===+, 由(0)0ϕ=,则0C =,从而2()x x ϕ=. (1,1)2(0,0)d ()d I xy x y x y ϕ=+⎰=(1,1)22(0,0)d d xy x x y y +⎰=10d y y ⎰=12. 8.质点P 沿着以AB 为直径的圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 的作用,F 的大小等于点P 到原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于2π,求变力F 对质点P 所做的功. 解 圆弧AB 的方程为22(2)(3)2x y -+-=,其参数方程为23x ty t⎧=⎪⎨=+⎪⎩, 3π(π)44t -≤≤y x =-+i j F ,所以434()d d )sin )cos ]d LW y x x y t t t t t ππ-=-+=⎰⎰2(π1)=-.9.计算⎰⎰∑+S y xd )(22,其中∑为球面2222x y z a ++=.解 :∑2222x y z a ++=对,,x y z 具有轮换对称性,所以⎰⎰∑S x d 2=⎰⎰∑S yd 2=⎰⎰∑S z d 2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xdy − ydx xdy − ydx ∫ x+ y =∫ 1 L L
y -1
O
格林公式
= 2 ∫∫ dxdy = 4.
D
1
x
xd y − yd x (2) I = ∫ 2 2 x + 4 y L −y x -1 , Q= 2 解 P= 2 2 2 x + 4y x + 4y
y
O
1 x
1 ⋅ ( x2 + 4 y2 ) − y ⋅ 8 y Py = − ( x 2 + 4 y 2 )2 4 y2 − x2 1 ⋅ ( x2 + 4 y2 ) − x ⋅ 2 x = 2 ≡ Qx = 2 2 (x + 4y ) ( x 2 + 4 y 2 )2 ( x , y ) ≠ (0,0) L内有奇点: (0,0)
通量
Φ = ∫∫ Pdydz + Qdzdx + Rdxdy
Σ
r ∂P ∂ Q ∂R + + 散度 divA = ∂x ∂ y ∂ z
环流量 Γ = ∫ Pdx + Qdy + Rdz
Γ
r i ∂ ∂x P
r j ∂ ∂y Q
r k ∂ ∂z R
旋度
r ∂R ∂Q r ∂P ∂R r ∂Q ∂P r rotA = ( − )i + ( − ) j + ( − )k ∂y ∂z ∂z ∂x ∂x ∂y

OP = { x , y} r F = { − y, x }
r r r0 F = FF
o
A
m
P ( x, y)
x
功 W=
⌒ AmB
∫ − ydx + xdy
AB : y = x + 1 x : 1 a 3
=(
⌒ + BA AmB


BA

)( − ydx + xdy )
∂Q ∂P = ∫∫ ( − )dxdy − ( ∫ − ydx + xdy ) ∂x ∂y D BA = ∫∫ [1 − ( −1)]dxdy + ( ∫ − ydx + xdy )
4°积分与路径无关 要求:熟悉四个等价命题. ① 特殊路径法 ② 原函数法 5°两类曲线的关系
3. ∫ P d x + Q d y + R d z 的计算, L为空间有向曲线
L
方法: 1°性质 2°直接法 (化为定积分)
3°原函数法 4°斯托克斯公式
例2 计算 ∫ xdy − 2 ydx,其中 L为正向圆周
L1
( L1 : L 在第一象限部分 )
y
θ= π
4
= 4 ∫ y ds= 4 4 ∫
L1
π
0
a2 ρ (θ ) sin θ ⋅ dθ ρ (θ )
o
2 = 4 a (1 − ) 2
2
x
2. ∫ P d x + Q d y 的计算, L为平面有向曲线
L
方法: 1°性质 2°直接法(化为定积分) 下限 ↔ L的起点 (下限 不一定小于上限!) (上 ) (终 ) 无奇点 恒等变形 ① L 封闭 有奇点 挖洞 3°格林公式 补线法(所围闭区域 ② L 不封闭: 不含奇点)
L
y
x 2 + y 2 = 2在第一象限部分 .
B
O
解 (方法1) 直接法
⎧ x = 2 cos t π L的参数方程: ⎨ t a : 0 ⎩ y = 2 sin t 2
π
L
0
A 2 x
2 ( 2 cos 2 t + 4 sin 2 t ) d t = xdy − 2 ydx ∫ ∫
1 π 1 π 3π = 2⋅ ⋅ + 4⋅ ⋅ = . 2 2 2 2 2
λ→0
i =1 i i i
联 系 计 算
Pdydz + Qdzdx + Rdxdy = ∫∫(P cosα + Qcosβ + Rcosγ )dS ∫∫ Σ
Σ
f ( x, y, z)ds ∫∫ Σ
2 = ∫∫ f [ x, y, z( x, y)] 1 + zx + z2 y dxdy Dxy
R( x, y, z)dxdy ∫∫ Σ
( 2) 求 ϕ ( y ).
分析 被积函数含有抽象函数 ϕ(x),及奇点: (0,0)
在 x > 0内,不能断定: Py = Q x , 故不能利用四个 等价命题,直接证明 (1).
M
O
y A
B
C N x
证(1) 设C 是 x > 0 内的任意 一条分段光滑简单闭曲线, 不妨设为正向.
∀ 点M , N ∈ C ,
∂P ∂Q (4) 在D内, = ∂y ∂x
曲面积分
对面积的曲面积分
n Σ
对坐标的曲面积分
n
i
定 ∫∫ f ( x, y, z)ds = lim∑ f (ξ ,η ,ζ )Δs ∫∫ R( x, y, z)dxdy= lim∑R(ξi ,ηi ,ζ i )(ΔSi )xy λ→0 i =1 Σ 义
条 件
在单连通开区域 D 上 P ( x , y ), Q( x , y ) 具有 连续的一阶偏导数,则以下四个命题成立.
( 1 ) 在 D 内 Pdx + Qdy 与路径无关 ∫ 等 L
价 ( 2) Pdx + Qdy = 0,闭曲线 C ⊂ D ∫ C 命 题 ( 3) 在D内存在 U ( x , y )使du = Pdx + Qdy
D AB
= 2 ∫∫ dxdy + ∫ [ − ( x + 1) + x ]dx
D 1
3
( 2 )2 π = 2⋅ − 2 = 2(π − 1) 2
例4 设 L : x + y = 1,逆时针方向,求
x d y − yd x (1) ∫ x+ y L
解 L所围区域为 D, 则D的边长为 2 , 面积为2.
= ± ∫∫ R[ x, y, z( x, y)]dxdy
Dxy
一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)
各种积分之间的联系
曲线积分 计算
Gr een 公式
定积分
Stokes公式 曲面积分
计算 重积分
计算 Guass公式
r 场论初步 A = { P , Q , R} ∂u r ∂u r ∂u r j+ k 梯度 gradu = i + ∂z ∂x ∂y
第十章 曲线积分 与曲面积分
一、主要内容
对弧长的 对弧长的 曲线积分 曲线积分 对面积的 对面积的 曲面积分 曲面积分
曲线 线积 积分 分 曲
曲面 面积 积分 分 曲
定 义 定 义
对坐标的 对坐标的 曲线积分 曲线积分
联系
定 义 定 义
计 算 计 算
对坐标的 对坐标的 曲面积分 曲面积分
联系
计 算 计 算
例6 已知曲线积分

ϕ ( y ) d x + 2 xy d y
2 x2 + y4
= A (常数 ),
其中ϕ ( y )具有连续导数, L是围绕原点的分段
L
光滑简单闭曲线.
(1) 证明:对右半平面 x > 0内的任意分段光滑
简单闭曲线 C ,有 ϕ ( y ) d x + 2 xy d y ∫ 2 x 2 + y4 = 0 L
=
二、典型例题
一、曲线积分
1. ∫ f ( x , y, z ) d s的计算
L
方法: 1°性质 2°对称性的利用
① 轴(或面)对称性 (被积函数有相应 的奇偶性) ② 轮换对称性
3°直接法(化为定积分) 下限 < 上限!
例1 (对称性的利用) x2 y2 (1) 设 L是椭圆 + = 1,其周长为 a , 求 4 3
“挖洞”,作 l : x 2 + 4 y 2 = ε 2 (0 < ε < 1), 顺时针
y L+l 为复合闭路,正向
xd y − yd x ∴I = ∫ 2 2 x + 4 y L
-1
O

D
1 x
xd y − yd x xd y − yd x = ∫ −∫ 2 2 2 2 + x 4 y x + 4 y L+ l l = ∫∫ (Q x − Py ) d x d y − ∫
Γ
( 2πa = ∫ ds , 球面大圆周长 )
(3) 计算
∫ y ds , 其中L为双纽线:
L
( x 2 + y 2 )2 = a 2 ( x 2 − y 2 ) (常数 a > 0).
yθ= π4 Nhomakorabea解 L 的极坐标方程为: ρ 2 = a 2 cos 2θ 1o 求 ds
o
x
2 sin 2θ a 2 ρ (θ ) ρ ′(θ ) = −2a 2 sin 2θ , ρ ′(θ ) = − ρ (θ ) ds = ρ 2 (θ ) + ρ ′ 2 (θ ) d θ
0 2 2 0
= ∫∫ 3dxdy − [ ∫ 0dy + ∫
D
3π π ( 2 )2 ( −2 ⋅ 0)dx ] = 3 ⋅ . 2 4
例3 设质点 P 沿以线段 AB为直径的下半圆
周 AmB , 从点 A (1, 2 )运动到点 B ( 3 ,4 )的 r r 过程中 , 受到变力 F 的作用 , F 的大小等 于点 P ( x , y )到原点的距离 , 方向垂直于 OP,且与 y 轴正向的夹角成锐角 , 求变 y v r 力 F 对质点 P 所作的功 . F B
相关文档
最新文档