微积分建立的时代背景和历史意义

合集下载

微积分的创立、发展及意义【最新】

微积分的创立、发展及意义【最新】

微积分的创立、发展及意义摘要该文主要论述了微积分的创立过程、微积分的发展历程,以及微积分的重要意义。

在微积分的创立过程中,主要说明了创立背景、微积分的两位创始人独立创立微积分的过程以及微积分的基本内容及基本方法;其次,以欧拉为主要代表介绍了微积分的发展历程;最后论述了微积分对科学、社会、工业、航空等方面的影响及其深远意义。

关键词:微积分数学史创立发展意义论文1、微积分的创立1.1 微积分的创立背景[1]克莱因(M.Klein)认为:微积分的创立,首先是处于17世纪主要两科学问题,即有四种主要类型的问题有待用微积分去解决。

第一类:已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表示为时间的函数的公式,求速度和距离。

第二类:问题是求曲线的切线,这是一个几何问题,但对科学的应用有巨大的影响。

第三类:问题是求函数的极大极小值。

第四类:问题包括求曲线的长度,曲线围成的面积等等。

首先对微积分的创造作出贡献的是开普勒和伽利略。

用无数个无穷小之和计算面积和体积是开普勒的基本思想,而这一思想的精华是从阿基米德的著作中吸收的,伽利略则奠定了实验和理论协调的近代科学精神,这对于微积分的形成是至关重要的。

对于微积分的孕育有重要影响的是1635 年卡瓦列利(B.Cavalieri意大利)的《不可分连续量的几何学》的发表,他对前人的微积分结果作了初步系统的综合,并创立了一种简易形式的积分法——不可分量法,使卡瓦列利的不可分量更接近于定积分计算的,是法国的帕斯卡(B.Pascal)和英国的瓦里士(J.Wallis)。

瓦里士是牛顿、莱布尼茨之前把分析方法引入微积分的工作做得最多的人。

对微积分的孕育具有重要影响的人物是法国的费马(Fermat),最迟在1636年他已达到求积分方法上的算术化程度,微积分的另一个重要课题——求极值的方法也是费马创造的。

在17世纪,至少有10多位大数学家探索过微积分,而牛顿(Newton)、莱布尼茨(Laeibniz),则处于当时的顶峰。

微积分产生的背景

微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。

微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。

1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。

1661年牛顿进入剑桥大学三一学院,受教于巴罗。

笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。

牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。

1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。

在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。

这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。

正是在这种意义下,牛顿创立了微积分。

牛顿对于发表自己的科学著作持非常谨慎的态度。

1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。

而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。

1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。

1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。

这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。

微积分的历史背景

微积分的历史背景
微分思想也在古代略见端倪,它是和求曲线的切 线问题相联系的,这是数学家们历来所关注的另一类 问题。
7
光学研究中,由于透镜的设计需要运用折射定 律、反射定律,就涉及切线、法线问题。这方面的 研究吸引了笛卡儿、惠更斯、牛顿、莱布尼兹等人。 而在运动学研究中,要确定运动物体在某一点的运 动方向,就是求曲线上某一点的切线方向,这就需 要求作切线。
5
如:古希腊的阿基米德(公元前287―212)用 边数越来越多的正多边形去逼近圆的面积,称为 “穷竭法”。
中国魏晋时代的刘徽在其《九章算术注》(公 元263年)中,对于计算圆面积提出了著名的“割 圆术”,他解释说:“割之弥细,所失弥少。割之 又割,以至于不可割,则与圆周合体,而无所失 矣。”这些都是原始的积分思想。
阳时的最远和最近距离等。)
求曲线长;曲线围成的面积;曲面围成的 体积;物体的重心;一个体积相当大的物 体(如行星)作用于另一物体上的引力等。
11
17世纪前期微积分的工作
费尔马 (Fermat)是在牛顿和莱布尼兹之前,在 微分和积分两个方面作出贡献最多的一个数学家。
费尔马《求极大值与极小值的方法》 (写于 1636年以前)在求曲线的切线问题和函数的极大、 极小值问题上做出了重要贡献。用现代语言来说, 他都是先取增量,而后让增量趋于0。这正是微分 学的实质之所在。
0
dx
(2)如果z dy ,则
x
zdx y.
dx
0
巴罗的确已经走到了微积分基本定理的大门口。
但在巴罗的书中,这两个定理相隔二十余个别的定理,
并且没有把它们对照起来,也几乎没有使用过它们。
这说明,巴罗并没有从一般概念意义下理解
15
他们。但是我们知道,只有一般概念才能阐明问题 的本质,才能开拓广阔的应用道路。

微积分的起源与发展

微积分的起源与发展

微积分的起源与发展主要内容:一、微积分为什么会产生二、中国古代数学对微积分创立的贡献三、对微积分理论有重要影响的重要科学家四、微积分的现代发展一、微积分为什么会产生微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期.公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代以有比较清楚的论述.比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭"。

三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。

”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。

归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。

困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化.例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。

但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的.第二类问题是求曲线的切线的问题.这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。

困难在于:曲线的“切线"的定义本身就是一个没有解决的问题。

微积分的起源与发展

微积分的起源与发展

微积分的起源与发展主要内容:一、微积分为什么会产生二、中国古代数学对微积分创立的贡献三、对微积分理论有重要影响的重要科学家四、微积分的现代发展一、微积分为什么会产生微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。

比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。

”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。

归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。

困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。

例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。

但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。

第二类问题是求曲线的切线的问题。

这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。

困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。

古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分建立的时代背景和历史意义

微积分建立的时代背景和历史意义

微积分建立的时代背景和历史意义微积分建立的时代背景和历史意义微积分建立的时代背景和历史意义1.了解微积分建立的时代背景和历史意义,进一步形成客观事物具有相互制约、相互转化、对立统一的辩证关系的观点。

2.通过了解微积分思想方法形成的历史过程,学生对数学的本质、数学方法及数学对社会发展的意义和作用有较明晰的认识,激发学习数学的热情。

初步学习了极限、导数等微积分基础知识之后,试验修订本教科书特别安排了介绍微积分建立的时代背景和历史意义的内容。

这在中小学数学必修教科书中尚属首次,是教科书编写的创新。

了解数学的历史,既是提高自身修养的途径,又是自觉有效地学习、应用数学的催化剂。

数学作为人类文明的主要组成部分,它的发展规律及与其他文化的关系,应该为更多的公民所了解。

本节课的主要内容包括三个部分:第一部分是微积分思想方法的萌芽、积累、诞生的历史回顾,着重围绕与大量实际问题相关的求曲线的切线及求函数的极值(对文科学生)问题,阐述变量与极限思想;第二部分是微积分思想方法对数学科学及自然科学发展的作用;第三部分是牛顿、莱布尼茨发明微积分思想方法对我们的启发,主要是阐述自己对数学、数学方法以及发现发明的认识。

教科书对本节内容阐述得较详细、系统,讲授时可先让学生阅读,教师可挑选几位数学家如刘徽、笛卡尔、费马、牛顿等的工作作一介绍,着重阐述他们研究的问题与微积分思想方法的相关程度。

之后可让学生讨论自己对微积分发明的体会。

1.用电脑展示微积分发明者——牛顿与莱布尼茨的像片。

2.前面我们学习了极限与导数,已经领咯到了在利用导数求曲线的切线方程、讨论函数的单调性与极值问题中所显示出的无比优越性。

我们不禁会问;牛顿与菜布尼茨是怎样发明这样高明的数学方法的,是灵感在一夜之间的闪现还是前人长期努力的结晶?1.学生阅读教科书第70页至第73页内容,着重了解微积分思想方法的时代背景,之后,请学生提问,将教科书中不理解的问题提出来,师生共同讨论交流。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

微积分的发展史

微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。

微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。

一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。

二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。

三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。

四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。

五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。

同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。

六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。

微积分的创立

微积分的创立

微积分的创立,被誉为“人类精神的最高胜利”。

在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。

在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。

18世纪微积分最重大的进步是由欧拉(Leonard Euler ,1707—1783)作出的。

欧拉在1748年出版的《无限小分析引论》(Introductio in Anclysin infinitorum )以及他随后发表的《微分学》(Institutionis Calculi differentialis ,1755)和《积分学》(Institutiones Calculi integralis ,共3卷,1768—1770)是微积分史上里程碑式的着作,它们在很长时间里被当作分析课本的典范而普遍使用着。

这三部着作包含了欧拉本人在分析领域的大量创造,同时引进了一批标准的符号如:等等,对分析表述的规范化起了重要作用。

欧拉出生于瑞士巴塞尔一个牧师家庭,13岁就进入巴塞尔大学,数学老师是约翰。

伯努利。

师生之间建立了极亲密的关系,伯努利后来在给欧拉的一封信中这样赞许自己这位学生在分析方面的青出于兰:“我介绍高等分析时,它还是个孩子,而您正在将它带大成人。

”欧拉主要的科学生涯是在俄国圣彼德堡科学院(1727—1741;1766—1783)和德国柏林科学院(1741—1766)度过的。

他对彼德堡科学院怀有特殊的感情,曾将自己的科学成就归功于“在那儿拥有的有利条件”。

欧拉是历史上最多产的数学家。

他生前发表的着作与论文有560余种,死后留下了大量手稿。

欧拉自己说他未发表的论文足够彼德堡科学院用上20年,结果是直到1862年即他去世80年后,彼德堡科学院院报上还在刊登欧拉的遗作。

1911年瑞士自然科学协会开始出版欧拉全集,现已出版70多卷,计划出齐84卷,都是大四开本。

微积分建立的时代背景和历史意义

微积分建立的时代背景和历史意义

的体积、物体的重心、一个体积相当大的物体作用于另 一物体上的引力。
四、微积分的建立
十七世纪下半叶,在前人工作的基础上,英国大科学 家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研 究和完成了微积分的创立工作,虽然这只是十分初步的工 作。他们的最大功绩是把两个貌似毫不相关的问题联系在 一起,一个是切线问题(微分学的中心问题),一个是求 积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量, 因此这门学科早期也称为无穷小分析,这正是现在数学中 分析学这一大分支名称的来源。牛顿研究微积分着重于从 运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
本来从广义上说,数学分析包括微积分、函数论等许多分 支学科,但是现在一般已习惯于把数学分析和微积分等同起来, 数学分析成了微积分的同义词,一提数学分析就知道是指微积 分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。
五、微积分创立的历史意义
直到19世纪初,法国科学学院的科学家以柯西为首, 对微积分的理论进行了认真研究,建立了极限理论,後来又 经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论 成为了微积分的坚定基础。才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科 学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞 士的雅科布· 贝努利和他的兄弟约翰· 贝努利、欧拉、法国的拉 格朗日、科西…… 欧氏几何也好,上古和中世纪的代数学也好,都是一种常 量数学,微积分才是真正的变量数学,是数学中的大革命。 微积分是高等数学的主要分支,不只是局限在解决力学中的 变速问题,它驰骋在近代和现代科学技术园地里,建立了数 不清的丰功伟绩。

微积分思想的产生与发展历史

微积分思想的产生与发展历史
3.141024 3.142704 ,
并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割, 则与圆周合体而无所失矣。” 我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发 展了刘徽的思想, 在求出球的体积的同时, 得到了一个重要的结论 (后 人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。” 用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”) 叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们 的体积(“积”)必然相等。 利用祖暅原理求球体的体积:取一个几何体为上半球体 { x 2 y 2 z 2 R 2 , z 0 };将圆柱体 { x 2 y 2 R 2 , 0 z R }减去(即挖 去) 倒立的圆锥{ x 2 y 2 z 2 , 0 z R }视为另一个几何体。 则对任意的
函数的极大、极小问题。法国数学家费尔马(P. Fermat, 1744-1825) 在这两个问题上作出了主要贡献。费尔马在处理这两个问题时,都是 先对自变量取增量,再让增量趋于零,这就是微分学的本质所在。费 尔马也在积分学方面做了许多工作,如求面积、体积、重心等问题。 但可惜的是他没有发现微分学与积分学这两类问题之间的基本联系。 另一位已经走到了微积分基本定理的门口的是英国数学家巴罗 (I. Barrow, 1630-1677) , 他是牛顿的老师, 是剑桥大学卢卡斯讲座教授, 后来他认为牛顿已经超过了他, 就把这一讲座教授的位置让给了牛顿。 他在《光学和几何学讲义》一书中,已经把求曲线的切线与求曲线下 区域的面积问题联系了起来,也就是说,他把微分学和积分学的两个 基本问题联系了起来。 但可惜的是巴罗没有从一般概念的意义下进一 步深入地研究它们。 三.牛顿和莱布尼兹对微积分学科的功绩 微积分学科的建立,归功于两位伟大的科学先驱:牛顿和莱布尼 兹。关键在于他们认识到,过去一直分别研究的微分和积分这两个运 算,是彼此互逆的两个过程,它们是由牛顿—莱布尼兹公式联系起来 的。 1669年英国大数学家牛顿(I. Newton, 1643-1727)提出微积分学 说存在正反两个方面的运算, 例如面积计算和切线斜率计算就是互逆 的两种运算,即微分和积分互为逆运算,从而完成了微积分运算的决 定性步骤。但由于种种原因,他决定不向外界公开他的数学成果,他 的成果只是以手稿的形式在少数几个同事中传阅, 而这一决定在以后

微积分的创立数学史

微积分的创立数学史

科学的巨人——牛顿


牛顿关于微积分问题的研究起始于1664年秋,当 时他认真研究了笛卡儿的《几何学》,对笛卡儿 求曲线的切线方法产生了浓厚的兴趣并试图寻找 更好、更一般的方法。 1666年10月,牛顿写出了第一篇关于微积分的论 文《流数短论》,在该文中首次提出流数的概念, 所谓流数就是速度,在变速运动中速度的路程对 时间的微商。至于速度的变化状况就要用速度的 微商来反映,即加速度是速度的微商。

先驱们的探索

17世纪以前,人类关于数学的知识基本上还停留 在初等数学的水平上,即常量数学的阶段。从17 世纪中叶到18世纪末,欧洲工业革命的兴起,广 泛地采用了机器,为了设计和制造机器,就需要 掌握机械运动的规律;水运的改进要求了解物体 在液体中的运动规律;船只稳定性的研究促进了 质点力学的发展;为了适应对外扩张和争霸的需 要,战争中广泛使用枪炮,这就要研究抛射体的 运动,所有这些生产和技术中出现的问题迫切要 求力学、天文学等基础学科的发展,但这些学科 都是离不开数学的,因而也就推动了数学的发展。

1667年牛顿重返剑桥大学, 10月1日被选为三一学院的仲 院侣,次年3月16日选为正院 侣。巴罗对牛顿的才华非常赏 识,1669年10月27日巴罗便 让年仅26岁的牛顿接替他担任 卢卡斯讲座的教授。1672年起 他被接纳为皇家学会会员, 1703年被选为皇家学会主席直 到逝世。
剑桥大学三一学院教堂内的牛顿塑像
科学的巨人——牛顿


当时英国社会渗入基督教新教思想,牛顿家里有 两位都以神父为职业的亲戚,这可能影响牛顿晚 年的宗教生活。 从这些平凡的环境和活动中,看不出幼年的牛顿 是一个才能出众异于常人的儿童。然而格兰瑟姆 中学的校长J.斯托克斯,还有牛顿的一位当神父 的叔父W.艾斯库别具慧眼,鼓励牛顿上大学读书。 在他们的鼓励下,牛顿于1661年以减费生的身份 进入剑桥大学三一学院,1664年成为奖学金获得 者,1665年获学士学位。

微积分的诞生划时代的文化意义

微积分的诞生划时代的文化意义

微积分的诞生划时代的文化意义
微积分的诞生——划时代的文化意义
微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点。

微积分是人类智慧的伟大结晶,恩格斯说:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。

”当代数学分析权威柯朗(R.Courant)指出:“微积分乃是一种震撼心灵的智力奋斗的结晶。


微积分的重大意义可从下面几个方面去看。

(1)对数学自身的作用
由古希腊继承下来的数学是常量的数学,是静态的数学。

自从有了解析几何和微积分,就开辟了变量数学的时代,是动态的数学。

数学开始描述变化、描述运动,改变了整个数学世界的面貌。

数学也由几何的时代而进人分析的时代。

微积分给数学注入了旺盛的生命力,使数学获得了极大的发展,取得了空前的繁荣。

如微分方程、无穷级数、变分法等数学分支的建立,以及复变函数,微分几何的产生。

严密的微积分的逻辑基础理论进一步显示了它在数学领域的普遍意义。

(2)对其他学科和工程技术的作用
有了微积分,人类把握了运动的过程,微积分成了物理学的基本语言,寻求问题解答的有力工具。

有了微积分就有了工业大革命,有了大工业生产,也就有了现代化的社会。

航天
学的启示,对人类文化的启示和影响。

摘自《多元视角下的数学文化》。

数学素材:微积分建立的时代背景和历史意义

数学素材:微积分建立的时代背景和历史意义

微积分建立的时代背景和历史意义河北 牛云飞微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分的产生和发展被誉为“近代技术文明产生的关键事件之一”.微积分的建立,无论是对数学还是对其他科学以至于技术的发展都产生了巨大的影响,充分显示了人类的数学知识对于人的认识发展和改造世界的能力的巨大促进作用.积分的思想产生得很早,公元前200多年,希腊科学泰斗阿基米德(Archimedes ,约公元前287~前212)就用积分的观点求得球体积公式34π3V r =他用球体“薄片"的叠加与球的外切圆柱及相关圆锥“薄片”的叠加,并用杠杆原理得到球体积公式.公元5世纪,中国数学家祖冲之、祖日恒 父子提出了“缘幂势既同,则积不容异”,也是积分概念的雏形.微分观念的发生比积分大概迟了2000年.公元16世纪,伽利略发现了自由落体的运动规律212S gt =,落体的瞬时速度近似于()()S t t S t gt t +∆-≈∆.当t ∆很小时,这个比值接近于时刻t 的瞬时速度,这是导数的启蒙.同时,在探求曲线的切线的时候,人们发现,切线是割线的近似,割线的斜率是()()y f x x f x x x ∆+∆-=∆∆,当x ∆很小时,y x∆∆应该是切线斜率的近似,求瞬时速度及切线斜率,是产生导数观念的直接动因.17世纪,法国数学家笛卡儿(Descartes ,1596~1650)建立了坐标系,使几何图形能够用函数来表示,从而为研究函数及其变化率提供了有力的工具.在17世纪后半叶,牛顿和莱布尼茨总结了诸多数学家的工作之后,分别独立建立了微积分学.牛顿和莱布尼茨对微积分学最突出的贡献是建立了微积分基本定理()()()ba F x dx Fb F a '=-⎰,它把原以为不相干的两个事物紧密联系在一起,揭示了微分和积分的逆运算关系.所不同的是,牛顿(Newton ,1642~1727)创立的微积分有深刻的力学背景,他更多的是从运动变化的观点考虑问题,把力学问题归结为数学问题,而莱布尼茨(Leibniz ,1646~1716)主要是从几何学的角度考虑,他创建的微积分的符号以及微积分的基本法则,对以后微积分的发展有极大的影响.19世纪,法国数学家柯西(Cauchy ,1789~1857)和德国数学家魏尔斯特拉斯(Weierstrass ,1815~1897)为微积分学奠定了坚实的基础,使微积分学成为一套完整的、严谨的理论体系.微积分的建立充分说明,数学来源于实践,又反过来作用于实践.数学的内容、思想、方法和语言已成为现代文化的重要组成部分.。

浅谈微积分的发展历史

浅谈微积分的发展历史

浅谈微积分的发展历史李飞姜攀牛晋徽微积分是数学史上一个伟大的发明。

微积分在两千多年前就开始萌芽,但真正开始发展是从16世纪开始的,并由牛顿和莱布尼兹在17世纪建立,然而为它打好逻辑基础的是19世纪柯西。

从此之后,微积分成了各学科中重要的数学工具。

1 引言在高等数学的教学中,微积分是教学难点之一,学生普遍反应微积分的许多概念和公式比较难以理解。

近几年国内外越来越多的大学在数学教材引入数学史的知识,通过“历史线索”和“历史原型”来组织高等数学的教学,使学生真正理解课本上抽象的概念和形式化的公式背后的实际内涵。

为便于将数学史引入高等数学的教学中,本文简单地介绍一下微积分的发展历史。

2 微积分的发展历史微积分从发端至今已有两千多年的历史,并且其发展并不是一帆风顺的,本文将其分为四个阶段:萌芽阶段;酝酿阶段;创立阶段;发展阶段。

2.1 萌芽阶段2000多年前东西方的数学家就开始对微积分思想的萌芽和探索。

这个阶段对后世最有影响的是古希腊的数学发展。

古希腊的数学并不是单独的一个分支 ,而是与天文 、哲学密不可分的,其研究对象以几何学为主。

这一阶段最重要的两个哲学思想是“穷竭法”和“原子论”。

公元前5世纪,古希腊诡辩学派的安提丰(Antiphon)为解决“化圆为方”的问题,提出如下方法:“先作一圆内接正方形,将边数加倍,得内接8边形;再加倍,得16边形。

如此作下去,最后正多边形穷竭了圆。

”该方法被阿基米德(Archimedes)发展为“穷竭法”。

同样在公元前5世纪,德谟克利特(Demokritos)提出了“原子论”,并用“原子论”解释数学概论,提出:“线段、面积和立体都是由一些不可再分的原子构成的 ,而计算面积 、体积就是将这些‘原子’累加起来”。

他根据这一思想来求解圆锥体的体积,发现“圆锥体积等于具有同底同高的圆柱体积的三分之一”。

但这一结论的证明是由攸多克萨斯(Eudoxus)完成的。

德谟克利特认为圆锥体是由一系列底面积不等的不可再分的圆形薄片构成,因此圆锥体的表面不光滑。

微积分思想的产生与发展历史

微积分思想的产生与发展历史
微积分思想的产生与发展历史
陈纪修 在微积分产生之前,数学发展处于初等数学时期。人类只能研究 常量,而对于变量则束手无策。在几何上只能讨论三角形和圆,而对 于一般曲线则无能为力。 到了17世纪中叶, 由于科学技术发展的需要, 人们开始关注变量与一般曲线的研究。在力学上,人们关心如何根据 路程函数去确定质点的瞬时速度, 或者根据瞬时速度去求质点走过的 路程。在几何上,人们希望找到求一般曲线的切线的方法,并计算一 般曲线所围图形的面积。令人惊讶的是,不同领域的问题却归结为相 同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量 在一定时间过程中所积累的变化。前者导致了微分的概念;后者导致 了积分的概念。两者都包含了极限与无穷小的思想。 一.极限、无穷小、微分、积分的思想在中国古代早已有之 公元前4世纪, 中国古代思想家和哲学家庄子在 《天下篇》 中论述: “至大无外,谓之大一;至小无内,谓之小一。”其中大一和小一就是 无穷大和无穷小的概念。而“一尺之棰,日取其半,万世不竭。”更是 道出了无限分割的极限思想。 公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割 求面积的方法,就是古代极限思想的深刻表现。他用圆内接正多边形 的边长来逼近圆周,得到了
18世纪被称为数学史上的英雄世纪。 数学家们把微积分应用于天文学、 力学、光学、热学等各个领域,获得了丰硕的成果。在数学本身,他 们把微积分作为工具,又发展出微分方程、微分几何、无穷级数等理 论分支,大大扩展了数学研究的范围。 四.微积分严格理论体系的完善 微积分建立之后,出现了两个极不协调的情景;一方面是微积分 广泛应用于各个领域,取得了辉煌的成就;另一方面是人们对于微积 分的基本概念的合理性提出了强烈的质疑。19世纪以前,无穷小量概 念始终缺少一个严格的数学定义,因此导致了相当严重的混乱。1734 年英国哲学家红衣主教贝克莱(G. Berkeley, 1685-1753)对微积分基 础的可靠性提出强烈质疑,从而引发了第二次数学危机。他认为微积 分的发展包含了偷换假设的逻辑错误。例如对 y x 3 求导数(当时称 为求流数),要先假设自变量有一个无穷小增量“0”,它不能为零, 但在计算后半部,又要把这增量取为零:

莱布尼茨创立微积分的故事

莱布尼茨创立微积分的故事

莱布尼茨创立微积分的故事摘要:一、莱布尼茨简介二、莱布尼茨与微积分的创立1.时代背景2.莱布尼茨与牛顿的竞争与合作3.微积分的基本原理三、莱布尼茨微积分的影响1.数学领域的变革2.物理学、工程学等领域的应用四、莱布尼茨的其他贡献1.计算机科学领域的预见2.逻辑学、哲学方面的研究五、总结与启示正文:一、莱布尼茨简介戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716),德国哲学家、数学家,被誉为“计算机科学之父”。

他在数学、物理、哲学等多个领域取得了卓越成就,与牛顿、巴洛克艺术三巨匠并列。

二、莱布尼茨与微积分的创立1.时代背景在17世纪,欧洲科学正处于变革时期。

伽利略、开普勒等科学家为物理学和数学的发展奠定了基础。

莱布尼茨正是在这样的背景下,开始了他的科学研究。

2.莱布尼茨与牛顿的竞争与合作莱布尼茨与英国科学家牛顿(Isaac Newton)几乎同时独立发现了微积分原理。

两人之间曾存在激烈的竞争,但最终承认彼此的成果,并合作完成了微积分的体系化。

3.微积分的基本原理莱布尼茨提出了微积分的基本原理,包括微分和积分两部分。

微分学研究函数在某一点的变化率,而积分学研究求解曲线下的面积。

这两个概念的提出,为数学和自然科学的发展提供了强大工具。

三、莱布尼茨微积分的影响1.数学领域的变革莱布尼茨的微积分理论,使数学研究从静态变为动态,为后来的微分方程、概率论、泛函分析等数学分支的发展奠定了基础。

2.物理学、工程学等领域的应用微积分的出现,为物理学、工程学等领域的研究提供了强大的数学工具。

例如,牛顿的运动定律、万有引力定律等,都可以通过微积分进行精确求解。

四、莱布尼茨的其他贡献1.计算机科学领域的预见莱布尼茨研究了二进制系统,并预见了计算机科学的发展。

他的著作《计算机与算盘》被誉为计算机科学的奠基之作。

2.逻辑学、哲学方面的研究莱布尼茨在逻辑学和哲学领域也取得了重要成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分建立的时代背景和历史意义
目的要求
1.了解微积分建立的时代背景和历史意义,进一步形成客观事物具有相互制约、相互转化、对立统一的辩证关系的观点。

2.通过了解微积分思想方法形成的历史过程,学生对数学的本质、数学方法及数学对社会发展的意义和作用有较明晰的认识,激发学习数学的热情。

内容分析
初步学习了极限、导数等微积分基础知识之后,试验修订本教科书特别安排了介绍微积分建立的时代背景和历史意义的内容。

这在中小学数学必修教科书中尚属首次,是教科书编写的创新。

了解数学的历史,既是提高自身修养的途径,又是自觉有效地学习、应用数学的催化剂。

数学作为人类文明的主要组成部分,它的发展规律及与其他文化的关系,应该为更多的公民所了解。

本节课的主要内容包括三个部分:第一部分是微积分思想方法的萌芽、积累、诞生的历史回顾,着重围绕与大量实际问题相关的求曲线的切线及求函数的极值(对文科学生)问题,阐述变量与极限思想;第二部分是微积分思想方法对数学科学及自然科学发展的作用;第三部分是牛顿、莱布尼茨发明微积分思想方法对我们的启发,主要是阐述自己对数学、数学方法以及发现发明的认识。

教科书对本节内容阐述得较详细、系统,讲授时可先让学生阅读,教师可挑选几位数学家如刘徽、笛卡尔、费马、牛顿等的工作作一介绍,着重阐述他们研究的问题与微积分思想方法的相关程度。

之后可让学生讨论自己对微积分发明的体会。

教学过程
(一)引入
1.用电脑展示微积分发明者——牛顿与莱布尼茨的像片。

微积分发明人
2.前面我们学习了极限与导数,已经领咯到了在利用导数求曲线的切线方程、讨论函数的单调性与极值问题中所显示出的无比优越性。

我们不禁会问;牛顿与菜布尼茨是怎样发明这样高明的数学方法的,是灵感在一夜之间的闪现还是前人长期努力的结晶?
(二)新课
1.学生阅读教科书第70页至第73页内容,着重了解微积分思想方法的时代背景,之后,请学生提问,将教科书中不理解的问题提出来,师生共同讨论交流。

如:
(1)17世纪自然科学的三大发明是指什么?
(2)为什么说刘徽的“割圆术”包含着微积分概念的萌芽?
(3)曲线在某点处的法线是指什么直线?
(4)为什么说笛卡儿、费马等人发明的解析几何是数学中的转折点?
……
对上述问题,教师在课前应充分准备,有些不能三言两语解释的,应告诉学生阅读哪些参考资料。

(加龚昇著《话说微积分》,中国科学技术大学出版社,1998;上互联网:/2/23/104/0541.htm )
2.介绍刘徽、笛卡尔、费马、牛顿与菜布尼茨的数学方法。

(1)刘徽的“割圆术”。

魏晋南北朝时期的数学家刘徽提出割圆术作为计算圆的周长、面积以及圆周率的基础。

其方法是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆台体而无所失矣。

”也就是说:刘徽用圆内接正多边形去逐步逼近圆。

如图,设圆面积为S ,半径为r ,圆内接正n 边形边长为n l ,周长为n L ,面积为n S 。

将边数加倍后,得到圆内接正2n 边形,其边长、周长、面积分别记为n l 2、n L 2、n S 2,则
22222222121⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛=+==n n n
l r r l CD AC AD l , r L CD AB n S n n ⋅=⎪⎭⎫ ⎝⎛⋅⋅=2
1212, )(222n n n n S S S S S -+<<。

当n 无限增大时,n S 2便趋于圆的面积,祖冲之按刘徽割圆术从正六边形连续算到正24576边形时,得到圆周率π的上下限:3.1415926<π<3.1415927。

这是当时世界在这一领域的最高水平。

刘徽割圆的逼近思想是以后极限思想的萌芽,为定积分概念的形成积累了素材。

(2)笛卡儿求切线的“圆法”。

法国数学家笛卡儿用代数方法(即圆法)求出了曲线在其上某一点处的切线方程。

笛卡儿求曲线y=f (x )过点P (x ,f (x ))的切线斜率的“圆法”是:(如图)过C 点(曲线在点P 处的法线与x 轴的交点)作半径为r=CP 的圆C :222)(r y v x =+-。

因CP 是曲线y=f (x )在P 点的法线,则P 应是曲线与圆C 的“重交点”。

若2)]([x f 是多项式函数,有重交点就相当于方程222)()]([r v x x f =-+有重根x=e ,从而
)()()()]([11212222+-+++++-=--+n n n n c x c x c x c e x r v x x f ,比较系数得v 与e 的关系,代入e=x ,便得过P 点的切线斜率)
(x f x v k -=。

以3x y =为例。

点),(3
x x P 。


)()()()(432231422223c x c x c x c x e x r v x x ++++-=--+,经特定系数法得知: 544332213,51,4,3,2e e v e c e c e c e c +=+====。

故切线斜率23533)3(x x
x x x x x v k =-+=-=。

笛卡尔的代数方法正是后来求切线方法的雏形,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分道路的。

(3)费马求极值的代数方法。

法国数学家费马求函数y=f (x )在点a 处极值(如果存在的话)的代数方法是:用a+e 代替a ,并使f (a+e )与f (a )“逼近”,即f (a+e )→f (a )。

消去公共项后,用e 除两边,再令e 消失,即
0)()(0
=⎥⎦⎤⎢⎣⎡-+=e e a f e a f , 由此方程求出的a 就是f (x )的极值点。

以22)(2++=x x x f 为例,e e ae a f e a f 22)()(2++=-+,
1,0220)()(0
-==+=⎥⎦⎤⎢⎣⎡-+=a a e a f e a f e 即。

-1是f (x )的极值点。

费马的方法几乎相当于后来微分学中的方法,只是以符号e 代替了增量△x 。

可以说费马已经走到了微积分的边缘了,再往前迈一步,微积分的发明人也许要改弦易辙了。

(4)牛顿的“流数术”
牛顿以他的运动学为背景,总结了笛卡尔、费马等人的方法,提出了具有一般意义的“流数”概念,他的《流数简论》的问世标志着微积分的诞生。

以函数*)(N n x y n ∈=为例说明流数概念。

设x 变为x+o ,则n x 变为∑=-⋅⋅=+n k k k n k n n o x C
o x 0)(,
1
212
)1(1)()(---++⋅-+=-+--n n n n n o o x n n nx x o x x o x ,设增量o 消失,它们的比就是 11-n nx
,这就是x 的流数与n x 的流数之比。

流数就是现在的微商dy
dx 。

然后牛顿使用流数概念应用于求曲线切线、曲率、拐点,曲线求长、求积、求引力与引力中心等大量问题,展示了流数及其算法的极大普通性与系统性。

同时莱布尼茨从几何角度关于特征三角形的研究也得到了与牛顿类似的结论与算法。

3.交流思想与体会。

主要谈谈对微积分发明的感想及其对自己的启示。

(1)微积分的发明不是一蹴而就的,而是人类集体智慧的结晶,是无数科学家长期奋斗的结果。

(2)数学来源于实践,没有当时大量实际问题的涌现,没有科学家深入实际,将大量实际问题转化为数学问题的研究,是不可能产生微积分理论的。

(3)渊博的知识,谦虚的治学作风,是学术上取得成就的必要条件。

牛顿说“如果我看得更远些,那是因为我站在巨人的肩膀上”,牛顿与莱布尼茨的高明之处之一就是善于总结他人的研究成果。

提出自己的主张。

……
布置作业
恩格斯说:“在一切理论在就中,未必再有什么像17世纪下半叶微积分的发现那样被看
作人类精神的最高胜利了。

如果在某个地方我们看到人类精神的纯粹和唯一的功绩,那就正是在这里。

”请你结合今天上课的内容,谈谈你对恩格斯这段话的理解。

(洪建明)。

相关文档
最新文档