中考数学经典应用题专题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

中考应用题精选(含答案)

中考应用题精选(含答案)

中考综合应用题精选(含答案)1.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?2.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.3.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?4.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B 两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.6.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?7.某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)当天销量(件)(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.8.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?10.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?11.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.12.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b=;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.13.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?14.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?15.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.16.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?17.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?中考综合应用题精选一.解答题(共19小题)1.(2014•连云港)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.2.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.3.(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.4.(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.5.(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.(2013•许昌二模)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?【解答】解:(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.∴甲种商品的进价为:20元,乙种商品的进价为:30元.(2)设经销甲、乙两种商品获得的总利润为W,甲种商品每件的利润为(30﹣m﹣20)元,销售数量为(60+10m),乙种商品每件的利润为(50﹣m﹣30)元,销售数量为(40+10m),则W=(10﹣m)(60+10m)+(20﹣m)(40+10m)=﹣20m2+200m+1400=﹣20(m﹣5)2+1900∵﹣20<0,∴当m定为5元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元.7.(2014秋•硚口区期中)某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)40+x90当天销量(件)200﹣2x200﹣2x(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.【解答】解:(1)由题意,得当1≤x≤49时,当天的售价为:(40+x)元,当天的销量为:(20﹣2x)件.当50≤x≤90时,当天的售价为:90元,当天的销量为:(20﹣2x)件.故答案为:40+x,20﹣2x,90,20﹣2x;(2)由题意,得当1≤x≤49时,y=(40+x﹣30)(200﹣2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200﹣2x)=﹣120x+12000.∴y=(3)由题意,得当1≤x≤49时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050∴a=﹣2<0,=6050元.∴x=45时,y最大当50≤x≤90时,y=﹣120x+12000.∴k=﹣120<0,∴当x=50时,y最大=6000元,∴销售商品第45天时,当天销售利润最大,最大利润是6050元;(4)由题意,得当﹣2x2+180x+2000≥4800时,∴(x﹣20)(x﹣70)≤0,∴或,∴20≤x≤70.∵x≤49,∴20≤x≤49,当﹣120x+12000≥4800时x≤60.∵x≥50,∴50≤x≤60,∴当天销售利润不低于4800元共有:49﹣20+1+60﹣50+1=41天答:当天销售利润不低于4800元共有41天.8.(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?【解答】解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000]=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000﹣x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y=50000,最大值综上所述,50000>48800∴购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?【解答】解:(1)设y2=kx+b,将点A(0,160)、B(150,10)代入,得:,解得:,∴y2=﹣x+160(0≤x≤150);(2)根据题意,当0≤x<80时,w=[﹣x+160﹣(﹣0.5x+100)]•x=﹣0.5x2+60x,当80≤x≤150时,w=[﹣x+160﹣(3x﹣180)]•x=﹣4x2+340x;(3)∵当x=70时,w=﹣0.5×702+60×70=1750>0,∴销售量为70kg时,销售该农产品是盈利的,盈利1750元.。

中考专题训练——不定方程的应用题

中考专题训练——不定方程的应用题

中考专题训练——不定方程的应用题不定方程是指未知数满足一定条件的方程,其解可以是整数、有理数、实数或复数。

不定方程的应用题在数学问题中具有重要的实际意义。

下面我们来讨论一些中考中常见的不定方程应用题。

一、鸡兔同笼问题鸡兔同笼问题是一类经典的不定方程应用题。

假设鸡和兔子的总数量为n,总脚数为m。

已知鸡的脚数为2,兔子的脚数为4、问题是如何确定鸡和兔子的数量。

我们可以设鸡的数量为x,兔子的数量为n-x(因为鸡和兔子总数为n)。

根据题意可以列出方程:2x+4(n-x)=m化简方程得到:2x+4n-4x=m整理得到:2n-2x=m将n看作常数,此时方程为一元一次方程。

我们可以通过解方程来确定鸡和兔子的数量。

例题:一共有20只鸡和兔子,它们的总脚数为56、求鸡和兔子的数量分别是多少?解答:设鸡的数量为x,兔子的数量为20-x。

根据题意可得方程:2x+4(20-x)=56化简得方程:2x+80-4x=56整理得:-2x=-24解得:x=12所以鸡的数量为12,兔子的数量为20-12=8二、汉诺塔问题汉诺塔问题是另一个经典的不定方程应用题。

问题是如何将一堆盘子从起始柱子移动到目标柱子,过程中需要满足以下条件:(1)每次只能移动一个盘子;(2)大盘子不能放在小盘子上面。

假设有n个盘子,设解为f(n),可以将其分解为三个步骤:(1)将n-1个盘子从起始柱子移动到过渡柱子;(2)将第n个盘子从起始柱子移动到目标柱子;(3)将n-1个盘子从过渡柱子移动到目标柱子。

根据上述分解可得递推公式:f(n)=2f(n-1)+1其中f(1)=1为初始条件。

例题:有3个盘子,问最少需要多少步才能将它们从起始柱子移动到目标柱子?解答:根据递推公式可得:f(3)=2f(2)+1=2(2f(1)+1)+1=7所以最少需要7步才能将3个盘子从起始柱子移动到目标柱子。

三、梯子问题梯子问题是另一个常见的不定方程应用题。

问题是如何确定梯子的总长度。

九年级中考数学应用题专题练习

九年级中考数学应用题专题练习

九年级中考数学应用题专题练习1、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.2、为落实绿水青山,就是金山银山的发展理念。

某市政府招标一工程队负责在山下修建一个水库。

该工程队有AB两种型号的挖掘机。

已知三台A型和5台B型挖掘机同时施工一小时挖土165立方米。

4台A型和7台B型挖掘机同时施工一小时挖土225立方米。

每台A 型挖掘机一小时的施工费用为300元。

每台B型挖掘机一小时的施工费用为180元。

(1)分别求每台A型B型挖掘机一小时挖土多少立方米?(2)有不同数量的A型和B型挖掘机共12台,同时施工4小时。

至少完成1080立方米的挖土量。

且总费用不超过12960元,问施工最低费时有哪几种调配方案,并指出哪种调配方案的施工费用最低,并指出哪种调配方案的施工费用最低,最低费用是多少元?3、快递公司为提高快递分拣的速度,决定购买机器人代替工人工分拣。

已知购买甲型机器人1台,乙型机器人2台,共需14万元。

购买甲型机器人2台,乙型机器人3台,共需24万元。

(1)求甲乙两种型号的机器人每台的价格是多少万元?(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件。

该公司计划购买这两种机器人共8台,总费用不超过41万元。

并且使这8台机器人每小时分拣快递总和不少于8300件,则该公司有哪几种购买方案,哪种方案费用最低,最低费用为多少万元?4、书店决定用不多于20000元购进甲,乙两种图书共1200本儿进行销售。

中考数学试卷真题应用题

中考数学试卷真题应用题

1. 下列各数中,有理数是()A. √2B. πC. -3D. 2/32. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是()A. an=3n-1B. an=3nC. an=3n+1D. an=3n-23. 已知 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是()A. 0B. -1C. 1D. 24. 在△ABC中,∠A=45°,∠B=30°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形5. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是()A. y=x^2-2x-2B. y=x^2+2x-2C. y=x^2-2x+2D. y=x^2+2x+2二、填空题6. 若 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是______。

7. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是______。

8. 在△ABC中,∠A=45°,∠B=30°,则△ABC是______。

9. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是______。

三、解答题10. (15分)已知 a,b,c 成等差数列,且 a+b+c=0,求证:b=0。

证明:由题意得:a+b+c=0。

又因为 a,b,c 成等差数列,所以有 2b=a+c。

将 a+b+c=0 代入上式得:2b+2b=0,即 4b=0。

因此,b=0。

证毕。

11. (15分)已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),求该函数的解析式。

解:设该二次函数的解析式为 y=ax^2+bx+c。

初三年级数学应用题

初三年级数学应用题

初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。

现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。

解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。

已知速度v1 = 15公里/小时,时间t1 = 2/3小时。

根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。

现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。

将1/2小时转换为分钟,即1/2 × 60 = 30分钟。

所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。

题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。

现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。

解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。

每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。

现在,每件商品降价10元,新的售价为90元。

每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。

假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。

所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。

题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。

现在向容器中加入50升的纯水,求混合后的盐水浓度。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

中考数学专题练习应用题

中考数学专题练习应用题

A M 4530B 北第4题 中考应用题附参考答案1。

(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱?2。

(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品.3。

(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道?4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案?(参考数据:7.13≈,4.12≈)5。

(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树。

6。

(2010年厦门湖里模拟)某果品基地用汽车装运A 、B 、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息: 水果品牌 A B C每辆汽车载重量(吨) 2.2 2.1 2每吨水果可获利润(百元) 6 8 5(1)若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果?(2)计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.7.(2010年杭州月考)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润 甲店 200 170乙店 160 150(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?8.(2010年河南中考模拟题1)某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A 、B 两村调水,其中A 村需水15万吨,B 村需水13万吨,甲、乙两水库各可调出水14万吨。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。

假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500(B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。

则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。

【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一只股票某天跌停,之后两天时间又涨回到原价。

若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。

(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案
初三数学应用题大全及答案
1. 小珠旅游团里有男生9人,女生3人。

他们分为三个组,每组男生
和女生的比例相同,每组人数为4人。

请问小珠团里有几组?
答案:小珠团里有3组。

2. 一班有20名学生,其中10名男生,10名女生,两人两人一组,每
个组一个男生一个女生,每组都不一样,写出所有可能的组合方式。

答案:男生女生组合方式为:1男1女,2男2女,3男3女,4男4女,5男5女,6男6女,7男7女,8男8女,9男9女,10男10女。

3. 一条条形码共有32位,每8位作为一组,每组有多少个?
答案:一条条形码共有32位,每8位作为一组,则一共有4组。

4. 一家餐馆有4桌正在用餐,每桌客人人数相同,共有28人,请问每桌客人数有多少?
答案:每桌客人数有7人。

5. 有3把锁,组合为ABC,其中A、B、C代表3种颜色,则有多少种组合方式?
答案:有6种组合方式,分别为:ABC、ACB、BAC、BCA、CAB、CBA。

中考数学试卷典型例题解析

中考数学试卷典型例题解析

例题1:一元二次方程的应用题题目:某工厂生产一批产品,若每天生产80件,则生产完这批产品需要10天;若每天生产100件,则生产完这批产品需要8天。

问:这批产品共有多少件?解析:设这批产品共有x件。

根据题意,我们可以列出以下方程:80 × 10 = x100 × 8 = x解这个方程组,我们可以得到:x = 800答案:这批产品共有800件。

例题2:几何证明题题目:已知:在三角形ABC中,AB=AC,点D是BC边上的一个点,AD⊥BC。

证明:∠B=∠C。

解析:证明:由于AB=AC,根据等腰三角形的性质,我们有∠ABC=∠ACB。

又因为AD⊥BC,所以∠ADB=∠ADC=90°。

在直角三角形ADB和ADC中,∠BAD=∠CAD,所以三角形ADB和ADC是相似的。

根据相似三角形的性质,我们有:∠B/∠A = ∠C/∠A由于∠A是公共角,可以约去,得到:∠B = ∠C答案:证明完成,∠B=∠C。

例题3:函数问题题目:已知函数f(x) = 2x - 3,求函数f(x)在x=2时的函数值。

解析:要求函数f(x)在x=2时的函数值,我们只需将x=2代入函数f(x)中。

f(2) = 2 × 2 - 3f(2) = 4 - 3f(2) = 1答案:函数f(x)在x=2时的函数值为1。

例题4:代数式求值题目:已知a+b=5,ab=6,求(a+b)^2的值。

解析:首先,我们知道(a+b)^2可以展开为a^2 + 2ab + b^2。

由题意,a+b=5,ab=6,代入上式,得:(a+b)^2 = a^2 + 2ab + b^2(a+b)^2 = (a+b)^2 + 2ab(a+b)^2 = 5^2 + 2×6(a+b)^2 = 25 + 12(a+b)^2 = 37答案:(a+b)^2的值为37。

通过以上例题解析,我们可以看到中考数学试卷中的典型题目涉及了代数、几何、函数等多个知识点,考生需要掌握扎实的数学基础和解题技巧。

中考数学应用题汇编及解析

中考数学应用题汇编及解析

一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间治理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间治理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间治理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-〔元〕; 〔2〕设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =〔千克〕(120%) 1.811700x x x +-==〔千克〕答:〔1〕当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; 〔2〕小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提升了用油的重复利用率,并且发现在技术革新的根底上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析]〔1〕由题意,得70(160%)7040%28⨯-=⨯=〔千克〕 〔2〕设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗?欢送你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高的.解得:1275,10x x ==-〔舍去〕(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工 治理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数(名) 1 3 2 3 24 1 每人月工资(元)21000 840020252200 1800 1600950请你根据上述内容,解答以下问题:〔1〕该公司“高级技工〞有 名;〔2〕所有员工月工资的平均数x 为2500元,中位数为 元,众数为 元; 〔3〕小张到这家公司应聘普通工作人员.请你答复右图中小张的问题,并指出用〔2〕中的哪个 数据向小张介绍员工的月工资 实际水平更合理些; 〔4〕去掉四个治理人员的工资后,请你计算出其他员工的月平均工资y 〔结果保存整数〕,并判断y 能否反映该公司员工的月工资实际水平.[解析] 〔1〕由表中数据知有16名;〔2〕由表中数据知中位数为1700;众数为1600;〔3〕这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.〔说明:该问中只要写对其中一个数据或相应统计量〔中位数或众数〕也可以〕 〔4〕250050210008400346y ⨯--⨯=≈1713〔元〕.y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚〔点C 〕的水平线为x 轴、过山顶〔点A 〕的铅垂线为y 轴建立平面直角坐标系如图〔单位:百米〕.AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且)4,(m B . 〔1〕设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;〔2〕从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上〔见图〕. ①分别求出前三级台阶的长度〔精确到厘米〕; ②这种台阶不能一直铺到山脚,为什么?〔3〕在山坡上的700米高度〔点D 〕处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE 〔米〕.假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x ,〔…2分〕 ∴)8(42y x -=,y x -=82〔…3分〕∵)4,(m B ,∴482-=m =4,∴)4,4(B〔…4分〕〔2〕在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x 〔百米〕894≈〔厘米〕〔…6分〕同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x 〔百米〕371≈〔厘米〕 〔…7分〕 第三级台阶的长度为02843.023=-x x 〔百米〕284≈〔厘米〕〔…8分〕②取点)4,4(B ,又取002.04+=y ,那么99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 〔…10分〕 〔注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性〕 ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR〔…9分〕在题设图中,作OA BH ⊥于H那么︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚〔…10分〕〔3〕)7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值〔…11分〕 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x〔…13分〕当320=x 时,38max =y ∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y 〔米〕与挖掘时间x 〔时〕之间关系的局部图象.请解答以下问题: 〔1〕乙队开挖到30米时,用了_____小时.开挖6小时时, 甲队比乙队多挖了______米; 〔2〕请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)〔3〕如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] 〔1〕2;10;〔2〕①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点〔6,60〕, ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点〔2,30〕、〔6,50〕,∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.〔说明:通过观察图象并用方程来解决问题,正确的也给分〕 〔3〕由图可知,甲队速度是:60÷6=10〔米/时〕.设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料〔这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理〕.当每吨售价为260元时,月销售量为45吨.该经销店为提升经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x 〔元〕,该经销店的月利润为y 〔元〕. 〔1〕当每吨售价是240元时,计算此时的月销售量;〔2〕求出y 与x 的二次函数关系式〔不要求写出x 的取值范围〕;〔3〕请把〔2〕中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;〔4〕小静说:“当月利润最大时,月销售额也最大.〞你认为对吗?请说明理由.[解析] 〔1〕5.71024026045⨯-+=60〔吨〕.〔2〕260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.〔3〕24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.〔4〕我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.〔说明:如果举出其它反例,说理正确,也相应给分〕二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图〔尺寸如下图〕,车棚顶部是圆柱侧面的一局部,其展开图是矩形.图10—2是车棚顶部截面的示意图,AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积〔不考虑接缝等因素,计算结果保存π〕.[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于F ,如图1.…………〔1分〕由垂径定理,可知: E 是AB 中点,F 是AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………〔2分〕 设半径为R 米,那么OE =(R -2)米.O BA·图10—2图10—1 AB2米 43米·图1EF A在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………〔5分〕 ∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………〔6分〕∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π. ………………………〔7分〕∴帆布的面积为38π×60=160π〔平方米〕. …………………………………〔8分〕 〔说明:此题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分〕9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格〔每个小方格的边长均为1个单位长〕,其对称中央为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中央也是点O ,它以每秒1个单位长的速度由起始位置向外扩大〔即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……〕,直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动〔即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动〕.正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠局部面积为y 个平方单位.〔1〕请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠局部〔重叠局部用阴影表示〕,并分别写出重叠局部的面积;〔2〕①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.〔3〕对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠局部面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.〔说明:问题〔3〕是额外加分题,加分幅度为1~4分〕图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D图14-7E C BA DFG H M Q NOP[解析]〔1〕相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.〔2〕①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,那么MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-〔7-x 〕= x -1. ∴y=MT ·MS =〔x -1〕〔2x -1〕=2x 2-3x +1. ②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,那么 TQ =7-x ,∴MT =MQ -TQ =6-〔7-x 〕=x -1. ∴y=MN ·MT =6〔x -1〕=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,那么 TQ=x -7,∴MT =MQ -TQ =6-〔x -7〕=13-x . ∴y = MN ·MT =6〔13-x 〕=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,那么MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =〔13-x 〕〔27-2x 〕=2x 2-53x +351.〔说明:以上四种情形,所求得的y 与x 的函数关系式正确的,假设不化简不扣分〕 〔3〕对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;图2-4 E C B A D F G H Q N O P T 图2-5E C B A DF GH M N O PT 图2-6 E C B A DF G HK Q N OP R S 图2-3 E C B A D F G H M Q N OP S T 图2-2 E C B A D FG HMN O P 图2-1 E C B AD Q O P当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)中考数学应用题是考察学生在解决实际问题中应用数学知识和思维方法的能力。

这类题目通常涉及到数学与日常生活、生产劳动、科学技术等方面的联系,要求学生能够理解问题背景,运用数学知识去解决问题。

一、人民币兑换问题题目要求学生计算将一种货币兑换成另一种货币的数目。

例如,将人民币兑换成美元,或者将美元兑换成欧元等。

题目可设计如下:甲有5000人民币,最近他打算去美国旅行,需要将人民币兑换成美元。

已知1美元兑换成6.5人民币,甲打算兑换多少美元?二、购物打折问题题目要求学生计算购物时的打折优惠,例如满减、折扣等。

题目可设计如下:小明去商场购买一条裤子,这条裤子原价280元,商场正在举行活动,凡是购买满300元的商品都可以打8折。

小明购买这条裤子需要支付多少钱?三、完全平方数问题题目要求学生判断一个数是否为完全平方数,并计算它的平方根。

题目可设计如下:已知某个数的平方根是16,请计算这个数是多少?四、速度和距离问题题目要求学生根据给定的速度和时间,计算距离。

题目可设计如下:甲以每小时60千米的速度骑自行车,乙以每小时80千米的速度骑自行车,他们同时从相距200千米的地方出发相向而行。

请问他们相遇需要多少时间?五、平均数问题题目要求学生计算一组数的平均数,并应用平均数解决实际问题。

题目可设计如下:小明参加了五次考试,分别得到60分、70分、80分、90分和100分,请问他的平均分是多少?以上是中考数学应用题中的一些常见类型。

通过解答这些问题,学生们可以理解数学知识在实际生活中的应用,培养数学思维和解决问题的能力。

中考数学应用题汇编及解析

中考数学应用题汇编及解析

一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析](1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1(2中位数为 元,众数为(3问题,并指出用(2实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.[解析] (1)由表中数据知有16名;(2)由表中数据知中位数为1700;众数为1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以) (4)250050210008400346y ⨯--⨯=≈1713(元).y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C )的水平线为x 轴、过山顶(点A )的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且已知)4,(m B . (1)设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么?(3)在山坡上的700米高度(点D )处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE (米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x , (…2分) ∴)8(42y x -=,y x -=82(…3分) ∵)4,(m B ,∴482-=m =4,∴)4,4(B(…4分)(2)在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x (百米)894≈(厘米)(…6分)同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x (百米)371≈(厘米) (…7分) 第三级台阶的长度为02843.023=-x x (百米)284≈(厘米)(…8分)②取点)4,4(B ,又取002.04+=y ,则99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性) ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR(…9分)在题设图中,作OA BH ⊥于H则︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(3))7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值(…11分) 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x (…13分)当320=x 时,38m ax =y∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观察图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元). (1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的二次函数关系式(不要求写出x 的取值范围);(3)请把(2)中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.[解析] (1)5.71024026045⨯-+=60(吨).(2)260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图, AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交 AB 于F ,如图1.…………(1分)由垂径定理,可知: E 是AB 中点,F 是 AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………(2分) 设半径为R 米,则OE =(R -2)米.在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………(5分)O BA·图10—2图10—1图1∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………(6分)∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π.………………………(7分) ∴帆布的面积为38π×60=160π(平方米). …………………………………(8分)(说明:本题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分)9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5 D图14-7DP[解析](1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分) (3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0; 当x =49时,y 取得最大值36.图2-4 D 图2-5D P图2-6D图2-3 DQ P 图2-2D 图2-1D Q P。

中考数学应用题专项练习

中考数学应用题专项练习

中考数学应用题专项练习1. 某生态农业有限公司帮助和指导当地车厘子种植基地种植和销售车厘子,已知该车厘子的成本是12元/千克,规定销售价格不高于成本的2倍。

经市场调查发现,该车厘子的销售量y(千克)与销售价格x(元/千克)之间的函数关系如图所示:(1) 求y与x的函数关系式;(2) 当销售价格为多少时,销售车厘子所获的利润W最大?并求出此时的最大利润。

2. 某网店销售一种消毒用紫外线灯很畅销,该网店店主结合店铺数据发现日销量y(件)是售价x(元/件)的一次函数,其售价、日销售量、日销售纯利润W(元)的四组对应值如表:已知该商品进价是100元/件,该网店每日的固定成本折算下来为2000元。

注:日销售纯利润=日销售量×(售价-进价)-每日固定成本。

(1) 求y与x的函数关系式;(2) 当售价x(元/件)定为多少时,日销售纯利润W(元)最大?求出最大纯利润。

3. 某乡镇的主要经济作物为茶叶,该地政府为了推进乡村振兴战略,解决当地茶农卖茶困难的问题,决定在新茶上市30天内,帮助茶农集中销售.根据销售记录发现:第1天销售量为42斤,后面每天比前一天增加2斤;前10天的价格为500元/斤,后20天价格每天比前一天降低10元,设第x天(x为整数)的售价为y(元/斤),日销售额为w(元)。

(1) 求y与x的函数关系式;(2) 当第几天时日销售额w最大?求最大的日销售额。

4. 作为全球三大黄肉型猕猴桃种植地之一,成都市蒲江县是世界上少有、成都唯一的红、黄、绿三色齐聚的猕猴桃产地.某水果经销商到猕猴桃种植基地采购一种红心猕猴桃,经销商一次性采购红心猕猴桃的采购单价y(元/千克)与采购量x(千克)之间的函数关系如图所示。

(1) 求y与x的函数关系式;(2) 若红心猕猴桃的种植成本为6元/千克,某经销商一次性采购红心猕猴桃的采购量不超过200千克,求当采购量是多少时,猕猴桃种植基地获利最大?求最大利润。

5. 端午节前,某商店用8000元购进一批粽子礼盒,很快售完,于是商店又用20000元购进了第二批粽子礼盒,所购数量是第一批购进量的两倍,但每个礼盒的进价贵了20元。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

中考数学应用题练习题库及答案

中考数学应用题练习题库及答案

中考数学应用题练习题库及答案在下面的文章中,我将提供一些中考数学应用题的练习题库及答案。

文章将根据合适的格式书写,以确保信息的清晰呈现。

请阅读以下内容:题目:中考数学应用题练习题库及答案一、选择题:1. 一根铁丝长2米,要将它剪成两段,使得其中一段是另一段的3倍,求两段铁丝各有多长?A. 1米和1米B. 0.8米和1.2米C. 0.6米和1.4米D. 0.5米和1.5米答案:C2. 如果一个等差数列的首项是3,公差是4,那么它的第8项是多少?A. 27B. 28C. 29D. 30答案:C3. 一块面积为64平方厘米的正方形纸板,从中剪掉一个面积为36平方厘米的小正方形纸板,剩下的形状是什么?A. 长方形B. 正方形C. 圆形D. 梯形答案:A二、填空题:1. 已知正方形边长为5厘米,求其周长是多少?答案:20厘米2. 某商品原价为100元,现以8折优惠出售,打完折后的价格是多少元?答案:80元3. 若两根相交线段的长度分别为5厘米和12厘米,求它们的夹角的正弦值。

答案:0.8三、解答题:1. 一连数的和是12345,已知这个连数有45个数,第一个数和最后一个数依次为a和b,求a和b的大小。

答案:a=1,b=45解析:连续数的和等于首项和末项乘以项数的一半,即(a+b) * 45/2 = 12345。

解方程得到a=1,b=45。

2. 高为15厘米的三角形与高为12厘米的梯形的面积相等,那么这两个多边形底边之间的长度差是多少?答案:4厘米解析:三角形的面积为底边乘以高的一半,梯形的面积为上底加下底再乘以高的一半。

用等式表示为(15 * 底边) / 2 = (12 * (上底 + 下底)) / 2。

整理得底边 = 上底 + 下底 - 4。

以上是一些中考数学应用题的练习题库及答案,希望对你的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年各地数学中考经典应用题专题训练(一)方程与不等式类1(绵阳).李大爷一年前买入了相同数量的A、B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只.(1)求一年前李大爷共买了多少只种兔?(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.2(临沂)在全市中学运动会800m比赛中,甲乙两名运动员同时起跑,刚跑出200m后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y(m)与比赛时间x(s)之间的关系,根据图像解答下列问题:(1)甲摔倒前,________的速度快(填甲或乙);(2)甲再次投入比赛后,在距离终点多远处追上乙?(第2题图)3(青岛)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式; (3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?4(凉山)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)5(新疆)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?y 26(重庆)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

(1)请建立销售价格y (元)与周次x 之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?(二)概率与统计类1(青岛).在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.2(眉山).将正面分别标有数字1、2、3、4、6,背面花色相同的五张卡片沅匀后,背面朝上放在桌面上,从中随机抽取两张。

⑴写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率; ⑵记抽得的两张卡片的数字为(a ,)b ,求点P (a ,)b 在直线2y x =-上的概率;3(泸州)有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,第1题图1,2,3, B 布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出—个小球,用m 表示取出的球上标有的数字,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字.(1)若用(m ,n)表示小明取球时m 与n 的对应值,请画出树状图并写出(m ,n)的所有取值;(2)求关于x 的一元二次方程0212=+-n mx x 有实数根的概率.(三)测量类1(青岛).在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)2(太原)如图,从热气球C 上测得两建筑物A 、B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A 、D 、B 在同一直线上,求建筑物A 、B 间的距离.CG E D B A F 第1题图 ABC DEF60°30°3(泸州)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即350米/秒),并在离该公路100米处设置了一个监测点A .在如图8所示的直角坐标系中,点A位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:7.13 )(3)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?参考答案1(1)设李大爷一年前买A 、B 两种种兔各x 只,则由题意可列方程为x + 20 = 2x -10,解得 x = 30. 即一年前李大爷共买了60只种兔. (2)设李大爷卖A 种兔x 只,则卖B 种兔30-x 只,则由题意得 x <30-x , ① 15x +(30-x )×6≥280, ② 解 ①,得 x <15; 解 ②,得x ≥9100, 即 9100≤x <15. ∵x 是整数,9100≈11.11, ∴x = 12,13,14. 即李大爷有三种卖兔方案:方案一 卖A 种种兔12只,B 种种兔18只;可获利 12×15 + 18×6 = 288(元); 方案二 卖A 种种兔13只,B 种种兔17只;可获利 13×15 + 17×6 = 297(元); 方案三 卖A 种种兔14只,B 种种兔16只;可获利 14×15 + 16×6 = 306(元). 显然,方案三获利最大,最大利润为306元.2. 解:(1)甲. ······················································································· (3分) (2)设线段OD 的解析式为1y k x =.把(125800),代入1y k x =,得1325k =. ∴线段OD 的解析式为325y x =(0125x ≤≤). ········································· (5分) 设线段BC 的解析式为2y k x b =+.把(40200),,(120800),分别代入2y k x b =+.得2220040800120k b k b =+⎧⎨=+⎩,. 解得2152100k b .⎧=⎪⎨⎪=-⎩, ∴线段BC 的解析式为151002y x =-(40120x ≤≤). ································ (7分) 解方程组325151002y x,y x .⎧=⎪⎪⎨⎪=-⎪⎩得100011640011x y .⎧=⎪⎪⎨⎪=⎪⎩, ······················································ (9分)640024008001111-=. 答:甲再次投入比赛后,在距离终点2400m 11处追上了乙. 3解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ······························································································· 4分(2)12y y y =-23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; ····················································································· 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···························· 9分 最大利润211(46)111082=--+=(元). 4. 解:设至少涨到每股x 元时才能卖出. ···························································· 1分 根据题意得1000(50001000)0.5%50001000x x -+⨯+≥ ···································· 4分 解这个不等式得1205199x ≥,即 6.06x ≥. ························································· 6分 答:至少涨到每股6.06元时才能卖出. ······························································· 7分 5解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元).应去乙公司购买; ·············· 3分 (2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元;①若该单位是在甲公司花费7 500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.当15x =时,每台单价为8002015500440-⨯=>,符合题意,当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去. ············· 10分 ②若该单位是在乙公司花费7 500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台. 6解:(1)202(1)218(16)()......(2)30 (611)() (4)x x x x y x x +-=+≤<⎧=⎨≤≤⎩为整数分为整数分(2)设利润为w222211202(1)(8)1214(16)()......881130(8)12(8)18(611)()......88y z x x x x x w y z x x x x ⎧-=+-+--=+≤<⎪⎪=⎨⎪-=+--=-+≤≤⎪⎩为整数(6分)为整数(8分)21114 5 1788w x x w =+=最大当时,=(元)....(9分)2111(8)18 11 91819888w x x w =-+=⨯+最大当时,==(元)....(10分)综上知:在第11周进货并售出后,所获利润最大且为每件1198元 (10)二概率与统计1解:13580502016.5202020⨯+⨯+⨯=(元),·················································· 4分 ∵16.55>元元∴选择转转盘对顾客更合算.2. 解:(1)任取两张卡片共有10种取法,它们是:(1、2),(1、3),(1、4),(1、6),(2、3),(2、4),(2、6),(3、4),(3、6),(4、6);和为偶数的共有四种情况.……(2分)故所求概率为142105P ==;……(4分) (2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线y =x -2上的只有(3、1),(4、2),(6、4)三种情况,故所求概率1320P =…(7分)(三)测量类1解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=, 则4tan tan 373CE x GE x CGE ===∠°; ················· 4分 ∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米).答:古塔的高度约是39米. 2解:由已知,得306090ECA FCB CD ∠=∠==°,°,,EF AB CD AB ⊥∥,于点D .3060A ECA B FCB ∴∠=∠=∠=∠=°,°.····················································· 2分 在Rt ACD △中,90tan CDCDA A AD∠=°,=,90390903tan 333CD AD A ∴===⨯=. ··························································· 4分 在Rt BCD △中,90tan CDCDB B BD∠=°,=, 90303tan 3CD DB B ∴===. ········································································· 6分 9033031203AB AD BD ∴=+=+=(米).答:建筑物A B 、间的距离为1203米.CGEDB AF 第19题图。

相关文档
最新文档