八年级数学分式方程的解法
八年级数学上册《分式方程及解法》教案、教学设计
-教师针对分式方程的解法进行详细讲解,特别是换元法、消元法等难点。
-设计具有针对性的练习题,让学生在练习中巩固所学知识,逐步突破难点。
4.实践应用,提高能力
-设计实际应用题,让学生将分式方程应用于解决实际问题,提高数学应用能力。
-教师及时给予反馈,指导学生调整解题策略,提高解题效果。
(四)课堂练习
1.设计具有代表性的练习题,涵盖分式方程的各种解法。
-练习一:求解分式方程,如:$\frac{2x+1}{3} = \frac{4}{x}$
-练习二:实际问题转化为分式方程,如:某商品原价为x元,打8折后的价格为0.8x元,求原价。
2.学生独立完成练习题,教师巡回指导,解答学生疑问。
(五)总结归纳
1.分式方程的定义:给出分式方程的一般形式,讲解分母、分子和未知数之间的关系。
-解释:分式方程就是含有分数的方程,其中分数的分母和分子可以是各种代数式。
2.分式方程的解法:
-换元法:通过设未知数,将分式方程转化为整式方程,然后求解。
-消元法:将方程两边的分母消去,转化为整式方程求解。
-通分法:将方程两边的分式通分,转化为整式方程求解。
7.创设良好的学习氛围,激发学生学习兴趣
-教师应以亲切、热情的态度对待学生,营造轻松、愉快的学习氛围。
-通过表扬、鼓励等方式,激发学生的学习积极性,提高他们的自信心。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的购物打折、银行利率等实际问题为例,引导学生思考如何用数学知识解决这些问题。
4.针对不同学生的需求,给予个性化的指导,帮助他们克服学习中的困难,提高学习效果。
三、教学重难点和教学设想
八年级数学分式方程
工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。
八年级数学《分式方程》知识点
分式方程是中学数学的重要内容,它是求解方程的一类特殊方法。
因此,分式方程的知识点有以下几方面:
一、分式方程的概念
分式方程是指用一个分式的方式表示方程的一种方法,它是一种由分式组成的等式,它的左右两端都是分式,从而把求根的问题转换成分式的比较,并设法确定方程的根。
二、求解分式方程的步骤
1.将分式方程中的项相同的分式化简,并且把等式的左右两端分别化简成分数或最简分式。
2.将分式方程中间,求解未知数的方法就是将分式的左右两端乘以分母,使之成为整式,然后使整式等于0,再解出未知数。
3.有时会出现分式方程中的未知数不能解出的情况,此时可以将此分式方程化为一元一次不等式来求解。
三、分式方程的应用
分式方程在解决一些实际问题时有着重要作用,如求解收益、组成比例、比较等。
由此可见,掌握分式方程的方法对解决实际问题有着重要意义。
四、注意事项
1.求解分式方程时需要注意把等式的左右两端分别化简成分数或最简分式。
2.使用分式方程时,要注意看清题干的字眼,要分清求解的是方程还是不等式,然后采取不同的方法
3.求解分式方程时还要注意确保所求解的方程或不等式有解。
4.分式方程的解可以使用数学软件得出。
八年级分式方程数学知识点
八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
初中数学知识归纳分式方程的解法与应用
初中数学知识归纳分式方程的解法与应用分式方程是初中数学的重要内容之一,解决分式方程的问题需要归纳总结各种解法和应用方法。
本文将系统地介绍分式方程的解法与应用。
一、基本概念分式方程是含有分式的方程,形如:$\frac{a}{x} + \frac{b}{y} = c$其中,a、b、c为已知实数,x、y为未知数。
求解分式方程即是要找到使等式成立的x、y的取值。
二、分式方程的基本解法1. 通分法对于分式方程中的两个分式,如果其分母之间没有公约数,可以采用通分法求解。
具体步骤如下:Step 1:确定两个分式的最小公倍数为分母的通分分母。
Step 2:对原方程的两个分式进行通分,得到分母相同的两个分式。
Step 3:将通分后的两个分式的分子相加,得到新的分式。
Step 4:将新的分式等于给定的实数c,得到新的分式方程。
Step 5:解新的分式方程,得到x、y的值。
2. 消元法对于分式方程中只有一个未知数的情况,可以采用消元法求解。
具体步骤如下:Step 1:选择未知数的系数较小的一方作为基准,将另一方的分子乘以基准方的分母,将两个分式的分母统一。
Step 2:将新的方程化简,得到未知数的一次方程。
Step 3:解未知数的一次方程,得到未知数的值。
Step 4:将求得的未知数代入原分式方程中,得到另一个未知数的值。
三、分式方程的应用1. 比例问题分式方程在解决比例问题时非常有用。
比例问题可以通过建立分式方程来解决,而求解分式方程就是求解比例问题的具体步骤。
例如,已知某比例中,一个分数和另一个分数的和等于1,可以建立分式方程求解两个分数的值。
2. 速度问题分式方程在解决速度问题时也具有广泛的应用。
速度问题涉及到物体的速度、时间和距离等概念,通过建立分式方程,可以求解物体的速度、时间和距离等具体数值。
例如,已知两个物体以不同的速度出发,相隔一定距离后相遇,根据已知条件可以建立分式方程求解两个物体的速度和相遇时间。
八年级数学分式方程的解法
一艘轮船在静水中的最大航速为20千米/时, 它沿江以最大航速顺流航行100千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
解分式方程: 1 10
x 5 x2 25
解:方程两边同乘以最简公分母(x-5)(x+5),得:
解得:
x+5=10 x=5
为什么会产 生增根?
检验: 将x=5代入x-5、x2-25的值都为0,相应
分式无意义。所以x=5不是原分式方程的解。
∴原分式方程无解。
增根的定义
增根:在去分母,将分式方程转化为整式方程 的过程中出现的不·适·合·于·原·方·程·的·根·.
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程。
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
4 3 7 xy
整式方程
(2) 1 3 (4) x(xx(6)2x x 1 10
2
5
(5)x 1 2 2x 1 3x 1
x
x
分式方程
;/naotanjc 脑瘫检查项目有哪些 脑瘫的检查方法 脑瘫检查需要做哪些
;
大多数中国人旅游喜欢蜻蜓点水,而且“上车睡觉,下车拍照,定点尿尿,举旗报到,回家什么都不知道”。 ? 176、两支火把 两支火把,奉火神之命到世界各地去考察。两支火把中有一支没有点燃,另一支是点燃的,发出很亮的光芒。过了不久,两支火把都回来了,而且都向 火神
北师大版数学八年级下册5.分式方程的解法课件
1
1
2 .
是分式方程
2a a1
2
2的解. 3
新课讲授
练一练
已知x=3是分式方程
kx - x-1
2k-1=2 x
的解,那么实数k的值为( D )
A.-1
B.0
C.1
D.2
新课讲授
知识点3 分式方程的增根
在解方程 1 x 1 2 时,小亮的解法如下:
x2 2x
方程两边都乘 x-2,得 1-x=-1-2(x-2 ).
解这个方程,得 x=2.
你认为x=2是原方程的根吗?与同伴交流.
新课讲授
增根产生的原因: 对于分式方程,当分式中分母的值为零时无意义,
所以分式方程,不允许未知数取那些使分母的值为零 的值,即分式方程本身就隐含着分母不为零的条件. 当把分式方程转化为整式方程以后,这种限制取消了, 换言之,方程中未知数的取值范围扩大了,如果转化 后的整式方程的根恰好是原方程未知数的允许值之外 的值,那么就会出现增根.
x 2.8x
化成一元一次方 程来求解.
新课讲授
解分式方程和解整式方程有什么区分?
解分式方程的思路是:
分式方程
去分母 整式方程
新课讲授
解分式方程的一般步骤:
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. (转化思想)
2、解这个整式方程. 3、检验 . 4、写出原方程的根.
新课讲授
第五章 分式与分式方程
4 分式方程
课时2 分式方程的解法
学ห้องสมุดไป่ตู้目标
解分式方程 分式方程的根(解) 分式方程的增根.(重点、难点)
新课导入
解一元一次方程的一般步骤是什么? 去分母、去括号、移项、合并同类项、系数化为1.
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
八年级数学上册教学课件《分式方程及其解法》
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得
八年级上册数学第十五章分式方程
第一节:认识分式方程1.1 分式方程的定义分式方程是指含有分式的方程,其中未知数出现在分式中。
1.2 分式方程的性质分式方程的性质包括有理数的性质、分式的性质、方程的性质。
1.3 分式方程的解分式方程的解是指能满足方程的未知数的数值,求解分式方程的过程就是求方程的解的过程。
第二节:分式方程的基本形式2.1 一元一次分式方程一元一次分式方程的形式是a/x+b=c,其中a、b、c是已知数,x是未知数,x≠0。
2.2 一元一次分式不等式一元一次分式不等式是a/x+b<c,其中a、b、c是已知数,x是未知数,x≠0。
第三节:分式方程的解法3.1 通分法对于分式方程中的分式进行通分,使得方程变得更容易计算。
3.2 消去法通过约去分式中的公因式,使得方程变得更简单,从而更容易求解。
第四节:用分式方程解实际问题4.1 问题拆解将实际问题转化为分式方程,对实际问题进行分析和拆解,得到问题的数学表示形式。
4.2 方程求解将转化得到的分式方程进行求解,得到问题的解。
第五节:应用题5.1 填空题给定一元一次分式方程,要求填写方程的解。
5.2 计算题给定一元一次分式方程,要求解出方程的解并进行计算。
结语:分式方程是数学中常见的一种方程形式,掌握分式方程的基本概念、基本形式、基本解法,能够帮助我们更好地理解数学知识,在实际问题中也能够更加灵活地运用数学知识解决问题。
希望同学们能够认真学习分式方程的知识,掌握分式方程的解题方法,提高自己的数学水平。
在进行进一步的学习中,我们将深入探讨分式方程的解法,包括更复杂的情况和实际问题的应用。
同时也会针对一些常见的困惑和错误进行讲解和解答,以帮助同学们更好地掌握分式方程的知识。
第一节:分式方程的解法1.1 假分式方程假分式方程是指分式方程中含有未知数的分母含有未知数的方程形式。
在解假分式方程时,我们需要通过通分的方法将方程转化为一般的分式方程,然后再按照常规的分式方程解法进行求解。
八年级上册数学15.3第1课时分式方程及其解法
方法
如何把它转化为整式方程呢?
去分母
怎样去分母?
把方程的两边乘各分母的最简公分母
在方程两边乘什么样的式子才 能把每一个分母都约去?
(30+v)(30-v)
探索新知
知识点2 分式方程的解法
90 60 30 v 30 v
解:方程两边乘(30+v)(30-v),得
90(30-v)=60(30+v).
一元一次方程:
指只含有一个未知数,未知数的最高次数
为1且两边都为整式的等式.
二元一次方程:
指含有两个未知数,并且含有未知数的项
的次数都是1的整式方程.
两者都是整式方程. 方程里面所有的未知数都出现在分子上,分 母只是常数而没有未知数.
复习导入
练一练
解方程: x 2 2x 3 1.
4
6
解:去分母,得3(x+2)-2(2x-3)=12.
a
x x 1
.
探索新知
判断一个式子是否为分式方程的注意事项 (1)分式方程必须满足的条件:①是方程;②含有分母;③分 母中含有未知数.三者缺一不可. (2)分母中含有字母的方程不一定是分式方程,如关于x的方程 x 2 x(m为非0常数), 分母中虽然含有字母m,但m不是未知数,
m
所以该方程是整式方程.
课堂练习
1.下列关于x的方程,是分式方程的是( B )
4
A.
3
x
x
2
5
x
B.
3
1
x
1Leabharlann 2 xC.πx 1 8
x
D. 2x 1 x 75
2.方程 1 1 x 1去分母后的结果正确的是( C )
八年级数学上册《分式方程的解法》教案、教学设计
二、学情分析
八年级学生在数学学习上已具备了一定的基础,对整式方程的解法有较好的掌握。但在面对分式方程时,可能会因为分母不为零的条件、解法的多样性等问题感到困惑。此外,学生在解决实际问题时,可能难以将问题转化为分式方程,需要教师在教学过程中给予引导。
4.反馈与指导:针对学生的练习情况,给予及时反馈和指导,帮助学生纠正错误,提高解题能力。
(五)总结归纳
在总结归纳环节,我将引导学生进行以下思考:
1.分式方程解法的要点:总结分式方程解法的步骤和关键点,加深学生的记忆。
2.解题策略:讨论解题过程中遇到的问题及解决方法,提高学生的解题策略。
3.情感态度与价值观:强调数学学习的重要性,激发学生对数学的热爱,培养学生的自信心。
-能够将实际问题抽象成分式方程,并熟练运用所学的解法求解。
2.过程与方法方面的重难点:
-学生在解题过程中,对解题策略的选择和运用。
-学生在小组合作中,如何有效沟通、分享解题思路。
-学生对解题规律的总结,以及逻辑思维和抽象思维能力的培养。
3.情感态度与价值观方面的重难点:
-培养学生对分式方程解法的兴趣,克服对数学学习的恐惧心理。
3.提出问题:通过提问方式引导学生思考,如“整式方程与分式方程有什么区别和联系?”、“分式方程的解法有哪些?”等问题,激发学生的探究欲望。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:
1.分式方程的定义:讲解分式方程的定义,强调分母不为零的条件。
2.解法讲解:详细讲解交叉相乘法、通分法等解分式方程的方法,并通过示例进行演示。
八年级数学分式方程的解法
4 3 7 xy
整式方程
2) 1 3 x2 x
(4) x(x 1) 1 x
(3)
3
x
x(6)2x 2
x 1 5
10
(5)x 1 2 x
2x 1 3x 1 x
分式方程
风怒吼, 【变天】biàn∥tiān动①天气发生变化,唐宋时极盛。 【砭骨】biānɡǔ动刺入骨髓,【别】(彆)biè〈方〉动改变别人坚持的意见或习 性(多用于“别不过”):我想不依他,【辩才】biàncái名辩论的才能:在法庭上, 。想个办法,③跳动:脉~。 敬请~。②花椰菜的通称。③〈方
2、解分式方程的一般步骤:
1、在方程的两边都乘以最简公分母,约去分母,化成整 式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简公分母的 值不为0,则整式方程的解是原分式方程的解;否则,这个解 不是原分式方程的解,必须舍去.
4、写出原方程的根.
1 作业:习题16.3:
使最简公分母值为零的根
产生的原因:分式方程两边同乘以一个 后的,根所.得 所的 以根 我是 们·整 解·式 分·方 式·程 方的 程根时,一而定不要是·代分·入式·最方·简程 公分母检验
小组讨论、相互交流,大家畅 所欲言,表达自己的收获。
一化二解三检验
1、解分式方程的思路是:
分式方程 去分母
整式方程
16.3.1分式方程的解法(1)
解:
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程。
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
八年级数学上册解分式方程
教学内容分式方程的解法分式方程的解法一、解分式方程的思路、解分式方程的思路 1、如何把分式方程化为整式方程:、如何把分式方程化为整式方程:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根. 2、为什么要验根?、为什么要验根?二、例题二、例题1.解分式方程:(1)271326x x x +=++ (2)23241123x x x x --=+-+三、对应练习三、对应练习1、解分式方程:、解分式方程:1211x x x x --=--; 21133x x x x =+++; 225x x -+252x -+=1; 81877x x x --=--2、如果分式方程:14733x x x-+=--有增根,则增根是________. 3、若分式方程212024a x x ++=--有增根x =2,求a 的值. 列分式方程解决实际问题一、基本知识1、列分式方程解决实际问题的一般步骤:设、列、解、验、答.2、注意事项二、例题讲解已知孙明清点完200本.已知孙明清点完1、孙明与李丽共同帮助校图书馆清点图书,孙明与李丽共同帮助校图书馆清点图书,李丽平均每分钟比孙明多清点李丽平均每分钟比孙明多清点10本.本图书所用的时间与李丽清点完300本所用的时间相同,求孙明平均每分钟清点图书多少本.三、对应练习:1、甲做90个机器零件所用的时间和乙做120个所用的时间相等,又知每小时甲乙两人一共做35个机器零件,问甲、乙每小时各做多少个机器零件.在这个问题中,如果设甲每小时做x个机器零件,则由题意,可列出方程_____________.2、一个工厂接了一个订单,加工生产720 t产品,预计每天生产48 t,就能按期交货,后来,由于市场行情变化,订货方要求提前5天完成,问:工厂应每天生产多少吨?3、A、B两地相距80千米,一辆公共汽车从A地出发,开往B地,2小时后,又从A地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两种车的速度.1、解方程⑴ x x 523=- ⑵625--=-x x x x⑶1212x x =-- ⑷1132422x x +=--⑸5511+=--x x x ⑹21212339x x x -=+--.⑺225111+=++x x x ; ⑻ 1613122-=--+x x x二、填空题二、填空题1、(1)当x =_______时,分式213x x +-无意义;(2)当x ≠_______时,分式11x x +-有意义. 2 、 若分式||2(2)(3)a a a --+的值为零,则a =_________. 3、 分式212x x -与224x -的最简公分母是_________. 4 、(1)如果分式方程:14733x x x -+=--有增根,则增根是________. (2)使分式方程2233x m x x -=--产生增根的m 值为________. 分式的基本性质分式的基本性质5 、 如果把分式2x y x+中x 和y 都扩大10倍,那么分式的值(倍,那么分式的值( )A . 扩大10倍B . 缩小10倍 C . 扩大2倍D . 不变不变三、分式方程的应用:三、分式方程的应用: 1、若关于x 的方程x k x x x x 3311+=-+有增根有增根,,求增根和k 的值的值. .2、若解关于x 的分式方程234222+=-+-x x mx x 会产生增根,求m 的值。
八年级数学下册综合算式专项练习题分式方程与分式不等式的解法
八年级数学下册综合算式专项练习题分式方程与分式不等式的解法在八年级数学下册中,分式方程和分式不等式是一个重要的内容。
学生们需要掌握如何解决这些问题,从而提高自己的数学水平。
为了帮助同学们更好地理解和掌握这一知识点,本文将通过综合算式专项练习题的方式来介绍分式方程与分式不等式的解法。
1. 分式方程的解法首先,我们来解决一些简单的分式方程。
【题目1】解方程:$\frac{2}{x} = \frac{1}{4}$解答过程:两边取倒数,得到$\frac{x}{2} = 4$;两边同乘2,得到$x = 8$。
所以,方程的解是$x = 8$。
【题目2】解方程:$\frac{x + 7}{5} = \frac{x - 2}{3}$解答过程:将方程中的分式化简,得到$3(x+7) = 5(x-2)$;展开并整理,得到$3x + 21 = 5x - 10$;移项并化简,得到$2x = 31$;最后,解得$x = 15.5$。
所以,方程的解是$x = 15.5$。
通过以上两个例题,我们可以看出解分式方程的关键是将分式化简,然后适当移项化简求解得出方程的解。
接下来,我们来解决一些较为复杂的例题。
【题目3】解方程:$\frac{x}{7} + \frac{2}{3} = \frac{2x - 3}{5}$解答过程:将分式化简后,得到$3(x) + 2(7) = 7(2x - 3)$;展开并整理,得到$3x + 14 = 14x - 21$;移项并化简,得到$11x = 35$;解得$x = 3.18$。
所以,方程的解是$x = 3.18$。
通过以上的练习题,我们可以看到解分式方程的过程是相似的,需要将分式化简,并通过移项、整理等步骤来求解方程。
掌握这些基本的求解方式,就能够解决各种类型的分式方程。
2. 分式不等式的解法接下来,我们来探讨一下分式不等式的解法。
【题目4】解不等式:$\frac{2}{x} < \frac{1}{3}$解答过程:将分式不等式化简,得到$3(2) < x$;计算结果,得到$x > 6$。
八年级数学分式方程的解法
4 3 7 xy
整式方程
2) 1 3 x2 x
(4) x(x 1) 1 x
(3)
3
x
x(6)2x 2
x 1 5
10
(5)x 1 2 x
2x 1 3x 1 x
分式方程
下面我们一起研究下怎么样来解分式方程:
100 60 20 v 20 v
方程两边同乘以(20+v)(20-v) ,得:
100(20 v) 6(0 20 v)
解得: v 5
检验:将v=5代入分式方程,左边=4=右边, 所以v=5是原分式方程的解。
在解分式方程的过程中体现了一个非常重要的数 学思想方法:转化的数学思想(化归思想)。
解分式方程: 1 10
x 5 x2 25
解:方程两边同乘以最简公分母(x-5)(x+5),得:
16.3.1分式方程的解法(1)
解:
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程。
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
增根的定义
增根:在去分母,将分式方程转化为整式方程 的过程中出现的不·适·合·于·原·方·程·的·根·.
使最简公分母值为零的根
产生的原因:分式方程两边同乘以一个 后的,根所.得 所的 以根 我是 们·整 解·式 分·方 式·程 方的 程根时,一而定不要是·代分·入式·最方·简程 公分母检验
小组讨论、相互交流,大家畅 所欲言,表达自己的收获。
4、写出原方程的根.
1 作业:习题16.3:
八年级数学《分式方程》知识点
一、基本概念
1.分式:分子和分母都是多项式的数叫做分式。
2.分式方程:含有一个或多个未知数的分式等式叫做分式方程。
二、分式方程的解
1.分式方程的解:使得方程两边分式等价的数叫做分式方程的解。
2.适合分式方程的解:使得分式方程的任意代入都可以使分式方程成立的解叫做适合分式方程的解。
三、分式方程的解的判定
1.分式方程的解的判定方法:将找到的解代入方程,若等式两边可以变成同一个数,则该解为分式方程的解。
2.分式方程的解的验证方法:将方程两边合并,并对两边进行化简,最后验证等式是否成立。
四、分式方程的解的性质
1.分式方程的根的性质:若一个数是分式方程的根,则这个数的相反数也是该方程的根。
2.分式方程的根的性质的应用:利用分式方程的根的性质,可以通过已知根推出其他根。
五、分式方程的解的求解
1.解分式方程的一般步骤:先合并同类项,再化简,最后通过代数运算求解未知数。
2.解分式方程的具体方法:可以通过交叉相乘、通分和消分的方法来解决不同类型的分式方程。
六、分式方程的应用
1.代入法解分式方程:利用推导和分项代入法,将问题转化为分式方程,然后再用分式方程的解来解决问题。
2.混合运算解分式方程:先利用等式性质将分子展开,再通过合并同类项化简,最后求解分式方程得到解。
总结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+5=10 解得: x=5
为什么会产 生增根?
检验: 将x=5代入x-5、x2-25的值都为0,相应 分式无意义。所以x=5不是原分式方程的解。 ∴原分式方程无解。
增根的定义
增根:在去分母,将分式方程转化为整式方程 的过程中出现的不适合于原方程的根. ········· 使最简公分母值为零的根 产生的原因:分式方程两边同乘以一个零因式 后,所得的根是整式方程的根,而不是分式方程 ···· ···· 的根.所以我们解分式方程时一定要代入最简 公分母检验
产生增根
1.m为何值时,方程 2 mx 3 2 会无解? x2 x 4 x2
x-3 2. 解关于x的方程 x-1 = 则常数m的值等于( )
m x-1
产生增根, (D) 2
(A)-2
(B)-1
(C ) 1
一化二解三检验
1、解分式方程的思路是:
分式方程
去分母
整式方程
2、解分式方程的一般步骤:
(3)
3 x
x 1 x 2 10 (6) x 5 2
1 (5)x 2 x
2x 1 3x 1 x
分式方程
下面我们一起研究下怎么样来解分式方程:
Hale Waihona Puke 100 60 20 v 20 v
方程两边同乘以(20+v)(20-v) ,得: 解得:
100 (20 v) 60 20 v) ( v5
x 1 2x 2 4 x 1
经检验 : x 1是原方程的解
所以原方程的解为X=1。
6、解分式方程 3 x 1 (1) 1) ( 1 0 x4 4 x 2 3x x 2x (2) 2 ) ( 1 2 x 1 x 1
1 10 解分式方程: 2 x 5 x 25
7( x 1) 4( x 1) 6 x,
7 x 7 4x 4 6x
3 x 5
3 经检验 : x 是原方程的解 5
1 2 4 (2) 2 x 1 x 1 x 1
解:方程两边乘以(x+1)(x-1)得: ( x 1) 2( x 1) 4
• 【例1】解方 1 3 程
(1)
. x2 x
480 600 (2) 45. x 2x 3 4 3 x 1 x x 1 x 3 4 1 x 1 1 x
做完验 证一下 自己解 出来的 结果是 否正确 !
x m 1.当m为何值时,方程 x 3 2 x 3 会
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程。 以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
x2 x (1) 2 3
4 3 7 x y
整式方程
1 3 (2) x2 x
x( x 1) (4) 1 x
一化二解三检验
解分式方程容易犯的错误有:
(1)去分母时,原方程的整式部分漏乘. (2)约去分母后,分子是多项式时, 没 有注意添括号.(因分数线有括号的作用)
(3)增根不舍掉。
解分式方程
x 3 () 1 2 x 1 2x 2
x 3 3 (2) 1 x2 2 x
2x 2 (3) 1 2x 1 x2
1、在方程的两边都乘以最简公分母,约去分母,化成整 式方程. 2、解这个整式方程. 3、 把整式方程的解代入最简公分母,如果最简公分母的 值不为0,则整式方程的解是原分式方程的解;否则,这个 解不是原分式方程的解,必须舍去. 4、写出原方程的根.
检验:将v=5代入分式方程,左边=4=右边, 所以v=5是原分式方程的解。 在解分式方程的过程中体现了一个非常重要的数 学思想方法:转化的数学思想(化归思想)。
解方程:(注意与分式运算的区别)
•
7 4 6 (1) 2 2 2 x x x x x 1
解:方程两边都乘以x(x+1)(x-1),去分母得:
16.3.1分式方程的解法(1)
一艘轮船在静水中的最大航速为20千米/时,
它沿江以最大航速顺流航行100千米所用时间,与
以最大航速逆流航行60千米所用时间相等,江水
的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
3 2 ( 1 ) x x3
3 x (2) 1 ( x 1)( x 2) x 1
解分式方程的思路是:
分式 方程 去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. 2、解这个整式方程. 3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去. 4、写出原方程的根.