电磁干扰测量与诊断
《电磁干扰诊断导则》
电磁干扰诊断导则一、电磁环境评估在进行电磁干扰诊断之前,首先需要对电磁环境进行评估。
评估的内容包括电磁场强度、频率范围、干扰模式等。
通过对电磁环境的评估,可以初步判断是否存在电磁干扰问题,并为后续的诊断和解决方案提供依据。
二、电磁干扰源识别识别电磁干扰源是解决电磁干扰问题的关键步骤。
通过对干扰源的识别,可以明确干扰的来源,为传播路径分析和受扰设备诊断提供基础。
电磁干扰源识别的方法包括频谱分析、信号捕获、干扰模式识别等。
三、传播路径分析传播路径分析是确定电磁干扰从干扰源传播到受扰设备的路径。
通过对传播路径的分析,可以了解干扰的传播方式和强度衰减情况,为受扰设备的诊断提供依据。
传播路径分析的方法包括磁场强度测量、电磁场仿真等。
四、受扰设备诊断受扰设备诊断是确定电磁干扰对特定设备的影响程度和影响方式。
通过对受扰设备的诊断,可以了解设备的抗干扰性能和敏感度,为后续的电磁兼容性设计和优化提供基础。
受扰设备诊断的方法包括频谱分析、信号捕获、故障模式分析等。
五、电磁兼容性设计建议根据受扰设备诊断的结果,提出针对性的电磁兼容性设计建议。
建议包括优化电路设计、选择合适的滤波器、屏蔽材料等,以提高设备的抗干扰性能和敏感度。
六、滤波器设计及优化针对设备的高频信号干扰,需要进行滤波器设计及优化。
滤波器的设计需要考虑信号频率、幅值等因素,并采用适当的滤波器元件和参数进行优化。
优化后的滤波器可以提高设备的抗干扰性能,减少信号噪声和失真。
七、屏蔽材料选择及安装设计屏蔽材料的选择和安装设计对于防止电磁干扰至关重要。
根据干扰的频率和强度,选择合适的屏蔽材料,如金属、导电橡胶等。
同时,需要考虑屏蔽材料的安装位置和固定方式,确保有效的屏蔽效果。
八、接地系统优化建议接地系统是影响设备抗干扰性能的重要因素之一。
良好的接地系统可以有效地将干扰引入大地,提高设备的抗干扰性能。
针对设备的接地系统,提出优化建议,包括选择合适的接地线材、确定接地电阻值等。
电磁干扰如何影响医疗设备的运行
电磁干扰如何影响医疗设备的运行在当今高度科技化的医疗环境中,医疗设备的精确运行对于患者的诊断、治疗和监护至关重要。
然而,电磁干扰这一无形的“敌人”却可能悄悄地对医疗设备的正常工作造成严重影响。
电磁干扰,简单来说,就是指任何能中断、阻碍、降低或限制电子设备有效性能的电磁能量。
这种干扰可能来自各种源头,包括但不限于电力线、无线电发射设备、移动电话、微波炉,甚至是其他医疗设备本身。
首先,让我们看看电磁干扰对医疗设备的具体影响方式。
电磁干扰可能会导致医疗设备的测量结果出现误差。
例如,在心电图机中,如果受到电磁干扰,所记录的心电图可能会出现异常的波形,从而影响医生对患者心脏状况的准确判断。
血压计可能会给出不准确的血压读数,导致错误的诊断和治疗方案。
对于一些生命支持设备,如呼吸机和心脏起搏器,电磁干扰的影响可能更加严重。
呼吸机的工作异常可能会导致患者呼吸不畅,危及生命。
而心脏起搏器如果受到干扰,可能会出现起搏频率异常,甚至停止工作,给患者带来极大的危险。
影像诊断设备,如 X 射线机、CT 扫描仪和 MRI 机器,也容易受到电磁干扰的影响。
电磁干扰可能会导致图像出现伪影、模糊或者失真,影响医生对疾病的诊断。
特别是在 MRI 设备中,由于其工作原理对磁场的稳定性要求极高,任何微小的电磁干扰都可能导致磁场不均匀,从而影响成像质量。
那么,电磁干扰是如何进入医疗设备的呢?一种常见的途径是通过电源线。
电力线上的噪声和干扰信号可以传导到医疗设备中,影响其内部电路的工作。
另外,空间辐射也是电磁干扰的重要传播方式。
无线电波、微波等可以直接辐射到医疗设备的敏感部件上,引起干扰。
医疗设备自身的设计和防护措施不足也是导致容易受到电磁干扰的原因之一。
一些设备可能没有足够的屏蔽措施来阻挡外部的电磁辐射,或者内部电路的抗干扰能力较弱。
为了减少电磁干扰对医疗设备的影响,采取一系列的措施是非常必要的。
在医院的规划和建设阶段,就应该考虑电磁兼容性的问题。
电器产品的电磁骚扰测试与性能分析
Telecom Power Technology设计应用电器产品的电磁骚扰测试与性能分析廖兴展1,肖茂胜2,陈炳文机电工程系,广东揭阳522000;2.揭阳安麦思科技有限公司,广东针对电器产品的安全性能和可靠性要求,以电吹风为研究对象分析电磁骚扰测试方法。
依据标准的测试要求,对电吹风进行端子骚扰电压和骚扰功率性能测试。
测试结果表明,0.1530~300 MHz频段内,电吹风电磁辐射产生的骚扰功率低于限值,符电磁骚扰;骚扰电压;骚扰功率;电磁兼容Electromagnetic Disturbance Test and Performance Analysis of Electrical ProductsLIAO Xingzhan1,XIAO Maosheng2,CHEN Bingwen.Department of Mechanical and Electrical Engineering,Jieyang Vocational and Technical College.Jieyang Amax Technology Co.,Ltd.,Jieyangperformance and reliabilityis analyzed with the hair 2021年1月10日第38卷 第1期Telecom Power TechnologyJan. 10, 2021 Vol.38 No.1 廖兴展,等:电器产品的电磁骚扰测试与 性能分析很多低端电吹风产品电磁兼容指标不达标的主要原因。
除此之外,骚扰电压信号还会传导到公用电网,可能导致其它系统或设备的程序中断或产生错误代码,影响系统或设备的正常工作。
2 电磁骚扰测试与性能分析为减小外界电磁环境的影响,依据GB 4343.1—2018标准的测试要求,传导骚扰测试在屏蔽室中进行。
本文选择某一公司的电吹风产品作为测试设备,在电磁兼容实验室将电吹风与电磁骚扰测试设备相连接,要求线性阻抗稳定网络(Line Impedance Stabilization Network ,LISN ) 接地良好,与测试电吹风产品相距 0.8 m ,屏蔽室墙面与测试电吹风产品距离不小于0.4 m ,图1为电吹风产品电磁骚扰测试现场。
PCB设计中电磁辐射干扰与对策
科技资讯科技资讯S I N &T NOLO GY I NFORM TI ON 2008N O.12SC I ENC E &TEC HNO LO GY I N FO RM A TI ON I T 技术1电磁干扰测量与诊断(1)频谱分析仪的原理。
频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如下。
图1频谱分析仪的原理框图(2)用频谱分析仪分析干扰的来源:1)根据干扰信号的频率确定干扰源。
在解决电磁干扰问题时,最重要的是判断干扰的来源,只有准确将干扰源定位后,才能够提出解决干扰的措施。
根据信号的频率来确定干扰源是最简单的方法,因为在信号的所有特征中,频率特征是最稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。
2)根据干扰信号的带宽确定干扰源。
判断干扰信号的带宽也是判断干扰源的有效方法。
例如,在一个宽带源的发射中可能存在一个单个高强度信号,如果能够判断这个高强度信号是窄带信号,则它不可能是从宽带发射源产生的。
干扰源可能是电源中的振荡器,或工作不稳定的电路,或谐振电路。
当在仪器的通频带中只有一根谱线时,就可以断定这个信号是窄带信号。
当遇到单根谱线时,就要将注意力集中到电路中的周期信号电路上。
(3)产品电磁兼容测试诊断步骤。
下图给出了一个设备或系统的电磁干扰发射与故障分析步骤,按照这个步骤进行可以提高测试诊断的效率。
2解决电磁辐射的方法(1)射频干扰产生。
射频干扰产生于被高频电压干扰的传输信号或射频信号。
通常射频干扰来自于电子设备或仪器,由于电流或电压的突变,这些设备产生具有副作用的射频二次谐波,而且设备本身也产生高频能量,尤其是射频信号。
(2)怎样预防电路板级电磁辐射问题。
大多数情况下,E MC 测试的结果使人感到不满意。
但重新设计产品会浪费大量的资金和时间,并且造成严重的拖延。
1)一般规则。
为了避免不期望的电磁兼容性问题,必须遵循以下规则:a .在设计阶段尽可能早地开始检测工作;b .找到问题的根源;c .在元件级就纠正问题;d.在设计阶段有计划地进行检测;e .依照现有的电磁兼容性指导性文件进行检测;f .在生产阶段进行产品质量检测;辐射预测P C B 板上元件的辐射状况图(64M HZ)。
判断电磁干扰程度的指标
判断电磁干扰程度的指标1.引言1.1 概述概述部分的内容如下:电磁干扰是指电磁场的不良影响对电子设备、通信系统和其他电气设备的正常运行造成的干扰现象。
随着现代科技的高速发展,电磁干扰问题也愈加突出。
电磁干扰给各个领域的电子设备和通信系统带来了巨大的挑战。
电磁干扰可以表现为电磁场的强度、频率、波形等方面的异常变化,进而影响到设备的正常工作。
电磁干扰常常是由于外部电磁源的存在,如电力线、雷电、电磁波等导致的。
同时,设备内部的电子元件、电路设计和布局不合理也会加剧电磁干扰的程度。
判断电磁干扰程度的指标是评估电磁干扰对设备和系统的影响程度的重要标准。
这些指标可以从电磁场强度、频率范围、电磁波形等角度来考量。
准确判断电磁干扰程度的指标可以帮助工程技术人员快速定位和解决电磁干扰问题,提高设备和系统的抗干扰能力。
本文将系统介绍电磁干扰的定义、影响和分类,重点讨论判断电磁干扰程度的常用指标。
同时,还将探讨这些指标在实际工程应用中的意义和价值。
通过深入研究电磁干扰程度的判断指标,我们可以更好地理解电磁干扰的本质,提高电子设备和通信系统的抗干扰能力,为电磁兼容与电磁干扰控制领域的发展做出贡献。
文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下结构组织和展开对电磁干扰程度的判断指标进行讨论:第一部分:引言在引言部分中,将对电磁干扰的概念进行概述,同时介绍本文的结构和目的。
第二部分:正文正文部分将分为两个子节,分别是电磁干扰的定义和影响,以及电磁干扰的分类。
2.1 电磁干扰的定义和影响在这一部分,将详细介绍电磁干扰的概念和定义,并探讨电磁干扰对现代社会产生的各种影响。
这将包括对电子设备、通信系统和无线电波传输等方面的干扰影响进行分析和说明。
2.2 电磁干扰的分类本节将对电磁干扰按照其来源和性质进行分类。
将介绍不同类型的电磁干扰,如人为干扰、天然干扰和设备之间的干扰,同时对干扰的频率、功率等属性进行分析和描述。
电磁干扰对电力设备影响的分析与控制
电磁干扰对电力设备影响的分析与控制引言:电磁干扰是指来自外部电磁场的干扰信号,它可能对电力设备的正常运行产生一系列不良影响。
电磁干扰的源头可以是电力电磁设备、无线电发射设备以及其他电磁波等。
本文将深入分析电磁干扰对电力设备的影响,并探讨相应的控制方法,旨在提高电力设备的稳定性和可靠性。
一、电磁干扰对电力设备的影响分析1. 电磁干扰对电力设备的直接影响电力设备在工作过程中,常常会受到电磁干扰信号的影响,直接影响包括但不限于以下几个方面:首先,电磁干扰可能导致电力设备的工作异常,比如频繁出现故障、性能下降等。
这些问题会直接影响到电力设备的正常运行,带来不可忽视的经济和安全风险。
其次,电磁干扰可能导致电力设备发生误操作,从而造成设备或工作环境的损坏。
例如,高压线路受到强烈的电磁场影响,可能导致线路跳闸,引发火灾等严重后果。
最后,电磁干扰还可能对电力设备的寿命产生不良影响。
频繁的电磁干扰会引起设备内部元器件的电压和电流变化,加速元器件老化,缩短设备的使用寿命。
2. 电磁干扰对电力设备的间接影响除了直接影响外,电磁干扰还会对电力设备的周边环境产生间接影响。
首先,电磁干扰可能对周围的通信设备产生影响,并干扰无线电信号的传输。
这会导致通信中断、数据传输错误等问题,严重影响到正常的工作和生活。
其次,电磁干扰可能导致其他电力设备的故障。
当一个设备受到电磁干扰时,它可能会通过导线或电网传播到其他设备,造成级联故障。
这种级联故障往往带来更大的经济损失,也增加了设备维修和运行的困难。
最后,电磁干扰可能对人体健康产生潜在影响。
特别是一些敏感群体,比如孕妇、老人和儿童等,容易被电磁干扰信号引发的电磁波辐射影响到,可能引发一系列健康问题。
二、电磁干扰的控制方法为了保证电力设备的正常运行和提高其可靠性,我们需要采取一些控制方法来减少电磁干扰的影响。
1. 设备的电磁屏蔽电磁屏蔽是通过设计合理的金属外壳或屏蔽罩来阻挡和吸收电磁波,从而降低电磁干扰的传播。
电磁干扰诊断技巧实例分析报告
电磁干扰诊断技巧实例分析报告一.前言关于电磁干扰的计策,许多刚接触的工程师往往面临一个问题,尽管看了很多计策的书籍,但是却不知要用书中的那些方法来解决产品的EMI问题。
这是一个很实际的问题,看别人修改大概没什么困难,计策加了噪声便能适当的降低,而自己修改时下了一大堆计策,找了一大堆的问题点,却总不能有效地降低噪声。
事实上,这往往也是EMI修改最耗时间的地方,笔者把一些基本的推断方法做全面的介绍,以提供刚入门或者正面临EMI困扰问题的读者参考,整理了一些原则与推断技巧,希望能够对读者有帮助。
二. 水平、垂直推断技巧EMI的测试接收天线分为水平与垂直二个极化,亦即要分别测试记录此二个天线方向的最大读值,噪声务必要在天线为水平及垂直测量时皆能符合规格,测量天线要测量量水平及垂直二个方向,除了要记录到噪声最大时的读值外,也能显示出噪声的特性,由这个特性的显示,我们可初步推断造成EMI问题的重点,关于细部的诊断是很有帮助的,通常这个方法是很容易为修改计策人员所忽略。
在本期的分析中,笔者要介绍几种EMI的判图技巧,也就是如何从静态的频谱分析仪所得到的噪声频谱图做初步的分析,另外也会介绍通常计策修改人员最常用的一些动态分析技巧。
许多工程师常常花了许多时间与精神,却感受无法掌握到重点,可能就是缺乏基本分析的技巧,在噪声的推断上有一些混淆,假如能够掌握一些分析方法,能够节约很多计策的时间。
这里所提的一些方法,一直被很多资深的EMI工程师视为秘诀,由于其中往往是累积了多年的心得与经验才体悟出来的方法,而这些方法通常都是非常有效的。
实例一水平与垂直读值的差异图1 接收天线为水平极化方向图 2 接收天线为垂直极化方向说明:1.这是Modem&Telephone的产品,读者能够很明显地看出来,天线水平常的噪声与垂直时的噪声有很大的差异,那么这其中代表了什么意义呢?分析讨论要清晰的认识这个问题,首先务必要熟悉天线的基本理论,我们先假设发射与接收天线皆为偶极天线。
单片机系统的EMC测试及故障排除的方法解析
单片机系统的EMC测试及故障排除的方法解析
所谓EMC就是:设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
EMC测试包括两大方面内容:对其向外界发送的电磁骚扰强度进行测试,以便确认是否符合有关标准规定的限制值要求;对其在规定电磁骚扰强度的电磁环境条件下进行敏感度测试,以便确认是否符合有关标准规定的抗扰度要求。
对于从事单片机应用系统设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的。
1 单片机系统EMC测试
(1)测试环境
为了保证测试结果的准确和可靠性,电磁兼容性测量对测试环境有较高的要求,测量场地有室外开阔场地、屏蔽室或电波暗室等。
(2)测试设备
电磁兼容测量设备分为两类:一类是电磁干扰测量设备,设备接上适当的传感器,就可以进行电磁干扰的测量;另一类是在电磁敏感度测量,设备模拟不同干扰源,通过适当的耦合/去耦网络、传感器或天线,施加于各类被测设备,用作敏感度或干扰度测量。
(3)测量方法
电磁兼容性测试依据标准的不同,有许多种测量方法,但归纳起来可分为4类;传导发射测试、辐射发射测试、传导敏感度(抗扰度)测试和辐射敏感度(抗扰度)测试。
(4)测试诊断步骤
(5)测试准备
①试验场地条件:EMC测试实验室为电波半暗室和屏蔽室。
前者用于辐射发射和辐射敏感测试,后者用于传导发射和传导敏感度测试。
②环境电平要求:传导和辐射的电磁环境电平最好远低于标准规定的极限值,一般使环境电平至少低于极限值6dB。
③试验桌。
电力设备的电磁干扰与抗干扰技术
电力设备的电磁干扰与抗干扰技术电力设备的电磁干扰及其对周围环境和其他设备的影响一直是电力行业面临的重要问题。
本文将重点讨论电力设备的电磁干扰原理、干扰源以及抗干扰技术等相关内容。
一、电力设备的电磁干扰原理电力设备的电磁干扰是指电力设备在运行过程中产生的电磁波扰动,使得周围的电子设备、通信系统和人体等受到影响。
这种干扰主要来自以下几个方面:1. 导线的电磁辐射:电力设备中的导线会在通电时产生电磁辐射,导致周围的电子设备产生干扰。
2. 开关设备的电弧辐射:在开关设备切换电流时,容易产生电弧放电,释放大量电磁能量,引起干扰问题。
3. 高频谐振:在电力设备工作频率的整数倍处,可能出现高频谐振,也会导致电磁辐射和干扰问题。
4. 设备老化及缺陷:电力设备在长时间运行或存在缺陷时,会增加电磁干扰的可能性。
二、电力设备的干扰源电力设备产生的电磁干扰对周围环境和其他设备造成了很大的危害。
常见的电磁干扰源主要有以下几种:1. 瞬态干扰源:包括开关操作、接线盒短路以及设备故障等,这些瞬态干扰源会导致电磁排放。
2. 高频干扰源:主要来自于反馈电弧、半导体开关和开关电源等高频设备,对无线通信系统特别敏感。
3. 低频干扰源:主要来自电力设备内部的低频振动,对精密仪器和传感器的正常工作有一定干扰。
4. 接地故障:设备的接地故障会增加电磁辐射和干扰,对周围环境造成困扰。
三、电力设备的抗干扰技术为解决电力设备的电磁干扰问题,提高设备的可靠性和稳定性,需要采取相应的抗干扰技术。
以下是一些常见的抗干扰技术:1. 屏蔽技术:对电力设备进行正确的屏蔽设计,采用金属屏蔽设备或线缆,减少电磁波辐射或感应。
2. 滤波技术:通过安装滤波器或使用带有滤波功能的设备,可有效减少电力设备的电磁干扰。
3. 接地技术:合理的接地系统可减轻电力设备的电磁辐射和干扰,提高设备的抗干扰能力。
4. 故障监测与诊断:通过实时监测设备运行状态和故障情况,及时发现并排除潜在的干扰源。
电磁辐射干扰诊断的近场测试方法及应用
1032020年第6期 安全与电磁兼容引言贯彻GJB 151A/B 的RE102项目时[1-2],产品超标现象普遍,贯标检测结果只是反映了产品的整体辐射发射情况,无法准确识别干扰源位置。
当试验现场缺少有效定位技术手段时,设计师主要依靠工程经验、结合产品现场布置情况,排查可能的干扰源。
这种方法缺乏针对性,导致整改效率低、时间和经济成本高,严重制约RE102项目的合格率提升。
为此,本文提出采用近场测试方法实现电磁辐射干扰问题的快速定位、整改、验证。
1 电磁辐射干扰诊断的近场测试方法1.1 近场测试原理通过近场测试可捕获产品的近场辐射干扰,干扰幅度遵循随传播距离增大逐渐衰减的原则[3],且近场幅度越大,远距离处的幅度也越大,依照此关系可定位辐射干扰源位置。
近场探头分为磁场探头和电场探头[4],近场测试中,根据使用场景选择合适的近场探头,通常芯片/器件管脚、信号线缆等的近场区域是磁场占主导地位,通过旋转磁场探头方向获取最大磁场值,避免遗漏辐射源;芯片表面、单根导线等的近场区域是电场占主导地位,选用电场探头沿被测对象表面测量电场。
近场探头将捕获的电场或磁场转换为电压,由频谱仪接收并显示,忽略线缆损耗,电压计算公式如下:U =E /AF 1 (1)U =H /AF 2 (2)式(1)、式(2)中,U 是频谱仪显示的电压值(V);E 是电场幅度(V/m);H 是磁场幅度(A/m);AF 1是电场探头转换系数(1/m);AF 2是磁场探头转换系数 (1/(m·Ω))。
电场幅度和磁场幅度与电压值成正比。
如果探头转换系数频响平坦,则频谱仪显示的电压值可用于对贯标检测结果作定性比较。
1.2 近场测试系统构建的近场测试系统组成如图1,包括近场探头组、低噪声放大器和频谱仪,系统具备近场测试能力,可以满足产品辐射干扰故障的诊断需求。
摘要针对产品电磁辐射干扰贯标测试中存在的位置分辨率低、定位模糊等局限性问题,构建了由近场探头、低噪声放大器、频谱分析仪等组成的近场测试系统,采用近场测试方法定位辐射干扰源、验证整改效果。
心磁测量中地铁电磁干扰分析
心磁测量中地铁电磁干扰分析在进行心脏病诊断时,心磁测量技术扮演着重要的角色。
但是,在城市环境中进行心磁测量时,往往会受到城市电磁干扰的影响。
特别地,地铁电磁干扰是一个较为常见的问题。
本文将介绍心磁测量中地铁电磁干扰的影响以及应对策略。
心磁信号与地铁电磁干扰首先,我们需要了解什么是心磁信号,以及什么是地铁电磁干扰。
心磁信号是人体呼吸和心脏磁场在皮肤表面的表现。
心脏磁场源于心肌细胞的电活动,通过闭合环路,产生一个弱但可侦测的磁场。
在进行心磁测量时,通常需要使用SQUID(超导量子干涉仪)传感器进行检测。
地铁电磁干扰来源于地铁列车的牵引系统、信号系统和其他电气设备。
地铁电磁干扰的频率范围大多在几百Hz到几千Hz之间,这就容易影响到心脏信号的检测。
地铁电磁干扰对心磁信号的影响地铁电磁干扰对心磁信号的影响可能体现在以下几个方面:•信号幅度较小:地铁电磁干扰会在心磁信号中掺杂一些高频噪声,从而导致信号幅度较小,难以检测和分析。
•幅度抖动:地铁电磁干扰的频率与心磁信号的频率相近,会引起幅度抖动效应,从而产生频率调制干扰,进一步增加信号的噪声。
•相位偏移:地铁电磁干扰还可能使得心磁信号的相位发生一定的偏移,从而影响信号的检测和分析。
应对策略为了避免地铁电磁干扰对心磁信号的影响,我们需要采取一定的应对策略。
首先,可以采用频率过滤器实现干扰的减弱或去除。
在心磁信号的检测过程中,可以使用数字滤波器进行滤波,过滤掉与心磁信号不相关的高频信号。
其次,可以使用“多通道平均法”对干扰进行抑制。
多通道平均法首先对多个心磁信号通道进行平均处理,从而增大信号的信噪比。
同时,也可以减小地铁电磁干扰对信号的影响。
另外,由于地铁电磁干扰的存在,环境的稳定性也成为心磁测量的重要因素之一。
为了减少环境因素的不稳定性,可以采取在信号检测前进行空间磁校准的方法,以提高心磁测量的精度和信噪比。
最后,需要注意的是,地铁电磁干扰的强度和位置与地铁列车的运行速度和路线有关。
传导及辐射型干扰诊断实验原理
传导及辐射型干扰诊断实验原理一、传导干扰诊断实验原理传导干扰是指通过导电介质将一个干扰源的干扰信号传递到另一个电路或系统。
这种干扰可以是通过电源线、信号线、地线等传导介质引入的。
在传导干扰诊断实验中,通常需要测量干扰源对被干扰对象的影响,以及被干扰对象的响应。
实验步骤:1. 确定干扰源和被干扰对象,并连接它们之间的传输线;2. 开启干扰源,观察被干扰对象的响应;3. 调整干扰源的强度或波形,观察被干扰对象响应的变化;4. 测量被干扰对象的噪声电压、噪声电流等参数;5. 根据实验数据进行分析,找出干扰的原因和解决方法。
二、辐射干扰诊断实验原理辐射干扰是指通过空间电磁波将一个干扰源的干扰信号传递到另一个电路或系统。
这种干扰可以是通过无线电波、微波、红外线等辐射介质引入的。
在辐射干扰诊断实验中,通常需要测量干扰源对被干扰对象的影响,以及被干扰对象的响应。
实验步骤:1. 确定干扰源和被干扰对象,并将它们放置在不同的距离;2. 开启干扰源,观察被干扰对象的响应;3. 调整干扰源的强度或波形,观察被干扰对象响应的变化;4. 使用电磁场探测器测量被干扰对象周围的电磁场强度;5. 根据实验数据进行分析,找出干扰的原因和解决方法。
三、电磁兼容性测试电磁兼容性(EMC)是指设备在电磁环境中正常运行并不对其他设备产生不可承受的电磁干扰的能力。
在电子设备的设计和制造过程中,需要进行电磁兼容性测试,以确保设备符合相关标准和规范。
实验步骤:1. 根据相关标准和规范制定测试计划;2. 在电磁兼容性测试实验室中进行测试;3. 对测试数据进行整理和分析;4. 根据测试结果进行整改和优化设计。
四、信号完整性分析信号完整性是指数字信号在传输过程中不失真、不延迟、不出现错误的特性。
在高速数字电路的设计中,需要进行信号完整性分析,以确保数字信号的正确传输。
实验步骤:1. 使用示波器等仪器测量信号的时域和频域特性;2. 分析信号的质量和传输特性;3. 对不满足信号完整性要求的信号进行整改和优化设计。
PCB辐射电磁干扰噪声诊断与抑制方法研究
PCB辐射电磁干扰噪声诊断与抑制方法研究PCB(Printed Circuit Board)是电子产品中常用的一种电子组件,其设计和制造过程中可能会引入电磁干扰噪声,对电路的稳定性和性能造成影响。
因此,对PCB辐射电磁干扰噪声的诊断和抑制方法进行研究十分重要。
本文将介绍PCB辐射电磁干扰噪声的诊断方法以及抑制方法。
首先,PCB辐射电磁干扰噪声的诊断方法包括:1.测量法:通过使用专业的电磁辐射测量仪器对PCB进行测量,从而确定电磁辐射的幅度、频率和分布。
这可以帮助找到电磁辐射源和引起干扰的原因。
2.模拟仿真法:使用电磁场仿真软件对PCB进行模拟分析,得到电磁辐射噪声的分布图和频谱特性,通过模拟分析可以确定哪些部分的PCB对系统产生干扰。
3.分析法:通过对PCB电路设计文件的分析,确定其中可能存在的电磁辐射噪声源和路径,进而根据这些信息制定相应的干扰抑制措施。
接着,PCB辐射电磁干扰噪声的抑制方法包括:1.电磁屏蔽技术:采取合适的屏蔽材料和结构设计,降低电磁辐射噪声的传播和泄漏,减少对周围电路的干扰。
可以使用金属罩、屏蔽底板等方式进行电磁屏蔽。
2.接地技术:采用合适的接地技术可以有效地减少电磁干扰。
通过合理布置接地电路和保持良好的接地路径,可以将干扰电流和电磁波导引到地面上,减少对其他信号的干扰。
3.滤波技术:在设计PCB电路时,加入合适的滤波器来抑制电磁辐射噪声。
滤波器可以起到筛选和减弱特定频段电磁波能量的作用,降低电磁干扰的幅度。
4.优化布线设计:合理规划PCB的布线路径和电源供电线路,尽量减少布线长度和走线面积,降低电磁辐射噪声的产生。
可以采用电源隔离、分组布线等方法来改善布线设计。
5.选择低噪声元件:在PCB设计中选择低噪声元件和模块,减少电磁干扰源。
低噪声元件具有较低的电磁辐射噪声产生能力,有助于降低系统的总电磁辐射噪声。
综上所述,PCB辐射电磁干扰噪声的诊断和抑制方法包括测量法、模拟仿真法和分析法等,抑制方法主要包括电磁屏蔽技术、接地技术、滤波技术、优化布线设计和选择低噪声元件等。
电磁干扰诊断方法
・ 屏 蔽 机 箱 上 的 缝 隙 和 孔 洞 是 电 磁 材料和 器件 ,通过采 取抑制 干扰 发射的 胶 带 ; ・不 同 电感量 的共 模扼 流 圈 ( 毫 亨 几 泄漏的 主要部位 ; 措施 ,确认 问题所 在 ,并解决 问题 。
・ 缝 隙和孔洞 距离辐射 源越近 ,电
磁泄漏越 严重 。
( ) 具 1工
至几十毫亨) 差模扼流 圈 (0 - 0 H) 、 1 30 0 ,
・ 频谱 分析仪 :用来测量 干扰 的仪 电流容量根据所开发的产品的具体情 况确
EETO I PO U T H A hp /w . c o . C.02 5 LCR N R D CSC I t : we . rC O T2 3 C N t/ w p cn R 0
的探头时 , 探头 的灵敏度较 低 , 用低噪声
放 大 器 提 高 探 头 的 探 测 灵敏 度 。
( 器 材 2)
・ 铁 氧 体 磁 环 :不 同直 径 的 铁 氧 体
1 相关知识
解 决 辐 射 干扰 超 标 的 问 题 需 要 具 备
大 器提高检 测系统的 灵敏度 ;
・ 用 电 流 卡 钳 检 测 电缆 上 的 干 扰 电 磁 环 , 好 是 分 体 式 磁 环 , 于 直 接 安 装 最 便
问 题 , 排 除 干扰 , 备 就 达 不 到 预 期 的 不 设 功能 ; 度连接 ;
焊 接 在 屏 蔽 层上 。 圈 的 直 径 越 大 , 个 小 这
・ 在 电 缆 上 套 铁 氧 体 磁 环 可 以 减 小 探 头 对 低 频 干 扰 越 敏 感 ,越 4  ̄ 对 高 频 ,1 1 干 扰 越 敏 感 。另外 ,探 头 的 直 径 较 大 时 ,
EMC测试简介
EMC测试简介EMC测试简介EMC即电磁兼容性,是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其它设备产生电磁干扰。
”意指电子机器有两面性,一个为干扰源对其他电子仪器造成的影响,一个为受到周围电子仪器发生的干扰影响,才有EMC的论题出现。
EMC的产品认证,目前主要依据的法规有FCC,CISPR,ANSI,VCCI及EN┅等国际规范,而这些EMC标准对于产品的测试要求,可分为两大测试题,一为电磁干扰(EMI)测试,另一为电磁耐受性(EMS)测试。
EMC测试项目与规范电磁兼容性的测量分干扰(骚扰)和抗干扰:电磁干扰(Electromagnetic Interference)简称EMI,测量一般为两个参数即辐射干扰(Radiated Interference) 和传导干扰(CONducted Interference) ,所谓辐射干扰是指通过空间传播的干扰,所谓传导干扰是指通过电源端而产生的干扰。
测量所需的主要设备有:1、接收天线(根据测量频率不同可以选则偶极子天线、双锥天线、对数周期天线等)2、测量接收机3、人工电源网络(Artificial Mains Network,串接在被测设备电源进线处的网络。
它在给定频率范围内,为骚扰电压的测量提供规定的负载阻抗,并使被试设备与电源相互隔离)4、天线升降架、转台及部分适配器5、吸收钳(Absorbing Clamp)6、计算机、接口板、软件等对抗干扰(Electromagnetic Susceptibility)简称EMS,这方面的测量参数一般有 10 项:静电放电、无线电频率电磁辐射场、电快速瞬变脉冲、浪涌、由射频场引起的传导、电源频率磁场、脉冲磁场、阻尼振荡磁场、电压跌落短期中断和电压变化、振荡波抗扰度试验。
其中无线电频率电磁辐射场和由射频场引起的传导两项试验所需的仪器多一些如需高频信号源、高频功率放大器、功率计、场监系统、计算机及相应的专用测试软件和接口等,价格较高,另外一些大都是专用仪器或几合一的专用仪器如浪涌仪、静电发生器、电快速瞬变模拟器等。
用频谱分析仪作EMI测试和诊断-主要测辐射
用频谱分析仪作EMI测试和诊断摘要频谱分析仪是电磁干扰(EMI)的测试、诊断和故障检修中用途最广的一种工具。
本篇文章将重点突出频谱分析仪在EMI应用的广阔范围内作为诊断测试仪器的多用性。
对于一个EMC工程师来说,频谱分析仪最重要的用途之一是测试商用和军用电磁发射,其他用途包括对以下内容的评估:材料的屏蔽效能,仪器机箱的屏蔽效能,较大的试验室或测试室的屏蔽效能,电源线滤波器的衰减特性。
此外频谱分析仪在从事场地勘测中也很有用。
概述频谱分析仪对于一个电磁兼容(EMC)工程师来说就象一位数字电路设计工程师手中的逻辑分析仪一样重要。
频谱分析仪的宽频率范围、带宽可选性和宽范围扫描CRT显示使得它在几乎每一个EMC测试应用中都可大显身手。
辐射发射测量频谱分析仪是测试设备辐射发射必不可少的工具,它与适当的接口相连就可用于军用和/或商用EMI自动测量。
比如说,一台频谱分析仪与一台计算机(如IBMPC)相连,就可以在对应的频率范围内把发射数据制成图和/或表。
虽然EMI测量接收机也可用于自动测试系统,但在故障的诊断和检修阶段频谱分析仪则显得更优越。
据我的经验,大多数情况下被测设备在第一次测试时都不能满足人们的期望值,因此,诊断电磁干扰源并指出辐射发射区域就显得很迫切。
在EMI辐射发射测试的故障检修方面,有时可能想要设置足够宽的频率范围以使得辐射发射要的频谱范围以外的频谱也包括在内。
用频谱分析仪,EMC工程师就可以观察到比用一台典型的EMI测试接收机可观察到的更宽的频谱范围。
另一种常用技术是观察特殊宽带天线频率范围。
包括所有校正因子在内的频谱图也同时被显示在频谱分析仪的CRT上,显示的幅值单位与分析仪上的单位相一致,通常是dBm。
这样,测试人员可在CRT上监测发射电平,一旦超过限值,就会被立刻发现。
这在故障检修中极其有用。
这种特性使得人们在屏蔽被测产品的同时观察频谱仪的屏蔽并可立刻获得反馈信息。
在快速进行滤波、屏蔽和接地操作时同样可做以上尝试。
如何选择和使用近场探头进行电磁干扰分析
如何选择和使用近场探头进行电磁干扰分析电磁干扰的故障诊断分析一近场探头的选择与应用图一 安捷伦X系列信号分析仪和N9311X-100近场探头概述如果一个新产品在电磁干扰(EMI)预兼容测试或者标准兼容测试中失败,进行故障诊断和改进是当务之急。
而近场探头配合频谱分析仪查找干扰源,并验证改进效果是最常见易行的方法。
近场测试综述在认证机构中,使用经过各类校准的天线进行辐射泄露测试,都是进行的远场测量。
标准的远场辐射泄漏测试,可以准确定量的告诉我们被测件是否符合相应的EMI标准。
但是远场测试无法告诉工程师,严重的辐射问题到底是来 自于壳体的缝隙,还是来自连接的电缆,或USB,LAN之类的通信接口。
在这种情况下,我们可以通过近场测试的方法来定位辐射的真正来源。
近场EMI测量的问题在于使用近场探头的测量结果和使用天线进行远场测量的结果无法直接进行数学转换。
但是存在一个基本原理:近场的辐射越大,远场的辐射也必然越大。
所以使用近场探头测量,实际上是一个相对量的测量,而不是精确的绝对量测量。
使用近场探头进行EMI 预兼容测试时,我们常常把新被测件测试结果和一个已知合格被测件的近场探头测试(近场测试)结果进行比较,来预测EMI辐射泄漏测试(远场测试)的结果,而不是直接和符合EMI 兼容标准的限制线进行比较。
同时,测试的绝对数值意义也不大,因为这个测试结果和诸多变量,包括探头的位置方向、被测件的形状等会密切相关。
近场探头的种类及主要特点电磁场是由电场和磁场构成。
在近场,电场和磁场共同存在,其强度不构成固定关系。
以电场为主还是磁场为主,主要是由发射源的类型决定的。
简而言之,在高电压,低电流的区域,电场大于磁场。
高电流,低电压的区域,磁场大于电场。
同时在主要的EMI测试频段,磁场随着距离的变化要快于电场。
因为磁场是由电流产生的,所以最常见的发射源包括芯片,器件的管脚、PCB上的布线、电源线及信号线缆。
最常见的磁场探头多为环状,当磁场传播线和探头环面垂直的时候,测量数值最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁干扰测量与诊断当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。
要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。
本文要介绍有关电磁干扰测量和判断干扰发生源的的方法。
1.测量仪器谈到测量电信号,电气工程师首先想到的可能就是示波器。
示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。
但是示波器并不是电磁干扰测量与诊断的理想工具。
这是因为:A.所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。
因此测试得到的结果无法直接与标准比较。
为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。
B.电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。
C.示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。
测量电磁干扰更合适的仪器是频谱分析仪。
频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。
频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。
对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。
而用频谱分析仪可以直接显示出信号的各个频谱分量。
1.1频谱分析仪的原理频谱分析仪是一台在一定频率范围内扫描接收的接收机。
频谱分析仪采用频率扫描超外差的工作方式。
混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。
检波后的信号被视频放大器进行放大,然后显示出来。
由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。
当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。
根据这个频谱,就能够知道被测设备是否有超过标准规定的干扰发射,或产生干扰的信号频率是多少。
1.2 频谱分析仪的使用方法要获得正确的测量结果,必须正确地操作频谱分析仪。
本节简单介绍频谱分析仪的使用方法。
正确使用频谱分析仪的关键是正确设置频谱分析仪的各个参数。
下面解释频谱分析仪中主要参数的意义和设置方法。
频率扫描范围:规定了频谱分析仪扫描频率的上限和下限。
通过调整扫描频率范围,可以对感兴趣的频率进行细致的观察。
扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。
在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency = 1MHz, stop frequency = 11MHz。
也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency = 6MHz, span = 10MHz。
这两种设置的结果是一样的。
中频分辨带宽:规定了频谱分析仪的中频带宽,这项指标决定了仪器的选择性和扫描时间。
调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别。
另一个目的是提高仪器的灵敏度。
因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。
噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。
因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。
分辨带宽一般以3dB带宽来表示。
当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。
若测量信号的带宽大于通频带带宽,则当带宽增加时,由于通过中频放大器的信号总能量增加,显示幅度会有所增加。
若测量信号的带宽小于通频带宽,如对于单根谱线的信号,则不管分辨带宽怎样变化,显示信号的幅度都不会发生变化。
信号带宽超过中频带宽的信号称为宽带信号,信号带宽小于中频带宽的信号称为窄带信号。
根据信号是宽带信号还是窄带信号能够有效地定位干扰源。
扫描时间:仪器接收的信号从扫描频率范围的最低端扫描到最高端所使用的时间叫做扫描时间。
扫描时间与扫描频率范围是相匹配的。
如果扫描时间过短,测量到的信号幅度比实际的信号幅度要小。
视频带宽:视频带宽的作用与中频带宽相同,可以减小仪器本身的带内噪声,从而提高仪器对微弱信号的检测能力。
2.用频谱分析仪分析干扰的来源2.1 根据干扰信号的频率确定干扰源在解决电磁干扰问题时,最重要的一个问题是判断干扰的来源,只有准确将干扰源定位后,才能够提出解决干扰的措施。
根据信号的频率来确定干扰源是最简单的方法,因为在信号的所有特征中,频率特征是最稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。
因此,只要知道了干扰信号的频率,就能够推测出干扰是哪个部位产生的。
对于电磁干扰信号,由于其幅度往往远小于正常工作信号,因此用示波器很难测量到干扰信号的频率。
特别是当较小的干扰信号叠加在较大的工作信号上时,示波器无法与干扰信号同步,因此不可能得到准确的干扰信号频率。
而用频谱分析仪做这种测量是十分简单的。
由于频谱分析仪的中频带宽较窄,因此能够将与干扰信号频率不同的信号滤除掉,精确地测量出干扰信号频率,从而判断产生干扰信号的电路。
2.2 根据干扰信号的带宽确定干扰源判断干扰信号的带宽也是判断干扰源的有效方法。
例如,在一个宽带源的发射中可能存在一个单个高强度信号,如果能够判断这个高强度信号是窄带信号,则它不可能是从宽带发射源产生的。
干扰源可能是电源中的振荡器,或工作不稳定的电路,或谐振电路。
当在仪器的通频带中只有一根谱线时,就可以断定这个信号是窄带信号。
根据傅立叶变换,单根的谱线所对应的信号是周期信号。
因此,当遇到单根谱线时,就要将注意力集中到电路中的周期信号电路上。
3.用近场测试方法确定辐射源除了上述的根据信号特征判断干扰源的方法以外,在近场区查找辐射源可以直接发现干扰源。
在近场区查找辐射源的工具有近场探头和电流卡钳。
检查电缆上的发射源要使用电流卡钳,检查机箱缝隙的泄漏要使用近场探头。
3.1 电流卡钳与近场探头电流探头是利用变压器原理制造的能够检测导线上电流的传感器。
当电流探头卡在被测导线上时,导线相当于变压器的初级,探头中的线圈相当于变压器的次级。
导线上的信号电流在电流探头的线圈上感应出电流,在仪器的输入端产生电压。
于是频谱分析仪的屏幕上就可以看到干扰信号的频谱。
仪器上读到的电压值与导线中的电流值通过传输阻抗换算。
传输阻抗定义为:仪器50? 输入阻抗上感应的电压与导线中的电流之比。
对于一个具体的探头,可以从厂家提供的探头说明书中查到它的转移阻抗ZT。
因此,导线中的电流等于:I = V / ZT如果公式中的所有物理量都用dB表示,则直接相减。
对于机箱的泄漏,要用近场探头进行探测。
近场探头可以看成是很小的环形天线。
由于它很小,因此灵敏度很低,仅能对近场的辐射源进行探测。
这样有利于对辐射源进行精确定位。
由于近场探头的灵敏度较低,因此在使用时要与前置放大器配套使用。
3.2 用电流卡钳检测共模电流设备产生辐射的主要原因之一是电缆上有共模电流。
因此当设备或系统有超标发射时,首先应该怀疑的就是设备上外拖的各种电缆。
这些电缆包括电源线电缆和设备之间的互连电缆。
将电流探头卡在电缆上,这时由于探头同时卡住了信号线和回流线,因此差模电流不会感应出电压,仪器上读出的电压仅代表共模电流。
测量共模电流时,最好在屏蔽室中进行。
如果不在屏蔽室中,周围环境中的电磁场会在电缆上感应出电流,造成误判断。
因此应首先将设备的电源断开,在设备没有加电的状态下测量电缆上的背景电流,并记录下来,以便与设备加电后测量的结果进行比较,排除背景的影响。
如果在用天线进行测量时将频谱分析仪的扫描频率局限感兴趣的频率周围很小的范围内,则可以排除环境中的干扰。
3.3 用近场探头检测机箱的泄漏如果设备上外拖电缆上没有较强的共模电流,就要检查设备机箱上是否有电磁泄漏。
检查机箱泄漏的工具是近场探头。
将近场探头靠近机箱上的接缝和开口处,观察频谱分析仪上是否有感兴趣的信号出现。
一般由于探头的灵敏度较低,即使用了放大器,很弱的信号在探头中感应的电压也很低,因此在测量时要将频谱分析仪的灵敏度调得尽量高。
根据前面的讨论,减小频谱分析仪的分辨带宽能够提高仪器的灵敏度。
但是要注意的是,当分辨带宽很窄时,扫描时间会变得很长。
为了缩短扫描时间,提高检测效率,应该使频谱分析仪的扫描频率范围尽量小。
因此一般在用近场探头检测机箱泄漏时,都是首先用天线测出泄漏信号的精确频率,然后使仪器用尽量小的扫描频率范围覆盖住这个干扰频率。
这样做的另一个好处是不会将背景干扰误判为泄漏信号。
对于机箱而言,靠近滤波器安装位置的缝隙是最容易产生电磁泄漏的。
因为滤波器将信号线上的干扰信号旁路到机箱上,在机箱上形成较强的干扰电流,这些电流流过缝隙时,就会在缝隙处产生电磁泄漏。