八年级数学探索直线平行的条件1

合集下载

(八年级数学教案)平行线等分线段定理

(八年级数学教案)平行线等分线段定理

平行线等分线段定理八年级数学教案教学建议1.平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.2.平行线等分线段定理的推论推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.推论的用途:(1)平分已知线段;(2)证明线段的倍分.重难点分析本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.教法建议平行线等分线段定理的引入生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:①从生活实例引入,如刻度尺、作业本、栅栏、等等;②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.教学设计示例一、教学目标1. 使学生掌握平行线等分线段定理及推论.2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.3. 通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.4. 通过本节学习,体会图形语言和符号语言的和谐美●二、教法设计学生观察发现、讨论研究,教师引导分析●三、重点、难点1.教学重点:平行线等分线段定理2.教学难点:平行线等分线段定理●四、课时安排l课时●五、教具学具计算机、投影仪、胶片、常用画图工具●六、师生互动活动设计教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习七、教学步骤【复习提问】1.什么叫平行线?平行线有什么性质.2.什么叫平行四边形?平行四边形有什么性质?【引入新课】由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).已知:如图,直线,.求证:.分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.(引导学生找出另一种证法)分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.证明:过点作分别交、于点、,得和,如图.∴∵,∴又∵,,∴∴为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.再引导学生观察下图,在中,,,则可得到,由此得出推论2.推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.接下来讲如何利用平行线等分线段定理来任意等分一条线段.例已知:如图,线段.求作:线段的五等分点.作法:①作射线.②在射线上以任意长顺次截取.③连结.④过点.、分别作的平行线、、、,分别交于点、、、.、、就是所求的五等分点.(说明略,由学生口述即可)【总结、扩展】小结:(l)平行线等分线段定理及推论.(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.(4)应用定理任意等分一条线段.●八、布置作业教材P188中A组2、9●九、板书设计●十、随堂练习教材P182中1、2。

2.2.2探索直线平行的条件(教案)

2.2.2探索直线平行的条件(教案)
突破方法:在课堂上,教师应当提供准确的数学语言示范,并要求学生在口头和书面表达中使用规范的语言,通过不断的练习和反馈,提高他们的表达能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“探索直线平行的条件”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线看起来永远不会相交的情况?”比如,铁轨或者操场的跑道。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直线平行的奥秘。
c.逻辑推理能力的培养:在探索直线平行条件的过程中,学生需要运用逻辑推理来理解为何这些条件能证明直线平行。
突破方法:通过小组讨论、问题驱动的教学方法,鼓励学生提出假设、进行验证、总结规律,从而培养他们的逻辑推理能力。
d.数学语言的准确表达:学生需要学会使用准确的数学语言描述直线平行的条件,这对于他们的数学表达和交流能力是一个挑战。
在总结回顾环节,大多数学生能较好地掌握直线平行的判定条件,但也有少数学生表示还存在疑问。为了确保每个学生都能跟上教学进度,我计划在课后对这部分学生进行个别辅导,解答他们的疑问,巩固所学知识。
二、核心素养目标
本节课的核心素养目标致力于培养学生的几何直观、逻辑推理和数学建模能力:
1.通过观察和操作几何图形,培养学生识别同位角、内错角、同旁内角的能力,增强几何直观。
2.引导学生运用逻辑推理,探究直线平行的条件,理解同位角相等、内错角相等、同旁内角互补与直线平行之间的关系。
3.培养学生运用数学语言表达几何图形关系,建立数学模型,解决实际问题,提升数学建模能力。
重点难点解析:在讲授过程中,我会特别强调同位角相等、内错角相等、同旁内角互补这三个重点。对于难点部分,我会通过图形示例和逐步引导来帮助大家理解。

《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】

《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】

《探索直线平行的条件》教学设计第2课时一、教学目标1.了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”两种判定方法.2.灵活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间想象、推理能力和有条理的表达能力.4.在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.二、教学重难点重点:了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补两直线平行”两种判定方法.难点:活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计2.平行于同一条直线的两条直线平行.教师活动:引导学生思考,不能用同位角的数量关系直接判断两直线是否平行时,我们该怎么办?【情境引入】小明有一块小画板,他想知道它的上、下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)小明利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行,你知道他是怎么做的吗?预设:可以测量∠1与∠2,也可以测量∠1与∠3....教师活动:进一步提出思考,这样做的理由呢?【合作探究】如何利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行?教师活动:演示测量过程,说明∠1=∠3,由此小明判断上下两个边缘是平行的.∠1+∠2=180°,由此他也能判断上下两个边缘是平行的.提出思考问题:你知道小明的判断依据吗?【探究】内错角与同旁内角的定义如图,具有∠1与∠2这样的位置关系的角称为内错角.具有∠1与∠3这样的位置关系的角称为同旁内角.请找出图中其他的内错角与同旁内角.预设:∠3与∠4是内错角;∠2与∠4是同旁内角.问题:你能说出内错角与同旁内角的特征吗?教师活动:引导学生观察内错角的位置特征,思考并说出内错角的特征.预设:内错角指在两条被截直线的内部,在截线的两侧,位置是交错的两个角.内错角是Z形状教师活动:引导学生观察同旁内角的位置特征,思考并说出同旁内角的特征.预设:同旁内角指在两条被截直线的内部,在截线的同旁的两个角.同旁内角是U形状【归纳】“三线八角”小结①位于两条被截直线同一方、且在截线同一侧的两个角,叫做同位角;如∠1与∠2.同位角是 F 形状②位于两条被截直线的内部,且在截线的两侧的两个角,叫做内错角;如∠7与∠2.内错角是Z形状③位于两条被截直线内部,且在截线的同侧的两个角,叫做同旁内角.如∠5与∠2.同旁内角是U形状.【议一议】(1)内错角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1 = ∠2 . 求证:a∥b证明:∵∠1 = ∠2 (已知)∠1 = ∠3 (对顶角相等)∴∠3 = ∠2 (等量代换)∴直线a∥b (同位角相等,两直线平行) 得出结论:内错角相等,两直线平行(2)同旁内角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1+∠2=180°,求证:a∥b∠1,∠2互补(已知)∠1,∠3互补(邻补角定义)∴∠3 =∠2 (同角的补角相等)∴直线a∥b (内错角相等,两直线平行) 教师活动:提示证明方法不唯一,证明过程中的∠3换成∠4就可以利用同位角相等,两直线平行来证明.得出结论:同旁内角互补,两直线平行【归纳】平行线的判定方法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称为:内错角相等,两直线平行.同旁内角互补,两直线平行.【做一做】如图,三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由.教师活动:以举例的方式提示学生如何寻找.一位同学说:BC与AE是平行的,因为∠BCA与∠EAC是内错角,而且又相等.提问你能看懂她的意思吗?再找到另一组平行线,说说你的理由.预设:BA与CE是平行的,因为∠ACE 与∠BAC是内错角,而且又相等.AC与ED是平行的,因为∠ACE与∠CED 是内错角,而且又相等.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,∠1+∠2=180°,请用不同的方法说明:AB∥CD.分析:两条直线平行,可以利用同位角相等、内错角相等或同旁内角互补来证明.观察可知∠1的对顶角∠EHB与∠2是同旁内角,结合已知可证;∠2的补角∠CGH 与∠1是同位角,利用同角的补角相等可得同位角相等,从而证出两直线平行;同理可证∠1的补角∠AHG与∠2这对内错角相等,也可以证出结论.解题过程:2.下列条件能判断l1∥l2的是( )A. ∠2=∠3B. ∠1=∠3C. ∠4+∠5=180°D. ∠2=∠43.观察图中所标记的五个角,完成题目:(1)∠1 与是同位角;(2)∠5 与是同旁内角;(3)∠2 与是内错角.4.图中各角分别满足下列条件时,你能判断是哪两条直线平行吗?①∠1=∠4②∠2 =∠4③∠1+∠3 =180°答案:1.B ;2.B3.∠4;∠3;∠14.①a∥b;②l∥m;③l∥n.思维导图的形式呈现本节课的主要内容:。

平行线的判定 (八年级数学课件)

平行线的判定 (八年级数学课件)

(2)从∠ABC +∠ BCD =180°,可以推出AB∥CD ,
理由是 同旁内角互补,两直线平行 .
A
3
D
1
4
B
2
5
C
课堂检测
基础巩固题
(3)从∠ 3 =∠ 2 ,可以推出AD∥BC,理由是
___内__错__角__相__等__,__两__直__线__平行
.
(4)从∠5=∠ ABC ,可以推出AB∥CD, 理由是
导入新知 ?
装修师傅随身只带了一个量角器,要 判断一块破碎的玻璃板的上下两边是否平 行,你能帮助他解决这个问题吗?
素养目标
3. 能够根据平行线的判定方法进行简单的推理.
2. 能根据“同位角相等,两直线平行”证明“内错角 相等,两直线平行”,“同旁内角互补,两直线平行” 并能简单地应用这些结论 1. 初步了解证明的基本步骤和书写格式.
探究新知 知识点 1 同位角相等两直线平行
我们已经学习过用三角尺和直尺画平行线的方法.
一、放

二、靠
三、推
四、画
探究新知
(1)画图过程中,什么角始终保持相等?
(2)直线a,b位置关系如何?
A
1
a
b
2
B
探究新知 (3)将其最初和最终的两种特殊位置抽象成几何图形:
A1
l
2
2
l1
B
(4) 由上面的操作过程,你能发现判定两直线平行的方法吗?
____同__位__角__相__等,两直线平行
.
A
3
D
1
4
B
2
5
C
课堂检测
基础巩固题 4.根据条件完成填空. ① ∵ ∠1 =__∠_2_(已知),

北师大版八年级数学上册平行线的判定

北师大版八年级数学上册平行线的判定

已知 ),
∴∠1=∠2( 角平分线定义
),
又∵∠2=∠C(
已知
),
∴∠1=∠C(
等量代换
).
∴BE∥AC(
同位角相等,两直线平行
).
4.如图,∠C=∠1,∠2与∠D互余,DE⊥BF, 求证:AB∥CD. 证明:∵∠C=∠1, ∴EC∥BF, ∵DE⊥BF,∴EC⊥DE, ∴∠C+∠D=90°, 又∵∠2+∠D=90°, ∴∠2=∠C,∴AB∥CD
那么这两条直线平行 条件是什么,结论是什么?
已知:∠1和∠2是直线a、b被直 线c 截出的内错角,且
∠1=∠2.
求证:a∥b
c
a
3 1
b
2
证明:∵∠1=∠2(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
定理:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行。
简述为:内错角相等,两直线平行。
a
符号语言: ∵∠1=∠2
b
∴a∥b
c 1 2
定理:两条直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行.
已知:∠1和∠2是直线a、b被直线c截出的同旁
内角,且∠1与∠2 互补。
求证:a∥b.
证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义) ∴∠1=180°-∠2(等式的性质) ∵∠3+∠2=180°(平角定义)
• 8.如图7-3-14,已知∠1=∠2,∠3=∠4,∠5=∠6, 试判断ED与FB的位置关系,并说明理由.
解:BF∥DE.理由如下: ∵∠3=∠4, ∴BD∥CF ∴∠5=∠BAF. 又∵∠5=∠6, ∴∠BAF=∠6, ∴AB∥CD, ∴∠2=∠EHA. 又∵∠1=∠2, ∴∠1=∠EHA, ∴BF∥DE.

八年级-浙教版-数学-上册-[教学设计] 第1课时 平行线的性质与判定

八年级-浙教版-数学-上册-[教学设计] 第1课时    平行线的性质与判定

第1章三角形的初步知识1.3 证明第1课时平行线的性质与判定【教学内容】浙教版八年级上册第1.3证明第1课时平行线的性质与判定.【教材分析】推理与证明在初中数学教学中是一个重要内容,里面包含很强的逻辑思维和重要的数学思想.掌握好推理与证明,不但是学生应掌握的数学知识,也是延伸数学应用的一个内容.本节课内容是在已学过的定义、命题、定理、性质、基本事实等基础上开展的,并为后期几何知识的相关证明和推理奠定了基础,在整个初中数学学习阶段具有举足轻重的地位.【学情分析】对数学严谨性的认识具有相对性,而实际上数学的严谨性本身也具有相对性.初中数学教学只能帮助学生认识数学的最基本的内容和方法,因此对数学严谨性也有一个逐步适应和提高的过程.鉴于这个层面,平面几何启蒙阶段的初中生对于推理证明还不太适应,不理解证明的意义,不太懂证明的方法和格式,这些都是需要老师和学生共同克服的问题.推理与证明是在已学过的定义、定理、性质、基本事实等基础上开展的新的知识,而这些对于初中生来说,还是比较抽象的,要学生会正确地应用这些知识来进行新的推理与证明,就要让学生在课堂上能完全明白这些定义、定理、性质、基本事实的意义和用法.【教学目标】1.了解证明的含义;2.体验、理解证明的意义和必要性;3.会根据平行线的性质与判定进行简单的推理论证.【教学重难点】简单的推理证明.【教学方法】自主学习、合作交流、大胆猜想、启发式教学.【教学过程】一、证明的必要性问题1、观察下面图形,你有什么感觉?如上图所示,一组直线a、b、c、d是否都互相平行?问题2、动手测量一下线段AB与线段CD,哪条长?三、证明的步骤已知:如图,DE∥BC,∠1=∠E.求证:BE平分∠ABC.出示例题,先让学生独立思考,然后教师引导学生共同写出证明过程,在此期间,强调证明过程必须有理有据总结归纳:证明几何命题的思路分析根据已知依据所学步步递推证实判断四、题型总结类型一、平行线的判定例1 已知:如图,在四边形ABCD中,AC平分∠BAD,∠1=∠2.证明:AB∥CD.变式跟进1如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.类型二、平行线的性质例2 已知:如图,AB∥CD,EP、FP分别平分∠BEF、∠DFE.求证:∠PEF+∠PFE=90°.变式跟进2 已知:如图所示,直线AB//CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.类型之三平行线的性质与判定的综合例3 已知:如图,∠A=∠C,∠1和∠2互补.求证:AB∥CD.变式跟进3请将下列证明过程补充完整.已知:如图,AD⊥BC,EF⊥BC,垂足分别为DF,∠EGA=∠E.求证:AD平分∠BAC.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFC=∠ADC=90°(垂直的定义).∴AD∥EF (____________________) .∴ _____= _____(两直线平行,内错角相等),_____= _____(两直线平行,同位角相等).∵ _____= _____(已知),∴ _____________________,∴AD平分∠BAC(____________________).(注重推理过程和理由)。

初中数学说课教案平行线的判定

初中数学说课教案平行线的判定

初中数学说课教案:平行线的判定《平行线的判定》说课稿今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。

下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。

一、教学内容“平行线”是我们在日常生活中都经常接触到的。

它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。

在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。

在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。

经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行”。

因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。

它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。

在七年级的学习中,学生已经初步接触了简单的说理过程。

因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。

二、教学目标基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。

由此确定本节课的教学目标为:1、让学生通过直观认识,掌握平行线的判定方法;2、会根据判定方法进行简单的推理并能写出简单的说理过程;3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。

同时确定本节课的重难点:重点:在观察实验的基础上进行判定方法的概括与推导.难点:方法的归纳、提炼;例2教学中的辅助线的添加。

三、教学方法及手段布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。

平行线的判定教学设计说明

平行线的判定教学设计说明

教学设计说明课题:浙教版八年级上1.2平行线的判定(1)授课教师:东阳市外国语学校胡新颖一、教材分析1.教材的地位与作用平行线的判定(1)这节课是浙教版八年级上册第一章平行线第2节的第1课时内容,它是继“同位角、内错角、同旁内角”即三线八角内容之后学习的又一个重要知识,它是继续学习平行线其它判定方法的奠基知识,更是今后学习与平行线有关的几何知识的基础。

因此这节内容在七~九年级这一学段的数学知识中具有很重要的地位。

2.教材的重点、难点平行线的判定方法“同位角相等两直线平行”是平行线其它判定的重要依据,它是这节课的教学重点。

由于例1判定两直线平行时需将已知条件作适当的转化,说理过程要求有条理地表示,这在学生学习“证明”之前,学生这方面的能力还比较薄弱,所以例1为本节的教学难点。

二、教学目标分析1.知识目标:理解平行线的判定方法,同位角相等两直线平行,并学会运用这一判定方法进行简单的几何推理:2.能力目标:通过“同位角相等、两直线平行”这一判定方法的发现过程的教学,培养学生动手实验操作能力,归纳分析能力。

通过这一判定方法的运用进一步培养学生的逻辑思维和推理能力。

3.情感目标:体会用实验的方法得出几何性质(规律)的重要性与合理性。

进一步培养学生积极参与主动探索的良好学习习惯和思维品质三、学法指导(1)乐学,在整个学习过程中,让学生保持强烈的好奇心和求知欲,不断强化他们的创新意识,全身心地投入学习中去,成为学习的主人。

(2)学会:通过新知的学习,让学生学会新知在新的情境下如何应用,从而逐步完善其认知结构。

(3)会学:通过学生的亲身参与,更进一步体会到动手实践自主探索是学习数学其它知识的重要方式。

四、教法分析与说明以皮划挺静水项目比赛的航向与航线引发的问题为背景贯穿整节课,采用“新课引入—探究新知—新知巩固—运用新知解决实际问题—归纳小结——延伸提高”为主线的教学程序。

遵循学生从已知到未知的认知规律,使学生感到新旧知识之间的密切联系。

八年级数学上册第七章《平行线的证明》教案

八年级数学上册第七章《平行线的证明》教案

第七章平行线的证明1.理解证明的必要性和设置基本事实的必要性,体会演绎推理的严谨性和结论的确定性,初步树立步步有据的推理意识,发展推理能力.2.通过具体实例了解定义、命题、定理、推论的含义,会区分命题的条件和结论.3.了解反例的作用,知道利用反例可以判断一个命题是错误的.经历对顶角定理、两直线平行的有关判定定理、两直线平行的有关性质定理、三角形内角和定理及其推论的证明过程,初步掌握综合法证明的格式;能利用这些定理解决简单的问题.初步感受公理化思想,以及公理化方法对数学发展和促进人类文明进步的价值.《标准》在“图形的性质”的有关要求中,比较多地使用了“探索并证明……”的表述,也就是要在一定的情境中,引导学生借助已有的知识和经验,借助图形的直观,通过操作、实验,运用合情推理或图形运动等方法,探索发现图形可能具有的性质,这与用单纯地给出“已知、求证、证明”的方式来研究图形的性质是有区别的,两者相比,前者更有利于学生在获取有关知识的过程中,不断提高研究几何图形性质的能力,发展创新意识和创新能力,为了实现《标准》的这一意图,本套教科书选择了先分“两阶段”(探索阶段和证明阶段)后合二为一(边探索边证明)的处理方式:对与平行线、三角形有关的内容采取了分两个阶段的学习方式;对有关四边形、相似、圆等内容,采取了探索加证明的方式,也就是引导学生通过观察、测量、操作、实验等活动探究结论,同时对这些探究的结论进行严格的论证.这样处理,使得学生在探索阶段通过亲身探究活动,展开合情推理,合情推理能力和探究发现能力得到了很好的发展,主体性也得到了充分的发挥;同时由于把探索阶段的重心放在结论的探究上,几何学习的语言表述等难点得以分解,有利于降低几何入门教学的难度,激发学生的学习兴趣.本章是证明的起始阶段,淡化了先前已经通过观察、测量、实验、操作等活动探究得到了一些几何结论,学生也尝试进行了一些验证和说理,基本认可这些结论,但毕竟不是证明.本章首先要让学生明确认识到:这些探究的结论需要加以证明;同时证明需要一个话语体系,为此就有了所谓的定义、命题等.其次,证明需要确定一些出发点,为此需要梳理有关结论,选择某些结论作为证明的出发点(实际上这就是构建局部的公理体系);有了这些证明的出发点,接着就依次证明一些先前探究得到的定理,在证明过程中,初步掌握证明的要求和格式,认识到证明的严谨性,做到步步有据,发展学生的推理能力.【重点】1.明确证明的必要性和相关的概念.2.平行线的判定和性质.3.三角形内角和定理.【难点】1.准确证明命题或定理.2.平行线的判定定理和性质定理的灵活运用.1.关注对证明必要性的理解和证明意识的建立.要让学生知道数学需要证明,数学之外的其他事物,也应该追究其缘由、问个为什么;初步感受公理化方法在数学和人类文明中的作用,证明的必要性,不仅要从几何的角度加以认识,还要从代数甚至其他学科、实际生活等角度加以认识,让学生认识到说话办事要有根有据,对于猜测、实验、归纳得到的结论一定要给予证明.2.兼顾探索与证明,发展学生的推理能力.推理能力的发展应贯穿于整个数学学习过程中,本章侧重于发展学生的演绎推理能力,但并不意味着不要关注合情推理,在解决问题的过程中,两种推理的功能不同,相辅相成.合情推理用于探索思路、发现结论;演绎推理用于证明结论.数学中关注这两种能力的发展,在关注证明的同时,也应尽可能创设探究活动、实践活动,在活动中发展学生的合情推理能力.3.关注证明的依据和规范性.由于本章的多数结论之前已经探究过,因此在证明过程中难免会出现一些循环论证的现象.教学中,在证明一个命题时,要注意引导学生区分哪些结论可以作为证明的依据,哪些结论不可以作为证明的依据;提醒学生,只有作为证明的出发点的基本事实和前面已经证明过的定理才能作为证明的依据.在今后学习完“三角形的证明”之后,所有前面已经得到的结论都可以作为证明的依据.因此,学生出现了循环论证的情况,加以引导即可,不必过于担心,更不要给学生过大的压力,避免因压力过大造成学生兴趣的流失.1为什么要证明1课时2定义与命题2课时3平行线的判定1课时4平行线的性质1课时5三角形内角和定理2课时回顾与思考1课时1为什么要证明体会检验数学结论的常用方法:实验验证、举出反例、推理等,发展学生的推理能力.经历观察、验证、归纳等过程,使学生对由这些方法所得的结论产生怀疑,以此激发学生的好奇心理,从而认识证明的必要性,培养学生的推理意识.通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.【重点】要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.【难点】通过对一些规律的探讨和分析,养成动脑思考问题的习惯.【教师准备】教材图7 - 1、图7 - 2、图7 - 3的投影图片.【学生准备】有刻度的直尺.导入一:师:同学们,请你们用学过的数学知识解决下面的问题。

平行线的性质教案

平行线的性质教案

案例分析平行线的性质麻晓燕一、教材分析:本节课是浙江出版社义务教育课程标准实验教科书八年级上册第一章第3节平行线的性质,它是平行线及直线平行的延续,是后面研究多边形性质内容的基础,是“空间与图形”的重要组成部分。

二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

三、教学重、难点:重点:平行线的性质难点:“性质1”的探究过程四、教学方法:“引导发现法”与“动像探索法”五、教具、学具:教具:多媒体课件学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。

内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。

①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。

(二)数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角(如图)。

问题一:指出图中的同位角,并度量这些角,把结果填入下表:学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。

2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。

(两直线平行,同位角相等)(三)引申思考,培养创新问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。

平行线的判定课件(17张)

平行线的判定课件(17张)

蜂房中有很 多数学问题值得我们 思考,有兴趣的同学 可读一读华罗庚著: 《谈谈与蜂房结构有 关的数学问题》(科 学出版社,2002.5)
连蜜蜂都把数学 运用的这么好,你从 中悟到了什么?
4.判断题(教材习题)
下列推理是否正确?为什么?
(1)如图,∵∠1=∠2,∴l1∥l2; (2)如图,∵∠4+∠5=180°,∴l3∥l4; (3)如图,∵∠2=∠4,∴l3∥l4; (4)如图,∵∠3+∠6=180°,∴l1∥l2.
E
A
G
B
C
D
F
4题图
5题图
5.开放题(教材习题变式训练) 如图,满足什么条件时,AB与CD平行?
证明题 还记得开始时的小动画吗?当CM∥NB时,入射光线DC和反射光 线BA为什么平行呢?简述理由.(∠1 =∠2,∠3=∠4)
证明:∵ CM∥NB(已知) ∴ ∠3=∠2(两直线平行,内错角相等)
又∵ ∠3 =∠4,∠1=∠2(已知) ∴ ∠1 =∠2=∠3=∠4(等量代换) ∴ ∠1 +∠2=∠3+∠4(等式性质) ∴180°- (∠1 +∠2)= 180°( ∠3+∠4 )(等式性质) 即∠DCB= ∠ACB ∴CD ∥AB(内错角相等,两直线平行)
这一定理可简单写成:内错角相等,两直线平行.
a 45°1
∵∠1=∠2=45°(已知)
b
2 45°
∴a∥b(内错角相等,两直线平行)
用上图的方法作出平行线,你能说说其中的道理吗?
试证明:两条直线被第三条直线所截,如果同旁内角互补, 那么这两条直线平行.
c 已知:如图,∠1和∠2是直线a、b被直线
3
(3)根据题意写出“已知”和“求证”; (4)分析题意,探索证明思路;

第七章 平行线的证明 思维图解+综合与实践 知识考点梳理(课件)北师大版数学八年级上册

第七章 平行线的证明 思维图解+综合与实践  知识考点梳理(课件)北师大版数学八年级上册
∵DA⊥FA,∴∠DAF=90°,
∴∠FAB=∠DAF-∠2=52.5°.
综合与实践
[点拨] 本题考查了平行线的判定与性质,锻炼和提升
学生的推理能力,熟练掌握平行线的判定与性质是解答本题
的关键.

线
的ห้องสมุดไป่ตู้


三角形内角和定理






三角形的内角和等
于 180°
三角形的一个外角等于和它不相邻
的两个内角的和
三角形的一个外角大于任何一个和
它不相邻的内角
第七章 平行线的证明






同位角相等,两直线平行


线





线
平行线
的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
三条直线所截,内错角相等(或同旁内角互补).
第七章 平行线的证明
4. 了解平行于同一条直线的两条直线平行.
5. 探索并证明三角形的内角和定理.掌握它的推论:三角
形的外角等于与它不相邻的两个内角的和.
第七章 平行线的证明
本章内容要点
7 个基本概念:定义,命题,真命题,假命题,反例,
公理,定理
3 类常用定理:平行线的判定定理,平行线的性质定理
∠1=∠2.
综合与实践
(1)如图 2,一束光线 m 射到平面镜 a 上,被 a 反
射到平面镜 b 上,又被 b 反射.若被 b反射出的光线 n
与光线 m 平行,且∠1=50°,求∠2 和∠3 的度数;
(2)在(1)中,m∥n,求∠1 分别为 55°和40°时

北师大版八年级数学上册第7章 平行线的证明 平行线的性质

北师大版八年级数学上册第7章 平行线的证明  平行线的性质
第七章 平行线的证明
7.4 平行线的性质
问题 平行线的判定方法是什么? 两条直线被第三条直线所截,
1. 同位角相等 2. 内错角相等 3. 同旁内角互补
两直线平行
思考 反过来,如果两条直线平行,同位角、内错
角、同旁内角各有什么关系呢?
平行线的性质
合作探究
问题1:根据“两条平行线被第三条直线所截,同位
两直线平行,同旁内角互补. B
A
2
C E
1
43
D
4. 如图,一条公路两次拐弯前后两条路互相平行. 第
一次拐的∠B 是 142°,第二次拐的∠C 是多少度?
为什么?
C
B
解:∠C = 142°. 两直线平行,内错角相等.
5.如图是一块梯形铁片的残余部分,量得∠A = 100°,
∠B = 115°,梯形的另外两个角的度数分别是多少?
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
性质
同旁内角互补 角的关系
素材:探索平行线的性质(点击播放及下一步操作)
1. 下列图形中,由 AB∥CD,能得到∠1 =∠2 的是 ( B )
2. (1) 有这样一题:如图 1,若 AB∥DE,AC∥DF,试
说明∠A =∠D. 请补全下面的解答过程,括号内填写依

北师版八年级上册数学第7章 平行线的证明 【教案】平行线的判定

北师版八年级上册数学第7章  平行线的证明 【教案】平行线的判定

7.3 平行线的判定一、学生知识状况分析学生技能基础:在学习本课之前,学生对平行线的判定已经比较熟悉,也有了初步的逻辑推理能力,对简单的证明步骤有较清楚的认识,这为今天的学习奠定了一个良好的基础.活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.二、教学任务分析在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,本节课安排《为什么它们平行》旨在让学生从简单的几何证明入手,逐步形成一个初步的、比较清晰的证明思路,为此,本课时的教学目标是:1.熟练掌握平行线的判定公理及定理;2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.3.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.三、教学过程分析本节课的设计分为四个环节:情景引入——探索平行线判定方法的证明——反馈练习——反思与小结.第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a 与b 即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a ∥b (同位角相等,两直线平行)这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初123a b c学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.ABCD师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥bA BC D EF证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第173页的随堂练习活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第173页习题7.4第1,2,3题四、教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

《探索直线平行的条件》教案

《探索直线平行的条件》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直线平行的基本概念。直线平行是指在同一平面内,两条直线不相交且始终保持等距。它是几何学中的一个重要概念,广泛应用于日常生活和各类工程领域。
2.案例分析:接下来,我们来看一个具体的案例。通过观察铁轨的图形,分析直线平行的特点及其在实际中的应用,了解它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直线平行在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直线平行的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直线平行的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解平行线的定义:学生对“同一平面内”和“不相交”这两个概念的理解容易混淆;
(2)判定条件的运用:学生在运用同位角相等、内错角相等、同旁内角互补这三个条件判断直线平行时,容易混淆条件,不能灵活运用;
(3)几何图形的识别:在复杂的几何图形中,学生难以准确识别对应的角和边,从而影响判断;
此外,小组讨论环节,学生的参与度较高,能够积极发表自己的观点。但在引导和启发学生思考方面,我觉得自己还有待加强。在接下来的教学中,我将更加关注学生的思维过程,提出更有针对性的问题,激发他们的思考。

《平行线》说课稿

《平行线》说课稿

《平行线》说课稿《平行线》说课稿(精选6篇)《平行线》说课稿1各位评委、各位老师:大家好!今天我说课的内容是义务教育北师大版数八学年级上册第七章第三节《平行线的判定》,下面我将从教材分析、学生分析、教学目标、教学重难点、教学方法、教学过程等六个环节来说课。

一、教材分析本课是八年级学过的“同位角”,“内错角”,“同旁内角和”“平行线”的继续,是后面研究平移以及三角形、四边形(特别是平行四边形)的相关学习的基础。

从本节课起,培养和发展学生合情推理能力,同时也开始从有条理的口头表述逐渐过渡到书写自己的理由。

因此本节课的学习对发展学生的合情推理能力和逻辑推理能力是非常重要的几何推理等内容的基础,也是空间与图形的重要组成部分。

二、学情分析学生对“同位角”,“内错角”,“同旁内角”和“平行线”,四个概念已经了解,并且学生已经具备一定辨别能力,已经具备一定知识基础和一定认知能力,而不是一张“白纸”,虽对于两条直线的平行关系有了初步的认识,但是这个认识是很肤浅的,仅仅处于对生活中存在的平行线现象的感知层面,对于如何判断两条直线平行,缺乏相关的知识。

另一方面该年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。

三、教学目标知识目标:1、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些简单的实际问题。

2、会用三角尺过已知直线外一点画这条直线的平行线。

能力目标:会用判定方法1得出判定方法2和3,会用判定方法1,2得出方法3,会用判定方法进行简单推理。

情感目标:体会“由未知向已知”转化的数学思想是认识客观事物的基本方法经历观察、操作、想象、推理、交流等活动,并能积极、主动地进行自主探索或与同伴交流。

四、教学重点和难点重点:掌握平行的判定方法。

难点:会进行文字语言,图形语言,符号语言之间的互译,理解“转化”的思想。

五、教法学法分析教法:动手实践,自主探索,合作交流是学生学习数学的重要方式。

浦口区第三中学八年级数学上册 第七章 平行线的证明知识归纳 北师大版

浦口区第三中学八年级数学上册 第七章 平行线的证明知识归纳 北师大版

《第七章平行线的证明》知识归纳【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题. 要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. (2)正确的命题称为真命题,不正确的命题称为假命题. (3)公认的真命题叫做公理. (4) 经过证明的真命题称为定理.3.证明: 在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明. 要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.第4课时等边三角形的判定1.理解等边三角形的两个判定定理及其证明.2.理解含有30°角的直角三角形的性质及其证明.3.能利用等边三角形的两个判定定理解决一些简单的问题.重点等边三角形判定定理及含30°角的直角三角形的性质定理的发现与证明.难点含30°角的直角三角形性质定理的探索与证明.一、复习导入1.等腰三角形的性质有哪些?2.等腰三角形的判定定理是什么?师:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?如何判定一个三角形是等边三角形呢?二、探究新知1.等边三角形的判定定理师:一个三角形满足什么条件时是等边三角形?一个等腰三角形满足什么条件时是等边三角形?处理方式:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:性质判定的条件等边三角形等边对等角“三线合一”即等边三角形顶角平分线、底边上的中线、高线互相重合等边三角形三个角都相等,且每个角都是60°有一个角是60°的等腰三角形三个角都相等的三角形是等边三角形2.含30°角的直角三角形的性质定理师:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形——含30°角的直角三角形.师:用两个含30°角的全等的三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?并说明理由.解:能拼出一个等边三角形.方法1:∵△ABD≌ACD,∴AB =AC.又∵Rt △ABD 中,∠BAD =30°,∴∠ABD =60°,∴三角形ABC 是等边三角形.方法2:∵∠B=∠C=60,∠BAC =∠BAD+∠CAD=30°+30°=60°,∴∠B =∠C=∠BAC=60°,即△ABC 是等边三角形.师:在你所拼得的等边三角形中,有哪些线段存在相等关系?有哪些线段存在倍数关系?你能得到什么结论?说说你的理由.处理方式:如果学生不能很快得出30°角所对直角边是斜边的一半,教师可以要求学生思考其中哪些线段直接存在倍数关系,并在将三角板分开,思考从中可以得到什么结论.然后在学生得到该结论的基础上,再证明该定理.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在Rt △ABC 中,∠C =90°,∠BAC =30°.求证:BC =12AB.分析:从三角尺的拼摆过程中得到启发,延长BC 至点D ,使CD =BC ,连接AD. 证明:延长BC 至点D ,使CD =BC ,连接AD(如图所示).∵∠ACB =90°,∠BAC =30°,∴∠B =60°.∵∠ACB =90°,∴∠ACD =90°.∵AC =AC ,∴△ABC ≌△ADC(SAS ).∴AB =AD(全等三角形的对应边相等).∴△ABD 是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC =12BD =12AB. 三、举例分析例 等腰△ABC 的底角为15°,腰长为2a ,求腰上的高CD 的长.分析:在Rt △ADC 中,AC =2a ,观察图形可以发现∠DAC 是△ABC 的一个外角,而∠DAC=2×15°=30°,根据在直角三角形中,30°角所对的直角边是斜边的一半,可求出CD.解:∵∠ABC=∠ACB=15°,∴∠DAC =∠ABC+∠ACB=15°+15°=30°.∴CD =12AC =12×2a= a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).四、练习巩固1.下列命题:①有两个角相等的三角形是等边三角形;②有一个外角是120°的等腰三角形是等边三角形;③三个外角都相等的三角形是等边三角形;④有一边上的高也是这边上的中线的等腰三角形是等边三角形.其中正确的有________.(填序号)2.在△ABC 中,∠C =90°,∠B =30°,AC =1,求AB ,BC 的长.五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第12页“随堂练习”.2.教材第12~13页习题1.4第1~5题.本节课的难点在于探究直角三角形中,30°角所对的直角边等于斜边的一半,由于设计了三角板操作的实践活动,有效地突破了难点,因而,课堂上学生思维非常灵活,方法多样,取得了较好的效果.2平方根第1课时算术平方根【知识与技能】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.根据求一个数的算术平方根与平方是互逆运算,会利用这个互逆运算关系求某些非正负数的算术平方根.【过程与方法】经历求一个数的算术平方根与平方的互逆关系,提高学生逆向思维方法.【情感态度】学生动脑、动口,积极参与教学活动,培养他们对数学的好奇心和求知欲.【教学重点】了解算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】理解算术平方根的概念、性质.一、创设情境,导入新课上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.【教学说明】从平方入手,为学生下面学习算术平方根找到了突破口,让他们对算术平方根的求法与开平方这种互逆的关系形成了初步认识.二、思考探究,获取新知算术平方根的概念和求法.下面请大家根据勾股定理,结合图形完成填空:x2= ,y2= ,z2= ,w2=请大家分析一下,x、y、z、w中哪些是有理数?哪些是无理数?【教学说明】回忆勾股定理得到一个数的平方是一个正数,为下面给出算术平方根的概念作了开端.【归纳结论】因为没有任何整数或分数的平方等于2,3,5,所以x、y、w不是有理数,而是无理数,即2,35因为22=4.所以z=2,是有理数.若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为a”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即0=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3)49/64;(4)14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【教学说明】学生很容易看出一个正数的平方与求算术平方根是互为逆运算,有利于对算术平方根概念的理解.【答案】解:(1)因为302=900,所以900的算术平方根是30900;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为(7/8)2=49/64,所以49/64的算术平方根是7/84964=7/8;(4)1414【归纳结论】在求算术平方根时是借助于平方来求的.在例题中的步骤采取语言叙述和符号表示相互补充的做法,目的是让大家在计算中进一步体会一个正数的平方与求算术平方根是互为逆运算,在以后的步骤中可以简化.三、运用新知,深化理解1.填空题.(15,则这个数是 .(2)49的算术平方根是 . (3)正数 的平方为144/25,719 的算术平方根为 . (4)(-1.44)2的算术平方根为 .(5)81 的算术平方根为 ,004. =2.求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)124. 3.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h=4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?【教学说明】学生独立完成,加深对算术平方根概念的理解,强化了算术平方根的求法和表示方法.【答案】1.(1)5;(2)2/3;(3)12/5,4/3;(4)1.44;(5)3,0.2.2.(1)274().=7.4;(2)()239.-=3.9;(3)225. =1.5;(4)124 =3/2. 3.解:将h=19.6代入公式h=4.9t 2得t 2=4,所以t=4 =2(秒) 即铁球到达地面需要2秒.四、师生互动,课堂小结本节课你学习了哪些新知识?还有什么困难?请与同学们交流.【教学说明】教师引导学生回顾所学知识,加深印象.找出不足,共同提高.2.完成练习册中本课时相应练习.本节课从一个数的平方入手,用逆向思维求一个数的算术平方根,学生容易接受,解决问题起来应该说是得心应手,但要注意算术平方根的符号表示方法.。

北师版八年级上册数学教案-平行线的判定

北师版八年级上册数学教案-平行线的判定

7.3 平行线的判定教学目标【知识与技能】1.证明并掌握平行线的另两个判定定理,即内错角相等,两直线平行;同旁内角互补,两直线平行.2.经历平行线判定定理的推导过程,了解推理、证明的方法步骤和格式. 【过程与方法】通过经历利用平行线第一个判定定理简单论证平行线的另两个判定定理的过程,进一步掌握平行线的判定方法,领悟归纳和转化数学思想方法.【情感、态度与价值观】通过判定公理的证明、推导,进一步发展空间观念,培养学生的逻辑推理能力.教学重难点【重点】在观察实验的基础上进行平行线定理的推导.【难点】证明平行线的判定定理.教学过程一、复习引入1.什么叫做平行线?(同一平面内,两条直线不相交,就叫做平行线)2.什么叫做同位角、内错角和同旁内角?(在黑板上画出右图,指出在直线a、b被直线c所截成的角中,∠1与∠2是同位角,∠2与∠3是内错角、∠2与∠4是同旁内角)3.前面我们探索过两条直线平行的哪些判别条件?4.通过前面的学习我们知道,判断一个数学结论是否正确还需要有根有据的证明,那么,利用“同位角相等,两直线平行”这个基本事实,你能证明它们吗?我们一起来试一试.二、探索新知1.证明一.(1)出示定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简述为:内错角相等,两直线平行.(2)证明这个定理需要先把定理转化成几何语言,谁能说一说,怎么转化? (画出两条直线a 、b,被第三条直线c 所截,标出内错角∠1、∠2,表示如果∠1=∠2,那么a ∥b)(3)怎么证明呢?请写出完整的证明过程.已知:如图,∠1和∠2是直线a,b 被直线c 截出的内错角,且∠1=∠2. 求证:a ∥b.证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).∴a ∥b(同位角相等,两直线平行).2.证明二.(1)出示定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简述为:同旁内角互补,两直线平行.(2)让学生利用证明定理一的经验自主证明定理二. (3)讨论:要由同旁内角互补证明两直线平行,要怎么证明?(我们知道有定理“同位角相等,两直线平行”,如果能由同旁内角互补推出同位角相等,那么根据已有的这个定理就能证明出两直线平行)(4)学生板书证明过程.3.变式训练,培养能力.(出示投影)(1)如图1所示,由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两条直线平行?(2)如图2,已知∠1=45°,∠2=135°,l 1∥l 2吗?为什么?学生活动:学生思考后回答问题.教师给以指正并启发、引导得出各种答案. 三、例题讲解【例1】已知:如图,AB ⊥EF,E 、F 分别为垂足.直线AB 与CD 平行吗?请说明理由.【答案】AB ∥CD.理由如下: 由已知AB ⊥EF,CD ⊥EF,根据垂直的定义,得∠1=∠2=90°.∴AB∥CD.由此可以得到,在同一个平面内,垂直于同一条直线的两条直线互相平行.【例2】如下图所示,AC⊥CD于点C,∠1与∠2互余.判断AB、CD是否平行,并说明理由.【答案】AB∥CD.理由如下:如图所示,由已知AC⊥CD,根据互余的意义,得∠2与∠3互余.又已知∠1与∠2互余,根据“同角的余角相等”,得∠1=∠3.根据“内错角相等,两直线平行”,可得AB∥CD.【例3】如图所示,AP平分∠BAC,CP平分∠ACD,∠1+∠2=90°.判断AB、CD是否平行,并说明理由.【答案】AB∥CD.理由如下:已知AP平分∠BAC,CP平分∠ACD,根据角平分线的意义,知∠1=∠BAC,∠2=∠ACD,∴∠BAC+∠ACD=2(∠1+∠2)=2×90°=180°.根据“同旁内角互补,两直线平行”,得AB∥CD.四、提升练习已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.【答案】a∥b,可以用平行线的三种判定方法加以说明,其一:因为∠1+∠2=180°,又∠3=∠1(对顶角相等),所以∠2+∠3=180°,所以a∥b(同旁内角互补,两直线平行),其他略.五、课堂小结可以采用师生问答的方式或先让学生归纳,然后教师补充的方式进行,发挥学生的主体作用,培养学生的归纳能力.学生能由教师的引导思考:通过本节课的学习,你学习了什么知识?你有什么收获呢?你还有哪些困惑呢?能谈一谈你的想法吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连云港市西苑中学(朱松林)
序 号 1 课 题 探索直线平行的条件(1) 计 第 八角” ,培养学生观察探索的能力。 2、掌握直线平行的条件以及同位角特征。 教学重点 教学难点 课前准备 主要教法 实例操作探索直线平行的条件以及同位角特征 经历探索直线平行的条件以及同位角特征的过程, 预习课本 引导、探究、 教 课堂流程 学 教具选用 学法指导 进 程 活动流程 直尺、三角板 合作、研讨、探究 教时 教时
点拨:1 在图形中准确地找到必需同位角是解题的前提。 2 利用题中条件确定同位角相等关系是解题的关键。 课堂小结 四,布置作业:P10(1、2、4)
设 计 思 路
教 后 记
通过学生操作---观察---猜想---探索平行线条件的过程,激发学生积 极参与的兴趣,掌握平行线的识别方法,调动学生学习几何的积极 性,培养合情说理的能力。 通过学生操作---观察---猜想---探索平行线条件的过程, 激发学生积 极参与的兴趣,掌握平行线的识别方法,调动学生学习几何的积极 性,培养合情说理的能力。
1 1 1
(1) 在黑板 上画图
(2) 个体思 考并回答。
观察猜想
1 1 b1 1 1 c 11 1 11 1 1 定义:两条直线 、b 被第三条直线所截而成的 81个角 (3) 1a1 小组讨 1 1 1 中,像∠1 与∠ 1 2、这样的一对角称为同位角。 论 1 1
(4)猜想:图中还有其它的同位角吗? 合作学习
备课时间 教学目标
1经历探索直线平行的条件以及同位角特征的过程, 并自然引入 “三线
知 识 流 程
一、操作引入: (1)利用三角板和直尺画平行线:
c
情景导入
1
a 1
1
a
c
1
a
1 1 1 1 b b 2 2 2 1 1 1 1 b1 1 c 1 1 1 1 1 1 1 1 11 1 1 1 11 a、 1 1相等,所画的直线 1b 就平行 (2)观察:∠ 1 与∠2 1 1 1 1 1 (3)探索:∠ 1 与∠2 不相等,所画的直线 ab1 平行吗? 1 1 1 1 1 1 c 1 2 3 a b 1 1 a 学生板演
研讨探究
(2)AB∥CD.
B
因为∠2 与∠C 是 BDAC 被 CD 截成的同位角 且∠2=∠C 所以 AC∥BD 三.做一做: 如图直线 a.b 被 c 所截∠1=35.∠2=145 问直线 a 与 b 平行吗? 练习巩固
a 1 b 2 c B
C
2
教师作出 引导、 评价。
1 1 1
7c 5 1 c c 4 2 1 8 6 c 1 1 c
课堂流程 发现探究
知 识 流 程 。 (5)结论:同位角相等,两直线平行。
活动流程
二,学会应用:
如图所示:∠1=∠C,∠2=∠C 请你找出图中互相平行的 直线,并说明理由 解:(1)AB∥CD 因为∠1 与∠C 是 ABCD 被 A 的同位角, 且∠1 =∠C 所以 AB∥CD
相关文档
最新文档