2013年重庆启航中考预测卷24题

合集下载

明通中学重庆市2013年语文中考预测卷(答题卡 正面)

明通中学重庆市2013年语文中考预测卷(答题卡 正面)

死记硬背得不到真知识,投机取巧学不到真本领;纸上谈兵学不到真本事,闭门造车结不出好硕果。

要成功就没有借口,要借口就不可能会成功。

明通中学2013级语文答题卡 班级姓名考号………………………密……………………………………………………封…………………………………………线……………………… ……………………………………………………………………………………………………………………………………………………重庆市2013年语文中考预测卷(二) 明通中学2013级 语文第二次模拟考试 题 号 一 二 三 四 总 成 绩 分 数 一、语文基础知识及运用(30分) 1、(3分) 2、(3分) 3、(3分) 4、(4分)(1)应删去“ ”或者“ ” (2)可将“ ”改为“ ” (3) (4)应在“ ”加上“ ” 5、(3分)(1) 《 》、 (2) 英国戏剧之父 6、(1)(2分) (2)(2分) 7、(1)(2分)主要信息: (2)(4分)主题: 栏目一: 栏目二: 栏目三: (3)(2分)宣传画的用意是: (4)(2分) 二、古诗文积累与阅读(25分) (一)古诗文积累(10分,每空1分) 8、默写填空。

(1) ,自将磨洗认前朝。

(杜牧《赤壁》) (2)蒹葭萋萋, 。

(《蒹葭》) (3)我寄愁心与明月, 。

(李白《闻王昌龄左迁龙标遥有此寄》) (4) ,有良田美池桑竹之属。

(陶渊明《桃花源记》) (5)马作的卢飞快, 。

辛弃疾《破阵子·为陈同甫赋壮词以寄之》 (6) ,恨别鸟惊心。

(杜甫《春望》) (7) , 。

(8) , 。

(二)阅读下面的方言文,完成第9-12题(15分) 9、(4分,每空1分)(1) (2) (3) (4)10、(4分)(1)(2)11、(4分) 12、(3分) 三、现代文阅读(40分) (一)阅读下面的文章,完成13-17题。

(20分) 13、(4分) 14、(4分)(1) (2) 15、(4分)(1) (2) 16、(4分) 17、(4分) (二)阅读下面的文章,完成18-22题。

2013重庆中考数学试题及答案(09修订版).

2013重庆中考数学试题及答案(09修订版).

数学中考 第1页(共16页) 数学中考 第2页(共16页)重庆市2013年初中毕业暨高中招生考试(模拟)数 学 试 卷(本卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴公式为2b x a=-.一、选择题:(本大题10个小题,每小题4分,共40分)1.5-的相反数是( ) A .5B .5-C .15D .15-2.计算322x x ÷的结果是( ) A .xB .2xC .52xD .62x3.函数13y x =+的自变量x 的取值范围是( )A .3x >-B .3x <-C .3x ≠-D .3x -≥4.如图,直线A B C D 、相交于点E ,D F AB ∥.若100A E C ∠=°,则D ∠等于( ) A .70° B .80° C .90° D .100° 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,O ⊙是A B C △的外接圆,AB 是直径.若80B O C ∠=°, 则A ∠等于( )A .60°B .50°C .40°D .30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )A .B .C .D .8.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n9.如图,在矩形A B C D 中,2A B =,1B C =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么A B P △的面积S 与点P 运动 的路程x 之间的函数图象大致是( )10.如图是二次函数y=ax 2+bx+c 的图象,下列结论中:①abc >0;②b=2a ;③a+b+c <0;④a-b+c >0; ⑤4a+2b+c <0.正确的个数是( ) A .4个 B .3个 C .2个 D .5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 万元. 12.分式方程1211x x =+-的解为 .13.已知A B C △与D EF △相似且面积比为4∶25,则A B C △与D EF △的相似比为 .14.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .15.在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AO B △.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AO B △内的概率为 .16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.A .B .C .D .CAE BFD 4题图……第1个第2个第3个6题图D C PBA题图三、解答题:(本大题4个小题,每小题6分,共24分)17.计算:1021|2|(π(1)3-⎛⎫-+⨯---⎪⎝⎭.18.解不等式组:303(1)21xx x+>⎧⎨--⎩,①≤.②19.如图所示,为求出河对岸两棵树A、B间的距离,小坤在河岸上选取一点C,然后沿垂直于A C 的直线前进了12米到达点D,测得90CDB=∠.取C D的中点E,测得56AEC=∠,67BED=∠,求河对岸两树间的距离(提示:过点A作AF BD⊥于点F).(参考数据:4sin565≈,tan56 ≈23,sin67 ≈1514,tan67 ≈37.)20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:四、解答题:(本大题4个小题,每小题10分,共40分)21.先化简,再求值:22121124x xx x++⎛⎫-÷⎪+-⎝⎭,其中3x=-.(株)20题图植树2株的人数占32%数学中考第3页(共16页)数学中考第4页(共16页)数学中考 第5页(共16页) 数学中考 第6页(共16页)22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,C E x ⊥轴于点E ,1tan 422A B O O B O E ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.23.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且A E A C =. (1)求证:B G F G =;(2)若2AD D C ==,求AB 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.9166.083 6.164)DC EB GA24题图 F x23题图26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE ⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG理由.26题图x数学中考第7页(共16页)数学中考第8页(共16页)数学中考 第9页(共16页) 数学中考 第10页(共16页)(第23题)FAC数学试题参考答案及评分意见一、选择题1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.A 二、填空题11.67.8410⨯ 12.3x =- 13.2:5 14.外切 15.3516.30三、解答题17.解:原式23131=+⨯-+ ···············································································(5分) 3=. ································································································(6分) 18.解:由①,得3x >-.····················································································(2分)由②,得2x ≤.·····················································································(4分) 所以,原不等式组的解集为32x -<≤.·················································(6分)19.解:∵E 为CD 中点,CD =12,∴CE =DE =6. 在Rt △ACE 中∵tan56°=CEAC ,∴AC =CE ·tan56°≈6×23=9.在Rt △BDE 中, ∵tan67°= BDDE, ∴BD =DE ·tan67°≈6×37=14 .∵AF ⊥BD ,∴AC =DF =9,AF =CD =12, ∴BF =BD -DF =14-9=5.在Rt △AFB 中,AF =12,BF =5, ∴135122222=+=+=BFAFAB .∴两树间距离为13米.20················(4分)(2)补图如下:····························(6分)四、解答题: 21.解:原式221(1)2(2)(2)x x x x x +-+=÷++- ·······························································(4分)21(2)(2)2(1)x x x x x ++-=++ ···························································································(6分) 21x x -=+. ··············································································································(8分)当3x =-时,原式325312--==-+. ······································································· (10分)22.解:(1)42O B O E == ,,246B E ∴=+=.C E x ⊥轴于点E .1tan 2C E A B O B E∴∠==,3C E ∴=. ···································································(1分)∴点C 的坐标为()23C -,. ···················································································(2分) 设反比例函数的解析式为(0)m y m x=≠.将点C 的坐标代入,得32m=-,············································································(3分)6m ∴=-. ···········································································································(4分)∴该反比例函数的解析式为6y x=-.····································································(5分) (2)4O B = ,(40)B ∴,. ················································································(6分) 1tan 2O A A B O O B∠== ,2O A ∴=,(02)A ∴,.·························································································(7分) (株)数学中考 第11页(共16页) 数学中考 第12页(共16页)设直线AB 的解析式为(0)y kx b k =+≠.将点A B 、的坐标分别代入,得240.b k b =⎧⎨+=⎩, ··························································(8分)解得122.k b ⎧=-⎪⎨⎪=⎩, ·······································································································(9分) ∴直线AB 的解析式为122y x =-+. ································································· (10分) 23.解:(1)画树状图如下: ·······················(4分)或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为41123P ==.······································································(6分)(2)不公平.········································································································(7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种. 所以,积为奇数的概率为141123P ==, ·································································(8分)积为偶数的概率为282123P ==. ···········································································(9分)因为1233≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.······································ (10分) (只要正确即可)24.(1)证明:90ABC D E AC ∠= °,⊥于点F , ABC AFE ∴∠=∠. ······································(1分)A C A E E A F C AB =∠=∠ ,,A B C A F E ∴△≌△········································(2分)AB AF ∴=.·················································(3分) 连接A G , ······················································(4分) A G A G A B A F == ,,R t R t ABG AFG ∴△≌△. ··························(5分) B G F G ∴=. ················································(6分)(2)解:AD D C D F AC = ,⊥,1122A F A C A E ∴==.························································································(7分) 30E ∴∠=°. 30FAD E ∴∠=∠=°,·························································································(8分)AF ∴= ········································································································(9分)AB AF ∴==····························································································· (10分)五、解答题:25.解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,········································································································(1分) 解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. ···································································(2分)设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. ·······················(3分) 化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ····(4分) (2)去年12月份每台的售价为501226002000-⨯+=(元),去年12月份的销售量为0.112 3.85⨯+=(万台), ···············································(5分) 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. ····················(8分)令%m t =,原方程可化为27.514 5.30t t -+=.D CEB GA F 0 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积数学中考 第13页(共16页) 数学中考 第14页(共16页)27.515t ∴==⨯.10.528t ∴≈,2 1.339t ≈(舍去)答:m 的值约为52.8.························································································· (10分) 26.解:(1)由已知,得(30)C ,,(22)D ,,90AD E C D B BC D ∠=-∠=∠ °, 1tan 2tan 212A E A D A D E B C D ∴=∠=⨯∠=⨯= .∴(01)E ,. ············································································································(1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,····································································································(2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ···························································(3分) (2)2E F G O =成立. ·························································································(4分)点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125.························································································(5分)设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴D M 的解析式为132y x =-+.·········································································(6分) ∴(03)F ,,2E F =. ···························································································(7分) 过点D 作D K O C ⊥于点K ,则D A D K =.90A D K F D G ∠=∠= °, F D A G D K ∴∠=∠.又90F A D G K D ∠=∠= °,D AF D K G ∴△≌△. 1K G A F ∴==.1G O ∴=.············································································································(8分) 2E F G O ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2G C =.①若P G P C =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ···········································································································(9分) ②若PG G C =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时G P x ⊥轴.G P 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ······································································································· (10分)x。

2013中考数学预测题及答案

2013中考数学预测题及答案

2013年九年级质量预测数学注意:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.一、选择题(每小题3分,共24分)1.下面的数中,与−3的和为0的是()A.3 B.−3 C.13D.132.如图是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A. 三角形B.平行四边形C.梯形D.圆4.下面的计算正确的是()A.6a−5a=1 B.−(a−b)=−a+b C.a+2a2=3a3 D.2(a+b)=2a+b5.已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°FDECBA九年级六个班的同学某天“义务指路” 总人次折线统计图6. 某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是( )A .极差是40B .众数是58C .中位数是51.5D .平均数是607. 如图,△ABC 内接于⊙O ,连接OA ,OB ,∠OBA =40°,则∠C 的度数是( )A .60°B .50°C .45°D .40°OCB A第7题图 第8题图8. 如图,把图中的△ABC 经过一定的变换得到△A ′B ′C ′,如果图中△ABC 上的点P 的坐标为(a ,b ),那么它的对应点P ′的坐标为( )A .(a −2,b )B .(a +2,b )C .(−a −2,−b )D .(a +2,−b ) 二、填空题(每小题3分,共21分)9. 计算013+=3⎛⎫-- ⎪⎝⎭____________.10. 2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里、总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为____________人.11. 已知关于x 的一元二次方程20ax x b +-=的一根为-1,则a -b 的值是_________. 12. 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是________.13. 我们可以用钢珠来测量零件上小圆孔的宽口.假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为________mm .ECDBA14. 在Rt △ABC 中,∠C =30°,DE 垂直平分斜边BC ,交AC 于点D ,E 点是垂足,连接BD ,若BC =8,则AD 的长是_________.15. 如图,在平面直角坐标系中,正方形ABCD 顶点A 的坐标为(0,2),B 点在x 轴上,对角线AC ,BD 交于点M ,OM=C 的坐标为___________. 三、解答题(本大题共8个小题,共75分)16. (本题8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程213xx x +=-. 解:原方程可化为:222222(3)(3)263236=6x x x x x x x x x x x x x -+=--+=--+-=∴- ....①②③④检验:当6x =-时,各分母均不为0, ∴6x =-是原方程的解. ⑤请回答:(1)第①步变形的依据是____________________;(2)从第____步开始出现了错误,这一步错误的原因是__________________________; (3)原方程的解为____________________________.17. (本题9分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:40%25%羽毛球体操人数(1)该校学生报名总人数有多少人?(2)从图中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之多少?(3)请将两个统计图补充完整.18. (本题9分)如图,函数y =kx 与y =mx的图象在第一象限内交于点A ,在求点A 坐标时,小明由于看错了k ,解得A (1,3);小华由于看错了m ,解得A (1,13).(1)求这两个函数的关系式及点A 的坐标; (2)根据(1)的结果及函数图象,若kxmx>0,请直接写出x 的取值范围.19. (本题9分)如图,在菱形ABCD 中,∠BAD =60°,把菱形ABCD 绕点A 按逆时针方向旋转α°,得到菱形AB'C'D'.(1)当α的度数为______时,射线AB'经过点C (此时射线AD 也经过点C'); (2)在(1)的条件下,求证:四边形B'CC'D 是等腰梯形.D'C'B'DCBAα20. (本题9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A 点沿正北方向巡航,其航线距钓鱼岛(设M ,N 为该岛的东西两端点)最近距离为12海里(即MC =12海里).在A 点测得岛屿的西端点M 在点A 的东北方向;航行4海里后到达B 点,测得岛屿的东端点N 在点B 的北偏东60°方向,(其中N ,M ,C 在同一条直线上),求钓鱼岛东西两端点MN 之间的距离.CB A45°60°NM21. (本题10分)某商场经营某种品牌的童装,购进时的单价是40元.根据市场调查,在一段时间内,销售单价是60元时,销售量是100件,而销售单价每降低1元,就可多售出10件.(1)写出销售量y (件)与销售单价x (元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w (元)与销售单价x (元)之间的函数关系式; (3)若童装厂规定该品牌童装销售单价不低于56元,且商场要完成不少于110件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?22. (本题10分)(1)问题背景如图1,Rt △ABC 中,∠BAC =90°,AB =AC ,∠ABC 的平分线交直线AC 于D ,过点C 作CE ⊥BD ,交直线BD 于E .请探究线段BD 与CE 的数量关系.(事实上,我们可以延长CE 与直线BA 相交,通过三角形的全等等知识解决问题.) 结论:线段BD 与CE 的数量关系是______________________(请直接写出结论); (2)类比探索在(1)中,如果把BD 改为∠ABC 的外角∠ABF 的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由; (3)拓展延伸在(2)中,如果AB ≠AC ,且AB =nAC (0<n <1),其他条件均不变(如图3),请你直接写出BD 与CE 的数量关系.结论:BD =_____CE (用含n 的代数式表示).DE AFAB CDF BCAD23. (本题11分)如图,抛物线252y ax bx =++与直线AB 交于点A (-1,0),B (4,52).点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD . (1)求抛物线的解析式;(2)设点D 的横坐标为m ,△ADB 的面积为S ,求S 关于m 的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2013年九年级质量预测数学 参考答案一、选择题(每小题3分,共24分)二、填空题(每小题3分,共21分)三、解答题(共75分)16.(1) 等式的基本性质……2分 (2) ③;移项未变号……6分 (3)56=x ……8分17.解:(1)由两个统计图可知该校报名总人数是16016040040%0.4==(人).…………3分 (2)选羽毛球的人数是40025%100⨯=(人).因为选排球的人数是100人,所以10025%400=, 因为选篮球的人数是40人,所以4010%400=, 即选排球、篮球的人数占报名的总人数分别是25%和10% .……7分(3)补图. ………………9分羽毛球 25%体操40%25% 排球10%蓝球 人数18.解:(1)把x =1,y =3代入xm y =,m =1×3=3,∴x y 3=.…………………………2分把x =1,y =31代入kx y =,k =31;∴x y 31=.…………………4分 由x x 331=,解得:x =±3,∵点A 在第一象限,∴x =3. 当x =3时,1331=⨯=y , ∴点A 的坐标(3, 1).……7分 (2)-3<x <0或x >3. …………9分19.解:(1) 30°;…………3分 (2)由题意知:菱形的边AD =AB ′,∴∠ADB ′ =∠AB ′D , ∵∠CAC ′ = 30°,∴∠ADB ′ =∠AB ′D =75°.由于菱形的对角线AC=AC ′,∴DC ′=B ′C . 在△ACC ′ 中,可得∠ACC ′ =∠AC ′C = 75°.∴∠ADB ′ =∠AC ′C = 75°,∴B ′D ∥CC ′.……7分由于直线DC ′、CB ′ 交于点A ,所以DC ′ 与CB ′ 不平行. 所以四边形B ′CC ′D 是梯形.…8分∵DC ′=B ′C ,∴四边形B ′CC ′D 是等腰梯形.……………………9分20.解:在Rt △ACM 中,tan ∠CAM= tan 45°=ACCM=1,∴AC=CM=12, …………………2分 ∴BC=AC-AB=12-4=8,在Rt △BCN 中,tan ∠CBN = tan 60°=BCCN=3.∴CN =3B C =38.……………………6分 ∴MN =38-12.……………8分 答:钓鱼岛东西两端点MN 之间的距离为(38-12)海里.…………9分21.解:(1)由题意,得:70010)60(10100+-=-⨯+=x x y . 答:y 与x 之间的函数关系式是70010+-=x y .……………………2分(2)由题意,得:)70010)(40(+--=x x w 280001100102-+-=x x . 答:w 与x 之间的函数关系式是280001100102-+-=x x w .……………………5分(3)由题意,得:⎩⎨⎧≥≥+-5611070010x x 解得5956≤≤x .…………7分280001100102-+-=x x w ,2250)55(102+--=x w .对称轴为55)10(21100=-⨯-=x , 又0a <,5956≤≤x 在对称轴右侧,w 随x 增大而减小.∴当56=x 时,2240)7005610(40-56=+⨯-=)(最大w .答:这段时间商场最多获利2240元.…………………10分22.(1)BD =2CE ;……………2分 (2)结论BD =2CE 仍然成立.证明:延长CE 、AB 交于点G . ∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4. 又∵∠CEB =∠GEB =90°,BE =BE .∴△CBE ≌△GBE. ∴CE =GE , ∴CG =2CE .…………5分∵∠D +∠DCG =∠G +∠DCG =90°. ∴∠D =∠G , ∴sin ∠D = sin ∠G .∴CGACBD AB =. ∵AB =AC , ∴BD =CG =2CE.…………8分 (说明:也可以证明△DAB ∽△GAC ).(3)2n .……10分23.解:(1)由题意得⎪⎪⎩⎪⎪⎨⎧=++=+-.2525416,025b a b a 解得:⎪⎩⎪⎨⎧=-=.2,21b a ∴.252212++-=x x y (3)分(2)设直线AB 为:b kx y +=,则有⎪⎩⎪⎨⎧=+=+-.254,0b k b k 解得⎪⎪⎩⎪⎪⎨⎧==.21,21b k ∴.2121+=x y 则:D (m ,252212++-m m ),C (m , 2121+m ),CD =(252212++-m m )-(2121+m )=223212++-m m .∴CD m CD m S ⋅-+⋅+=)4(21)1(21=521⨯×CD =521⨯×(223212++-m m )=5415452++-m m .………………5分 ∵045<-∴当23=m 时,S 有最大值. 当23=m 时,452123212121=+⨯=+m .∴点C (45,23).………………………………7分 (3)满足条件的点Q 有四个位置,其坐标分别为(-2,21 ),(1,1),(3,2),(5, 3). …………11分。

2013重庆市中考数学最新模拟题(一)

2013重庆市中考数学最新模拟题(一)

间为 t 分,当时间从 3:00 开始到 3:30 止,图中能大致表示 y 与 t 之间的函数关系的图象是( )
A.
B.
C.
D.
11.如图,用火柴棍摆出一列正方形图案,第①个图案用火柴棍的个数为 4 根,第②个图案用火柴棍的个数 为 12 根,第③个图案用火柴棍的个数为 24 根,若按这种方式摆下去,摆出第⑨个图案用火柴棍的个数为 ()
度数是( )
A.45o
B.55o
C.65o
D.75o
7.如图,点 A、B、C 是⊙O 上三点,∠AOC=130°,则∠ABC 等于( )
1
--
A. 50°
B.60°
C.65°
D.70°
8.如图,在 Rt△ABC 中,CD 是斜边 AB 上的中线,若 CD=5,AC=6,则 tanB 的值是( )
A.45
4
--
23.为了了解同学们最喜欢的运动品牌,某市场咨询公司到我们年级对“耐克、阿迪达斯、李宁和匹克”四种 运动品牌进行了调查,每个同学只选一种自己喜欢的品牌,喜欢的人数比为 5:4:2:1,其中喜欢“匹克”的 有 5 人。根据调查情况绘制了两个不完整的统计图:
概率是
.
18.某单位职工参加市工会组织的健身操比赛进行列队,已知 6 人一列少 2 人,5 人一列多 2 人,4 人一列
不多不少,请问这个单位参加健身操比赛的职工至少有
人。
三、解答题:(本大题 2 个小题,每个小题 7 分,共 14 分)
1 19.计算:|-3|+(π-2013)0 - 25+(-3)-1+2tan45o
B.35
C.43
D.34
A
D
B

2013年重庆中考预测冲刺班讲解卷(二)

2013年重庆中考预测冲刺班讲解卷(二)

童话艺术培训中心2013年重庆中考预测冲刺班讲解卷(二)方程问题:1、山脚下有一个池塘,山泉以固定的流量向池塘里流淌,现在池塘中有一定的水,若一台A 型抽水机1小时刚好抽完,若两台A 型抽水机20分钟刚好抽完,若三台A 型抽水机同时抽 分钟可以抽完。

2、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的43。

然而实际情况并不理想,甲厂仅有21的产品、乙厂仅有31的产品销到了重庆,两厂的产品仅占了重庆市场同类产品的31。

则甲厂该产品的年产量与乙厂该产品的年产量的比为 。

增长率问题:1、某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加 _ _%.(结果保留3个有效数字)2、某店出售甲、乙、丙三种不同型号的电动车,已知甲型车的第一季度销售额占这三种车总销售额的56℅,第二季度乙、丙两种型号的车的销售额比第一季度减少了a %,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%,则a 的值为 。

压轴大题: 1、(2011年重庆中考25题原题)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)2、如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.1、解:小泉的流量、池塘内已有水的体积、抽水机的流量以上三个条件都为已知值,假设分别为a(m3/h)、b(m3)、c(m3/h),设三台抽水机同时抽所需时间为x(小时),则当一台时,a+b=c,两台时,a+3b=2c,三台时,ax+b=3cx,可以求出为0.2小时,即12分钟。

重庆2013中考数学模拟试题及答案解析概要

重庆2013中考数学模拟试题及答案解析概要

重庆市2013年初中毕业暨高中招生模拟考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(—a b 2,ab ac 442),对称轴公式为x =—a b 2.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内. 1.在—5,—2,0,3这四个数中,最大的数是( ) A .—5B .—2C .0D .32.计算(—x 3y )2的结果是( ) A .—x 6y 2B .x 5y 2C .x 6y 2D .—x 5y 23.如图,AB ∥CD ,AC =AB ,∠A =100°,则∠BCD 的度数等于( ) A .40° B .50°C .45°D .30°4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对“天宫一号”飞船的零部件进行检查 B .对我市中小学生视力情况进行调查 C .对一天内离开我市的人流量进行调查 D .对我市市民塑料制品使用情况进行调查5.若等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为( ) A .10B .8C .10或8D .无法确定 6.若x =1是一元二次方程x 2—3x +m =3的一个根,则m 的值为( ) A .5B .—1C .1D .—57.如图,△ABC 内接于⊙O ,若∠ACB =60°,则∠OAB 的度数等于( ) A .20° B .25° C .30°D .35°8.观察139713……,268426……等数字,它们都是由如下方式得到的:将第1位数字乘以3,若积为一位数,ABCD3题图7题图则将其写在第2位上;若积为两位数,则将其个位数字写在第2位上,对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.若第1位数字是3,仍按上述操作得到一个多位数,则这个多位数第2012位数字是( ) A .3B .9C .7D .19.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y (米)与时间x (分钟)的函数关系的大致图象是( )10.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a ≠0) 的图象与x 轴相交于点A (—2,0)和点B ,与y 轴相交于点C (0,4),且S △ABC =12,则该抛物线的对称轴是直线( )A .x =21B .x =1C .x =23D .x =2二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上. 11.地球的表面积约为5.1亿平方千米,其中海洋约占70%,则海洋的面积用科学记数法可表示为 平方千米. 12.如图,直线AB 、CD 相交于点O ,AC ∥BD .若BO =2AO ,AC =5,则BD 的长度为 .13.分解因式:x 2+2xy +y 2—4= .14.如图,点A 、B 在⊙O 上,且AB =BO .∠ABO 的平分线与AO 相交于点C ,若AC =3,则⊙O 的周长为 .(结果保留π) 15.有六张正面分别标有数字—2,—1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a , 将该卡片上的数字加1记为b ,则函数y =ax 2+bx +2的图象过点(2,3)的概率为 .16.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,且纯净水、果汁、蔬菜汁的成本价格比为1:2:2.由于市场原因,果汁、蔬菜汁的成本价格上涨15%,而纯净水的成本价格下降20%,但该饮料的总A .B .C .D .ACDBO12题图14题图 10题图成本仍与从前一样,那么该饮料中果汁和蔬菜汁的总质量与纯净水的质量之比为 .三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:9+(—1)2012—(31)-1+(π—4)0+tan45°.18.解不等式组:⎪⎩⎪⎨⎧->-<-183347215x x x19.如图,△ADE 的顶点D 在△ABC 的BC 边上,且∠ABD =∠ADB ,∠BAD =∠CAE ,AC =AE .求证:BC =DE .20.如图,AD 是△ABC 中BC 边上的高,且∠B =30°,∠C =45°,CD =2.求BC 的长.ABCE19题图ABC20题图①②四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(14++-x x x )1442++-÷x x x ,其中x =—1.22.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =xm(m ≠0)的图象 相交于第一、三象限内的A 、B 两点,与x 轴相交于点C ,连结AO ,过点A 作AD ⊥x 轴于点D ,且OA =OC =5,cos ∠AOD =53.(1)求该反比例函数和一次函数的解析式; (2)若点E 在x 轴上(异于点O ),且S △BCO =S △BCE ,求点E 的坐标.23.香港的“公屋制度”解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但尚未有一个城市真正大规模尝试.重庆市建设公共租赁住房,意在重点解决“夹心层”的住房问题,力争城市保障性住房的“全覆盖”.某班对学生以“公租房知识知多少”为主题进行了调查,该班的数学兴趣小组将本组的调查情况绘制成如下两幅不完整的统计图:(其中“A ”表示“非常了解”,“B ”表示“了解”,“C ”表示“比较了解”,“D ”表示“不了解”)22题图(1)根据上图,计算出该组的总人数,并将该条形统计图补充完整; (2)若该班共有50人,试估计该班对公租房非常了解的人数;(3)该数学兴趣小组决定从本组“非常了解”的同学中人选两名代表本班参加学校的公租房知识抢答竞赛.若该组“非常了解”的同学中有1名女生,请用画树状图的方法,求出所选两名同学恰好是一男一女的概率.24.如图,正方形ABCD 的对角线相交于点O .点E 是线段DO 上一点,连结CE .点F 是∠OCE 的平分线上一点,且BF ⊥CF 与CO 相交于点M .点G 是线段CE 上一点,且CO =CG . (1)若OF =4,求FG 的长; (2)求证:BF =OG +CF .人数“公租房知识知多少”调查结果扇形统计图“公租房知识知多少”调查结果条形统计图23题图D24题图五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.“相约红色重庆,共享绿色园博”,位于重庆市北部新区的国际园林博览会是一个集自然景观和人文景观为一体的大型城市生态公园.自2011年11月19日开园以来,某商家在园博园内出售纪念品“山娃”玩偶.十周以来,该纪念品深受游人喜爱,其销售量不断增加,销售量y(件)与周数x(1≤x≤10,且x取整数)之间所满足的函数关系如下表所示:为回馈顾客,该商家将此纪念品的价格不断下调,其销售单价z(元)与周数x(1≤x≤10,且x取整数)之间成一次函数关系,且第一周的销售单价为68元,第二周的销售单价为66元.另外,已知该纪念品每件的成本为30元.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式;根据题意,直接写出z与x之间满足的一次函数关系式;(2)求前十周哪一周的销售利润最大,并求出此最大利润;(3)从十一周开始,其他商家陆续入驻园博园,因此该商店的销售情况不如从前.该纪念品的销售量比十周下降a%(0<a<10),于是该商家将此纪念品的销售单价在十周的基础上提高1.4a%.另外,随着园博园管理措施的逐步完善,该商家需每周交纳200元的各种费用.这样,十一周的销售利润恰好与十周持平.请参考以下数据,估算出a的整数值.(参考数据:222=484,232=529,242=576,252=625)26.如图,在Rt△ABC中,AB=AC=24.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD 至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.C26题图26题备用图重庆市2013年初中毕业暨高中招生模拟考试数学试卷参考答案及评分意见一、选择题:二、填空题: 11.3.57×108; 12.10; 13.(x +y +2)(x +y —2);14.12π;15.61;16.2:3.三、解答题:17.解:原式=3+1—3+1+1.………………………………………………………………………………(5分) =3.……………………………………………………………………………………………(6分) 18.解:由①:3(5x —1)<2(7x —4).…………………………………………………………………(1分) 15x —3<14x —8.………………………………………………………………………(2分)x <—5.…………………………………………………………………………(4分)由②:x >—6.……………………………………………………………………………………(5分) ∴原不等式组的解集为—6<x <—5.……………………………………………………………(6分)19.证明:∵∠ABD =∠ADB ,∴AB =AD .………………………………………………………………………………………(1分) ∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE .……………………………………(3分) 又∵AC =AE ,∴△ABC ≌△ADE .……………………………………………………………………………(5分) ∴BC =DE .………………………………………………………………………………………(6分)20.解:∵AD 是△ABC 中BC 边上的高,∴AD ⊥BC ,∴∠ADB =∠ADC =90°.…………………………………………………………………………(1分)在R t △ACD 中:∵tan C =CD AD =2AD=tan45°=1, ∴AD =2.……………………………………………………………………………………………(3分) 在Rt △ABD 中:∵tan B =BD AD =BD 2=tan30°=33, ∴BD =32.………………………………………………………………………………………(5分) ∴BC =BD +CD =32+2,即BC 的长为32+2.……………………………………………………………………………(6分)四、解答题:21.解:原式=(1412++-++x x x x x )÷1)2(2+-x x .…………………………………………………………(2分) =22)2(114-+⋅+-x x x x .…………………………………………………………………………(5分)=2)2()2)(2(--+x x x .……………………………………………………………………………(7分) =22-+x x .………………………………………………………………………………………(8分) 当x =—1时,原式=2121--+-.……………………………………………………………………(9分)=31-.…………………………………………………………………………(10分)22.解:(1)∵AD ⊥x 轴,∴∠ADO =90°.在Rt △AOD 中,∵cos ∠AOD =AO DO =5DO =53∴DO =3.………………………………(2分)∴AD =22DO AO -=4. ∵点A 在第一象限内,∴点A 的坐标是(3,4). …………(3分)将点A (3,4)代入y =x m (m ≠0),3m=4,m =12.∴该反比例函数的解析式为y =x 12.………………………………………………………(4分)∵OC =5,且点C 在x 轴负半轴上,∴点C 的坐标是(—5,0).………………………………………………………………(5分)22题答图将点A (3,4)和点C (—5,0)代入y =kx +b (k ≠0),⎩⎨⎧=+-=+0543b k b k 解得⎪⎪⎩⎪⎪⎨⎧==2521b k ∴该一次函数的解析式为y =21x +25.………………………………………………………(7分) (2)过点B 作BH ⊥x 轴于点H .∵S △BCO =S △BCE , ∴21×OC ×BH =21×CE ×BH , ∴OC =CE =5.…………………………………………………………………………………(8分) ∴OE =OC +CE =5+5=10.……………………………………………………………………(9分) 又∵点E 在x 轴负半轴上,∴点E 的坐标是(—10,0).……………………………………………………………(10分)23.解:(1)该组的总人数=2÷20%=10(人).…………………………………………………………(1分)补图如下:…………………………………………………………………………………………………(3分) (2)50×30%=15(人).…………………………………………………………………………(4分)∴估计该班对公租房非常了解的人数约为15人.…………………………………………(5分) (3)将这一名女生用A 表示,另两名男生用B 1,B 2表示,由题意得树状图:23题答图“公租房知识知多少”调查结果条形统计图开始A B 1 B 2第一位…………………………………………………………………………………………………(8分) 共有6种情况,每种情况可能性相等,所选两名同学恰好是一男一女有4种情况.…(9分) ∴P (所选两名同学恰好是一男一女)=64=32.…………………………………………(10分) 24.(1)解:∵CF 平分∠OCE ,∴∠OCF =∠ECF .……………………………………………………………………………(1分) 又∵OC =CG ,CF =CF ,∴△OCF ≌△GCF .…………………………………………………………………………(3分) ∴FG =OF =4,即FG 的长为4.……………………………………………………………………………(4分)(2)证明:在BF 上截取BH =CF ,连结OH .………………………………………………………(5分)∵正方形ABCD 已知, ∴AC ⊥BD ,∠DBC =45°, ∴∠BOC =90°,∴∠OCB =180°—∠BOC —∠DBC =45°. ∴∠OCB =∠DBC .∴OB =OC .…………………………………………………………………………………(6分) ∵BF ⊥CF , ∴∠BFC =90°.∵∠OBH =180°—∠BOC —∠OMB =90°—∠OMB , ∠OCF =180°—∠BFC —∠FMC =90°—∠FMC , 且∠OMB =∠FMC ,∴∠OBH =∠OCF .………………………………………………………………………(7分)D24题答图∴△OBH ≌△OCF .∴OH =OF ,∠BOH =∠COF .……………………………………………………………(8分) ∵∠BOH +∠HOM =∠BOC =90°, ∴∠COF +∠HOM =90°,即∠HOF =90°. ∴∠OHF =∠OFH =21(180°—∠HOF )=45°. ∴∠OFC =∠OFH +∠BFC =135°. ∵△OCF ≌△GCF , ∴∠GFC =∠OFC =135°,∴∠OFG =360°—∠GFC —∠OFC =90°. ∴∠FGO =∠FOG =21(180°—∠OFG )=45°. ∴∠GOF =∠OFH ,∠HOF =∠OFG . ∴OG ∥FH ,OH ∥FG , ∴四边形OHFG 是平行四边形.∴OG =FH .…………………………………………………………………………………(9分) ∵BF =FH +BH ,∴BF =OG +CF .…………………………………………………………………………(10分)五、解答题:25.解:(1)y =10x +100(1≤x ≤10,且x 取整数).………………………………………………………(1分)z =—2x +70(1≤x ≤10,且x 取整数).………………………………………………………(2分) (2)设前十周内第x 周的销售利润为W (元),由题意知:W =y (z —30).………………………………………………………………………………(3分) =(10x +100)(—2x +70—30).=—20x 2+200x +4000.………………………………………………………………………(4分) =—20(x —5)2+4500.……………………………………………………………………(5分) ∵—20<0,∴抛物线开口向下,有最大值.∴当x =5时,W 取得最大值4500.∴前十周内第五周的销售利润最大,为4500元.…………………………………………(6分) (3)十周的销售量由表知为200件.十周的销售单价=—2×10+70=50(元).十周的销售利润=200×(50—30)=4000(元).…………………………………………(7分) 由题意,得200(1—a %)[50(1+1.4a %)—30]—200=4000.………………………(8分) 设t =a %,原方程可整理为:70t 2—50t +1=0.………………………………………………(9分) 解得t =7055525±. ∵232=529,242=576,而555更接近576,∴t ≈702425±, ∴t 1≈0.7或t 2≈0.014,∴a 1≈70或a 2≈1. ∵0<a <10,∴a 1≈70舍去.∴a =1.∴a 的整数值为1.…………………………………………………………………………(10分)26.解:(1)当0<t ≤4时,S =41t 2.………………………………………………………………………(1分) 当4<t ≤316时,S =—43t 2+8t —16.…………………………………………………………(2分)当316<t <8时,S =43t 2—12t +48.…………………………………………………………(3分) (2)存在,理由如下:当点D 在线段AB 上时, ∵AB =AC , ∴∠B =∠C =21(180°—∠BAC )=45°. ∵PD ⊥BC , ∴∠BPD =90°, ∴∠BDP =45°. ∴PD =BP =t , ∴QD =PD =t , ∴PQ =QD +PD =2t .CPH26题答图①过点A 作AH ⊥BC 于点H . ∵AB =AC , ∴BH =CH =21BC =4,AH =BH =4. ∴PH =BH —BP =4—t .在R t △APH 中,AP =328222+-=+t t PH AH .……………………………………(4分) (ⅰ)若AP =PQ ,则有3282+-t t =2t .解得:t 1=3474-,t 2=3474--(不合题意,舍去).…………………………(5分)(ⅱ)若AQ =PQ ,过点Q 作QG ⊥AP 于点G .∵∠BPQ =∠BHA =90°, ∴PQ ∥AH . ∴∠APQ =∠P AH . ∵QG ⊥AP , ∴∠PGQ =90°, ∴∠PGQ =∠AHP =90°, ∴△PGQ ∽△AHP . ∴AP PQ AH PG =,即328242+-=t t t PG , ∴PG =32882+-t t t .若AQ =PQ ,由于QG ⊥AP ,则有AG =PG ,即PG =21AP , 即32882+-t t t =213282+-t t .解得:t 1=12—74,t 2=12+74(不合题意,舍去).……………………………(6分) (ⅲ)若AP =AQ ,过点A 作AT ⊥PQ 于点T .易知四边形AHPT 是矩形,故PT =AH =4. 若AP =AQ ,由于AT ⊥PQ ,则有QT =PT ,即PT =21PQ , 即4=21×2t .解得t =4.当t =4时,A 、P 、Q 三点共线,△APQ 不存在,故t =4舍去.综上所述,存在这样的t ,使得△APQ 成为等腰三角形,即t 1=3474 秒或t 2=(12—74)秒.………………………………………………………………………………………………(7分)(3)四边形PMAN 的面积不发生变化.…………………………………………………………(8分)理由如下:∵等腰直角三角形PQE 已知, ∴∠EPQ =45°.∵等腰直角三角形PQF 已知, ∴∠FPQ =45°.∴∠EPF =∠EPQ +∠FPQ =45°+45°=90°. ……………………………………(9分) 连结AP . ∵此时t =4秒, ∴BP =4×1=4=21BC , ∴点P 为BC 的中点. ∵△ABC 是等腰直角三角形, ∴AP ⊥BC ,AP =21BC =CP =BP =4,∠BAP =∠CAP =21∠BAC =45°. ∴∠APC =90°,∠C =45°. ∴∠C =∠BAP =45°.∵∠APC =∠CPN +∠APN =90°, ∠EPF =∠APM +∠APN =90°,∴∠CPN =∠APM .…………………………………………………………………………(10分) ∴△CPN ≌△APM .∴S △CPN =S △APM .………………………………………………………………………………(11分) ∴S 四边形PMAN =S △APM +S △APN =S △CPN +S △APN =S △ACP =21×CP ×AP =21×4×4=8. ∴四边形PMAN 的面积不发生变化,此定值为8.………………………………………(12分)ABC PFQEMN26题答图②。

2013年重庆市中考数学模拟试卷及答案(word解析版)

2013年重庆市中考数学模拟试卷及答案(word解析版)

重庆市2013年中考数学模拟试卷一、选择题(40分)1.(4分)(2013•重庆模拟)在三个数0.5,,|﹣|中,最大的数是()|﹣=,=,2最大.B424.(4分)(2013•重庆模拟)如图,直线AB∥CD,∠1=60°,∠2=50°,则∠E=()6.(4分)(2013•重庆模拟)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是.小时,小时,+=.7.(4分)(2013•重庆模拟)若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取>﹣﹣﹣>﹣﹣8.(4分)(2013•重庆模拟)用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()9.(4分)(2013•重庆模拟)一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时B10.(4分)(2013•重庆模拟)如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()B根据相似的性质可得出:=BE=EF=×AC=FE=x=××二、填空题(24分)11.(4分)(2013•重庆模拟)今年我国西南五省市发生旱灾,尤其以云南省受灾最为严重,云南的经济损失已经超过170亿元,那么170亿元用科学记数法表示为 1.7×1010元.12.(4分)(2013•重庆模拟)我国青海玉树发生地震后,我校学生纷纷献出爱心为灾区捐则这六个班级捐款数的中位数为980元.13.(4分)(2013•重庆模拟)若m<0,则=﹣m.,而=14.(4分)(2013•重庆模拟)已知x1,x2是方程x2+3x﹣4=0的两个根,那么:x21+x22=17.==﹣=15.(4分)(2013•重庆模拟)在直角坐标系中,点A()关于原点对称的点的坐标是(,﹣).)关于原点对称的点的坐标是(,﹣),﹣)16.(4分)(2013•重庆模拟)某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加42.1%.(结果保留3个有效数字)三、解答题(24分)17.(6分)(2013•重庆模拟)计算:.18.(6分)(2013•重庆模拟)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:∠B=∠E.19.(6分)(2013•重庆模拟)解不等式:≥,并把解集在数轴上表示出来.20.(6分)(2013•重庆模拟)解方程:2x2﹣3x﹣1=0.=四、解答题(40分)21.(10分)(2013•重庆模拟)先化简,再求值:,其中a是方程x2+3x+1=0的根.;=22.(10分)(2013•重庆模拟)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y 轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.(,解得:;23.(10分)(2013•重庆模拟)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=100,b=0.15;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.(10分)(2013•重庆模拟)如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD 于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.EF=五、解答题(22分)25.(10分)(2013•重庆模拟)草莓营养丰富、味道鲜美.据以往经验,重庆某草莓种植基地每年的上半年草莓的售价y(元/千克)与月份x之间满足一次函数关系.月销售量P(千克)与月份x之间的相关数据售量P(千克)与月份x之间的函数关系式;(2)草莓在上半年的哪个月出售,可使销售金额W(元)最大?最大是多少元?并求出此时草莓的销售量;(3)由于气候适宜,该种植基地今年收获了10000千克的草莓,并按(2)问中求出的销售量售出新鲜草莓.剩下的草莓与白糖、柠檬汁按4:2:1的比例制成草莓酱并按每瓶500克的方式装瓶出售(制作过程中的损耗忽略不计).已知每瓶草莓酱的批发价是20元,大型超市的零售价比批发价高m%,大型商场的零售价比超市的零售价又提高了m%.该基地将这批瓶装草莓酱平均分成两部分,分别在大型超市、大型商场出售后销售总额达到了35万元.求m的值.(结果保留整数)(参考数据:)(﹣,(﹣﹣﹣=36000m%=或m%=≈26.(12分)(2013•重庆模拟)如图,已知点A,B分别在x轴和y轴上,且OA=OB=,点C的坐标是C()AB与OC相交于点G.点P从O出发以每秒1个单位的速度从O运动到C,过P作直线EF∥AB分别交OA,OB或BC,AC于E,F.解答下列问题:(1)直接写出点G的坐标和直线AB的解析式.(2)若点P运动的时间为t,直线EF在四边形OACB内扫过的面积为s,请求出s与t的函数关系式;并求出当t为何值时,直线EF平分四边形OACB的面积.(3)设线段OC的中点为Q,P运动的时间为t,求当t为何值时,△EFQ为直角三角形.,OA=OB=333,x+3OA=OB=3=6•OP=====HG××(t+,.的面积时有:﹣t﹣××﹣时,直线OP=OQ=×=t=)=,t=或。

重庆市2013年初中毕业暨高中招生考试

重庆市2013年初中毕业暨高中招生考试

重庆市2013年初中毕业暨高中招生考试思想品德模拟试题一、选择题:下列1—6小题的备选答案中,只有一项是最符合题意的,7—10小题的备选答案中,至少有两项是符合题意的,请选出,并将其字母符号填入下面表格相应的方框中。

(每小题2分,共20分)题号 1 2 3 4 5 6 7 8 9 10答案1、观察漫画《“小公主”上大学》。

你想对漫画中的“小公主”说 ( B )A.这支浩浩荡荡的“送学大军”令人羡慕B.希望你能告别依赖,走向自立C.你要学会自立,拒绝家长的任何帮助D.将来我考上大学,也让家人这样送我2、苏霍姆林斯基说:“人类有许多高尚的品格,但有一种品格是人性的顶峰,这就是个人的自尊心。

”以下对自尊和尊重他人的理解,不正确的是( C )A.知耻是自尊的重要表现B.尊重他人是自尊的需要,也是自我完善的需要C.自尊的人总是在乎他人对自己的评价D.善于欣赏接纳他人,不做有损他人人格的事,才能真正做到尊重他人3、“在贫困中,她任劳任怨,乐观开朗,用青春的朝气驱赶种种不幸;在艰难里,她无怨无悔,坚守清贫,让传统的孝道充满着每个细节。

虽然艰辛填满了四千多个日子,可是她的笑容依然灿烂如花。

”这就是带着瘫痪养母上大学的“‘临汾最美女孩”孟佩杰的真实写照。

她告诉我们( C )①父母对子女的爱是世界上最无私、最伟大的爱②孝敬父母是为人的基本要求,是中华民族的传统美德③在现代社会,孝敬父母是基本的道德规范④孝敬父母就是要在物质上赡养父母A.①②B.③④C. ②③D. ①④4、校车安全事故频频发生,震撼了全国人民的心。

国务院在征求社各界意见的基础上,于2012年4月5日公布《校车安全管理条例》,按照确保安全、切合实际的总体思路,规定了保障校车安全的基本制度。

这说明( D )①国家重视保护青少年的生命健康权②我国法律法规给予未成年人特殊保护③条例的公布能够确保校车安全事故不再发生④国家重视和改善民生,保障青少年健康成长A. ①②③B. ②③④C. ①③④D. ①②④5、漫画《圈套》中的违法分子冒充法院进行电话诈骗意在( B )A. 为公民权利提供司法保障B. 非法占有公民的合法财产C. 侵犯公民合法财产继承权D. 保护公民合法财产所有权6、2012年2月3日至4日,温家宝在广东考察时强调,国内经济一些体制上的问题,特别是不平衡、不协调、不可持续的问题需要认真加以解决,面临的挑战和困难不少,解决所有问题的关键依然是改革开放。

2013重庆中考24题最新练习

2013重庆中考24题最新练习

第24题图2013重庆中考24题最新练习第一次练习1.如图所示,在正方形ABCD 的边CB 的延长线上取点F ,连结AF ,在AF 上取点G ,使得AG=AD ,连结DG ,过点A 作AE ⊥AF ,交DG 于点E . (1)若正方形ABCD 的边长为4,且21tan =∠FAB ,求FG 的长; (2)求证:AE+BF=AF .3. 如图,□ABCD 中,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足∠DF A =2∠BAE . (1)若∠D =105°,∠DAF =35°.求∠F AE 的度数; (2)求证:AF =CD +CF .4.如图,已知在梯形ABCD 中, //,AD BC DE BC ⊥于点E ,交AC 于点,45F ACB ∠=,连接,BF FBC EDC ∠=∠。

(1)求证:BF CD =;BD24题图EAFC(2)若5,7AB BC ==,求梯形ABCD 的面积。

5.如图,在梯形ABCD 中,AD ∥BC ,090B ∠=,E 为AB 上一点,且AD AE =,C D C E =,点F 为CE 上一点,又ADC CFD ∠=∠. (1)若CE 平分DCB ∠,求BCE ∠的度数;(2)求证:0902DCE CDF ∠=-∠..6.如图,在正方形ABCD 中,点P 是AB 的中点,连接DP ,过点B 作 BE DP ⊥交DP 的延长线于点E ,连接AE ,过点A 作AF AE ⊥交DP于点F ,连接BF 。

(1)若2AE =,求EF 的长; (2)求证:PF EP EB =+。

7. 如图,梯形ABCD 中,AD ∥BC ,∠A =900, 点E 为CD 边的中点,BE ⊥CD ,且∠FBE =2∠EBC .在线段AD 上取一点F ,在线段BE 上取一点G ,使得BF =BG ,连接CG . (1)若AB =AF ,EG =2,求线段CG 的长; (2)求证:∠EBC +31∠ECG =30°.5. 如图,在梯形ABCD 中,AD ∥BC ,点E 为CD 上一点,且DE=EC=BC .A24题图CDEFGH ABCDG FE(1)若∠B =90°,求证: 3AEC DAE ∠=∠; (2)若4tan 3DAE ∠= ,AD =2,AE =5,求梯形ABCD 的面积.7. 如图,正方形ABCD 中,E 为AB 边上一点,过点D 作DF DE ⊥,与BC 延长线交于点F .连接EF ,与CD 边交于点G ,与对角线BD 交于点H . (1)若BF BD ==BE 的长;(2)若2ADE BFE ∠=∠,求证:FH HE HD =+.8. 如图,正方形ABCD 中,对角线AC 与BD 相交于O ,∠ADE=15°,过D 作D G ⊥ED 于D,且AG=AD,过G 作GF//AC 交ED 的延长线于F. (1) 若ED=64,求AG(2) 求证:2DF+ED=BDADECB第24题图EFGODCBA9. 如图,梯形ABCD 中,AD ∥BC , 45=∠ACB ,过D 作DE ⊥A D 交AC 于E ,BE=CD . (1)求证:AB=BE ;(2)若AB =4,BC =5,求AE 的长..10. 如图,P 为正方形ABCD 边BC 上一点,F 在AP 上,且AF=AD ,FE ⊥AP 交CD 于点E ,G 为CB 延长线上一点,BG=DE ,(1)求证:DAP BAP PAG ∠+∠=∠21(2)若DE =2,AB =4,求AP 的长 C DEA GFBpA B C DEGFP ED CBAFNEAB DC M11. 在□ABCD 中,对角线BD BC ⊥,G 为BD 延长线上一点且AEG ∆为等边三角形,BAD ∠、CBD ∠的平分 线相交于点E ,连接AE 交BD 于F ,连接GE . (1)若□ABCD的面积为AG 的长; (2)求证:AE BE GE =+.24题图)12. 如图,已知正方形ABCD ,点P 为射线BA 上的一点(不和点A ,B 重合),过P 作PE⊥CP ,且CP =PE .过E 作EF ∥CD 交射线BD 于F .(1)若CB =6,PB =2,则EF = ;DF = ;(2)请探究BF ,DG 和CD 这三条线段之间的数量关系,写出你的结论并证明;13. 如图,在正方形ABCD 中,M 是AD 的中点,连接BM ,BM 的垂直平分线交BC 的延长线于F ,连接MF 交CD 于N . 求证:(1) BM =EF ; (2) 2CN =DN .练习二1. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,BG ⊥CD 于点G .(1)若点P 在BC 上,过点P 作PE ⊥AB 于E ,PF ⊥CD 于F ,求证:PE+PF=BG . (2)若AD=4,BC=6,AB=2,求BG 的长.2. 如图,正方形ABCD 的对角线交于点O ,点E 是线段OD 上一点,连接EC ,作BF C E ⊥于点F ,交OC 于点G .(1)求证:BG=CE;(2)若AB=4.BF 是DBC ∠的角平分线,求OG 的长.3. 如图,在直角梯形ABCD 中,,//,AD DC AB DC ⊥,AB BC =AD 与BC 延长线交于点,F G 是DC 延长线上一点,AG BC ⊥于.E (1)求证:;CF CG =(2)连接,DE 若4,2,BE CE CD ==求DE 的长.4. 已知,ABCRt ∆中,90,30.ACB CAB ∠=∠=分别以AB 、AC 为边,向形外作等边ABD ∆和等边.ACE ∆(1)如图1,连结线段BE 、CD .求证:BE =CD ;(2)如图2,连接DE 交AB 于点F .求证:F 为DE 中点.5. .已知:如图,四边形ABCD 中AC 、BD 相于点D ,AB=AC ,AB AC ⊥,BD 平分ABC ∠且BD CD ⊥OE BC⊥ 于E ,OA=1. (1)求OC 的长; (2)求证:BO=2CD .6. 如图,直角梯形ABCD 中,,90,45,AD BC ADC ABC AB ∠=∠= ∥的垂直平分线EG 交BC 于F ,交DC 的延长线于.G 求证:(1)CG CF =;(2).BC DG =7. 如图,在等腰梯形ABCD 中,AD ∥BC,BC=2AD=2AB ,点E 、F 分别在AD 、AB 上,AE=BF ,DF与CE 相交于点P.(1) 求证:∠ADF=∠DCE ; (2)求∠DPC 的度数.8. 已知:如图,矩形ABCD 中点G 为BC 延长线上一点,连接,DG BH DG H ⊥于,且GH DH =,点,E F 分别在,AB BC 上,且//EF DG 。

2013年重庆市中考数学模拟试卷

2013年重庆市中考数学模拟试卷

2013年重庆市中考数学模拟试卷(1)一、选择题:1.(3分)计算:﹣22+(﹣2)3=( )A . 12B . ﹣12C . ﹣10D . ﹣42.(3分)计算(4a2)3的结果是( )A . 64a6B . 12a5C . 64a5D . 12a63、不等式042≥-x 的解集在数轴上表示正确的是( )A B C D4、二元一次方程组的解是( )A .B .C .D .5、如图,已知直线AB ∥CD ,∠DCF=110°且AE=AF ,则∠A 等于( )A . 30°B . 40°C . 50°D . 70°6.下列调查中,适合用普查的是( )①要了解某厂生产的一批灯泡的使用寿命; ②要了解某个球队的队员的身高;③要了解某班学生在半期考试中的数学成绩; ④要了解某市市民收看某频道的电视节目的情况.A . ①②B . ③④C . ①④D .②③ 7、计算28-的结果是( )A 、6B 、6 C 、2 D 、2 8.如图,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( ) 0-220A.10°B.20°C.40°D.80°9、某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为()A.3. 4B.4. 3C.3. 3D.4. 410、已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2B.﹣1C.0D.111.一艘轮船在一笔直的航线上往返于甲、乙两地.轮船先从甲地顺流而下航行到乙地,在乙地停留一段时间后,又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t(h),轮船离甲地的距离为s(km),则s与t的函数图象大致是()A.B.C.D.12.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a c<0B.a b>0C.4a+b=0D.a﹣b+c>0二、填空题:13、将抛物线y=﹣(x﹣1)2﹣2向左平移1个单位,再向上平移1个单位,则平移后抛物线的表达式6 2817题14、若单项式3x2yn 与-2xmy3是同类项,则m+n=??.在平面内,⊙O 的半径为??cm ,点P 到圆心O 的距离为??cm ,则点P 与⊙O 的位置关系是??????????????????????如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如( ,),( ,),( , ),( , ),( , ),( , )…根据这个规律,第 个点的横坐标为??????????????????????.把一个转盘平均分成三等份,依次标上数字 、??、??.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次转动停止后指针指向的数字的一半记作y 以长度为x 、y 、4的三条线段为边长能构成三角形的概率为_____________.18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本)三、解答题:17.计算:2sin45_18.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2BE=√2求CD 的长和四边形ABCD 的面积21、化简,再求值:.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .22.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.某公司组织部分员工到一博览会的A 、B 、C 、D 、E 五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B 馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.24.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.25如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.26.已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E 重合,点B、C(E)、F在同一条直线上,并按如下方式运动.运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为,当QC⊥DF 时暂停旋转;运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.设运动时间为t(s),中间的暂停不计时,解答下列问题(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时_________ s;(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.。

2013重庆中考数学模拟题九

2013重庆中考数学模拟题九

2013重庆中考数学模拟题九(启航2013预测卷2)一、选择题:1、有这样四个数:—2,2,21,7,其中最大的数是( )A 、—2B 、 2C 、21 D 、72、下列运算正确的是( )A 、6332x x x =+B 、236x x x =÷C 、933x x x =∙D 、623)(x x =- 3、函数2+=x y 中,自变量取值范围是( )A 、2->xB 、2-≠xC 、2- xD 、2-≤x 4、若一个多边形的每一个外角都是60º,则它的内角和是( ) A 、360º B 、540º C 、720º D 、1080º5、下列调查中,适合用普查方式的是( )A 、了解“毒刺”导弹的杀伤半径B 、对一批烟花的燃放效果的调查C 、了解民众对钓鱼岛争端的看法D 、了解某班学生对“鸟叔”的知晓率6、如图,直线AB//CD ,直线EF 分别与直线AB 、CD 交于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EGD=116º,则∠EFD 的度数是( )A 、46 ºB 、52 ºC 、58 ºD 、64 ºA B CDEF G第6题AB C D第7题第9题7、在上述图形中,既是轴对称图形,又是中心对称图形的是( ) 8、下列命题正确的是( )A 、方程x x =2的解是x=1 B 、4的平方根是2C 、有两边和一角相等的两三角形全等D 、连接任意四边形各边中点所得四边形是平行四边形 9、如图,P 是☉O 外一点,PA 、PB 分别切☉O 于点A 、B ,点C 是弧AB 上任意一点,过点C 作☉O 的切线分别交PA 、PB 于点E ,若△PDE 的周长是24,则PA 的长是( ) A 、8 B 、10 C 、12 D 、1510、观察下列正方形的四个顶点所标的数字规律,那么2012这个数字标在( )123476589101112131516第10题A 、第502个正方形的左下角B 、第502个正方形的右下角C 、第503个正方形的左下角D 、第503个正方形的右下角11、小亮从家步行到公交车站,等公交车去学校,图中的折线表示小亮的行程S (km )与时间t (min )之间的函数关系,下列说法错误的是( )A 、他离家8km ,共用30minB 、他等公交车时间为6minC 、他步行的速度是100m/minD 、公交车的速度是350m/minO10163081t/min s/km 第11题A -1-2-3O12、如图是二次函数)0(2≠++=a c bx ax y 的图象的一部分,图象过点A (x 1,0)且231-<<-x ,对称轴为直线x=-1,则下列结论错误的是( )A 、0>abcB 、ac b 42>C 、)1)((-≠+>-,m m b ma m b a 为实数D 、023>+c b 二、填空13、2012年重庆实现生产总值为11460亿元,同比增长13.6%,增速居全国第一,将11460亿用科学记数法表示为 亿。

2013年中考数学预测试卷(一)(A4版)

2013年中考数学预测试卷(一)(A4版)

2013年中考数学预测试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分) 1.9的平方根是( )A .3B .-3C .±3D .62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为( )A .6.75×10-5克B .6.74×10-5克C .6.74×10-6克D .6.75×10-6克 3.下列图形中,既是轴对称图形又是中心对称图形的共有( )A .1个B .2个C .3个D .4个4.某市5月上旬前五天的最高气温如下(单位:°C ):28,29,31,29,33,对这组数据,下列说法错误的是( )A .平均数是30B .众数是29C .中位数是31D .极差是5 5.如图,二次函数2y ax bx c =++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是( ) A .当x =0时,y 的值大于1 B .当x =3时,y 的值小于0 C .当x =1时,y 的值大于1D .y 的最大值小于0(2,-1)(-1,1)yxO水平面主视方向第5题图 第6题图 6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆7.如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式 x +m >kx -1的解集在数轴上表示正确的是( )-100-10-10-1A . B . C . D .8.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,若点P 是⊙O 上的一个动点,则∠OAP 的最大值是( )A .30°B .45°C .60°D .90°y 2y 1PO y xOBPAFE DCBA第7题图 第8题图 第10题图 二、填空题(每小题3分,共21分) 9.化简:128=2-_________.10.如图,在△ABC 中,∠B =50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =_________.11.圆锥的底面圆直径和母线长均为80cm ,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.13.如图,在△OAB 中,C 是AB 的中点,反比例函数y =k x(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为______.AOxyCB14.将矩形纸片ABCD 按如图所示的方式折叠,点A 、点C 恰好落在对角线BD上,得到菱形BEDF .若BC =6,则AB 的长为_________.15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =12,BD =16,E 为AD 中点,点P 在x 轴上移动.小明同学写出了两个使△POE 为等腰三角形的P 点坐标,即( 5 0 ) -,和( 5 0 ),.请你写出其余所有符合这个条件的P 点坐标__________________.ACBDEFDBCAAO xyBED C第14题图 第15题图 三、解答题(本大题共8小题,满分75分) 16.(8分)先化简2111122x x x x ⎛⎫-÷ ⎪-+-⎝⎭,然后从-2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图人数选项307812612120100806040200ACB DEE DBCA根据以上信息,解答下列问题:(1)本次接受调查的总人数是 人,并把条形统计图补充完整. (2)在扇形统计图中,C 选项的人数百分比是 ,E 选项所在扇形的圆心角的度数是 .(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?吸烟有害——你打算怎样减少吸烟的危害?(单选) A .无所谓B .少吸烟,以减轻对身体的危害C .不在公众场所吸烟,减少他人被动吸烟的危害D .决定戒烟,远离烟草的危害E .希望相关部门进一步加大控烟力度18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.M AC DEFB19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题: (1)线段CD 表示轿车在途中停留了_____h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.3008054.52.521Ox /hy /km AED B C20.(9分)如图所示,当小华站立在镜子E F 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3 1.73 )45°30°A 1B 1FE DB CA21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G .(1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ; (2)通过观察、测量,猜想:BF PE= ,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE的值.(用含α的式子表示)C (P )E AG OF DBAOB D F P GEC BD F G CEPOA图1 图2 图323.(11分)如图,在平面直角坐标系中,点A 的坐标为(1,3),△AOB 的面积为3.(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角形,使其中一个三角形的面积与四边形BPOE 的面积之比为2:3?若存在,求出点P 的坐标;若不存在,请说明理由.OxAyB。

2013年重庆中考数学24题__(专题练习+答案详解)

2013年重庆中考数学24题__(专题练习+答案详解)

2013年重庆中考数学24题专题练习1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BCE的面积;(2)求证:BD=EF+CE.4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点EEF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA 的延长线于G,且DG=DE,AB=,CF=6.(1)求线段CD的长;(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形ABCD的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.7、已知:如图, ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF 的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD 外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB 的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC 于F.(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.(2)求证:ED=BE+FC.28、(2005•镇江)已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.31、已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.32、如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F(1)求证:BF=AD+CF;33、在等腰梯形ABCD中,AD∥BC,AB=AD=CD,∠ABC=60°,延长AD到E,使DE=AD,延长DC到F,使DC=CF,连接BE、BF和EF.35、如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE.(1)求证:BC=CD;(2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG.求证:CD垂直平分EG;(3)延长BE交CD于点P.求证:P是CD的中点.36、已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连结AF、CF.求证:(1)∠ADF=∠BCF;(2) AF⊥CF.37、如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.(1)求证:CF=CG;(2)连接DE,若BE=4CE,CD=2,求DE的长.38、如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.39、直角梯形ABCD中,AB∥CD,∠C=90°,AB=BC,M为BC边上一点.(1)若∠DMC=45°,求证:AD=AM.(2)若∠DAM=45°,AB=7,CD=4,求BM的值.40、如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;求证:(1)△BCQ≌△CDP;(2)OP=OQ.。

2013重庆中考数学模拟题八

2013重庆中考数学模拟题八

ABC DE F G第4题(3)2013重庆中考数学模拟题八(启航2013预测卷1)一、选择题:1、在—3,0,3-,3这四个数中,最小的是( )A 、—3B 、0C 、 3-D 、3 2、下列运算正确的是( )A 、422a a a =+B 、632)(a a = C 、22)(ab ab = D 、22a a a =∙3、函数31-+=x x y 的自变量 x 的取值是( )A 、3≠xB 、1-≥xC 、31≠-≥x x 且D 、31≠-≥x x 或4、如图,AB//CD,点E 在CD 上,EG 与AB 交于点F ,DF ⊥EF 于F ,若∠D=25º,则∠GFB 的度数是( ) A 、25 º B 、55 º C 、75 º D 、65 º5、下列说法正确的是( )A 、连续抛一枚硬币10次都可能正面向上B 、随机事件发生的可能性是50%C 、一组数据2,2,3,6的众数和中位数都是2 D、对某类烟花燃放的安全情况进行全面调查 6、把不等式组⎩⎨⎧≤->+0101x x 的解集在数轴上表示正确的是()A B C D7、已知一次函数b x y +=的图象经过一、二、三象限,则有b 的值可以是( ) A 、—2 B 、—1 C 、2 D 、08、如图,∠1=∠2,再增加一个条件不一定能使△ADE ∽△ABC 成立的是( )A 、∠D=∠B B 、∠AED=∠C C 、AC AE AB AD = D 、BC DE AB AD =O ,PC=4,PB=2,则☉O 的半径是( ) A 、1 B 、2 C 、3 D 、410、下列图形都是同样大小的矩形按照一定的规律组成,其中第1个图形中一共有6个矩形,第2 个图形中一共有18个图形,第3个图形中一共有36个矩形……则第8个图形中矩形的个数有( ) A 、126 B 、168 C 、216 D 、37211、地铁1号线是贯穿渝中区和沙坪坝区的重要交通线。

重庆市2013年语文中考预测卷

重庆市2013年语文中考预测卷

重庆市2013年语文中考预测卷(一)(全卷共四个大题满分:150分考试时间:120分钟)一、语文基础知识及运用(30分)1.下列词语中加点字注音完全正确的一项是()(3分)A.啜泣(chuò)倔强(jué)酝酿(niàng)目不窥园(kuī)B.寒噤(jìn)羁绊(pàn)模样(mú)叱咤风云(chà)C.嘶哑(shī) 脊梁(jí)咀嚼(jué)前仆后继(fù)D.狡黠(xiá)拮据(jū)埋怨(mái)2.下列句子中书写完全正确的一项是()(3分)A.他再三嘱咐茶房,甚是仔细。

但他终于不放心,怕茶房不妥贴,颇踌躇了一会儿。

B.设计者和匠师们因地制宜,自出新裁,修建成功的园林当然各个不同。

C.四下一片沉静,广场上一个人也没有,商店和饭馆的门无精打采的敞着。

D.人类的智慧和大自然的智慧相比实在是相形见拙。

3.下列句子中加点词语与其他三项不同的一项是()(3分)A.欣雨喜欢阅读,经常到图书馆,只为寻章摘句而来。

B.他所吹嘘的那些寻章摘句的堆砌出来的文章,在我看来有些不堪入目,读起来味同嚼蜡。

C.他读书时只是寻章摘句,从不深入思考,自然就没有什么感悟。

D.广泛阅读是写好文章的前提,我们不能只停留在寻章摘句上,而应该推敲细思。

4.下列句子没有语病的一项是()(3分)A.国家发改委已对成品油价形成机制进一步逐步完善,新方案将成品油调价周期有现行22个工作日缩短至10天。

B.雾霾压顶,“美丽中国”面临严重的考验,十八大报告首次把“美丽中国”作为生态文明建设的宏伟目标。

C.为了减少PM2.5,使头一遭元宵节没有燃放烟花的西安市民王智勇期待两会掀起掀起了“环境监管风暴”.D.新型城镇化是未来中国经济增长的重要动力,对外经贸大学公共政策研究所研究员苏培科认为,要防止房地产市场过热造成的“伪城市化”。

重庆市2013年初中毕业暨高中招生考试(模拟

重庆市2013年初中毕业暨高中招生考试(模拟

重庆市2013年初中毕业暨高中招生考试(模拟)数 学 试 题(本卷共五个大题 满分:150分 考试时间:120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a =-.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.-4的绝对值是( )A .4B .-4C .±4D .41 2.计算()23y x 的结果是( )A .29y x B .25y x C .26y x D .y x 53.正六边形的内角和为( )度A .1080°B .900°C .720°D .540° 4.中招体育测试后,学校从九年级(3)班50名同学中随机抽取6名学生的体育成绩,分别如下:50,50,48,50,48,42,关于这组数据,下列说法不正确的是( )A .极差是8B .众数是50C .平均数是48D .中位数是49°5.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,则∠CDA 的度数为( )A .22.5°B .67.5°C .70°D .75°A .2B .1C .3D .07.如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,∠ABC=60,则∠D 的度数为( ) A .60° B .30° C .45° D .75°8.如图,一次函数y=ax+b 和y=mx+n 交于点(-2,1),则当y1>y2时,x 的范围是( ) A .x>-2 B .x<-2 C .x<1 D .x>19.已知△ABC 的三边长分别为1、5、x ,周长为整数,则△ABC 形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.如图,①图由1张小正方形纸片组成,由6张同样大小的小正方形纸片可以组成②图,由15张同样大小的小正方形纸片可以组成图③,……,以此规律组成第⑤图需要的同样大小的小正方形纸片张数( )A.28B.36C.45D.6611. 4月20日,雅安芦山发生地震,某武警部队接到命令后,立即乘汽车以最快的速度赶往雅安芦山县,到芦山县城后,按指挥部统一部署立即前往重灾区龙门乡,部队在进行途中遇山体滑坡,道路阻断,部队疏通道路后又以原来的速度赶往龙门乡,在规定时间内到达了目的地,设部队接到命令后出发所用时间为t 小时,部队离开芦山县城的距离为S 千米,下列图象能大致反应S 与t 的函数关系的是( )12.二次函数)0(2≠++=a c bx ax y 的图象如图所示,且经过点(-1,0),则下列结论中,正确的是( )c18.甲乙丙三人进行智力抢答活动,规定:在抢答过程中甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013重庆启航中考预测卷24题
24.(预测一)如图,在正方形ABCD中,对角线AC与BD相交于点O,∠ADE=15°,过D作
DC⊥ED于点D,且AG=AD,过点G作GF∥AC交ED的延长线于点F。

⑴若ED=46,求AG;
⑵求证:2DF+ED=BD。

24.(预测二)正方形ABCD中,M为AD边上的一点,连接BM,过点C作CN∥BM,交AD的
延长线于点N,在CN上截取CE=BC,连接BE交CD于点F。

⑴若∠AMB=60°,CE=23,求DF的长度;
⑵求证:BM=DN+CF。

24.(预测三)如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G
⑴若∠CBD=30°, BC=43,求线段AE的长;
⑵求证: PF+PG=AB.
24.(预测四)如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过点D
作DH⊥AE于点H。

⑴若AB=10,DH=6,求HE的长;
⑵求证:∠BAE=2∠ADH。

24.(预测五)如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的
点,且△ACE 是等边三角形。

⑴ 求证:四边形ABCD 是菱形;
⑵ 如图②,若∠AED =2∠EAD ,AC =6,求
DE 的长。

24.(预测六)在正方形ABCD 中,E 为BC 中点,连接AE ,过点B 作BF ⊥AE ,交AE 于点G ,
连接GD ,过点A 作AH ⊥GD 交GD 于点H 。

⑴ 求证:△ABE ≌△BCF ;
⑵ 若正方形边长为4,AH =
5
16,求△AGD 的面积。

24.(预测七)如图,在矩形ABCD 中,点E 为矩形的边CD 上任意一点,点P 为线段AE 中点,连
接BP 并延长交边AD 于点F ,点M 为边CD 上一点,连接FM ,且∠1=∠2.
⑴ 若AD =2,DE =1,求AP 的长;
⑵ 求证:PB =PF +FM 。

24.(预测八)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处。

⑴ 如图①,若折痕AE =55,且tan ∠EFC =4
3, 求矩形ABCD 的周长; ⑵ 如图②,在AD 边上截取DG =CF ,连接GE 、BD ,相交于点H ,求证:BD ⊥GE 。

相关文档
最新文档