八年级上期末达标测试卷精选
人教版八年级物理(上册)期末达标试题及答案
人教版八年级物理(上册)期末达标试题及答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(每题2分,共30分)1、生活中我们常看到“白气”,下列有关“白气”形成的说法中正确的是()A.文艺演出时舞台上经常释放“白气”,这是干冰在常温下的升华现象B.夏天从冰箱里取出的冰棍周围冒“白气”,这是空气中水蒸气凝华的现象C.深秋清晨的河面上经常出现“白气”,这是河面上水蒸气汽化的现象D.冬天水烧开后壶嘴处喷出“白气”,这是壶嘴喷出水蒸气液化的现象2、下列说法中正确的是()A.接触的物体间才会产生力的作用,不接触的物体间不会有力的作用B.一个物体只受重力,一定竖直向下运动C.弹簧测力计只能沿竖直方向使用,不能倾斜使用D.地球附近的物体如果只受一个力,那肯定就是重力3、太阳光通过树叶间的空隙,在地上形成许多圆形的光斑,这些圆形光斑是()A.树叶的虚像B.树叶的实像C.太阳的虚像D.太阳的实像4、如图所示的四幅图中,不能产生声音的是()A.拨动张紧的橡皮筋B.关闭的立体声收音机C.敲击水瓶琴D.真空罩中响铃的闹钟5、如图所示,弹簧测力计和细线的重力及一切摩擦均不计,物重G=5N,则弹簧测力计A和B的示数分别为()A.5N,0N B.0N,5N C.5N,5N D.5N,10N6、下列说法正确的是()A.跳远运动员快速助跑后,飞身鱼跃,受惯性力的作用在空中继续前进B.在水平道路上做匀速直线运动的汽车,受到的牵引力和阻力是一对平衡力C.要让自行车更快的停下来,用力捏闸是通过增大压力来减小摩擦D.拉力越大,弹簧被拉得越长,由此可知,力的作用效果只与力的大小有关7、某一物体做变速直线运动,总路程为12m,已知它在前一半路程的速度为4m/s,后一半路程的速度为6m/s,那么它在整个路程中的平均速度是()A.4m/s B.4.8m/s C.5m/s D.6m/s8、室内温度为20℃,此时用浸有少量酒精的棉花裹在温度计的玻璃泡上,随着酒精的迅速蒸发,图中哪幅图正确反映了温度计读数随时间的变化()A.B.C.D.9、自行车的结构和使用涉及了许多有关摩擦力的知识,下列说法中正确的是()A.在自行车转动部分添加润滑油是为了减小摩擦B.用力捏刹车闸是为了减小摩擦C.在车外胎、把手塑料套、脚蹬上都刻有花纹主要是为了外观好看D.车的前轴、中轴及后轴均采用滚动轴承是为了增大摩擦10、如图是小聪做甲、乙两种物质的凝固实验所得到的温度一时间图象.判断错误的是()A.甲在第2min时是液态 B.甲在ab段吸热C.甲的凝固点是48℃ D.乙是非晶体11、如图所示,底面积相同的甲、乙两容器,装有高度、质量均相同的不同液体,则它们对容器底部压强的大小关系正确的是()A.p甲>p乙B.p甲<p乙C.p甲=p乙D.条件不足,无法判断12、蜡烛放在如图所示位置,通过凸透镜成倒立、缩小的像,小红画了图中的光路.下列说法正确的是()A.小红画的光路是正确的B.透镜成的是虚像C.透镜的焦距小于10cm D.透镜的焦距大于20cm13、右图是电阻甲和乙的图像,小明对图像信息做出的判断,正确的是()A.当甲两端电压为0.5V时,通过它的电流为0.3AB.当乙两端电压为2.5V时,其电阻值为10ΩC.将甲和乙串联,若电流为0.3A,则它们两端的电压为2VD.将甲和乙并联,若电压为1V,则它们的干路电流为0.4A14、《流浪地球》电影中描述到了木星.木星质量比地球大得多木星对地球的引力大小为F1,地球对木星的引力大小为F2,则F1与F2的大小关系为()A.F1<F2B.F1>F2C.F1=F2D.无法确定15、下列物体的长度值最符合实际的是()A.一枚硬币的厚度为5mm B.乒乓球的直径为10cmC.物理教科书的宽度为1.8dm D.课桌的高度为1.2m二、填空题(每题2分,共10分)1、质量相同的0℃的冰比0℃的水冷却效果好,这是因为冰________(填写物态变化的名称)时吸收热量,此过程中冰的温度________(选填“升高”、“降低”或“保持不变”).2、如图所示,甲、乙两个完全相同的容器放在水平桌面上,分别盛有质量相同的不同液体,则液体对甲、乙两容器底部的压力F甲________F乙,甲、乙容器对水平桌面的压强p甲________p乙。
人教版八年级物理上册期末达标测试卷含答案
人教版八年级物理上册期末达标测试卷一、选择题(每题3分,共36分)1.[2023德阳]我们学习物理要善于发现、善于思考。
下列对身边物理量估测的数据,你认为符合实际的是()A.一只公鸡的质量大约20 kgB.运动员百米赛跑时间大约5 sC.夏季德阳气温有时会达到40 ℃D.我们教室里课桌的高度大约2 m2.[2022内江]在平直轨道上匀速行驶的火车中,对于静放在车厢内桌面上的苹果,发生相对运动所选择的参照物是()A.这列火车的机车B.坐在车厢椅子上的乘客C.从旁边走过的列车员D.关着的车门3.[2023益阳]我国是文明古国,具有光辉灿烂的文化。
在距今4000多年前的黄帝时期就已经出现了笛和大鼓。
关于笛声和鼓声,下列说法正确的是()A.笛声和鼓声的音色相同B.笛声的响度一定比鼓声的小C.尖细的笛声比低沉的鼓声音调高D.响亮的鼓声比轻细的笛声传得远,是因为鼓声在空气中传播的速度大4.医生通过听诊器来了解患者心肺的工作情况,听诊器运用的物理原理是()A.改变发声响度,使响度变大B.增大振幅,从而增大响度C.减少声音的分散,增大响度D.缩短人耳与发声体之间的距离,使响度更大5.以下测量中,三次测量求平均值,不能减小误差的是()A.用刻度尺三次测量同一本书的长度B.用天平三次测量同一块橡皮的质量C.用量筒三次测量同一块鹅卵石的体积D.用体温计一天早中晚三次测量同一个人的体温6.[传统文化]古诗《立冬》中,有诗句“门尽冷霜能醒骨,窗临残照好读书”。
诗中所说的“霜”,其形成过程的物态变化属于()A.凝华B.凝固C.汽化D.液化7.如图是某物质熔化时温度随时间变化的图像,根据图像中的信息,判断下列说法正确的是()A.该物质为非晶体B.该物质的熔点是80 ℃C.在第5 min时物质已全部熔化D.第10 min时物质处于液态8.[2023雅安]因为有了光,我们的生活才充满温暖。
下列现象由光的反射形成的是()A.树下太阳的光斑B.水中山峦的倒影C.雨后空中的彩虹D.透镜放大的文字9.中国的诗词歌赋蕴含丰富的光学知识,下列说法正确的是()A.“明月几时有?把酒问青天”,酒中明月倒影是光的折射现象B.“起舞弄清影,何似在人间”,影子是由光沿直线传播形成的C.“人有悲欢离合,月有阴晴圆缺”,阴晴圆缺的月亮是自然光源D.“但愿人长久,千里共婵娟”,共赏的天上明月是平面镜所成的像10.如图是一张令人惊讶的照片,茶色玻璃板后面有一支蜡烛,它竟然能在水中燃烧!关于该现象,下列说法正确的是()A.蜡烛不灭是因为蜡烛放在了杯子的后面B.水是虚像,烛焰是实物C.烛焰是虚像,水是实物D.将茶色玻璃板换成平面镜也能拍出这样的照片11.检查视力的时候,视力表往往放在被测者头部的后上方,被测者识别对面墙上镜子里的像,要求被测者与视力表像的距离是5 m。
2025届湖南省株洲市炎陵县八年级物理第一学期期末达标测试试题含解析
2025届湖南省株洲市炎陵县八年级物理第一学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题1.图是实验室中的一种温度计,关于它的说法正确的是()A.该温度计的分度值是0.1℃B.该温度计是根据固体热胀冷缩的原理制成的C.该温度计的测量范围是﹣2℃~60℃D.在使用该温度计时,可以离开被测物体读数2.根据你对生活中物理量的认识,下列估测中最接近生活实际的是()A.人体的正常体温为40℃B.一个中学生的质量约为50kgC.中学生的课桌高约为1.5m D.一个中学生跑100m约需5s3.如图是太阳能无人机Aquila,它使用碳纤维制造以减轻重量,主要利用了碳纤维的()A.硬度大B.密度小C.易导电性D.可塑性强4.在生产和生活中,人们常把密度作为所选材料的主要考虑因素成之一,下面属于主要从密度的角度考虑选材的是()A.用钨作为白炽灯泡灯丝的材料B.用塑料作为插座外壳的材料C.用铝合金作为制作飞机的材料D.用橡胶作为汽车轮胎的材料5.下列关于物态变化的说法中,正确的是()A.雪的形成是凝固现象,吸热B.露的形成是液化现象,吸热C.霜的形成是凝华现象,放热D.云的形成是汽化现象,放热6.下列数据不符合实际的是()A.某中学生的质量约45kgB.某中学生的身高约1.65mC.某中学生的步行速度约1m/sD.某中学生的百米赛跑成绩约6s7.甲、乙两个小灯泡串联在电路中,发现甲灯比乙灯亮,下面说法正确的是()A.通过甲灯的电流比乙灯大B.乙灯两端的电压比甲灯低C.甲灯的额定功率比乙灯大D.乙灯对电流的阻碍作用比甲灯大8.下列对一名中学生的有关数据估测合理的是( )A.身高约为1.7 dm B.质量约为500 kgC.体温约为20 ℃D.手掌宽约为10 cm9.在“探究敲击铜管发声的频率与管子长度、直径关系”的实验中,小明选取管壁厚度相同,长度和直径不同的三根铜管,将它们用细线竖直悬挂,敲击后,测出各自发出声音的频率,数据如下表:根据小明的实验数据()A.只能得出频率随长度增加而减小的结论B.只能得出频率随直径增加而减小的结论C.选项A和B的结论都不能得出D.选项A和B的结论都能得出10.一瓶纯净水喝掉一半后,剩下的半瓶水与原来的一瓶水比较,以下说法正确的是()A.质量变大,密度变大B.质量不变,密度变小C.质量变小,密度不变D.质量变小,密度变小11.如图所示是新中国成立70周年在天安门广场前国旗护卫队预备升旗时的场景,根据图片提供的信息估测国旗AB 间的宽度。
八年级上册期末试卷(实用11篇)
八年级上册期末试卷(实用11篇)八年级上册期末试卷(1)1、选择题(下列各题的四个选项中,只有一项是最符合题意的。
每小题1分,共20分)与水生环境相比,陆地环境要复杂得多,一般来讲,陆生动物适应陆地生活的结构特点有①体表具有防止水分散失的结构②有辅助呼吸的气囊③有能在空气中呼吸的器官④有发达的感觉器官和神经系统⑤有支持躯体和运动的器官⑥有防寒皮毛②③④⑥ B①③④⑤ C①③④⑥①②①⑤下列对动物特征的叙述,准确的是水螅、涡虫和蝈虫都有口无肛门,属于低等动物B河蚌、蜗牛和乌贼身体柔软,都有大的贝壳保护蝗虫、蜘蛛和蜈蚣的足和触角均分节,且体表都有外骨骼,适应环境的能力较强就鱼、章鱼、鲨鱼、娃娃鱼、鯨鱼和美人鱼都不属于鱼类乳酸菌在自然界广泛分布,与人类关系密切,有关乳酸菌的叙述正确的是A单细胞个体,有细胞核,是真核生物B乳酸菌能利用二氧化碳和水制造乳酸乳酸菌主要通过产生芽孢来繁殖后代D用其制作泡菜时,要使泡菜坛内缺氧下列诗句中的各种动物,不具备“体表都有外骨骼,足和触角均分节”特征的是正是河豚欲上时儿童急走追黄蝶C蝉噪林逾静 D早有蜻蜓立上头下列关于人体运动的说法,错误的是运动系统主要是由骨、关节和肌肉组成的B运动是骨骼肌受到神经传来的刺激收缩,牵动骨绕关节活动而产生的C运动的完成不仅依靠运动系统,还需要其他系统的协调配合屈肘时,肱三头肌收缩为运动提供动力关于社会行为的叙述,哪一项是错误的A社会行为有利于动物的生存和繁衍社会行为是群体内形成了一定的组织,成员间有明确分工的动物集群行为所有高等动物都有社会行为具有社会行为的群体,组织内一定有传递信息的“语言”当蚂蚁发现新食物源或要迁移到新的巢址时,都要通知同伴。
下列关于这种行为的说法错误的是A这种行为与小鼠走迷宫获取食物的行为均属于学习行为这种行为直接反映了蚂蚁个体之间能够进行信息交流C蚂蚁的这种行为叫通讯,靠嗅觉和触觉实现D蚂蚁的这种行为是由体内的遗传物质决定的吃剩的饭菜放在冰箱内不易腐败变质且能保存较长时间,其主要原因是低温把微生物冻死了B低温抑制了微生物的生长、繁殖冰箱内含杀死微生物的物质D冰箱内无空气,微生物无法生存如图①~⑤表示五种不同的生物,有关叙述错误的是①是酵母菌,②是细菌,③是病毒,④是草履虫,⑤是衣藻有细胞壁的是①②⑤,有成形细胞核的是①②④⑤,无细胞膜的是③有蛋白质外壳的是③,有叶绿体的是⑤,有伸缩泡的是④,有纤毛的是④⑤进行自养生活,①②③④进行异养生活,③营寄生生活,①营腐生活如图是部分蝶形花科植物分类图解,据此分析正确的是蝶形花科所包含的植物种类比紫檀属少紫檀、绿豆和菜豆属于同一个分类等级绿豆和菜豆的亲缘关系比绿豆和紫檀更远紫檀、绿豆和菜豆三种植物中,前两者形态结构更相似下列对于生物分类单位的叙述,正确的是分类单位越小,生物间的亲缘关系越近分类单位越大,所包含的生物种类越少“科”是生物分类中最小的单位同一分类单位中,生物的特征完全相同下列有关生物多样性的说法,正确的是生物多样性是指生物种类的多样性B科研人员将油桃和蟠桃进行杂交,培育出油蟠桃,利用的是遗传的多样性保护生物的多样性可大量引进外来物种要保护生物多样性,必须禁止对生物资源的开发和利用下列现象与活动,与真菌无关的是制作腐乳发面蒸馒头脏衣服受潮发霉幼儿患手足口病完成屈肘动作的正确顺序是①骨骼肌收缩②骨受到肌肉牵拉绕着关节产生动作③骨骼肌接受神经传来的兴奋③①② B②③①①③②②①③下列关于动物在生物圈中的作用的叙述,错误的是维持生态平衡 B促进物质循环帮助植物传粉、传播种子 D动物能产生二氧化碳下列表示骨,关节和肌肉关系的模式图中,正确的是下列关于病毒的说法,错误的是A由蛋白质外壳和内部的遗传物质构成B十分微小,没有细胞结构可以在人体细胞内繁殖可以在空气中独立生活酸奶的制作过程需要加入乳酸菌、嗜热杆菌等益生菌,因此需要专门进行菌种培养。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word版含解析)一、初二物理机械运动实验易错压轴题(难)1.如图所示,在测量小车运动的平均速度实验中,让小车从斜面的A点由静止开始下滑并开始计时,分别测出小车到达B点和C点的时间,即可算出小车在各段的平均速度。
(1)图中AB段的距离S AB=________cm,测得时间t AB=1.6 s,则AB段的平均速度v AB=______cm/s;(2)如果小车过了B点才停止计时,则测得的平均速度v AB会偏________;(3)实验中应多次测量,每次测量时必须让小车从____________由静止开始下滑。
【来源】福建省龙岩市长汀县2019-2020学年八年级(上)期中物理试题(质量抽查)【答案】40.0cm 25 cm/s 小同一位置【解析】【分析】【详解】(1)[1]由图知道,AB段的距离S AB =80.0cm-40.0cm=40.0cm[2]又因为测得时间t AB=1.6 s,所以,AB段的平均速度AB ABAB 40.0cm25cm/s 1.6?sSvt===(2)[3]如果让小车过了B点才停止计时,会导致时间的测量结果偏大,由svt=知道,平均速度会偏小。
(3)[4]实验中多次测量求平均值是为了减小误差,所以实验中应保证小车每次通过的距离相等,即每次测量时必须让小车从同一位置由静止开始下滑。
2.某小组同学用小车、长木板、刻度尺、秒表、木块等器材探究小车沿斜面滑下时速度的变化;实验设计如图甲所示:让小车从斜面的A点由静止滑下并开始记时,分别测出小车到达B点和C点的时间t B、t C;(1)该实验的原理是________;(2)实验中应使斜面坡度保持较________(选填“大”或“小″);(3)小车从A到B经过的路程为________ cm,若t A、t B、t C所对应的时间依次如图,则小车在AB、BC段的平均速度分别为v AB =__________m/s ;v BC= ________ m/s(保留两位有效数字);(4)小车沿斜面滑下时速度的变化规律为:_____________________。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word 版 含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.【答案】(1)42m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【解析】【分析】(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论.【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩; (2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD=OA =4,OB =2,∴由勾股定理可得:AB =BD =25,∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB=2∴NB﹣FB=2×2=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP 平分∠AOB ,CM ⊥OA ,CN ⊥OB ,∠AOB=120º,∴CM=CN (角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC ,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .3.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC的面积;(2)连接CD,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD,且BE=CF,即可证△CDF≌△BDE,可得DE=DF;(3)分△ADF的面积是△BDE的面积的两倍和△BDE与△ADF的面积的2倍两种情况讨论,根据题意列出方程可求x的值.【详解】解:(1)∵S△ABC=12⨯AC×BC∴S△ABC=12×4×4=8(cm2)故答案为:8(2)如图:连接CD∵AC=BC,D是AB中点∴CD平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=4 5综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.4.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H 作HM ⊥OF ,HN ⊥EF 于M 、N ,可证△FMH ≌△FNH ,则FM =FN ,同理:NE =EK ,先得出OE+OF ﹣EF =2HK ,再由△APF ≌△AQE 得PF =EQ ,即可得OE+OF =2OP =8,等量代换即可得2HK+EF 的值.【详解】解:(1)∵|a ﹣b|+b 2﹣8b+16=0∴|a ﹣b|+(b ﹣4)2=0∵|a ﹣b|≥0,(b ﹣4)2≥0∴|a ﹣b|=0,(b ﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.5.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明; (3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE∴△AEM ≌△DEN (AAS )∴ME=NE∴点E 在∠ACB 的平分线上,即CE 是ACB ∠的平分线(3)由(2)可知,点E 在∠ACB 的平分线上,∴当点D 向点B 运动时,点E 的路径为一条直线,∵△AEM ≌△DEN∴AM=DN ,即AC-CM=CN-CD在Rt △CME 与Rt △CNE 中,CE=CE ,ME=NE ,∴Rt △CME ≌Rt △CNE (HL )∴CM=CN ∴CN=1()2AC CD +, 又∵∠MCE=∠NCE=45°,∠CME=90°, ∴CE=22()2CN AC CD =+, 当AC=3,CD=CO=1时, CE=2(31)22+= 当AC=3,CD=CB=7时, CE=2(37)52+= ∴点E 的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.6.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌BF DC ∴=②如图2,过点A 做AG ∥EF 交BC 于点G ,∵∠ADB =60° DE =DF∴△DEF 为等边三角形∵AG ∥EF∴∠DAG =∠DEF =60°,∠AGD =∠EFD =60°∴∠DAG =∠AGD∴DA =DG∴DA -DE =DG -DF ,即AE =GF由①易证△AGB ≌△ADC∴BG =CD∴BF =BG +GF =CD +AE(2)如图3,和(1)中②相同,过点A 做AG ∥EF 交BC 于点G ,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.7.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒180EAC DCBα=,AE CDAC BC=,AEC CDB∴∆≅∆,∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.8.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF 到G ,使得FG=FB ,证得△CGA ≌△CDA 是解题的关键.9.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩ ,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF=AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC , 在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.10.在等边ABC 中,点D 是边BC 上一点.作射线AD ,点B 关于射线AD 的对称点为点E .连接CE 并延长,交射线AD 于点F .(1)如图,连接AE ,①AE 与AC 的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1)①AB=AE;②∠BCF=α;(2) AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB,∠BAF=∠EAF=α,由ABC是等边三角形,得AB=AC,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解;(2)作∠FCG=60°交AD于点G,连接BF,易证∆FCG是等边三角形,得GF=FC,再证∆ACG≅∆BCF(SAS),从而得AG=BF,进而可得到结论.【详解】(1)①∵点B关于射线AD的对称点为点E,∴AB和AE关于射线AD的对称,∴AB=AE.故答案是:AB=AE;②∵点B关于射线AD的对称点为点E,∴AE=AB,∠BAF=∠EAF=α,∵ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦,∴∠BCF=∠ACE-∠ACB=60α+-60°=α.(2)AF-EF=CF,理由如下:作∠FCG=60°交AD于点G,连接BF,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCFCG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.二、八年级数学轴对称解答题压轴题(难)11.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(2)22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,BH=HE=2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE=2+1∵BH=BG+GH=CG+GH=CH+GH+GH=2+1∴1+2GH=2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.12.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∵CE ∥BD ,∴∠FCM =∠BGM .在△FCM 和△BGM 中,CM =MG ,∠CMF =∠GMB ,MF =MB ,∴△FCM ≌△BGM (SAS ).∴CF =BG ,∠FCM =∠BGM .∴CF //BG ,即D 、B 、G 在同一条直线上.在△CFB 和△BGC 中,CF =BG ,∠FCB =∠GBC ,CB =BC ,∴△CFB ≌△BGC (SAS ).∴BF =CG .∴MC =12CG =12BF =MB . 【点睛】 本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.13.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG ,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG 2=AE 2+AG 2,∵EF=EG, BF=AG∴EF 2=AE 2+BF 2,则以线段AE 、BF 、EF 为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.15.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数; (2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.16.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG=.(2)如图2,直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M,求证:BE CM=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.如图,已知ABC∆()AB AC BC<<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):∆沿着过点M的某一条直线折叠,点B与点(1)在边BC上找一点M,使得:将ABCC能重合,请在图①中作出点M;∆沿着过点N的某一条直线折叠,点B能落在(2)在边BC上找一点N,使得:将ABC⊥,请在图②中作出点N.边AC上的点D处,且ND AC【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC的垂直平分线,交BC于点M,即可;(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.【详解】(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.18.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;。
人教版八年级数学上册期末达标测试卷含答案
人教版八年级数学上册期末达标测试卷时间:90分钟满分:120分一、选择题(每题3分,共30分)1.以下是用电脑字体库中的一种篆体写出的“诚信友善”四个字,若把它们抽象为几何图形,从整体观察(个别细微之处的细节可以忽略不计),其中大致是轴对称图形的是()2.下列计算正确的是()A.a3·(-a)2=a6B.-a2·a3=a5 C.(-a2)3=-a6D.(-a3)2=a5 3.杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1 cm3甲醇的质量约为0.000 79 kg,将0.000 79用科学记数法表示应为()A.79×10-4B.7.9×10-4C.79×10-5D.0.79×10-34.如图,点E,C,F,B在一条直线上,AB∥ED,∠A=∠D,添加下列条件不.能.判定△ABC≌△DEF的是()A.AC∥DF B.AB=DE C.EC=BF D.AC=DF(第4题)(第6题)5.有四根细木棒,长度分别为3 cm,5 cm,7 cm,9 cm,从中任取三根拼成三角形,则所拼得的三角形的周长不可能是()A.21 cm B.17 cm C.19 cm D.15 cm6.如图,在△ABC中,AB=AC,D是BC的中点,在BC的延长线上取点E,连接AE,已知∠BAD=32°,∠BAE=84°,则∠CAE为()A.20°B.32°C.38°D.42°(第7题) (第9题)7.(2023北京西城区月考)如图,在平面直角坐标系xOy 中,已知点A (2,0),B (3,b )(b >0),AC ⊥AB 且AC =AB ,则点C 的横坐标为( ) A .-b -1B .1-bC .b -2D .2-b8.把分式2x 22x +y中的x 和y 都扩大为原来的2倍,分式的值将( )A .不变B .扩大为原来的2倍C .缩小为原来的12D .扩大为原来的4倍9.如图所示的是一把六角尺示意图,它能提供常用的几种测量角度.图中x 的值为( ) A .135B .120C .112.5D .11210.(2023北京西城区期末)如图,在Rt △ABC 中,∠ACB =90°,∠B 的度数为α.点P 在边BC 上(点P 不与点B ,点C 重合),作PD ⊥AB 于点D ,连接P A ,取P A 上一点E ,使得在连接ED ,CE 并延长CE 交AB 于点F 之后,有EC =ED =EA =EP .若记∠APC 的度数为x ,则下列关于∠DEF 的表达式正确的是( )A .∠DEF =2x -3αB .∠DEF =2αC .∠DEF =2α-xD .∠DEF =180°-3α(第10题)(第11题)二、填空题(每题3分,共18分)11.如图,点E 在AB 上,AC 与DE 相交于点F ,△ABC ≌△DEC ,∠A =30°,∠B =70°,则∠DF A 的度数为________. 12.若分式||x -3x -3的值为0,则x =________.13.(2023成都)在平面直角坐标系xOy 中,点P (5,-1)关于y 轴对称的点的坐标是________.14.(2024北京东城区月考)某“数学乐园”展厅的wifi 密码被设计成如图所示的数学问题.小明在参观时经过认真思索,输入密码后顺利地连接到网络,则他输入的密码是______________.(第14题) (第15题)15.(2024宁波奉化区期末)如图,∠AOB =22°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记∠MPQ =α,∠PQN =β,当MP +PQ +QN 最小时,则α与β的数量关系为________. 16.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形,已知△ABC 与△DEF 是一对面积都等于S 的偏等积三角形,且AB =AC =DE =DF ,BC =a ,那么EF 的长等于________ (结果用含a 和S 的代数式表示).三、解答题(共8小题,满分72分)17.(7分)(1)计算:(-3)2-(π-2 024)0+⎝ ⎛⎭⎪⎫12-1+|-2|.(2)解方程:12-x =1x -2-6-x 3x 2-12.18.(2024陕西师大附中模拟) (7分)先化简,再求值:⎝ ⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷x -4x,再从0,1,2三个数中,选择一个你认为合适的数作为x 值代入求值.19.(7分)如图,在△ABC中,点M,N分别是AB和AC上的点,MN∥BC,且BC=2MN,点E是CN的中点,连接ME并延长交BC的延长线于点D,若CD=4,求BC的长.20.(9分)(2024无锡滨湖区模拟)如图,在△ABC中,AB=AC,∠DAC是△ABC 的一个外角.根据要求进行尺规作图,并在图中标明相应字母.(保留作图痕迹,不要求写出作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC交于点E,连接AE,CF;(3)若∠BAE=36°,求∠B的度数.21.(9分)“筑牢民生之基,增强百姓幸福感”,我市正如火如荼地进行着社区环境的改善,提升老百姓的生活品质.如图,某小区内有一块长为(3a-b)米,宽为(2a+b)米的长方形地块,小区计划在中间留一块边长为(a+b)米的正方形地块修建一座假山,然后将剩余阴影部分进行绿化.(1)求绿化部分的面积(用含a,b的代数式表示);(2)当a=3,b=1时,求绿化部分的面积.22.(9分)(2024驻马店期末)为响应垃圾分类的要求,营造干净整洁的学习生活环境,创建和谐文明的校园环境,某学校准备购买A,B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18 000元购买A种垃圾桶的组数是用13 500元购买B种垃圾桶的组数的2倍.(1)求A,B两种垃圾桶每组的单价分别是多少元.(2)该学校计划用不超过8 000元的资金购买A,B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?23.(11分)在△ABC中,∠ACB=90°,AC=BC,M为AB的中点,D为线段AM 上的动点(不与点A,点M重合),过点D作DE⊥AB,且DE=DM,连接CM.(1)如图①,当点E在线段AC上时,直接写出线段AD与线段DM的数量关系;(2)当DE位于图②所示的位置时,连接CE,过点E作EF⊥CE,交AB于点F.用等式表示线段BF与DE的数量关系,并证明.24.(13分)已知,△ABC中,∠A+2∠B=180°.(1)如图①,求证:AB=AC;(2)如图②,D是△ABC外一点,连接AD,BD,且AB=AD,作∠CAD的平分线交BD于点E,若∠BAC=60°,则∠AED=________;(3)如图③,在(2)的条件下,连接CD交AE于点F,若AF=2,BE=3,求DE的长.答案一、1.D 2.C 3.B 4.A 5.B 6.A 7.D8.B 点拨:分式2x 22x +y 中的x 和y 都扩大为原来的2倍,则原分式变形为2·(2x )22·2x +2y=4·2x 22(2x +y )=2·2x 22x +y ,所以把分式2x 22x +y 中的x 和y 都扩大为原来的2倍,分式的值将扩大2倍. 9.C 10.B二、11.70° 12.-3 13.(-5,-1) 14.2 024 15.β-α=44°16.4Sa 点拨:如图,AB =AC =DE =DF ,过C 作CM ⊥AB 于M ,过F 作FN ⊥ED 交ED 的延长线于N ,延长BA 到K ,使AK =AB ,连接CK .∵△ABC 的面积=12AB ·CM =S ,△DEF 的面积=12DE ·FN =S , ∴CM =FN . 又∵AC =DF ,∴Rt △AMC ≌Rt △DNF (HL ). ∴∠MAC =∠NDF . ∴∠CAK =∠EDF .又∵AK =AB =AC =DE =DF , ∴△ACK ≌△DFE (SAS ).∴EF =CK ,易得△KBC 的面积=2S . ∵AK =AC =AB ,∴∠ABC =∠ACB ,∠K =∠ACK .∴∠ACB +∠ACK =∠ABC +∠K =12×180°=90°.即∠BCK =90°.∴△KBC 的面积=12BC ·CK =2S . ∵BC =a ,∴CK =4S a . ∴EF =4Sa .三、17.解:(1)原式=9-1+2+2=12.(2)-1x -2=1x -2-6-x 3(x -2)(x +2), -3(x +2)=3(x +2)-(6-x ),解得x =-67, 检验:当x =-67时,3(x -2)(x +2)≠0, ∴原方程的解是x =-67.18.解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2·x x -4=⎣⎢⎡⎦⎥⎤x 2-4x (x -2)2-x 2-x x (x -2)2·x x -4 =x -4x (x -2)2·x x -4 =1(x -2)2,∵x ≠0,x -4≠0,x -2≠0, ∴x ≠0和4和2. ∴x 取1. ∴原式=1(1-2)2=1.19.解:∵MN ∥BC ,∴∠NME =∠D .∵点E 是CN 的中点,∴EN =EC .在△EMN 和△EDC 中,⎩⎨⎧∠NME =∠D ,∠MEN =∠DEC ,EN =EC ,∴△EMN ≌△EDC (AAS ).∴MN =CD =4. ∴BC =2MN =2×4=8.20.解:(1)如图,AM即为所作.(2)如图所示.(3)∵AB=AC,∴∠B=∠3.∵AM平分∠DAC,∴∠1=∠2.∵∠DAC=∠B+∠3,∴易得∠B=∠2=∠3=∠1.∵EF垂直平分AC,∴EA=EC.∴∠3=∠EAC.∵∠1+∠2+∠EAC+∠BAE=180°,∠BAE=36°,∴∠1=13×(180°-36°)=48°.∴∠B=48°.21.解:(1)依题意,得(3a-b)(2a+b)-(a+b)2=6a2+3ab-2ab-b2-a2-2ab-b2=5a2-ab-2b2.∴绿化部分的面积是(5a2-ab-2b2)平方米.(2)当a=3,b=1时,5a2-ab-2b2=5×32-3×1-2×12=45-3-2=40.∴绿化部分的面积是40平方米.22.解:(1)设A种垃圾桶每组的单价为x元,则B种垃圾桶每组的单价为(x+150)元,依题意,得18 000x=13 500x+150×2,解得x=300,经检验,x=300是原方程的解,且符合题意,∴x+150=300+150=450.∴A种垃圾桶每组的单价是300元,B种垃圾桶每组的单价是450元.(2)设购买B种垃圾桶y组,则购买A种垃圾桶(20-y)组,依题意,得300(20-y )+450y ≤8 000, 解得y ≤403. 又∵y 为正整数, ∴y 的最大值为13.答:最多可以购买B 种垃圾桶13组.23.解:(1)AD =DM 点拨:∵在△ABC 中,∠ACB =90°,AC =BC ,∴∠A =45°.∵DE ⊥AB ,∴易得∠AED =∠A =45°. ∴DE =AD .又∵DE =DM ,∴AD =DM . (2)BF =2DE .证明:如图,连接EA ,EM .∵DE =DM ,DE ⊥AB , ∴△EDM 是等腰直角三角形. ∴∠EMA =45°.∵在△ABC 中,∠ACB =90°,AC =BC ,M 为AB 的中点, ∴∠CMA =90°,AM =CM =12AB . ∴易得∠EMC =45°.在△EMA 和△EMC 中,⎩⎨⎧AM =CM ,∠EMA =∠EMC =45°,EM =EM ,∴△EMA ≌△EMC . ∴∠EAM =∠ECM .∵在四边形CEFM 中,EF ⊥CE ,∠CMA =90°, ∴∠EFM +∠ECM =360°-(∠CEF +∠CMF )=180°. 又∵∠EF A +∠EFM =180°, ∴∠EF A =∠ECM .∴∠EAM=∠EF A.∴EA=EF.又∵DE⊥AF,∴D为AF的中点.∴AF=2AD.∴BF=AB-AF=2AM-2AD=2DM=2DE,即BF=2DE. 24.(1)证明:∵∠A+∠B+∠C=180°,∠A+2∠B=180°,∴∠B=∠C.∴AB=AC.(2)60°点拨:∵∠BAC=60°,AB=AC,∴△ABC是等边三角形.∴∠BAC=∠ABC=∠C=60°.设∠ABD=x,则易知∠D=∠ABD=x,在四边形ACBD中,∵∠C+∠DBC+∠D+∠DAC=360°,∴60°+60°+x+x+∠DAC=360°.∴∠DAC=240°-2x.∵∠CAD的平分线交BD于点E,∴∠EAD=12∠DAC=120°-x.∵∠D+∠AED+∠EAD=180°,即x+∠AED+120°-x=180°,∴∠AED=60°.(3)解:如图,作AM⊥BD于点M,∵AB=AD,∴MD=MB.∵AB=AD,AB=AC,∴AD=AC. 又∵AE平分∠CAD,∴AE⊥CD. ∴∠DFE=90°.由(2)得∠AED=60°,∴∠EDF=90°-∠AED=30°.∴EF=12DE.∵AM⊥BD,∴∠AME=90°. ∴∠MAE=90°-∠AED=30°. ∴AE=2ME.设ME=y,则AE=2y,∵BE=3,∴MD=MB=y+3.∴DE=MD+ME=2y+3.∴EF=2y+3 2.∵AF=2,∴AE=EF+AF=2y+32+2.∴2y+32+2=2y,解得2y=7.∴DE=2y+3=10.。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word版含解析)一、初二物理声现象实验易错压轴题(难)1.小明和小红想比较棉布、锡箔纸、泡沫塑料这三种材料的隔声性能.(1)小明将机械闹钟放入鞋盒内,分别盖上(不同/相同)______厚度的不同隔声材料.接着他一边听秒针走动的声音,一边向后退,直到听不见声音为止.小明在远离声源的过程中,他所听到声音的_______(响度/音调)发生改变.然后分别测量并记录此处到鞋盒的距离(如上表).分析表中数据可知:待测材料中隔声性能最好的可能是___________.(2)为了进一步验证,小红认为还可以保持__________________________相同,分别改变不同隔声材料的厚度,直到测试者听不见声音为止.然后通过比较材料的厚度来确定材料的隔声性能.若材料越厚,则说明其隔声性能越________(好/差)【答案】相同响度泡沫塑料人到声源的距离差【解析】(1)根据控制变量法,比较棉布、锡箔纸、泡沫塑料这三种材料的隔声性能,要控制不同隔声材料厚度的相同,音调大小由振动的频率决定,发出的声音音调不会改变,听到响度与听者与声源的距离有关,故小明在远离声源的过程中,他所听到声音的响度发生改变.由表可知,分析表中数据可知:泡沫塑料听不见声音的距离最小,故待测材料中隔声性能最好的可能是泡沫塑料;(2)根据控制变量法,为了进一步验证,小红认为还可以保持人到声源的距离相同,分别改变不同隔声材料的厚度,直到测试者听不见声音为止.然后通过比较材料的厚度来确定材料的隔声性能.若材料越厚,则说明其隔声性能越差.故答案为:(1). 相同 (2). 响度 (3). 泡沫塑料 (4). 人到声源的距离 (5). 差【点睛】本题比较棉布、锡箔纸、泡沫塑料这三种材料的隔声性能,控制变量法的运用及音调的决定因素及响度大小什么有关和分析数据的能力是关键.2.为了探究收音机接收电磁波的情况好坏与哪些因素有关,小明将一只袖珍收音机调好电台节目和音量后完成了以下实验:①将收音机放进一只铝锅内,发现声音明显变小,取出后又恢复了原来的音量。
人教版八年级物理上册期末达标测试卷-附带有答案
人教版八年级物理上册期末达标测试卷-附带有答案考试范围:人教版八年级物理;考试时间:90分钟;学校:班级:姓名:考号:一、选择题(共30分)1.2023年9月20日杭州亚运会火炬传递仪式杭州站在浙江省杭州市举行,完成最后一站传递。
如图火炬手石丹在火炬传递中,我们可以估测杭州亚运会火炬高度约为()A.170cm B.170mm C.70cm D.70mm2.我国古代科技著作《天工开物》中,对釜的铸造有“铁化如水,以泥固纯铁柄杓从嘴受注”(如图)这样的记载。
其中反映“铁化如水”时温度—时间变化图象正确的是()A.B.C.D.3.光明文化艺术中心是光明区重要地标。
如图所示,在阳光明媚的下午,艺术中心正面可以看到艺术中心的两个“影”——太阳下的影子和水中的倒影。
下列分析正确的是()A.艺术中心在水中的倒影是实像B.艺术中心的倒影是由于光的反射形成的C.艺术中心的影子是由于光的折射形成的D.当艺术中心广场水池中水位降低时,艺术中心的倒影会变小4.下列说法错误的是()A.甲图中,由于漫反射两个小孩能同时看到掉在地上的书B.乙图中,人和猫都能看见对方,是因为反射时光路可逆C.丙图中,手影是光在均匀的空气中沿直线传播形成的D.丁图中,通过凸透镜后的光束是发散的,此现象跟凸透镜对光有会聚作用的特点不相符5.如图是小明戴上眼镜前、后观察到的远处帆船的情形,下列相关说法正确的是()A.小明的眼睛是近视眼B.小明的眼镜对光线有会聚作用C.戴眼镜前看到帆船模糊的原因是帆船成像在视网膜的后方D.帆船通过眼睛的晶状体在视网膜上成缩小正立的实像6.如图所示社区工作人员利用无人机喷洒消毒液。
工作人员通过遥控器控制无人机飞行,遥控器发出的是()A.超声波B.次声波C.红外线D.紫外线7.如图所示,航天员在太空舱中准备用乒乓球拍去击打下方的水珠。
乒乓球拍从地面到太空中的空间站后,质量的变化情况是()A.变小B.不变C.变大D.无法确定8.火星是太阳系八大行星之一,从长期来看,火星是一个可供人们移居的星球。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF .(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A 作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图,在△ABC 中,∠ABC 为锐角,点D 为直线BC 上一动点,以AD 为直角边且在AD 的右侧作等腰直角三角形ADE ,∠DAE =90°,AD =AE .(1)如果AB =AC ,∠BAC =90°.①当点D 在线段BC 上时,如图1,线段CE 、BD 的位置关系为___________,数量关系为___________②当点D 在线段BC 的延长线上时,如图2,①中的结论是否仍然成立,请说明理由. (2)如图3,如果AB ≠AC ,∠BAC ≠90°,点D 在线段BC 上运动.探究:当∠ACB 多少度时,CE ⊥BC ?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论.【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD .理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC ,∴∠BAD=∠CAE .又 BA=CA ,AD=AE ,∴△ABD ≌△ACE (SAS )∴∠ACE=∠B=45°且 CE=BD .∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD .故答案为垂直,相等;②都成立,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE ,在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC ,∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.4.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥A F交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM,根据非负数的性质求出a 、b 的值即可得结论;(2)如图2,过A 作AH 平分∠OAB ,交BM 于点H ,则△AOE ≌△BAH ,可得AH =OE ,由已知条件可知ON=AM ,∠MOE =∠MAH ,可得△ONE ≌△AMH ,∠ABH =∠OAE ,设BM 与NE 交于K ,则∠MKN =180°﹣2∠ONE =90°﹣∠NEA ,即2∠ONE ﹣∠NEA =90°; (3)如图3,过H 作HM ⊥OF ,HN ⊥EF 于M 、N ,可证△FMH ≌△FNH ,则FM =FN ,同理:NE =EK ,先得出OE+OF ﹣EF =2HK ,再由△APF ≌△AQE 得PF =EQ ,即可得OE+OF =2OP =8,等量代换即可得2HK+EF 的值.【详解】解:(1)∵|a ﹣b|+b 2﹣8b+16=0∴|a ﹣b|+(b ﹣4)2=0∵|a ﹣b|≥0,(b ﹣4)2≥0∴|a ﹣b|=0,(b ﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.5.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD,进而根据AAS证明△ABD与△CAE全等,然后进一步求解即可;∠=∠=∠=,得出∠CAE=∠ABD,在△ADB与△CEA中,根(2)根据BDA AEC BACα据AAS证明二者全等从而得出AE=BD,AD=CE,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.二、八年级数学轴对称解答题压轴题(难)6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH =GC ﹣HC =GC ﹣(HE ﹣CE )=12BC ﹣12BE +CE =12CE , ∴CE =2GH【点睛】 本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.7.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.8.如图,在平面直角坐标系中,A (﹣3,0),点 B 是 y 轴正半轴上一动点,点C 、D 在 x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32 则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.9.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.10.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空:①()242221144x x x x⎡⎤+=++-=⎢⎥⎣⎦()22x-=()()②()()242116=644⎡⎤+++-⎢⎥⎣⎦=()()=()⨯()(2)解决问题,计算:4444116844115744⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭【答案】(1)①212x+,221122x x x x⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++-⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭ ()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.12.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.13.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).【答案】232﹣13231 2-;【解析】【分析】(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n与m≠n两种情况,化简得到结果即可.【详解】(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;(2)原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=32312-;(3)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).当m≠n时,原式=1m n-(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=3232m nm n--;当m=n时,原式=2m•2m2…2m16=32m31.【点睛】此题考查了平方差公式,弄清题中的规律是解本题的关键.14.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【答案】解:(1)①275;572.②63;36.(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明见解析.【解析】【分析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.【详解】(1)①275,572; ②63,36;(2)“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).证明如下:∵左边两位数的十位数字为a ,个位数字为b ,∴左边的两位数是10a+b ,三位数是100b+10(a+b )+a ,右边的两位数是10b+a ,三位数是100a+10(a+b )+b ,∴左边=(10a+b )×[100b+10(a+b )+a]=(10a+b )(100b+10a+10b+a )=(10a+b )(110b+11a )=11(10a+b )(10b+a ),右边=[100a+10(a+b )+b]×(10b+a )=(100a+10a+10b+b )(10b+a )=(110a+11b )(10b+a )=11(10a+b )(10b+a ),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).考点:规律题15.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n -;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()()22222222222019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n --+---+-=[][][][]()()2(21)2(21)(22)(23)(22)(23)2121n n n n n n n n +-•--+-+-•---++•-2(21)(22)(23)21n n n n =+-+-+-++=83n -;(3)由题意可得阴影面积是:()()()()()22222222222019181716154321ππππππππππ-+-+-++-+- =2019181716154321ππππππππππ++++++++++ =()1202012π⨯⨯+ =210π【点睛】 考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.四、八年级数学分式解答题压轴题(难)16.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立; (3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】 解答此题关键是找出规律,再根据规律进行逆向运算.17.符号a b c d 称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值.【答案】(1)()()111x x +- (2)5 【解析】【分析】 (1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可.【详解】(1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-; (2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解所以x 的值为5.【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.18.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得: 300x :3000.6x+ =4:1, 解得:x=0.2,∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.19.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。
八年级上册期末试卷达标检测(Word版 含解析)
八年级上册期末试卷达标检测(Word版含解析)一、初二物理声现象实验易错压轴题(难)1.现在大多数房屋的门窗玻璃是“双层中空(接近真空)”的,能起到“隔音保温”的作用.小明在敲玻璃时,感觉双层玻璃与单层玻璃的振动情况不一样,产生了探究“受敲击时,双层玻璃和单层玻璃的振动强弱情况”的想法.为此,进行了以下实验:①如图所示,将单层玻璃板固定在有一定倾角的斜面底端,把玻璃球A靠在玻璃板的右侧,把橡胶球B悬挂在支架上靠在玻璃板的左侧.②把橡胶球B向左拉开一定的高度,放手后让其撞击玻璃板,玻璃球A被弹开,在下表中记下玻璃球没斜面向上滚动的距离,共做3次.③换成双层玻璃板重复②的实验.⑴实验时,把橡胶球B向左拉开“一定的高度”,目的是为了保证橡胶球B与玻璃撞击时的________能保持不变;⑵受到橡胶球B的撞击后,玻璃板振动的强弱是通过__________来反映的;⑶分析表中的实验数据,可以得出的结论是__________;⑷中空双层玻璃具有“隔音和保温”作用,是因为①隔音:___________;②保暖:___________.【答案】速度玻璃球滚动的距离大小单层玻璃比双层玻璃的振动幅度大真空不能传播声音真空传导热量的能力比玻璃差【解析】解答:(1)根据控制变量法应保持橡胶球B与玻璃撞击时的动能相同,由于是同一个橡胶球,则应保持橡胶球B向左拉开“一定的高度”,从同一高度落下;(2)当玻璃板受到橡胶球的敲击时,玻璃板振动的强弱是通过玻璃球被弹开的距离来反映的,这是转换的研究方法;(3)同样的撞击下,单层玻璃后的玻璃球比双层玻璃后的玻璃球运动的距离远;所以结论是:受敲击时,单层玻璃比双层玻璃的振动强;(4)两层玻璃之间接近真空,中空双层玻璃具有“隔音和保温”作用,①由于声音的传播是需要介质的,而真空不能传声,所以这种窗户能起到较好的隔音效果;②由于真空传导热量的能力比玻璃差,所以这种窗户能起到较好的保温效果。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.2.如图,在ABC∆中,90C∠=︒,4cmAC BC==,点D是斜边AB的中点.点E 从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA 方向运动,规定当点E到终点C时停止运动.设运动的时间为x秒,连接DE、DF.(1)填空:ABCS∆=______2cm;(2)当1x=且点F运动的速度也是1cm/s时,求证:DE DF=;(3)若动点F以3cm/s的速度沿射线CA方向运动,在点E、点F运动过程中,如果存在某个时间x,使得ADF∆的面积是BDE∆面积的两倍,请你求出时间x的值.【答案】(1)8;(2)见解析;(3)45或4.【解析】【分析】(1)直接可求△ABC的面积;(2)连接CD,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD,且BE=CF,即可证△CDF≌△BDE,可得DE=DF;(3)分△ADF的面积是△BDE的面积的两倍和△BDE与△ADF的面积的2倍两种情况讨论,根据题意列出方程可求x的值.【详解】解:(1)∵S△ABC=12⨯AC×BC∴S△ABC=12×4×4=8(cm2)故答案为:8(2)如图:连接CD∵AC=BC,D是AB中点∴CD平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFBDCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=4 5综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.4.如图(1),AB=4cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=3cm ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,他们的运动时间为t(s).(1)若点Q 的运动速度与点P 的运动速度相等,当t=1时,△ACP 与△BPQ 是否全等,请说明理由(2)判断此时线段PC 和线段PQ 的关系,并说明理由。
八年级上册期末试卷达标训练题(Word版 含答案)
八年级上册期末试卷达标训练题(Word版含答案)一、初二物理声现象实验易错压轴题(难)1.某兴趣小组计划探究“铝棒的发声”.同学们使用一根表面光滑的实心铝棒,一只手捏住铝棒的中间部位,另一只手的拇指和食指粘少许松香粉,在铝棒表面由手捏部位向外端摩擦,可以听见铝棒发出声音,而且发现在不同情况下铝棒发声的频率是不同的,为了探究铝棒发声频率的影响因素,该兴趣小组找到不同规格的铝棒、虚拟示波器等器材进行探究.实验前同学们提出了以下猜想:猜想A:铝棒发声的频率可能和铝棒的横截面积有关猜想B:铝棒发声的频率可能和铝棒的长度有关猜想C:铝棒发声的频率可能和手捏铝棒的部位有关为了验证猜想A,同学们选择4根铝棒,每次均捏住铝棒的中间部位,由手捏部位向外端摩擦,实验所得的数据记录于下面的表格中,在2%的误差允许范围内(频率相差在70Hz 以内)的测量值可以认为是相等的.(1)分析表格中数据,可知铝棒的发声频率与横截面积是______________的.(选填“有关”或“无关”)(2)为了验证猜想B,同学们选择横截面积均为2.9×10﹣5m2的铝棒,实验所得的数据记录于下面的表格中,同学们从表中前两列数据很难得出频率f与长度L之间的关系,他们利用图象法处理数据,画出了频率f与长度的倒数1/L的关系如图所示,分析可知发生频率f 与铝棒的长度L的关系是成______(正/反)比.(3)同学们又通过实验探究了铝棒发声的频率和手捏铝棒部位的关系,在实验过程中,有同学们将发声的铝棒一端插入水中,可以看到______________现象,有同学用手迅速握住正在发声的铝棒,可以听见声音很快衰减,原因是____________________________.【答案】无关反比例水花四溅振幅减小,响度减小【解析】(1)通过比较表格中的1和3(或者2和4)可知,,当铝棒长度都为0.71m时,横截面积不同,频率为3500hHz和3530Hz,由于这两个频率在2%的误差允许范围内(频率相差在70Hz以内),故频率是相同的,故结论为:铝棒的发声频率与横截面积是无关的;(2)由图象可知,频率f与长度的倒数1L的关系是一条直线,即成正比,故发生频率f与铝棒的长度L的关系是成反比; (3)有同学们将发声的铝棒一端插入水中,铝棒振动,引起水的振动,故可以看到水花四溅;有同学用手迅速握住正在发声的铝棒,可以听见声音很快衰减,原因是铝棒的振幅减小,响度减小。
人教版数学八年级上册期末达标测试卷(含答案)
人教版数学八年级上册期末达标测试卷一、选择题(共12小题,每小题3分,共36分) 1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )2.下面的计算结果不是a6的是( )A.a3·a2B.(a2)3C.a8÷a2 D.12a6+12a63.华为发布的麒麟990芯片采用了最新的0.000 000 007米的工艺制程.数0.000 000 007用科学记数法表示为( )A.7×10-9B.7×10-8C.0.7×10-9D.0.7×10-8 4.正多边形的一个外角的度数为30°,则这个正多边形的边数为( ) A.12 B.10 C.8 D.65.如图,AB=ED,BC=DC,CA=CE,∠ACB=80°,∠1=50°,则∠2=( )A.20° B.30° C.50° D.80°6.已知4x2+kx+9可以用完全平方公式进行因式分解,则k的值为( ) A.6 B.±6 C.12 D.±127.劳动课上,八(1)班同学分成两组练习包饺子,女生组包300个饺子与男生组包200个所用的时间相同,已知女生组每分钟比男生组多包30个,若设女生组每分钟包x个,则可列方程为( )A.300x=200x-30B.300x=200x+30C.300x-30=200xD.300x+30=200x8.在Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.下列作法错误的是( )9.“若关于x 的方程ax 3x -9=123x -9+1无解,求a 的值.”尖尖和丹丹的做法如下:尖尖:去分母,得ax =12+3x -9,移项,得ax -3x =12-9,合并同类项,得(a -3)x =3,∵原方程无解,∴a -3=0,∴a =3.丹丹:去分母,得ax =12+3x -9,移项、合并同类项,得(a -3)x =3,解得x =3a -3,∵原方程无解,∴x 为增根,∴3x -9=0,解得x =3,∴3a -3=3,解得a =4.下列说法正确的是( )A .尖尖对,丹丹错B .尖尖错,丹丹对C .两人的答案合起来也不完整D .两人的答案合起来才完整10.已知a ,b 是等腰三角形的两边长,且a ,b 满足|a -2|+(2a +3b -13)2=0,则此等腰三角形的周长为( )A.8B .6或8C .7D .7或811.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”.如8=32-12,16=52-32,即8,16均为“和谐数”.在不超过2 017的正整数中,所有的“和谐数”之和为( )A .255 024B .255 054C .255 064D .250 55412.如图,已知等腰三角形ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,连接OB ,OC ,OP ,3PC ,OP =O C.结论Ⅰ:△OPC 是等边三角形;结论Ⅱ:AC =AO +AP .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .结论Ⅰ正确,结论Ⅱ错误 B .结论Ⅱ正确,结论Ⅰ错误C .两个都正确D .两个都错误二、填空题(共4小题,每小题3分,共12分)13.式子x (y -1)与-18(y -1)的公因式是________.14.△ABC 的三边长如图所示,写出一个符合条件的m 的整数值:________.15.要使分式3x -1有意义,则x 的取值范围是________.16.如图,在△ABC 中,∠B =60°,AB =20,BC =35,动点D 从点B 出发,以每秒2个单位长度的速度沿BA 匀速向点A 运动,同时点E 从点C 出发,以每秒3个单位长度的速度沿CB 匀速向点B 运动,当D ,E 两点中有一点到达终点时,两点同时停止运动,设点D 的运动时间为t 秒.(1)若△DBE 为等边三角形,则t =__________;(2)若△DBE 为直角三角形,则t =__________.三、解答题(共8小题,共72分)17.(8分)计算:(1)(-3)2+(12)-1+(π-3)0;(2)28x8y4÷(-7x4y4)+(2x2)2.18.(8分)先化简,再求值:2a-1-a+1a2-2a+1÷a+1a-1,从-1,1,0,2中选取一个合适的数作为a的值.19.(8分)小明在物理课上学习了发声物体的振动实验后,对其进行探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,O A 表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA摆到OB 的位置,此时过点B作BD⊥OA于点D,当小球摆到OC的位置时,OB与5OC 恰好互相垂直(图中的A ,B ,O ,C 在同一平面上),过点C 作CE ⊥OA 于点E ,测得CE =15 cm ,OE =8 cm.(1)证明:OE =BD ;(2)求DE 的长.20.(9分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-3,4),B (-1,3),C (-1,0).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)△A 1B 1C 1的面积为________;(3)如果要使以B ,C ,D 为顶点的三角形与△ABC 全等,请直接写出所有符合条件的点D 的坐标.(点D 与点A 不重合)21.(9分)如图,在△ABC中,AD是角平分线,过点D作DE⊥BC,交AB于点E.(1)若∠B=50°,∠C=70°,求∠ADE的度数;(2)若∠ADE=12°,∠C=60°,求∠B的度数;(3)若∠C-∠B=α,则∠ADE=________(用含α的式子表示).22.(9分)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:m2-mn+2m-2n,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可以提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2-mn+2m-2n=(m2-mn)+(2m-2n)=m(m-n)+2(m-n)=(m-n)(m+2).此种因式分解的方法叫做“分组分解法”.请在这种方法的启发下,解决以下问题:(1)因式分解:a3-3a2+6a-18;(2)因式分解:ax+a2-2ab-bx+b2.23.(10分)当下公园露营正成为人们一种新的周末休闲娱乐方式,经营户外用品店的小明决定采购一批帐篷进行销售,已知每顶A型帐篷的进价比每顶B型帐篷多80元,购买7 200元的A型帐篷的顶数和购买4 800元的B型帐篷的顶数相同.(1)每顶A型帐篷和每顶B型帐篷的进价分别是多少元?(2)7月份小明以280元每顶的价格售出A型帐篷100顶,以210元每顶的价格售出B型帐篷150顶,8月份小明决定调整价格,每顶A型帐篷的售价不变,每顶B型帐篷的售价在7月份的基础上下降m元,由于气温持续攀升,8月份A型帐篷的销量比7月份增加了2m顶,B型帐篷的销量比7月份增加了20%,小明在8月份获利11 200元,求m的值.724.(11分)如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,连接CE.(1)求证:△BCE是等边三角形;(2)如图②,点M为线段CE上一点(点M不与点C,E重合),连接BM,以BM为边向右侧作等边三角形BMN,连接EN.①求证:EN∥BC;②若∠CBN=90°,请直接写出EN与BC的数量关系.9答案123456789101112答案查速DAAABDABDDAC13.y -1 14.4(或5或6) 15.x ≠1 16.(1)7 (2)354或5点拨:由题意,得BD =2t ,BE =35-3t ,∠B =60°.(1)若△DBE 为等边三角形,则BD =BE ,即2t =35-3t ,解得t =7.(2)若△DBE 为直角三角形,①当∠BED =90°时,∵∠B =60°,∴∠BDE =30°,∴BD =2BE ,即2t =2(35-3t ),解得t =354.②当∠BDE =90°时,∵∠B =60°,∴∠BED =30°,∴BE =2BD ,即2×2t =35-3t ,解得t =5.综上,t =354或5.17.解:(1)原式=9+2+1=12.(2)原式=-4x 4+4x 4=0.18.解:原式=2a -1-a +1(a -1)2·a -1a +1=2a -1-1a -1=1a -1.由题意可知a ≠±1,∴取a =0,原式=10-1=-1.或取a =2,原式=12-1=1.(两个答案,选一个即可)19.(1)证明:∵OB ⊥OC ,∴∠BOD +∠COE =90°.∵CE ⊥OA ,BD ⊥OA ,∴∠CEO =∠ODB =90°,∴∠BOD +∠B =90°,∴∠COE =∠B .在△COE 和△OBD 中,{∠CEO =∠ODB ,∠COE =∠B ,OC =BO ,∴△COE ≌△OBD (AAS ),∴OE =BD .(2)解:由(1)知△COE ≌△OBD ,∴OD =CE =15 cm .又∵OE =8 cm ,∴DE =OD -OE =15-8=7(cm ).20.解:(1)如图,△A 1B 1C 1即为所求.(2)3(3)点D 的坐标为(1,4)或(1,-1)或(-3,-1).21.解:(1)∵∠B =50°,∠C =70°,∴∠BAC =180°-∠B -∠C =60°.∵AD 是角平分线,∴∠BAD =12∠BAC =30°,∴∠BDA =180°-∠B -∠BAD =100°.∵DE ⊥BC ,∴∠BDE =90°,∴∠ADE =∠BDA -∠BDE =10°.(2)∵∠ADE =12°,∠BDE =90°,∴∠BDA =∠ADE +∠BDE =102°.∵∠BDA =∠CAD +∠C ,∠C =60°,∴∠CAD =42°.∵AD 是角平分线,∴∠BAC =2∠CAD =84°,∴∠B =180°-∠BAC -∠C =36°.(3)12α 点拨:∵∠BAC=180°-∠B-∠C,AD是角平分线,∴∠BAD=1 2∠BAC=90°-12∠B-12∠C,∴∠BDA=180°-∠B-∠BAD=90°+12∠C-12∠B.又∵∠BDE=90°,∴∠ADE=∠BDA-∠BDE=12(∠C-∠B)=12α.22.解:(1)a3-3a2+6a-18=a2(a-3)+6(a-3)=(a-3)(a2+6).(2)ax+a2-2ab-bx+b2=(a2-2ab+b2)+(ax-bx)=(a-b)2+x(a-b)=(a-b)(a-b+x).23.解:(1)设每顶A型帐篷的进价是x元,则每顶B型帐篷的进价是(x-80)元,根据题意,得7 200x=4 800x-80,解得x=240,经检验,x=240是原方程的解,且符合题意.240-80=160(元).答:每顶A型帐篷的进价是240元,每顶B型帐篷的进价是160元.(2)根据题意,8月份A型帐篷的售价为每顶280元,销量为(100+2m)顶,B型帐篷的售价为每顶(210-m)元,销量为150(1+20%)顶,根据题意,得(280-240)(100+2m)+150(1+20%)·(210-m-160)=11 200,解得m=18.答:m的值为18.24.(1)证明:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=12AB.11∵BD 是△ABC 的角平分线,∴∠DBA =12∠ABC =30°,∴∠A =∠DBA ,∴AD =BD .又∵DE ⊥AB ,∴AE =BE =12AB ,∴BC =BE .又∵∠ABC =60°,∴△BCE 是等边三角形.(2)①证明:∵△BCE 与△MNB 都是等边三角形,∴BM =BN ,∠EBC =∠MBN =∠BCM =60°,∴∠CBM =∠EBN .在△CBM 和△EBN 中,{BC =BE ,∠CBM =∠EBN ,BM =BN ,∴△CBM ≌△EBN (SAS ),∴∠BEN =∠BCM =60°,∴∠BEN =∠EBC ,∴EN ∥BC .②解:BC =2EN .点拨:∵∠CBN =90°,∠MBN =60°,∴∠MBC =90°-60°=30°,又∵∠ECB =60°,∴∠CMB =180°-∠ECB -∠MBC =90°.在Rt △CBM 中,∠MBC =30°,∴BC =2CM .∵△CBM ≌△EBN ,∴EN =CM ,∴BC =2EN .。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word版含解析)一、初二物理声现象实验易错压轴题(难)1.同学们围绕着水瓶发声的有关问题进行了以下探究。
(提出问题)敲瓶(瓶内含水)时发出的声音主要是由什么振动产生的?(猜想与假设)A.瓶子振动;B.瓶内水振动;C.瓶内空气柱振动(进行实验)(1)将瓶子装满水后用筷子敲击瓶子,瓶子仍能发出声音,故可以将猜想________排除。
(2)将瓶内水全部倒出后用筷子敲击瓶子,瓶子仍能发出声音,故可以将猜想________排除。
(得出结论)由上述实验分析可知,敲瓶发声,主要是由________振动产生的。
(提出新的问题)(1)瓶子发声的音调跟瓶内水的多少有什么关系?(2)随着瓶内水的增多,敲瓶发声的音调变化和吹瓶发声的音调变化又有何不同呢?(设计实验)(1)如图甲所示,先将8个空的玻璃瓶子放到桌子上一字摆开,再向瓶内注入不等量的水,从左到右,瓶内注入的水逐渐增多,最后用筷子从左到右依次敲击瓶口,同时用耳朵仔细听,辨别音调的高低。
(2)用嘴从左到右依次吹瓶口,同时用耳朵仔细听,辨别音调的高低。
(再得出结论)(1)敲瓶发声的音调随着瓶内水的增多而变______(选填高或低)。
(2)吹瓶发声的音调随着瓶内水的增多而变______(选填高或低)。
(拓展应用)如图乙所示. 用嘴分别对着5个高度不同的小瓶的瓶口吹气,发现瓶子越高,发出声音的音调越低。
(1)用嘴对着5个小瓶的瓶口吹气,5个小瓶均发出声音,则发出的声音是由________的振动产生的。
(2)5个小瓶产生的声音音调不同,其原因是________________。
【答案】C B瓶子低高瓶内空气柱空气柱的长短、粗细不同,导致空气柱振动的频率不同【解析】【分析】【详解】[1]将瓶子装满水后,瓶内没有空气,用筷子敲击瓶子,瓶子仍能发出声音,说明敲瓶时发出的声音不是由空气柱的振动产生的。
所以可以将猜想C排除。
[2]将瓶内水全部倒出后,瓶内没有水,用筷子敲击瓶子,瓶子仍能发出声音,说明敲瓶时发出的声音不是由瓶内水振动产生的。
八年级上册期末试卷达标训练题(Word版 含答案)
八年级上册期末试卷达标训练题(Word版含答案)一、初二物理声现象实验易错压轴题(难)1.用尺子来探究音调和响度分别与什么有关时,小明做了以下实验:(1)用尺子来探究决定音调高低的因素,把钢尺紧按在桌面上,一端伸出桌边,拨动钢尺,听它振动发出的声音,同时注意钢尺振动的快慢;改变钢尺伸出桌边的长度,再次拨动,使钢尺每次的振动幅度大致相同.实验发现尺子伸出桌面的长度越长,振动越_____,发出声音的音调越_____;由此可得出结论:音调的高低与_____有关.当尺子伸出桌面超过一定长度时,虽然用较大的力拨动钢尺,却听不到声音,这是由于_____.(2)用尺子来探究决定响度大小的因素,把钢尺紧按在桌面上,一端伸出桌边,拨动钢尺,听它振动发出的声音,同时保持人耳到钢尺的距离不变,接下来的操作是_____.【答案】慢低发声物体的振动频率钢尺的振动频率低于20Hz保持钢尺伸出桌面的长度不变,用大小不同的力拨动钢尺【解析】(1)尺子发出声音的音调与尺子振动快慢有关:当尺子伸出桌面的长度越长时,振动越慢,发出声音的音调越低;由此可得出结论:音调的高低与发声物体的振动频率有关;当尺子伸出桌面超过一定长度时,虽然用较大的力拨动钢尺,却听不到声音,这是由于钢尺振动频率小于20Hz;(2)用尺子来探究决定响度大小的因素,把钢尺紧按在桌面上,一端伸出桌边,拨动钢尺,听它振动发出的声音,同时保持人耳到钢尺的距离不变;保持钢尺伸出桌面的的长度不变,用大小不同的力拨动钢尺.故答案为(1)慢;低;频率;钢尺振动频率小于20Hz;(2)保持钢尺伸出桌面的的长度不变,用大小不同的力拨动钢尺.故答案为:(1). 慢 (2). 低 (3). 频率 (4). 钢尺振动频率小于20 Hz (5). 保持钢尺伸出桌面的长度不变,用大小不同的力拨动钢尺【点睛】音调指声音的高低,是由发声体振动的频率决定,物体振动越快,音调就越高,物体振动越慢,音调就越低;人能感受到的声音频率有一定的范围,大多数人能够听到的频率范围从20Hz到20000Hz;2.如图所示,小明和小刚用细棉线连接了两个纸杯制成了一个“土电话”。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word版含解析)一、初二物理机械运动实验易错压轴题(难)1.如图甲是测平均速度的实验装置。
(1)实验的原理是___________;(2)实验中为了便于测量小车的运动时间,斜面应保持___________(选填“较小”或“较大”)坡度;(3)由实验测量可知,小车通过上半程的平均速度___________(选填“小于”“大于”或“等于”)小车通过下半程的平均速度,表明小车做的是___________(选填“匀速”或“加速”)运动;(4)实验过程中某一时刻秒表示数如图乙所示,则读数为___________s。
【来源】山东省潍坊市昌乐县2019-2020学年八年级(上)期中学业质量检测物理试题【答案】svt=较小小于加速 337.5s【解析】【分析】(1)实验的原理是svt =。
(2)若要计时方便,应使所用的时间长些。
(3)小车在下滑过程中做加速运动。
(4)秒表的中间的表盘代表分钟,周围的大表盘代表秒,秒表读数是两个表盘的示数之和。
【详解】(1)[1]测平均速度的实验原理是svt =。
(2)[2]斜面坡度越大,小车沿斜面向下加速运动越快,过某点的时间会越短,计时会越困难,所以为使计时方便,斜面坡度应较小。
(3)[3][4]由实验测量可知,小车通过上半程的平均速度小于小车通过下半程的平均速度,小车做的是加速运动。
(4)[5]由图可知:在秒表的中间表盘上,1min中间有两个小格,所以一个小格代表0.5min,指针在“5”和“6”之间,所以分针指示的时间为5min;偏向“6”一侧,说明大表盘的读数应读大于30s;在秒表的大表盘上,1s之间有10个小格,所以一个小格代表0.1s,指针在37.5s处,所以秒针指示的时间为37.5s,则该秒表的读数为5min+37.5s=300s+37.5s=337.5s2.小明利用如图所示的装置测量小车的平均速度。
他把小车从斜面上端的挡板处由静止释放的同时开始用停表计时,当小车运动至下端挡板处时结束计时,图中圆圈中的数字显示了两次计时的时间(时间显示格式为“时:分:秒”)。
人教部编版八年级物理(上册)期末达标试卷及答案
人教部编版八年级物理(上册)期末达标试卷及答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(每题2分,共30分)1、有一光电控制液面高度的仪器,是通过光束在液面上的反射光线打到光电屏上来显示液面高度的,光路图如图所示.当光屏上的光点由S1移到S2时,表示液面()A.下降 B.上升 C.不变 D.先下降后上升2、为了提高行车的安全性,有的汽车装有日间行车灯,如图所示.当汽车启动时,S1闭合,日间行车灯L1立即亮起,再闭合S2,车前大灯L2也亮起.如图所示的电路图中符合这一情况的是()A. B.C. D.3、如图是穿行在餐厅的机器人端着托盘送餐的情景.若认为机器人是静止的,则选择的参照物是()A.地面B.托盘C.餐桌D.墙壁4、学校升国旗的旗杆顶上有一个滑轮,升旗时往下拉动绳子,国旗就会上升。
对这滑轮的说法,正确的是()A.这是一个动滑轮,可省力 B.这是一个定滑轮,可省力C.这是一个动滑轮,可改变力的方向 D.这是一个定滑轮,可改变力的方向5、如图所示为音叉共鸣实验:两个频率相同的音叉,用橡皮槌敲击其中一个音叉,另一个未被敲击的音叉也会发出声音.此现象可以说明()A.声音能够传递能量B.声音传播不需要介质C.声音传播不需要时间D.物体不振动也可产生声音6、以下物理规律无法用实验直接验证的是()A.牛顿第一定律 B.欧姆定律 C.光的反射定律D.焦耳定律7、如图所示,有一圆柱体PQ,放在凸透镜前图示的位置,它所成像P′Q′的形状应该是下列图中的()A. B. C. D.8、有一圆柱形敞口容器,从其左侧某一高度斜射一束激光,在容器底部产生一个光斑O,如图所示,下列操作使光斑向左移动的是:()A.保持水面高度不变使激光笔向右平移B.保持激光射入角度不变使水面上升C.保持激光射入角度不变使水面下降D.保持水面高度和入射点不变使激光入射角增大9、吉他上的弦绷紧时发声的音调比它不紧时高,则绷紧的弦发声比它不紧时()A.振幅一定更大B.振幅一定更小C.振动频率一定更低D.每秒内振动次数一定更多10、如图,图甲是小车甲运动的s-t图像,图乙是小车乙运动的v-t图像,由图像可知()A.甲、乙都由静止开始运动B.甲、乙都以2m/s的速度匀速运动C.甲、乙两车经过5s一定相遇D.甲车速度越来越大, 乙车速度不变11、下列关于光学实验的说法,错误的是()A.探究光的反射定律时,硬纸板可以显示光的传播路径B.探究平面镜成像特点时,使用两支相同的蜡烛是为了比较像与物的大小关系C.探究光的折射特点时,光从空气射入水中,传播方向一定会发生改变D.探究凸透镜成像规律时,当蜡烛燃烧变短,光屏上的像会向上移动12、下列有关排球运动的说法中,正确的是()A.运动员在发球时,手对排球的力大于排球对手的力B.排球在上升过程中,如果它受到的力全部消失,排球将静止C.排球在下落过程中,速度变快,惯性变大D.排球触网后方向改变,说明力可以改变物体的运动状态13、未煮过的汤圆沉在水底,煮熟后漂浮在水面上,则此时汤圆()A.受到的浮力等于重力,排开水的体积比未煮过的小B.受到的浮力大于重力,排开水的体积比未煮过的小C.受到的浮力大于重力,排开水的体积比未煮过的大D.受到的浮力等于重力,排开水的体积比未煮过的大14、张某在《朗读者》中为大家演绎了《追风筝的人》.关于其中的物理知识,下列说法正确的是()A.朗读时,朗读者的声带振动产生声音B.空气中,声音的传播速度约约3×108m/sC.观众主要依据音调区分主持人和朗读者的声音D.朗读者的声音很大是因为声音的频率很高15、如图所示,一小铁块沿斜面向下滑动,下列所涉及的物理知识描述正确的是()A.铁块从斜面滑下的速度越来越快,说明铁块惯性在变大B.铁块所受重力与斜面对铁块的支持力是一对平衡力C.铁块受到斜面摩擦力的方向沿斜面向上D.铁块相对于斜面始终是静止的二、填空题(每题2分,共10分)1、老虎钳的钳口上的横纹,是为了________(选填:增大或减小)摩擦,采用的是________方法;自行车前后轮子上安装滚动轴承,是为了________摩擦,采用的是________方法。
八年级上册期末试卷达标检测卷(Word版 含解析)
八年级上册期末试卷达标检测卷(Word 版 含解析)一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP ,∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等),∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°;(3)、AP =CE理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP ,在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明3.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ED EC CD=+∴ED AD BE=+(3)∵BEC ADC BCAα∠=∠=∠=∴180BCE ACD a︒∠+∠=-180BCE BCE a︒∠+∠=-∴ACD BCE∠=∠在ACD与CBE△中,ADC E aACD BCEAC BC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ED EC CD=+∴ED AD BE=+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.4.(1)问题发现:如图(1),已知:在三角形ABC∆中,90BAC︒∠=,AB AC=,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点,D E,试写出线段,BD DE和CE之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC∆中, ,,,AB AC D A E=三点都在直线l上,并且BDA AEC BACα∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E是,,D A E三点所在直线m上的两动点,(,,D A E三点互不重合),点F为BAC∠平分线上的一点,且ABF∆与ACF∆均为等边三角形,连接,BD CE,若BDA AEC BAC∠=∠=∠,试判断DEF∆的形状并说明理由.【答案】(1)DE=CE+BD;(2)成立,理由见解析;(3)△DEF为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD,进而根据AAS证明△ABD与△CAE全等,然后进一步求解即可;∠=∠=∠=,得出∠CAE=∠ABD,在△ADB与△CEA中,根(2)根据BDA AEC BACα据AAS证明二者全等从而得出AE=BD,AD=CE,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF ≌△EAF(SAS),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.5.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAOACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAOEBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-, ∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP,∴4t-5=t,解得t=53.综上所述,t=1或53s时,△BOP与△FCQ全等.【点睛】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,证明Rt △DAM ≌Rt △DBN ,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DCDM DN=⎧⎨=⎩,∴Rt△DMC≌Rt△DNC(HL),∴CM=CN,∴AC+BC=AM+CM+BC=AM+CN+BC=AM+BN,又∵AM=BN,∴AC+BC=2BN,∵BN<BD,∴AC+BC<2BD.(3)由(1)知∠CAD=∠CBD,在AC上取一点P,使CP=CD,连接DP,∵∠ECF=60°,∠ACF=60°,∴△CDP为等边三角形,∴DP=DC,∠DPC=60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,APD BCDPAD CBDDA DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.8.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE ;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CPPF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.在等边ABC 中,点D 是边BC 上一点.作射线AD ,点B 关于射线AD 的对称点为点E .连接CE 并延长,交射线AD 于点F .(1)如图,连接AE ,①AE 与AC 的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1) ①AB=AE ;②∠BCF=α;(2) AF-EF=CF ,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB ,∠BAF=∠EAF=α,由ABC 是等边三角形,得AB=AC ,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解; (2)作∠FCG=60°交AD 于点G ,连接BF ,易证∆FCG 是等边三角形,得GF=FC ,再证∆ACG ≅∆BCF(SAS),从而得AG=BF ,进而可得到结论.【详解】(1)①∵点B 关于射线AD 的对称点为点E ,∴AB和AE关于射线AD的对称,∴AB=AE.故答案是:AB=AE;②∵点B关于射线AD的对称点为点E,∴AE=AB,∠BAF=∠EAF=α,∵ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦,∴∠BCF=∠ACE-∠ACB=60α+-60°=α.(2)AF-EF=CF,理由如下:作∠FCG=60°交AD于点G,连接BF,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCF CG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC △△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB ≌△CEA , BD=AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE∵BF=AF ,∴△DBF ≌△EAF∴DF=EF ,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF 为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学 轴对称解答题压轴题(难)11.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC =∠ACB =60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA ,然后结合(1)可得∠MDC =∠BAD ,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,∴∠BAD =60°﹣∠DAE ,∠EDC =60°﹣∠E ,又∵DE =DA ,∴∠E =∠DAE ,∴∠BAD =∠EDC .(2)由轴对称可得,DM =DE ,∠EDC =∠MDC ,∵DE =DA ,∴DM =DA ,由(1)可得,∠BAD =∠EDC ,∴∠MDC =∠BAD ,∵△ABD 中,∠BAD +∠ADB =180°﹣∠B =120°,∴∠MDC +∠ADB =120°,∴∠ADM =60°,∴△ADM 是等边三角形,∴AD =AM .【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.13.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.14.已知:等边ABC∆中.(1)如图1,点M是BC的中点,点N在AB边上,满足60AMN∠=︒,求ANBN的值.(2)如图2,点M在AB边上(M为非中点,不与A、B重合),点N在CB的延长线上且MNB MCB∠=∠,求证:AM BN=.(3)如图3,点P为AC边的中点,点E在AB的延长线上,点F在BC的延长线上,满足AEP PFC∠=∠,求BF BEBC-的值.【答案】(1)3;(2)见解析;(3)32.【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN =即3AN BN=. (2)如下图:过点M 作ME ∥BC 交AC 于E∴∠CME=∠MCB ,∠AEM=∠ACB∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB ∠=∠=︒,120MBN =︒∠∴120CEM MBN ∠==︒∠,60AEM A ∠=∠=︒∴AM=ME∵MNB MCB ∠=∠∴∠CME=∠MNB ,MN=MC∴在MEC ∆与NBM ∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322 BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.15.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.16.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG =.(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:BE CM=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.已知△ABC.(1)在图 中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图 ,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下; 如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.18.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=- 解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.19.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,类比(2)的方法求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE +AE=BE.【详解】(1)如图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上期末达标测试卷精选八年级上期末达标测试卷。
期末达标测试卷
(时间:90分钟满分:100分)
题号一二三四总分
得分
1.下列加点字注音正确的一项是( )(2分)
A.商贾(gǔ) 踉跄(liàng qiàng) 皱(zhòu)眉威风凛凛(lǐn)
B.间或(jiàn) 尴尬(gān gà) 狡黠(jié) 不亦说乎(yuè)
C.隘口(yì) 荒冢(huāng zhǒng)浩瀚(hàn) 倾盆大雨(qīng)
D.谄媚(xiàn) 挑剔(tiāo tì) 粗犷(kuàng) 废寝忘食(qǐn)
2.下列各项中没有错别字的一项是( )(2分)
A.繁琐装璜吹虚炫耀按步就班
B.呼啸曲辱不径而走蜂涌而上
C.辨驳狡诈影影绰绰煞有戒事
D.肤浅敏捷全神贯注触目惊心
3.下面句子中加点词语使用不恰当的一项是( )(2分)
A.今天天气好,我们一起去登山,享受大自然的天伦之乐。
B.课堂上,语文老师幽默的语言,常常让学生忍俊不禁。
C.沿着晃动的梯子,我小心翼翼地爬上了沾满灰尘的小阁楼。
D.老师的举动让孩子们停住了笑声,全场鸦雀无声。
4.下列有关文学常识的表述有错误的一项是( )(2分)
A.《论语》是记录孔子及其弟子言行的著作。
许多有教育意义的成语像“温故知新”、“不耻下问”、“学而不厌,诲人不倦”、“三人行,必有我师”、“左右逢源”、“一暴十寒”等都出自《论语》。
B.柳宗元,唐代文学家,唐宋八大家”之一,代表作有《捕蛇者说》、《童区寄传》、《黔之驴》等,“永州八记”是其山水游记的代表作。
C.茅盾,原名沈德鸿,字雁冰,现代著名作家,代表作有小说《子夜》、《林家铺子》等。
D.《辛劳的蚂蚁》的作者是美国作家马克吐温,他是世界著名的小说大师,代表作有《汤姆索亚历险记》、《哈克贝利费恩历险记》、《竞选州长》等。
5.名句默写。
(5分)。