Using the zemax software complex to form photometricmodels of LED illuminator devices
光学设计ZEMAX软件中英文对照
优化 (Optimization);
全局优化(Global Search);
锤形优化(Hammer Optimization);
消除所有的变量(Remove All Variable);
评价函数列表(Merit Function Listing);
公差(Tolerancing);
全局坐标参考面 (Global Coordinate Reference Surface);
视场 (Fields);
偏振状态 (Polarization State);
外形图(Layout);
二维外形图(2D Layout);
3D外形图(3D Layout);
立体模l);
快速调焦(Quick Focus) ;
添加折叠反射镜(Add Fold Mirror);
幻像发生器(Ghost Focus generator);
系统复杂性测试(Performance Test);
表面数据(Surface Data);
系统数据(System Data);
确定光栏面(Defining the stop surface);
选择面型(Selecting surface types);
各面通光口径的确定(Specifying surface apertures);
用户自定义口径和挡光(User defined apertures and obscurations);
输入厚度(Entering thickness data);
输入玻璃数据(Entering glass data);
输入半口径数据(Entering semi-diameter);
ZEMAX菜单中英对照表
ZEMAX菜单中英对照表File 文件菜单英文中文Use Session File使用Session文件Sequential Or Mixed Sequential/Non-Sequential Mode序列模式/非序列模式切换Non-Sequential Mode非序列模式Insert Lens插入镜头Preferences属性Editers 编辑菜单Lens Data镜头数据Merit Function优化函数Multi-Configuration多重数据结构Tolerance Data公差数据Extra Data附加数据Non-Sequential Components非序列部件Undo撤销Redo重做System 系统菜单Update更新Update all全部更新General通用配置Fields视场Wavelengths光波长Next Configuration下一重结构Last Configuration最后结构Analysis 分析菜单Layout 草图2D Layout2D草图3D Layout3D草图Wireframe波前图Solid Model实体模型Shaded Model渲染模型ZEMAX Element Drawing ZEMAX格式绘图ISO Element Drawing ISO格式绘图Fans 特性曲线Ray Aberration光线像差Optical Path光路Pupil Aberration入瞳像差Spot Diagrams 点列图Standard标准Through Focus离焦Full Field全视场Matrix矩阵Configuration Matrix配置矩阵MTF (Modulation Transfer Function) 传递函数FFT MTF快速傅立叶变换FFT Through Focus MTF FFT离焦MTFFFT Surface MTF FFT曲面MTFFFT MTF vs. Field FFT MTF与市场FFT MTF Map FFT MTF图表Huygens MTF惠更斯MTFHuygens Through Focus MTF惠更斯离焦MTF Huygens Surface MTF Huygens曲面MTF Geometric MTF几何MTFGeometric Through Focu MTF几何离焦MTF Geometric MTF vs. Field几何MTF与视场Geometric MTF Map几何MTF图表PSF (Point Spread Function) 点扩散函数FFT PSF快速傅立叶变换FFT PSF Cross Section FFT横截面PSFFFT Line/Edge Spread FFT线性/边缘响应Huygens PSF惠更斯PSFHuygens PSF Cross Section惠更斯横截面PSFWavefront 波前Wavefront Map波前图表Interferogram干涉图Foueault Analysis佛科特分析Surface 曲面Surface Sag曲面失高Surface Phase曲面相位RMS 均方根RMS vs. Field RMS与视场RMS vs. Wavelength RMS与波长RMS vs. Focus RMS与焦点Encircled Enegry 能量分布Diffraction衍射Geometric几何Geometric Line/Edge Spread几何线性/边缘响应Extended Source扩展源Illumination 照度Relative Illumination相对照度Vignetting Plot渐晕PlotIllumination XY Scan照度XY ScanIllumination 2D Surface2D 曲面照度Image Analysis 像分析Geometric Image Analysis几何像分析Geometric Bitmap Image Analysis几何Bitmap格式像分析Diffraction Image Analysis衍射像分析Extended Diffraction Image Analysis扩展衍射像分析IMA/BIM File Viewer IMB/BIM格式文件浏览Biocular Analysis 双目分析Field of View观察视场Dipvergence/Convergence双目垂直角差/集中、收敛Miscellaneous 杂项Field Curv/Dist视场场曲/失真Grid Distortion方格失真Footprint Diagram光线痕迹图Longitudinal Aberration纵向像差Lateral Color横向色差Y-Ybar Drawing Y-Ybar图Chromatic Focal Shift焦点色位移System Summary Graphic系统概要图Aberration Coefficients 像差失真系数Seidel Coefficients赛德尔系数Zernike Fringe Coefficients泽尼克边缘系数Zernike Standard Coefficients泽尼克标准系数Zernike Annular Coefficients泽尼克环绕系数Calculations 计算Ray Trace光线追迹Fiber Coupling Efficiency光纤耦合效率YNI Contributions YNI贡献Sag Table面型凹陷表(失高表)Cardinal Points主要参数Glass and Gradient Index 玻璃和梯度折射率Dispersion Diagram散射图表Glass Map玻璃图表Internal Transmission vs. Wavelength内部透过率与波长Grin Profile表面轮廓(剖面)Gradium Profile梯度折射表面轮廓Universal Plot 通用图表New Universal Plot新通用图表Polarization 偏振Polarization Ray Trace偏振光追迹Polarization Pupil Map偏振瞳图表Transmission透过率Phase Aberration相位像差Transmission Fan透过率分布Coatings 镀膜Reflection vs. Angle映像与角度Transmission vs. Angle透过率与角度Absorption vs. Angle吸收与角度Diattenuation vs. Angle衰减与角度Phase vs. Angle相位角与角度Retardance vs. Angle光延迟与角度Reflection vs. Wavelength映像与波长Transmission vs. wavelength透过率与波长Absorption vs. Wavelength吸收与波长Diattenuation vs. Wavelength衰减与波长Phase vs. Wavelength相位角与波长Retardance vs. Wavelength光延迟与波长Physical Optics 物理光学Paraxial Gaussian Beam近轴高斯光束Skew Gaussian Beam倾斜高斯光束Physical Optics Propagation物理光学传播Beam File Viewer光速预览Tools 工具菜单Optimization 优化Optimization优化Global Search全局搜索Hammer Optimization锤形优化Merit Function Listing优化函数列表Remove All Variables移除所有变量Glass Substitution Template玻璃置换模板Tolerancing 公差Tolerancing公差Tolerance Listing公差列表Tolerance Summary公差概要Test Plates 样板Test Plate Fitting套样板Test Plate Lists样板列表Catalogs 目录Glass Catalogs玻璃目录Glass Compare玻璃部件Lens Catalogs镜头目录Coatings 镀膜Edit Coating File编辑镀膜文件Reload Coating File重新载入镀膜文件Add Coating to All Surfaces给所有表面添加膜层参数Coating Listing镀膜列表Scattering 散射ABg Scatter Data Catalogs ABg散射数据目录Scatter Function Viewer散射功能视窗Apertures 光圈Convert Semi-Diameters to Circular Apertures变换口径半径为环形口径Convert Semi-Diameters to Floating Apertures变换口径半径为浮动口径Remove All Apertures移除所有光圈Replace Vignetting With Apertures重新放置渐晕光圈Fold Mirrors 折叠反射镜Add Fold Mirror添加折叠反射镜Delete Fold Mirror删除折叠反射镜Export Data 导出数据Export IGES/STEP/SAT/STL Solid导出IGES/STEP/SAT/STL实体Export IGES Line Work导出IGES Line WorkExport 2D DXF File导出2D DXF文件Miscellaneous 杂项Reverse Elements反向排列零件Tilt/Decenter Elements倾斜/侦测器元素Scale Lens镜头缩放Make Focal生成焦距Quick Focus快速聚焦Ghost Focus Generator幻像发生器Performance Test性能测试Lock All Windows锁定所有窗口Unlock All Windows所有窗口解除锁定Slider滑块Convert to NSC Croup转到NSC组Replicate Object复制项目Create Polygon Object生成多边形项目Reports 报告菜单Surface Data曲面数据System Data系统数据Prescription规则数据Report Graphic 4图解报告4Report Graphic 6图解报告6Macros 宏指令菜单Edit/Run ZPL Macros编辑/运行ZPL宏Refresh Macro List浏览宏列表Extensions 外部扩展菜单Extensions外部扩展指令Refresh Extensions List浏览外部扩展列表Help 帮助菜单About关于Help帮助Tutorial指南Manual操作手册。
ZMAX 说明书 说明
第一章绪论(INTRODUCTION)1.1 关于本手册(About this document)ZEMAX有3个不同的版本:ZEMAX-SE(标准Standard),ZEMAX-XE(扩展Extended),ZEMAX-EE(工程Engineering)。
本手册包含这3个版本,运行在Microsoft Windows和Windows NT操作系统。
1.2 ZEMAX能作什么(What dose ZEMAX do ?)ZEMAX是一种程序,它可以在光学系统设计中建模、分析和帮助。
ZEMAX的界面便于使用,带有一个小型练习库,允许快速的交互设计。
大多数功能通过选用对话框或下拉式菜单运行。
菜单结构允许使用键盘的快捷键实现快速导航或旁路。
本手册提供了使用ZEMAX规则的说明,介绍程序和有用的功能。
1.3 ZEMAX不能作什么(What doesn`t ZEMAX do ?)虽然在设计和分析光学系统时,ZEMAX将给你很多帮助,但无论程序和文件,都不能教会你如何设计透镜或光学系统,设计者仍然是你。
ZEMAX文件不是光学设计、术语学、方法论的教科书。
ZEMAX的用户技术支持包括程序使用帮助,但不包括光学设计基本原理的教程。
如果你没有光学设计经验,你可以先阅读有关的书籍。
下列书籍(并非全部)对你有益。
)后,才能认为是完成设计。
检查ZEMAX的结果是工程师的职责,没有别的办法,这一点在制造成本非常高的情况下更为重要。
1.4 学习使用ZEMAX(Learning to use ZEMAX)在线帮助文件包含了ZEMAX基本应用和其它主题。
安装ZEMAX后,在主菜单中选择帮助(Help),就可以得到在线帮助。
1.5 获得技术支持(Getting technical support)安装和使用ZEMAX时若有问题,请按如下建议得到所需要的信息:1)按目录查看有关章节。
2)查看参考索引条目(在本书的后部)。
3)按你所尝试建立的相应的透镜类型,查看“ZEMAX例题文件”部分。
Zemax详细使用方法ppt_共257页
NSC with ports system例子
Ray Tracing的3种方式(III)
(3) Purely Non-sequential(aka NSC without port) •所有object都是3D shell or solids; •每个object都在一个空间坐标系中定义了其特性; •需要定义光源的发光特性和位置,定义detector收集光线; •光线一直追迹,直到它遇到下列情况才终止: Nothing, 能量低于定义的阈值。 •计算时光学元件的相对位置由空间坐标确定;对同一元件,可同时进 行穿透、反射、吸收及散射的特性计算; •无法作优化及公差分析; 这种情况下,可以对光线进行分光,散射,衍射,反射,折射。
(2)还提供了User Defined Surface。用户只需要按照它的语法规定, 用C++语言编写DLL文件与ZEMAX相连接就可以建立自己需要的面形。
The system aperture
它是很重要的一个参数,决定入瞳的大小,它决定光学系统在物 空间收集多少光线。
System aperture types
Sequential lens data-Surface data: 面的序号; 每个面的相关结构数据; 光学系统的孔径; 波长; 视场。 进行优化时,还需要: 变量; 优化函数。 For NSC without port system,还需要: 所有object的结构参数和位置参数; 所有source和detector的特性参数和位置参数; 波长。
Surface data的符号规则
• 镜头数据(Lens Data):曲率半径、厚度、材质和其他参数。
各量符号规定:
ZEMAX中文使用说明书
目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)ZEMAX中文使用说明书ZEMAX中文使用说明书ZEMAX中文使用说明书§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)ZEMAX中文使用说明书ZEMAX中文使用说明书ZEMAX中文使用说明书§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§8.12.10 波长和内透过率的关系 (101)§8.12.11 玻璃图 (101)§8.12.10 系统总结图 (101)§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)ZEMAX中文使用说明书ZEMAX中文使用说明书ZEMAX中文使用说明书§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)ZEMAX中文使用说明书ZEMAX中文使用说明书ZEMAX中文使用说明书§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)ZEMAX中文使用说明书ZEMAX中文使用说明书ZEMAX中文使用说明书§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)ZEMAX中文使用说明书ZEMAX中文使用说明书ZEMAX中文使用说明书第五章文件菜单新建(New)目的:清除当前的镜头数据。
zemax简体中文版
习作一:单镜片(Single t)你将学到:启用Zema x,如何键入wa velen gth,lens data,产生rayfan,OPD,spot diagra ms,定义thic kness solve以及vari ables,执行简单光学设计最佳化。
设想你要设计一个F/4单镜片在光轴上使用,其focal length为100mm,在可见光谱下,用BK7镜片来作。
首先叫出ZE MAX的l ens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的rad ius,thickn ess,大小,位置……等。
然后选取你要的光,在主选单sy stem下,圈出wave lengt hs,依喜好键入你要的波长,同时可选用不同的波长等。
现在在第一列键入0.486,以micr*****为单位,此为氢原子的F-line光谱。
在第二、三列键入0.587及0.656,然后在pri marywavele ngth上点在0.486的位置,primar y wavele ngth主要是用来计算光学系统在近轴光学近似(paraxi al optics,即first-orderoptics)下的几个主要参数,如focal length,magnif icati on,pupilsizes等。
再来我们要决定透镜的孔径有多大。
既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的eff ectiv e focallength F跟para xialentran ce pupil的直径的比值。
所以现在我们需要的ap ertur e就是100/4=25(mm)。
于是从sys tem menu上选gener al data,在apervalue上键入25,而apert ure type被d efaul t为Ent rance Pupildiamet er。
zemax透镜设计流程
zemax透镜设计流程## English Answer:##。
Zemax is a powerful optical design software that allows users to design and analyze optical systems. The process of designing a lens in Zemax typically involves the following steps:1. Define the optical system: The first step is to define the optical system, including the number of lenses, the focal lengths of the lenses, and the arrangement of the lenses.2. Set up the optimization parameters: The next step is to set up the optimization parameters, including the target function, the constraints, and the optimization algorithm.3. Run the optimization: The optimization process will iteratively adjust the design parameters to minimize the target function while satisfying the constraints.4. Analyze the results: Once the optimization is complete, the user can analyze the results to evaluate the performance of the lens design.Here are some additional tips for designing lenses in Zemax:Use a structured approach: The design process should be structured and methodical to ensure that all aspects of the lens design are considered.Use the right tools: Zemax provides a variety of tools to help users design and analyze lenses. Use the righttools for the job to improve efficiency and accuracy.Get help: If you are having trouble designing a lens, you can get help from the Zemax community or from Zemax support.## 中文回答,##。
zemax非序列布尔运算
zemax非序列布尔运算English Answer:In ZEMAX, non-sequential Boolean operations allow you to combine multiple optical elements or surfaces into a single, complex shape. This can be useful for creating complex optical systems that would be difficult or impossible to create using traditional methods.There are two main types of non-sequential Boolean operations:Union: This operation combines two or more optical elements or surfaces into a single, contiguous shape. The resulting shape is the sum of the individual shapes.Intersection: This operation creates a new optical element or surface that is the intersection of two or more existing optical elements or surfaces. The resulting shape is the common area of the individual shapes.Non-sequential Boolean operations can be used to create a wide variety of complex optical shapes, including:Apertures: Non-sequential Boolean operations can be used to create complex apertures with arbitrary shapes. This can be useful for creating custom apertures for imaging systems or for blocking unwanted light.Filters: Non-sequential Boolean operations can be used to create complex filters with arbitrary transmission or reflection characteristics. This can be useful for creating custom filters for imaging systems or for blocking unwanted light.Mirrors: Non-sequential Boolean operations can be used to create complex mirrors with arbitrary shapes. This can be useful for creating custom mirrors for imaging systems or for redirecting light.Lenses: Non-sequential Boolean operations can be used to create complex lenses with arbitrary shapes. This can beuseful for creating custom lenses for imaging systems or for correcting optical aberrations.Non-sequential Boolean operations are a powerful tool for creating complex optical systems. They can be used to create a wide variety of shapes that would be difficult or impossible to create using traditional methods.Chinese Answer:在 ZEMAX 中,非序列布尔运算允许您将多个光学元件或表面组合成一个单一的复杂形状。
25×显微镜物镜设计
课程设计任务书学生姓名:陈天宇专业班级:电子科学与技术0703班指导教师:李成军工作单位:信息工程学院 ________题目:25 X显微镜物镜设计初始条件:计算机、zemax软件要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:2周技术要求:(1)学习zemax软件。
(2)设计一个25X显微镜物镜,要求所设计的系统成像清晰,显微物镜放大倍率为25 X,物方数值孔径NA=0.4,物高为1mn左右。
(3)对所设计的相机光学系统进行zemax软件仿真工作。
2、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:2010628做课设具体实施安排和课设报告格式要求说明。
2010628-6.30 查阅相关资料,并复习所设计内容的基本理论知识。
2010.7.1-7.8 学习zemax软件,对相机光学系统进行设计仿真工作,完成课设报告的撰写。
2010.7.9提交课程设计报告,进行答辩。
指导教师签名:系主任(或责任教师)签名:摘要 ....................................................................... ..... ABSTRACT ................................................................................... II.1绪论 (1)2物镜设计方案 (2)3物镜设计参数及镜片选择 (3)3.1物镜的数值孔径 (3)3.2物镜的鉴别率 (3)3.3物镜的有效放大倍数 (4)3.4垂直鉴别率 (5)3.5实际参数确定 (5)4 25X显微镜物镜光学系统仿真过程 (6)4.1选择初始结构并设置参数 (6)4.2自动优化 (6)4.3物镜的光线像差(R AY A BERRATION )分析 (8)4.4物镜的波像均方差(OPD)分析 (9)4.5物镜的光学传递函数(MTF)分析 (9)4.6最终仿真参数分析 (10)5心得体会 (11)6参考文献 (12)物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成象,因而直接关系和影响成象的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。
zemax中文教程
第一章引言关于本说明书ZEMAX有三种不同的版本:ZEMAX-SE(标准版本),ZEMAX-XE(扩展版本)和ZEMAX –EE(工程版本)。
本手册包括了所有三个版本的使用说明,当然,如文中所述,某些特征只对其中一个或两个版本是适用的。
如果它的性能可以用在ZEMAX-XE和ZEMAX –EE中,但不能用于ZEMAX-SE,本手册中会在描述该特性时,给出如下的标识:如果一种功能能用在ZEMAX-EE,但不能用在ZEMAX-XE或ZEMAX –SE中,则会在手册中描述该特性的地方,给出如下的标识:请注意XE比SE更为高级。
那就是说SE能完成的XE一定能完成,除此之外还有扩展功能。
EE也比XE要高级。
这本手册概括了ZEMAX在Micoroft Windows和Windows NT操作系统中运行的三个版本。
ZEMAX能做什么?ZEMAX是一个用来模拟、分析和辅助设计光学系统的程序。
ZEMAX的界面设计得比较容易被使用,稍加练习就能很快地进行交互设计。
大部分ZEMAX的功能都用选择弹出或下拉式菜单来实现。
键盘快捷键可以用来引导或略过菜单,直接运行。
本手册提供了ZEMAX中的有关约定的解释,使用步骤的说明以及功能的描述。
ZEMAX不能做什么?ZEMAX程序或ZEMAX文件都不能教你如何去进行镜头或光学系统的设计。
虽然,ZEMAX 程序在进行光学系统的设计和分析的时候,可以帮助你做许多事情,但是设计者仍然是你。
ZEMAX文件并不是关于光学设计、术语以及方法的教程。
ZEMAX的用户可以获得技术上的支持,包括在使用过程中的帮助,但不包括基本的光学设计原理的指导。
如果,你在光学设计方面只有很少甚至根本就没有经验,你就需要去熟读有关这方面的许多好书。
下表列出了一些(但并非全部)可以帮你学习的书。
最主要的,ZEMAX并不能完全代替工程实践。
在一个设计完成之前,必须要一个有资格的工程师对本软件所得的计算结果进行检查,以判断结果是否合理。
zemax软件学习计划
zemax软件学习计划IntroductionZemax is a powerful software tool used in the field of optics and photonics for designing and analyzing optical systems. With its comprehensive capabilities, Zemax helps in optimizing the performance of optical systems and allows for efficient simulation and analysis. This learning plan is designed to provide a structured approach to mastering Zemax, covering its various functionalities and applications. By following this plan, individuals can develop a strong foundation in using Zemax for optical system design and simulation.Learning ObjectivesThe primary objectives of this Zemax Software Learning Plan are as follows:1. Understand the fundamentals of Zemax software2. Learn about optical system design and analysis using Zemax3. Gain proficiency in using Zemax for simulation and optimization4. Explore advanced features and applications of Zemax5. Develop practical skills through hands-on exercises and projectsLearning Plan OverviewThe learning plan will be divided into several key modules, each covering specific aspects of Zemax software. The modules are designed to progressively build upon the foundational knowledge and skills required to effectively use Zemax for optical system design and analysis. It is important to note that the learning plan will involve a combination of theoretical learning, practical exercises, and real-world applications to ensure comprehensive understanding and skill development.Module 1: Introduction to ZemaxThis module will provide a comprehensive introduction to Zemax, covering its features, interface, and basic functionalities. Topics to be covered include:- Overview of Zemax software and its applications in optics- Understanding the user interface and workspace in Zemax- Introduction to Zemax terminology and workflow- Basic tools and operations in Zemax for creating optical systemsModule 2: Optical System Design FundamentalsThis module will focus on the fundamentals of optical system design and how Zemax facilitates the process. Key topics to be covered include:- Principles of optical system design and components- Creating and configuring optical components in Zemax- Optical properties and material selection in Zemax- System layout and configuration in ZemaxModule 3: Analysis and Simulation in ZemaxIn this module, participants will learn about the analysis and simulation capabilities of Zemax. Key topics include:- Performing ray tracing and optical analysis in Zemax- Understanding wavefront analysis and aberrations- Optimization techniques and tools in Zemax- Generating performance reports and data analysis in ZemaxModule 4: Advanced Features of ZemaxThis module will delve into advanced features and functionalities of Zemax, expanding on the capabilities of the software. Topics to be covered will include:- Advanced optical modeling and design considerations- Non-sequential ray tracing and its applications- Customization and scripting in Zemax- Integration of Zemax with other optical design tools and softwareModule 5: Practical Applications and ProjectsThe final module of the learning plan will focus on real-world applications of Zemax through practical projects and case studies. Participants will work on designing and analyzing optical systems and components using Zemax, integrating all the knowledge and skills gained throughout the learning plan.ConclusionThis Zemax Software Learning Plan is designed to provide a structured and comprehensive approach to mastering the capabilities of Zemax for optical system design and analysis. By successfully completing this learning plan, individuals can gain the knowledge and skills required to effectively utilize Zemax in their professional work, whether in academicresearch, industry, or any other field related to optics and photonics. Through theoretical learning, practical exercises, and real-world applications, participants can develop a strong proficiency in Zemax and its applications.References:- Zemax User Guide and Tutorials- Optical System Design Using Zemax: a Practical Guide (Book)- Online resources and tutorials provided by Zemax companyThis learning plan is intended to serve as a guide for individuals and institutions interested in developing expertise in Zemax software. It can be adapted and customized according to specific learning needs and objectives. With a structured approach to learning, individuals can maximize the potential of Zemax for optical system design and analysis, contributing to advancements in the field of optics and photonics.。
optical systems design with zemax
Lecture 1
Why Optical Systems Design
Optical system design is no longer a skill reserved for a few professionals. With readily available commercial optical design software, these tools are accessible to the general optical engineering community and rudimentary skills in optical design are now expected by a wide range of industries who utilize optics in their products.
February 4, 2010 Optical Systems Design 4
Other Optical Design Software
Code-V (Optical Research Associates) OSLO (Sinclair Optics) OpTaliX (Optenso Ltd) ASAP (Breault Research) TracePro (Lambda Research) FRED (Photon Engineering)
February 4, 2010 Optical Systems Design 13
Numerical Evaluation Methods
Assume only trigonometry, law of reflection and
(完整word版)ZEMAX中如何优化非序列光学系统(翻译)
ZEMAX中如何优化非序列光学系统(翻译)优化就是通过改变一系列参数值(称做变量)来减小merit function的值,进而改进设计的过程,这个过程需要通过merit function定义性能评价标准,以及有效变量来达到这一目标。
本文为特别的为non-sequential 光学系统优化提供了一个推荐的方法。
推荐的方法如下:The recommended approach is:∙在所有merit function中使用的探测器上使用像素插值,来避免像素化探测器上的量化影响。
∙使用这些探测器上的合计值,例如RMS spot size, RMS angular width,angular centroid, centroid location 等,而不是某个特定像素上的数据。
这些'Moment of Illumination' 数据优化起来比任何特定的像素点的值平缓的多。
∙在优化开始之初使用正交下降优化法(Orthogonal Descent optimizer),然后用阻尼最小二乘法(damped least squares)和锤优化器(Hammeroptimizers)提炼结果。
正交下降法通常比阻尼最小二乘法快,但得到的优化解稍差。
首先使用正交下降优化法。
作为例子,我们用几分钟的时间优化一个自由形式的反射镜,最大化LED的亮度,使之从23Cd增加到>250 Cd。
Damped Least Squares vs Orthogonal DescentZEMAX 中有2中局部优化算法:阻尼最小二乘法(DLS)和正交下降法(OD)。
DLS 利用数值计算的结果来确定解空间的方向,即merit function更低的方向。
这种梯度法是专门为光学系统设计的,建议所有的成像和经典光学优化问题使用。
然而,在纯非序列系统优化中,DLS 不太成功,因为探测是在像素化的探测器上,merit function是本质上不连续的,这会使梯度法失效。
Zemax软件设计教程_2(长春光机所)
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
Samples/Sequentia/lObjectives/Cooke 40 degree field.zmx
目标: 将1~6面转换成非序列元 件; 在原像面位置加入一个非序 列的探测器; 加入一个非序列的光源表示 物空间的轴上光束
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
Samples > Sequential > Tilted systems & prisms > Tilted mirror.zmx
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
Samples > Sequential > Telescopes > Unobscured Gregorian.zmx
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
加入平凸透镜,在编辑窗口做如下修改
Ref Object: 3 Z Position: 10 Material: N-BK7 Radius 1: 300 Clear 1: 150 Edge 1: 150 Thickness: 70 Clear 2: 150 Edge 2: 150
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
为了观察光束会聚情况,我们再加入一个探测器。
Ref Object: 4 Z position: 650 Material: Blank X Half Width: 100 Y Half Width: 100 # X Pixels: 150 # Y Pixels: 150 Color: 1
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
再来对比一下序列模式和非序列模式下的衍射计算 将光源及探测器参数做如下修改
应用ZEMAX软件构造特殊面型
文章编号:1005-5630(2001)03-0023-04应用ZEM A X 软件构造特殊面型Ξ王成良,李湘宁,贺莉清(上海理工大学光电学院,上海200093) 摘要:介绍了在Focu s Softw are Inc .公司的光学设计软件ZE M A X 中运用U serD efined Su rface (U D S )的方法和计算机动态链接库D ynam ic L ink L ib rary (DLL )软件技术构造特殊面型的技术,通过给出一个内接圆台网格面面型定制实例,详细介绍了在ZE M A X 中定制面型的方法。
该项技术的开发扩充了ZE M A X 软件的功能,有效地拓宽了ZE M A X 的应用范围。
关键词:U D S ;动态链接库中图分类号:T P 319 文献标识码:ACon structi ng user def i ned surface i n ZE M AXW A N G Cheng 2liang ,L I X iang 2n ing ,H E L I 2qing(Co llege of Op tics and E lectron ics ,U n iversity of Shanghai fo r Science and T echno logy ,Shanghai 200093,Ch ina ) Abstract :T he m ethod ,u sing U ser D efined Su rface featu re in ZE M A X develop ed by Focu s Softw are Inc .and com p u ter dynam ic link lib rary techn ique to con struct a k ind of su rface by u ser is described .T he k ind of esp ecial su rface con structed by u ser is in troduced .T h is m ethod ex tends the functi on s of ZE M A Xand its ’dom ain s.Key words :U D S ;DLL1 引 言模拟多光轴复合面型的光学系统常用方法之一是把复合面型分解、简化为多个普通面型,但只能是近似、粗糙的模拟;方法之二是自编程序进行光线追迹,但利用不了现有光学设计软件的分析、设计工具。
Zemax软件设计教程资料
常用的分析诊断工具
外形图
1. 二维外形图(2D Layout)
外形图
2. 三维外形图(3D Layout)
外形图
3. 阴影图(Shaded Model)
外形图
4. 元件图(ZEMAX Element Drawing)
Ray fan plot
光线扇面图是分析几何像差的有力工具,值得好好学习和分析。
ZEMAX应用
ZEMAX可以用于相机镜头、望远镜、显微镜、 照明系统、显示系统、干涉仪、光通讯器件等 各光学系统的设计和仿真
ZEMAX不能做什么?
ZEMAX软件和使用手册都不会教您如何设计镜头和光学系统。 ZEMAX功能是很强大,但是把握和引导光学系统的设计、优化方向, 判断系统性能的只能是你。如果你对光学设计感兴趣,推荐书单: 作者 袁旭沧/张以谟 书名 光学设计/应用光学
ZEMAX的主窗口
(1)文件菜单(File):用于文件的打开、关闭、保存、重命名。 (2)编辑菜单(Editors):用于打开或关闭编辑器。 (3)系统菜单(System):用于确定整个光学系统的属性。 (4)分析菜单(Analysis):不能改变镜头数据,只是从给定的镜头数据中计算出 结果,用数字或图形表示。这些结果包括轮廓图、像差曲线图、点列图、衍射计算 等等。 (5)工具菜单(Tools):可以改变镜头数据或对整个系统进行复杂的计算。这些包 括优化计算、公差、套样板、执行宏语言程序等。 (6)报告菜单(Reports):用文本方式记录镜头设计结果。 (7)宏指令菜单(Macros):用于编辑和运行目录文件。 (8)扩展命令菜单(Extensions):用于扩展命令功能,这是ZEMAX的编辑特性。 (9)帮助菜单(Help):提供在线帮助。
getting started using zemax
Getting Started Using ZEMAX®Version 1.1.6Table of Contents1 2 ABOUT THIS GUIDE ......................................................................................................................................................... 3 INSTALLING ZEMAX ......................................................................................................................................................... 4 2.1 2.2 2.3 2.4 2.5 2.6 3 INSTALLING THE KEY DRIVER ........................................................................................................................................ 4 INSTALLING ZEMAX ..................................................................................................................................................... 4 LICENSE CODES ........................................................................................................................................................... 4 NETWORK KEYS AND CLIENTS ...................................................................................................................................... 5 TROUBLESHOOTING ...................................................................................................................................................... 5 CUSTOMIZING YOUR ZEMAX INSTALLATION .................................................................................................................. 6THE ZEMAX USER INTERFACE ...................................................................................................................................... 7 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 THE LENS DATA EDITOR ............................................................................................................................................... 7 ANALYSIS W INDOWS ..................................................................................................................................................... 9 THE SYSTEM MENU .................................................................................................................................................... 10 THE NORMALIZED COORDINATE SYSTEM ..................................................................................................................... 12 DEFINING & POSITIONING SURFACES........................................................................................................................... 14 W ORKING IN THREE DIMENSIONS ................................................................................................................................ 16 MULTIPLE CONFIGURATIONS ....................................................................................................................................... 18 EXPORTING TO MECHANICAL CAD PACKAGES ............................................................................................................. 24 SUMMARY .................................................................................................................................................................. 254OPTIMIZATION ............................................................................................................................................................... 26 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 THE LENS SPECIFICATION ........................................................................................................................................... 26 ENTERING THE BASIC SYSTEM .................................................................................................................................... 26 SETTING VARIABLES ................................................................................................................................................... 31 DEFINING THE MERIT FUNCTION.................................................................................................................................. 32 OPTIMIZING THE LENS ................................................................................................................................................ 33 THE HAMMER OPTIMIZER ............................................................................................................................................ 36 ARE THERE ENOUGH FIELD POINTS?........................................................................................................................... 37 GLASS OPTIMIZATION ................................................................................................................................................. 39 TIPS FOR SUCCESSFUL OPTIMIZATION......................................................................................................................... 41Page 1 of 725NON-SEQUENTIAL RAY TRACING (EE ONLY) ............................................................................................................ 43 5.1 5.2 5.3 5.4 5.5 5.6 5.7 A SIMPLE EXAMPLE .................................................................................................................................................... 43 OBJECT POSITIONING & DEFINITION ............................................................................................................................ 46 COMBINING SEQUENTIAL AND NON-SEQUENTIAL RAY-TRACING ................................................................................... 49 TRACING RAYS AND GETTING DATA ............................................................................................................................ 50 COMPLEX OBJECT CREATION ..................................................................................................................................... 54 OPTIMIZING NON-SEQUENTIAL SYSTEMS ..................................................................................................................... 56 COLORIMETRY ........................................................................................................................................................... 596POLARIZATION, COATINGS & SCATTERING (EE ONLY) .......................................................................................... 61 6.1 6.2 6.3 6.4 6.5 6.6 POLARIZATION............................................................................................................................................................ 61 THIN-FILM COATINGS ................................................................................................................................................. 62 RAY SPLITTING........................................................................................................................................................... 66 RAY SCATTERING ....................................................................................................................................................... 66 IMPORTANCE SAMPLING ............................................................................................................................................. 68 BULK AND FLUORESCENT SCATTERING ....................................................................................................................... 697WHAT’S NEXT? .............................................................................................................................................................. 71 7.1 GETTING TECHNICAL SUPPORT ................................................................................................................................... 72ZEMAX is a registered trademark of Radiant ZEMAX, LLC.Page 2 of 721 About This GuideCongratulations on your purchase of ZEMAX! ZEMAX is the industry standard optical system design software, combining sequential lens design, analysis, optimization, tolerancing, physical optics, non-sequential optical system design, polarization, thin-film modeling and mechanical CAD Import/Export in a single, easy-to-use package. Although ZEMAX is easy to use, optical system design is a very broad area of engineering. This guide is intended to get you started using ZEMAX quickly. It is the first place to start if you are new to ZEMAX, or if you are returning to it after having not used ZEMAX for some time. You may learn something even if you have used ZEMAX for many years! We strongly recommend you take the time to work all the way through this booklet. It covers:• • • • • • • • • • • • Installing ZEMAX, and customizing its appearance and file locations to your preference. Entering a simple sequential design Understanding the normalized definitions ZEMAX uses. An overview of the multiple configurations capability. How to export components and rays to mechanical CAD packages. Optimizing a simple lens. Using some of the powerful tools ZEMAX makes available. Tilting and decentering optical components. Entering a simple non-sequential system, tracing rays, and using detectors. Colorimetry. Thin-Film Coatings. Surface, bulk and fluorescent scattering.As well as getting you started, this guide also points you to some of the other resources you can use to learn ZEMAX. In particular, the User's Manual is a detailed reference on all aspects of ZEMAX. It is supplied in PDF format and is found in ZEMAX by clicking on Help Manual. This guide refers to the various chapters and sections of the manual as it goes along, as well as to some of the many sample files distributed along with ZEMAX. Also, our web-based Knowledge Base at /kb is an indispensible resource for all ZEMAX users. It contains tutorials, worked examples and answers to many frequently-asked questions.Page 3 of 722 Installing ZEMAXTo use ZEMAX, there are two programs that must be installed on your computer. The latest versions of both can be downloaded from /updates. The two programs are:• The ZEMAX installer, which has a name like ZEMAX_YYYY_MM_DD.exe, where YYYY, MM and DD are the year, month and day of the release. Different releases of ZEMAX are identified by their release date instead of a version number. The same installer is used for both ZEMAX-SE and ZEMAX-EE, and it contains all program files, sample files and a detailed User's Manual in PDF format. The key driver installer. ZEMAX is not copy protected, and may be installed on as many machines as you wish. ZEMAX is supplied with a black USB device which allows ZEMAX to run on the machine it is plugged into, and determines whether the SE or EE feature sets are available. A multi-computer network key is also available.•You must install both programs under a user account with Administrator privileges. Only Standard User privileges are needed to use ZEMAX once installation is complete.Note: The key supplied with the ZEMAX software is worth the full purchase price of the software. If the key is lost or stolen, it will not be replaced without payment of the full purchase price. Insure the key as you would any other business or personal asset of comparable value.2.1 Installing The Key DriverThe key driver installation is straightforward. Double-click the key driver installer once you have downloaded it, and choose the ‘Complete’ installation of all program features. A dialog box will also ask for your permission to modify the firewall settings of your computer to allow remote users of your computer to run ZEMAX using Remote Desktop. If you want to authorize this, click "Yes", otherwise click "No". To change this setting, just re-run the key driver installer. Plug the key in once the key driver installation is complete, and Windows will detect the hardware key. The green LED at the end of the key will illuminate.2.2 Installing ZEMAXThe installation of ZEMAX itself is similarly straightforward. Double-click the ZEMAX installer once you have downloaded it, and step through the on-screen instructions. You may choose where on your hard drive ZEMAX is installed.2.3 License CodesWhen ZEMAX runs for the first time, it may prompt you to enter a license code. If it does, visit /updates and download the file lc.dat by right-mouse-clicking the link, choosing 'Save Target As:' and storing in your ZEMAX installation folder, overwriting the current version. If after that, you continue to see a dialog box like so:Page 4 of 72Take a screenshot of this dialog box (use Alt-Print_Screen) and paste it into an email to support@. We will promptly send you the license code or further instructions.Note: Please do not phone for a license code! License codes are complex multi-character strings and cannot be reliably given over the phone. Emailing the screenshot of the dialog box to us is the quickest, most error-free way of getting your license code.2.4 Network Keys And ClientsZEMAX can also be supplied with 5, 10, 25 and 50-user network keys. Installation is almost identical, except that the key driver and hardware key are installed on one computer (called the ‘keyserver’ machine) and ZEMAX is installed on as many other machines as you wish (the ‘client’ computers). When a client machine starts ZEMAX, it looks to the keyserver machine to see if a license is available, and if so, ZEMAX starts. Installation of the key driver on the keyserver machine is identical to the normal installation, except that you obviously MUST allow the firewall settings to be adjusted to allow network access to the key. Installation of ZEMAX on the client machines is also identical to the normal installation, except that you must tell ZEMAX where to look for the keyserver machine after installation. Navigate to whatever folder you installed ZEMAX in (by default this is /program files/ZEMAX) and locate a file called sntlconfig.xml.bak. Rename this file to sntlconfig.xml, and open it in Notepad. Edit the following line: <ContactServer> 10.0.0.1 </ContactServer> Replace the default entry 10.0.0.1 with the IP address of your keyserver machine and save the file.2.5 TroubleshootingZEMAX will run without problem in the vast majority of cases. If you do experience problems, then visit our Knowledge Base at /kb. Look at the Category ‘Installation and Troubleshooting’ for help. Make sure your key is plugged in!Page 5 of 722.6 Customizing Your ZEMAX InstallationWhen ZEMAX starts for the first time, it loads a number of default settings which you may prefer to customize to your preference. Start ZEMAX, and click on File Preferences. A multi-tab dialog box will open:This allows you to set all the ‘installation-specific’ settings.Note: Full details of all Preference settings are given in the User's Manual, chapter 4 “File Menu” or can be obtained by pressing the Help button in the dialog boxes.You should explore all these tabs, but the most important ones are: 2.6.1 The Address Tab This is shown above, and it allows you to enter information about your organization which is then printed on most graphics windows. 2.6.2 The Directories Tab This tab defines the folders that ZEMAX will use for the various file types it needs. They can be redirected wherever you wish by pressing the ? button for any path and navigating to the desired location. 2.6.3 The Editors Tab This tab allows you to adjust the appearance of the various Editors that ZEMAX uses. Adjusting the ‘Decimals’ setting affects how many decimal places ZEMAX displays in the Editor cells, but does not affect the accuracy of the data itself. All data is stored in ZEMAX as double-precision floating point numbers. Selecting "Compact" will vary the number of decimals displayed to minimize the space required to display numbers, so that trailing decimals are not displayed unless necessary. You can change the font, font size, and cell widths of all the editors.Page 6 of 723 The ZEMAX User InterfaceStart ZEMAX, and open the sample file “samples/sequential/objectives/Double Gauss 28 degrees field”. Even if you intend to use only the non-sequential mode of ZEMAX you should still follow this example, as the user interface is common to both sequential and non-sequential ray-tracing. The user interface consists of three main elements:1.The program ‘frame’ that consists of the menu strip and toolbar at the top, and a status bar at the bottom. An editor spreadsheet, in this case the Lens Data Editor. Almost all data is entered via editors, which allow the parameters that define the optical system to be easily seen, and linked together or optimized as required. Data that is rarely modified once set is entered elsewhere, as we will discuss later. For now, note that the Lens Data Editor shows a sequence of ‘Standard’ surfaces which have radius of curvature, thickness, glass type, Semi-diameter and conic constant. There are then a series of parameters, labeled 0 through 12, which are not used by this surface type, and finally a Thermal Coefficient of Expansion (TCE) column, and a coating column (for EE use only). Each surface in this lens has coating ‘AR’, which is a quarter-wave thick MgF2 coating. Analysis windows, which are the results of some calculation the program has performed. In this case, the 2-D Layout, RMS Wavefront error versus field plot, and Spot Diagram are shown.2.3.Before proceeding, click on Tools Miscellaneous Performance Test and click Run TestThis will give you a simple metric of how fast ZEMAX is on your computer. It also shows one of the best features of ZEMAX: its ability to use multiple CPUs in your computer, if available. Calculations are split up and spread over all available CPUs, and the results stitched back together again, without any user interaction.3.1 The Lens Data EditorIn sequential ray-tracing, light is traced from its source, called the ‘Object’ surface, to surface 1, then to surface 2, 3, etc. until it lands on the final ‘Image’ surface. For historical reasons this surface is always called the Image surface, even though the optical system may not form an image of the source. A laser beam expander or eyepiece for example may be afocal: this is covered later. Surfaces are inserted or deleted in the editor using the Insert or Delete keyboard keys, or via the ‘Edit’ menu which also allows individual cells or the entire spreadsheet to be copied to the clipboard. Column widths can be varied by placing the cursor in the top row, over the column separator. When the cursor turns to a ↔ symbol, click and hold the left mouse button to resize the column. Columns and rows can be hidden entirely (and unhidden) using the View menu.Page 7 of 72The ‘V’ next to some parameters means that this parameter is ‘variable’. ZEMAX is allowed to change the values in such cells in order to improve the performance. This will be discussed in more detail later.Surfaces also have a set of properties that are not directly visible in the editor. These are generally those properties that are set and then not changed. To see these properties, move the mouse over the Type cell of the chosen surface, and double click. Alternatively, click anywhere on the chosen row, and choose Edit Surface Type. A multi-tab dialog appears. From the Surface Type drop-down list you can select the type of the surface, which can be aspheric, diffraction grating, toroidal, etc.Note: See the User's Manual Chapter 11, “Surface Types” for full details of all the surface types that ZEMAX supportsSpend some time exploring each tab. The most commonly used tabs are the Type, Draw, Aperture and the Tilt/Decenter tabs. Press the Help button on each tab to read the on-line Help.Note: Chapter 5 of the User's Manual, “Editors menu”, gives full details of all the Editors and their properties.Page 8 of 723.2 Analysis WindowsAnalysis windows provide either graphical or text-based data computed from the lens as entered in the Editor. Analysis windows never change the lens data: they provide diagnostic information of the various aspects of the lens system’s performance. Analysis windows all operate with the same user interface:• • • Pressing the Update menu item, or double-clicking anywhere in the Analysis window with the left mouse button, will make the Analysis window recompute. Pressing the Text menu item will show the underlying data that is being presented graphically. The Window menu item gives you access to Copy, Export as Bitmap, Export as Text File, etc. options.A typical Analysis window is shown opposite. All Analysis windows share the same menu bar. You can zoom in on a section of interest by clicking the left mouse button, holding it down and dragging it over the region you wish to zoom in on.Note: Chapter 7 of the User's Manual, “Analysis Menu”, gives full details of all Analysis windows.Clicking the Settings menu item, or right-mouse-clicking anywhere in the Analysis window, will bring up the Settings dialog box:The layout of this box will depend on the Analysis feature used, of course. The Settings are used to control the calculation. Pressing OK will recompute the Analysis calculation. The Save, Load and Reset buttons allow default settings to be saved, recalled or reset to ‘factory’ defaults. If you save the settings of any window, those become the defaults for every file that does not have its own settings, so your preferences automatically flow through all your work. The Help button will bring up the on-line help for the window.Page 9 of 723.3 The System MenuIn addition to the surfaces of the optical system, we must also define the light that is incident on the optical system. This is done with the System menu:Or with these buttons on the button bar:3.3.1 The General Dialog Box The General dialog box contains settings that apply to the whole lens design. The most important tab is the Aperture tab, which defines how big the bundle of light coming into the lens on-axis is:In this case, we define the Entrance Pupil Diameter to be 33.33 ‘lens units’. Click on the ‘Units’ tab to see that millimeters are the defined lens units in this file. Other options arePage 10 of 72meters, centimeters, and inches. Once the lens units are defined, any length where the units are not explicitly given is in lens units. Entrance Pupil Diameter (EPD) defines the size of the on-axis bundle of light entering the lens system. In the double-Gauss sample file we are using, which is a traditional SLR-type camera lens, ZEMAX traces rays at this height through the lens and computes the size of the aperture stop surface (marked as STO in the Lens Data Editor), drawn in red opposite. The aperture stop surface is usually a ring diaphragm, so in reality the radial size of this surface defines the EPD, not the other way around. If you prefer this alternative definition, then choose the Aperture Type in the General dialog box to be ‘Float by Stop’, and then change the semi-diameter of the STO surface to say 8 mm. Double-click all the open Analysis windows to make them update to reflect this change, and notice the change in the lens apertures and performance. ZEMAX automatically computes the appropriate size of each surface so that all light passes through each surface. Another commonly used Aperture Type is ‘Object Space NA’ which is appropriate when the source is something like an optical fiber that radiates out in a defined numerical aperture. Use ‘Object Cone Angle’ if the source is defined by a source angle in degrees instead of NA. There are other definitions available for less common requirements, and several other tabs that define ‘system level’ settings for the file. Review these with the on-line Help, or see Chapter 6 of the User's Manual for full details. 3.3.2 The Field Dialog Box The term “Field” is short for field-of-view and it can be defined in three ways, one of which supports two options:• •The height of the object scene being imaged The height of the image being formed, which may be chosen to be either a real or paraxial image height The angle subtended by the object scene at the lens•Whichever you choose, it is defined by System Field, or by pressing the ‘Fie’ button:Page 11 of 723.3.3 The Wavelength Dialog Box The wavelengths dialog box, defined under System Wavelength or by pressing the ‘Wav’ button, is used to set wavelengths, weights, and the primary wavelength of the system.Wavelengths are always entered in microns. Wavelength weights can be used to define relative spectral intensity, or simply to define which wavelengths are most important in a design. The ‘primary’ wavelength is used as a default wavelength: for example, if asked to compute effective focal length, ZEMAX will compute it at the primary wavelength if no wavelength is specified.3.4 The Normalized Coordinate SystemBecause there are six ways to define system aperture, and four ways to define field of view, it is convenient to work in normalized coordinates. When performing the initial setup of your system you should choose the most appropriate aperture definition, and the most appropriate field definition, and enter the data for both of these. Subsequently, all calculations use normalized units, and you do not have to refer to the specific values entered or definitions used. 3.4.1 Normalized Field Coordinates Normalized field coordinates Hx and Hy are used throughout ZEMAX, its documentation, and in the wider optical design literature. The normalized field coordinate (0, 1), for example, is always at the top of the field of view in y, whether the field points are defined as angles or heights, and regardless of the magnitude of the field coordinates. Similarly the field coordinate (0,0) is always at the center of the field of view. For example, suppose 3 field points are defined in the (x, y) directions using object height in lens units of millimeters at (0, 0), (10, 0), and (0, 3). The field point with the maximum radial coordinate is the second field point, and the maximum radial field is therefore 10 mm. The normalized coordinate (Hx =0, Hy = 1) refers to the location on the object surface (as the field of view is defined in object height) of x= 0, y =10 mm. The normalized coordinate (Hx = 1, Hy = 0) refers to the object surface location (10, 0). You can then define any point within the field of view of the lens by its (Hx, Hy) coordinates, as long as Hx2 + Hy2 ≤ 1. This is referred to as radial field normalization, as the normalized field coordinates represent points on a unit circle. ZEMAX also supports rectangular field normalization, in which the normalized field coordinates represent points on a unit rectangle.Page 12 of 72Note: See the User's Manual, chapter 3 “Conventions and Definitions”, for full details of these conventions and all the basic definitions ZEMAX uses.3.4.2 Normalized Pupil Coordinates Similarly, normalized pupil coordinates are also used throughout ZEMAX, its documentation, and in the wider optical design literature. You define the system aperture using whatever definition is most useful, and thereafter we use the normalized pupil coordinates Px and Py to define any point within a unit circle. Therefore, the point (0,1) represents a point at the top of the bundle of rays entering the system, and (0, 0) is a point at the center of the ray bundle, no matter what the definition of system aperture is or what value it has. 3.4.3 Using the Normalized Coordinates Re-open the double Gauss 28 degree field sample file in order to undo any changes you may have made in the earlier sections. Open the Field dialog box and note that the field is defined as angle in degrees, and the maximum field point has a value of 14°. This is a half-angle, and so the full field of view is 28°.Note: ZEMAX is always clear on the definitions it uses, but these definitions are not universal in the optics industry. Always clarify with your customers what definitions they use for important system specifications to avoid costly errors!Then open the General dialog box, and under the aperture tab note that the system aperture is defined as Entrance Pupil Diameter, value 33.33. Go to the Units tab to see that the lens units are millimeters, so the EPD is 33.33 mm. Lastly, open the Wavelength dialog box and note that the design uses three wavelengths, at 0.4861, 0.5876 and 0.6563 microns respectively. The primary wavelength is set as wavelength number 2, which is 0.5876 microns. Now click on Analysis Calculations Ray Trace. This is the most fundamental calculation in ZEMAX: the tracing of a single ray. Right-mouse click on this window to bring up its Settings dialog box:Page 13 of 72。
Zemax软件设计教程_3(长春光机所)
这里为减小设计量做一些假定 只设计抛物面主镜,不考虑整个望远系统中的其他表面 每一块拼接镜是不可变形的 对于每块拼接镜将只设置X/Y方向的倾斜并不引入平移 整个镜面由19块拼接镜组成,我们需要手动输入这些参数,对于更多 数量的拼接镜可以使用ZPL宏语言进行编辑 拼接镜的位置使用decenter 参数关联 由Zemax生成模拟大气影响的随机像差
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
将第1及第5面设置为不显示
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
参考位置关系图计算组态3中镜片的X/Y Decenter 我们利用pickup来实现
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
使用Add Fold Mirror工具后 Zemax将选择的表面设置为MIRROR 添加两个coordinate break 自动修改thickness的符号
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
galvanometer.ZMX
直接将coordinate break中的倾 斜参数改成50并不能满足我们的 需求,如图。改成50后整个后续 的表面都将倾斜
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
设计参数: Mirror sag shape = parabolic (conic =-1) Radius of curvature = -4000 mm ; focal length = -2000mm Shape of the segment = Hexagon Semi-diameter of each segment = 150mm
在这一部分我们将学习设置一个±5°的扫描镜 初始结构如图,参数如下: 5mm厚度N-BK7 在后表面设置f/5solve 通过优化前表面曲率及后 截距使RMS光斑最佳 初始结构在附件中 starting point.zmx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Using the ZEMAX software complex to form photometric models of LED illuminator devices P.S.Chechurov a)and G.E.Romanova b)St.Petersburg National Research University of Information Technologies,Mechanics,and Optics,St.Petersburg(Submitted October13,2011)Opticheski˘ıZhurnal79,57–60(May2012)This paper discusses a method for formingfiles in the IES and LDT formats for LEDilluminator devices,based on the use of the ZEMAX modelling medium.Thefile structure andthe means of modelling the components of the optical part of the device are considered.Aprocess is demonstrated for forming IES and LDTfiles,using as examples an industrial-typelightingfixture and afloodlight projector.The results of calculations carried out in theillumination-engineering program DIAL UX are compared with the use of models obtained byphotometric measurements and modelling in ZEMAX.c 2012Optical Society of America.Today’s illumination-engineering market is undergoing active growth because a large number of LED illuminator devices are appearing in it.As the efficiency of LED illumination increases,such devices become more and more widespread in architectural,street,technical,and interior lighting.It is impossible today to develop lighting projects without using specialized illumination-engineering programs, the calculations in which use computerized photometric models of illuminator devices.These models are currently based on photometric measurements carried out in specialized laboratories.This method makes it possible to obtain the needed information with a fairly high degree of accuracy,but it has substantial drawbacks:the small number offirms that provide such services,and the high cost of offering them.1Some of the most widely used formats for describing photometric characteristics are the IES and LDT formats.The photometric data of illuminator devices are recorded in the form of text data.The general assumptions and recording rules are stipulated by the IESNA:LM-63-1995standards and the EULUMDAT Photometric Data File Format,respectively.Thefile contents for describing the characteristics of a lighting device can be broken down into three blocks.The first block indicates information on the manufacturer,name, description,and purpose of the device,with supplementary and reference information.The second block indicates the number of radiation sources in the device,its luminousflux, the multiplication factor,the number of polar and azimuthal angles to be described,the overall dimensions of the emitting surface,and the power of the device.The third block describes the distribution and value of the device’s luminous intensity.It indicates the luminous intensity for all the polar angles at each azimuth.2,3The luminous intensities can be determined by using the ZEMAX software5in the nonsequential mode of the ray path.This regime is the most suitable for calculations of illuminator optics.It is obvious that the luminous-intensity distribution of the device will be affected by its optical part,consisting of the light source and the illumination-engineeringfittings used to form the required light distribution.Thefittings in17.614.41.37883.27.612.1yout of reflector(sizes in centimeters).LED devices ordinarily use optics that consist of lenses, reflectors,and scatterers.It is these components that need to be modelled to obtain the necessary information.Let us consider the modelling process in more detail,using as an example an industrial-type LEDfixture(ITLF)and an LEDfloodlight projector(LEDF).The ITLF uses two arrays of thirty Cree MX-6LEDs each. Reflectors mounted on each LED are used in thefixture to form the necessary luminous-intensity distribution.The layout of an individual reflector is shown in Fig.1.To determine the illumination-engineering characteristics of the device,it is necessary to model the light sources,the reflectors,and the protective glass.Figure2shows the component editor for modelling a lightingfixture.The models represented on the manufacturers’Web sites can be used to model the LEDs.As a rule,they have DAT, LDT,and IES formats.The DAT format is used in our case. When the sources are being modelled,it is necessary to indicate their parameter set:the coordinates,the number of rays to be mapped and analyzed,and the luminousflux.The number of rays to be analyzed affects the ray-tracing time and the accuracy of the result.The specified parameters can be seen in Fig.2.The illumination-engineeringfittings can be modelled in various ways.For example,if secondary optics are involved,it is convenient to use technicalfiles of format STEP and IGES or to use LDT and IESfiles,which describe the photometric characteristics of the LED–lens system.If reflectors or scatterers are involved,standard methods for modelling inponent editor for modelling a lightingfixture.509840783059203910200L u m i n o u s i n t e n s i t y , c d–90–72–54–36–1801836547290Angle, degFIG.3.Graph of the luminous-intensity distribution of a lighting fixture.ZEMAXcan be used.In an ITLF,the illumination-engineeringfittings are formed by reflectors.Structurally,these are two truncated cones (Fig.1).To model them,we use two standard “cone”objects.To obtain the necessary shape of the reflector,its structural parameters are determined:the properties of the object include its reflectance.The protective glass of an illuminator device is specified by the standard resources of the ZEMAX package.Its main parameters are the material and the length,height,and thickness.The parameters of the protective glass are shown in Fig.2.The last object of the modelling is the radiation detector.It makes it possible to estimate the luminous-intensity distribution of the device or the illuminance at various distances.To do this,we specify the following parameters:the distance to the system,the size,and the number of pixels (seeFig.2).The number of pixels affects the accuracy and time of the tracing.After the illuminator device is modelled,ray tracing is carried out.The tracing time depends on the number of objects in the system,the number of rays to be analyzed,the number of pixels on the detector,and the computer throughput.Figure 3shows a graph of the luminous-intensity distribution,obtained as a result of ray tracing through the modelled system.The ZEMAX software complex supports the introduction of the results into files of IES and LDT formats.These results and the necessary data are supplemented in accordance with the standards IESNA:LM-63-1995and EULUMDAT Photometric Data File Format.2–4Secondary lenses are very often used in LED devices to form the necessary radiation distribution.Let us consider the modelling of such a device,using a projector as an example.An LEDF is intended for outdoor lighting of territories or objects.A subassembly of XP-G LEDs is mounted in it,each of the LEDs being equipped to form the required luminous-intensity curve with a secondary CXP SQUARE SMOOTH SPOT lens.6To determine the illumination-engineering characteristics of the projector,it is necessary to model the light sources,the secondary lenses,and the protective glass.Figure 4shows the component editor for modelling a projector.In this case,technical files of LDT format were used to model the LEDs and the secondary lenses.These files were obtained from the lens manufacturer and describe the light distribution of the Cree XP-G LED with a CXP-SS lens.As when modelling a lighting fixture,theircoordinates,ponent editor for modelling a projector.3.416.811.021.361.70L u m i n o u s i n t e n s i t y , c d–90–72–54–36–1801836547290Angle, degFIG.5.Graph of the luminous-intensity distribution of an LEDF.luminous flux,number of reflectors,and rays to be analyzed were specified.The protective glass and the radiation detector were specified in the same way as in the preceding case.After the rays are traced,we get the luminous-intensity distribution of the projector shown in Fig.5.These results and the necessary data are supplemented in accordance with the standards IESNA:LM-63-1995and EULUMDAT Photometric Data File Format.2–4During the modelling and formation of the IES and LDT files of the lighting fixture and the projector,a question arises concerning the accuracy of this modelling.To answer it,photometric measurements were made in a certification laboratory.IES files were obtained from these measurements.Figure 6shows a comparison of the calculations carried out in the DIAL UX illumination-engineering program,using the IES files of the lighting fixture and the projector,obtained by modelling in the ZEMAX program and by photometric measurements.The results of the calculation using the IES files obtained by modelling in ZEMAX and by photometric measurements are virtually identical;consequently,the error of the method is small.This article has discussed a method of forming com-puterized photometric models of LED illuminator devices by modelling in the ZEMAX medium.It allows files of IES and LDT format to be formed with a description of the illumination-engineering characteristics of the device without55555555555555101010101010101010101010101010101010105050505050505050505050505050505050505050505010010010010010010010010010010010010010010010010010010010010010015015015015015015015015015015015015015015015015015015015015015015015015015015015015010101010101010101010101010102020202020202020202020202020202020202020203030303030303030303030303030303030303030303035353535353535354020ITLF (mounting height 20 m)ModellingModelling MeasurementsMeasurementsLEDF (mounting height 5 m)parison of the results of calculations (program DILAL UX and field measurements for an ITLF and an LEDF.The region of measurements is on a 10×10-m illuminated surface.making photometric measurements.This method has small error and can be used by LED lighting manufacturers.a )Email:ChechurovPS@b )Email:romanova g e@mail.ru1Yu.B.A˘ızenberg,ed.,Illumination Engineering Handbook (Znak,Moscow,2006).2Standard IESNA:LM-63-1995.3ELUMDAT Photometric Data File Format.4ZEMAX Users’Knowledge Base [Electronic resource],ZEMAX:SoftwareFor Optical System Design Down-loads/Support/Knowledge Base.Access to file /kb/.5ZEMAX Optical Design program:User’s Guide,2009.6DataSheet CXP-G [Electronic resource],Access to file /datasheets/DataSheet CXP-G.pdf .。