中值定理及导数的应用习题课

合集下载

高等数学 第三章中值定理与导数的应用习题课

高等数学 第三章中值定理与导数的应用习题课

(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o

2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导

微分中值定理与导数的应用习题

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题§4.1 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2. 选择题(1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件(2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ).A . x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2f π=, 故 )(2cot arctan ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5. 证明方程062132=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根.6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中c 是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立.证明: 由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf . 同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使()2[(1)(0)].f f f ξξ'=-证明: 只需令2)(x x g =,利用柯西中值定理即可证明.8.证明下列不等式 (1)当π<<x 0时,x xx cos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此, 当π<<x 0时,x xx cos sin >. (2)当 0>>b a 时,bb a b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有'()()()(),f a f b f a b b a ξξ-=-<< 因为'1()f x x=,所以1ln ()a a b b ξ=-,又因为b a ξ<<,所以111a b ξ<<,从而 b b a b a a b a -<<-ln .。

辽宁工业大学高数习题课(3)

辽宁工业大学高数习题课(3)
1 cos x ~
ln sin x 【例2】计算 lim 2 x ( 2 x )
2
分析 当 x 0 分子分母均趋近于0, 为 型, 用洛必达法则计算. 解:
ln sin x lim 2 x ( 2 x )
2
0 0
( 0 型)
0
cos x lim x sin x [ 4( 2 x )]
1
【例4】计算 lim x 2 e x
x 0
2
分析 当 x 0 时, 函数式为 0 型,
1
0 将其化为 0


型.
解:
lim x 2 e x ( 0 型)
2
x 0
1
ex l im x0 1 x2
1
2
(
型)
e lim
x 0
x2
2 3 1 x x2 lime . 2 x 0 3 x
拉格朗日型余项 佩亚诺型余项
Rn ( x) 0[( x x0 )n ]
2.麦克劳林公式
f (0) f ( n ) ( 0) 2 f ( x ) f (0) f (0)( x x0 ) ( x x0 ) ( x x0 )n Rn ( x ) 2! n!
所以
f (1) 8, f (1) 5, f ( 1) 0,
f ( 1) 6.
f ( ) ( x 1) 2 一阶泰勒公式为 f ( x ) f ( 1) f ( 1)( x 1) 2!
8 5( x 1) 3( 1)( x 1)
0 0
二、泰勒公式
1.泰勒公式
f ( x0 ) f ( n ) ( x0 ) 2 f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) ( x x0 )n Rn ( x ) 2! n!

习题课3

习题课3

2t 2 1 1 cos 2t lim lim 2 2 t 0 t 0 6 t 6t 3
1 x2 所以 xlim ( x tan ) x 1 n2 1 故 lim ( n tan ) e 3 n n 1 2 lim 例7: 求极限 x [ x x ln(1 )]. x 1 1 2 2 1 lim lim 解: 由于 x [ x x ln(1 )] x x [ ln(1 )] x x x 1 作变量替换: t , 则 x 1 0 1 2 1 lim x [ ln(1 )] lim 2 [t ln(1 t )] ( ) x t 0 t x x 0 1 1 t 1 1 t lim lim t 0 2t (1 t ) t 0 2 2t
再将f (x)在x=1处展开为一阶Taylor 公式: f ( ) ( x 1)2 , f (x) = f(1) + f (1)(x –1) + 2! 令x=0得, f ( ) , f (0) = f(1) – f (1) + 2! 又由于f (x)>0, 则 f ( ) < f (1). f (1) – f(0) = f (1) – 2! 综合以上两式得证: f (1)> f(1)–f(0)> f (0). 另外用Lagrange中值定理和单调性证明: 由于f (x)在[0, 1]上满足Lagrange中值定理的条件, 故存在(0, 1)使得 f(1)–f(0)= f (). 在[0, 1]上f (x)>0, 则在[0, 1]上f (x)单调增加, 所以f (0)< f ()< f (1)
1 1 1 ② 当 f ( ) ln 1 0, a . a a e 1 方程仅有一个实根, 即 x . a 1 1 ③ 当 f ( ) ln 1 0 时, 方程无实根. a a

同济大学《高等数学》(第四版)第三章习题课

同济大学《高等数学》(第四版)第三章习题课
一 点 的 个 , 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 任 点 ,除 点 0外 f (x) < f (x0 )均 立就 何 x 了 x , 成 , 称 f (x0)是 数 (x)的 个 大 ; 函 f 一 极 值 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 何 x 了 x , 任 点 ,除 点 0外 f (x) > f (x0 )均 立就 成 , 称 f (x0)是 数 (x)的 个 小 . 函 f 一 极 值
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当

3微分中值定理与导数的应用习题

3微分中值定理与导数的应用习题

第三章微分中值定理与导数的应用1 •函数y =x2 -1在L 1,1】上满足罗尔定理条件的匕=2、若f(x)=x3在1,2】上满足拉格朗日中值定理,则在(1,2 )内存在的匕=3. f(x)=x2+x-1在区间L1,1】上满足拉格朗日中值定理的中值匕=4•函数y = In(X +1诳区间0,1】上满足拉格朗日中值定理的匕=5•验证罗尔定理对函数y =1 n sin X在区间律—1上的正确性。

T 6」6.验证拉格朗日中值定理对函数y =4x' —5x2 +x-2在区间0,1】上的正确性。

7.对函数f(x) = sinx及F(x)=x+cosx在区间〔0,—1上验证柯西中值定理的正确性。

L 2」&试证明对函数y = px2 +qx + r应用拉格朗日中值定理时的求得的点总是位于区间的正中间。

9.证明下列不得等式: ⑴ arctanx -arctan y < x - y⑶当a汕>«¥<"¥10.用洛必达法则求下列极限:X _x⑵ lim e ~eT sin XIn R +丄]⑷ li%__¥—鈕 1arcta n —x⑸1x m1x1.1 -x1⑹ lim (cot X -一) T x(7)lim (cos X)⑻ ji m^x "(J x2+1 -X) ⑵当X A1时,e x;>e .XIn (1 +x)⑴lim T X⑶ lim 沁—sina X T x-asin X — xcosx2~;x sinx11. 确定下列函数的单调区间。

⑷ y =1 n(x +J 1 + x 212. 求下列函数图形的拐点及凹凸区间:⑷ y = In(x 2+1 )13. 禾U 用函数的单调性证明下列不等式:(11)lim(1-x)ta n 便'(2丿(12)tanx⑽ lim — - x -^l x「1 2 、—2x~e-1丿⑴ y = 2x 3-6x 2-18x -7⑵ y = 2x +8(X A O )x=x 3 -5x 2+3x +5/ \ -x⑵ y = xe= (x +1y +e x⑴当1 ,_______ x>0 时,1+ —x》u1+x2⑵当x>0 时,1+xl n(x+j1+x2)> J1 +x2⑶当兀 1 3 0cx£ —时,tanx〉x + -x2 314.列表讨论下列函数的单调区间,凹性区间,极值点与拐点。

中国人民大学出版社(第四版)高等数学一第3章课后习题详解

中国人民大学出版社(第四版)高等数学一第3章课后习题详解

第3章中值定理与导数的应用内容概要课后习题全解习题3-1★1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出满足定理的数值ξ。

(1)]511[32)(2.,,x x x f ---=;(2)]30[3)(,,x x x f -=。

知识点:罗尔中值定理。

思路:根据罗尔定理的条件和结论,求解方程0)(/=ξf ,得到的根ξ便为所求。

解:(1)∵32)(2--=x x x f 在]511[.,-上连续,在)5.1,1(-内可导,且0)51()1(==-.f f ,∴32)(2--=x x x f 在]511[.,-上满足罗尔定理的条件。

令()410f ξξ'=-=得)511(41.,ξ-∈=即为所求。

(2)∵x x x f -=3)(在]30[,上连续,在)30(,内可导,且0)3()0(==f f , ∴x x x f -=3)(在]30[,上满足罗尔定理的条件。

令()0f ξ'==,得)30(2,ξ∈=即为所求。

★2.验证拉格朗日中值定理对函数25423-+-=x x x y 在区间]10[,上的正确性。

知识点:拉格朗日中值定理。

思路:根据拉格朗日中值定理的条件和结论,求解方程(1)(0)()10f f f ξ-'=-,若得到的根]10[,ξ∈则可验证定理的正确性。

解:∵32()452y f x x x x ==-+-在]10[,连续,在)10(,内可导,∴25423-+-=x x x y 在区间]10[,上满足拉格朗日中值定理的条件。

又2)0(2)1(-=-=,f f ,2()12101f x x x '=-+,∴要使(1)(0)()010f f f ξ-'==-,只要:5(01)12,ξ±=,∴5(01)12,ξ∃=∈,使(1)(0)()10f f f ξ-'=-,验证完毕。

★3.已知函数4)(x x f =在区间]21[,上满足拉格朗日中值定理的条件,试求满足定理的ξ。

第03章微分中值定理与导数的应用习题详解

第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。

可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。

—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。

可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。

「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。

高等数学习题课(3)中值定理与导数的应用

高等数学习题课(3)中值定理与导数的应用
高等数学习题课
(3)
中值定理与导数的应用
第二课 中值定理与导数应用
I. 目的要求 ⒈ 理解罗尔定理、拉格朗日定理,了解柯西定理; 会用中值定理解决诸如方程根的存在性、不等 式证明等问题; ⒉ 了解泰勒定理的条件、结论及余项,掌握函数 ex , sinx, cosx, ln(1+x), (1+x)α的麦克劳 林公式; ⒊ 熟练掌握用洛必达法则求不定型极限的方法; ⒋ 熟练掌握求函数单调区间、极值、凹凸区间、 拐点的方法,并会用其证明一些相关问题。
证:由条件易知F (x)在 [1,2]上满足罗尔定理条件, 则 (1,2),使 F(1) 0 又 F(x) 2(x 1) f (x) (x 1)2 f (x) 在 [1,1]上连续,在(1,1)内可导,且 F(1) F(1) 0 由罗尔定理, (1, 1) (1, 2) 使 F() 0 #
(a 0)有极值,试证:曲线y f (x) 在点(a, f (a))处的
切线经过坐标原点。 证:曲线 y f (x) 在 (a, f (a)) 处的切线方程为
y f (a) f (a)(x a)
即 y f (a)x [ f (a) a f (a)]
由条件 (x) 在 x a 点有极值,且易知(x)在 x a 点可导
x
2
分析:只需证明 sin x x 0 3 cos x
证:令
f
(x)
sin x 3 cos x
x
sin
1
x cos 3
x
x
,显见
f
(0)
0;
f
(x)
cos
2 3
x
1 sin
2
x
4
cos 3
x

习题课(中值定理和导数的应用)

习题课(中值定理和导数的应用)

例10. 求
解法1 利用中值定理求极限
a a 原式 lim n ( ) 2 n n 1 n 1
2
1
a a ( 在 与 之间) n n 1
n2 a lim n n( n 1) 1 2
a
机动
目录
上页
下页
返回
结束
解法2 利用罗必塔法则
原式 lim
arctan a arctan b x x
机动 目录
x
f ( x)
下页 返回 结束
上页
arctan x ( x 0) . 例8. 证明 ln(1 x) 1 x 证: 设 ( x) (1 x) ln(1 x) arctan x , 则 (0) 0 1 ( x) 1 ln(1 x) 0 ( x 0) 2 1 x 故 x 0 时, (x) 单调增加 , 从而 ( x) (0) 0 arctan x 即 ln(1 x) ( x 0) 1 x 1 x ln(1 x) (0 x 1) 时, 如何设辅助 思考: 证明 1 x arcsin x 函数更好 ? 2 提示: ( x) (1 x) ln(1 x) 1 x arcsin x
二 课堂练习
1. 判断是非(共7个) 3. 计算题(共5个)
1. 掌握四个微分中值定理
罗尔中值定理:
[ 若 f ( x ) : (1)在闭区间a , b]上连续; (2)在开区间 a , b)内可导; (
(3) f (a)= f (b) ;
则至少存在一点 (a , b),使得
f ( ) 0 .
1 2
1 cos x 1 o 1 . 及时求出已定式的极限. 原式 lim 2 x 0 3 x 2 1 sin x lim 2 x 0 6 x 1 1 1 2 6 12

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题]1、曲线的渐近线为()。

A、仅有铅直渐近线B、仅有水平渐近线C、既有水平渐近线又有铅直渐近线D、无渐近线【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】本题考察渐近线计算.因为,所以y存在水平渐近线,且无铅直渐近线。

[单选题]2、在区间[0,2]上使罗尔定理成立有中值为ξ为()A、4B、2C、3D、1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]3、,则待定型的类型是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]4、下列极限不能使用洛必达法则的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.[单选题]5、在区间[1,e]上使拉格朗日定理成立的中值为ξ=().A、1B、2C、eD、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察中值定理的应用。

[单选题]6、如果在内,且在连续,则在上().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在内,说明为单调递增函数,由于在连续,所以在上f(a)<f(x)<f(b).[单选题]7、的单调增加区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]8、().A、-1B、0C、1D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]9、设,则().A、是的最大值或最小值B、是的极值C、不是的极值D、可能是的极值【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由,我们不能判断f(0)是极值点,所以选D. [单选题]10、的凹区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】若求凹区间则就是求的区间,即6x+6>0,即x>-1.[单选题]11、的水平渐近线是().A、x=1,x=-2B、x=-1C、y=2D、y=-1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.[单选题]12、设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().A、-8B、7C、8D、-7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,当P=4时,Q=-8.[单选题]13、设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由弹性定义可知,[单选题]14、设函数在a处可导,,则().A、B、5C、2D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因为f(x)可导,可用洛必达法则,用导数定义计算.所以[单选题]15、已知函数(其中a为常数)在点处取得极值,则a=().A、1B、2C、0D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在点处取得极值,[单选题]16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().A、9.5B、9C、8.5D、7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】设销量为Q,则Q=120+20(10-P)·2=520-40P利润此时即取得最大值.[单选题]17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()A、增加且凹的B、减少且凹的C、增加且凸的D、减少且凸的【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、求极限=().A、2B、C、0D、1【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]19、函数在区间上的极大值点=().A、0B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】令,当时,当时,当时,函数有极大值.[单选题]20、设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]21、某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,q=1200时的边际成本为2.[单选题]22、已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】,得到a=1.[单选题]23、极限=()A、-B、0C、D、1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先利用洛必达法则,分子分母分别求导,.[单选题]24、曲线y=x3的拐点为().A、(0,0)B、(0,1)C、(1,0)D、(1,1)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】y"=6x,当y"=0时,x=0,将x=0代入原函数得y=0,所以选择A.参见教材P108~109.(2015年4月真题)[单选题]25、曲线的水平渐近线为().A、y=0B、y=1C、y=2D、y=3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题因为,所以直线y=1为曲线的水平渐近线.参见教材P110~111.(2015年4月真题)[单选题]26、函数y=x3-3x+5的单调减少区间为().A、(-∞,-1)B、(-1,1)C、(1,+∞)D、(-∞,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】y'=3x2-3y'=0时,x=±1.在(-∞,-1)上,y'>0,为增函数;在(-1,1)上,y'<0,为减函数;在(1,+∞)上,y'>0,为增函数.因此选B.参见教材P100~101.(2015年4月真题)[单选题]27、已知函数(其中a为常数)在处取得极值,则a=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】∵在处,取得极值点,∴参见教材P102~104。

高等数学习题课3-2

高等数学习题课3-2
-2-
习题课(二) 习题课(
例2 证明当 x > − 1 时,
第 三 章 中 值 定 理 与 导 数 的 应 用
x2 x3 ln(1 + x ) ≤ x − . + 2 3 证 当 x > − 1 时, 2 3 x x 1 x4 ln(1 + x ) = x − + − x 3 4(1 + ξ )4 其中 ξ 介于 0与x之间. 之间.
-7-
习题课(二) 习题课(
第 三 章 中 值 定 理 与 导 数 的 应 用
上连续, 当 例6 设函数 f ( x ) 在 [a ,+∞ ) 上连续, x > a 时, f ′( x ) > k > 0, 且 f (a ) < 0, 证明: 证明: 方程 f ( x ) = 0 在区间
[a ,+∞ ) 有且仅有一个根。 有且仅有一个根。
第 三 章 中 值 定 理 与 导 数 的 应 用
x 的单调区间,极值, 例12 求曲线 y = x + 2 的单调区间,极值,凹凸 x −1 区间,拐点。 区间,拐点。

函数的定义域为( −∞ , −1) ∪ ( −1,1) ∪ (1, +∞ )
2 x ( x 2 + 3) y′′ = ( x 2 − 1)3
第 三 章 中 值 定 理 与 导 数 的 应 用
确定 a , b, c 使当 x → 0 时, x2 x 2 f ( x) = a − + e + x ln(1 + x ) + b sin x + c sin 2 x 2 的四阶无穷小。 为关于 x 的四阶无穷小。 x2 x3 x4 ex = 1+ x + + + + o( x 4 ) 解 2 6 24 x3 x ln(1 + x 2 ) = x 3 + o( x 4 ) sin x = x − + o( x 4 ) 6 3 4x 4 sin 2 x = 2 x − + o( x ) 3 1 b 4c 3 1 4 f ( x ) = a + 1 + (1 + b + 2c ) x + ( + 1 − − ) x + x 24 6 6 3 + o( x 4 ) 11 8 a = −1 b = − , c = 所以 3 6-5 例4

高等数学(林伟初)习题详解习题详解-第4章微分中值定理与导数的应用

高等数学(林伟初)习题详解习题详解-第4章微分中值定理与导数的应用

习题4-11.验证下列各题的正确性,并求满足结论的ξ的值:(1) 验证函数()cos 2f x x =在区间[,]44ππ-上满足罗尔定理;(2) 验证函数()f x =[4,9]上满足拉格朗日中值定理;(3) 验证函数23)(,1)(x x g x x f =+=在区间]2,1[上满足柯西中值定理. 解:(1) 显然()c o s 2f x x =在[,]44ππ-上连续,在(,)44ππ-内可导,且()()044f f ππ-==,又 ()2sin 2f x x '=-,可见在(,)44ππ-内,存在一点0ξ=使()00(2sin 2)0.f x ξ='==-=(2) ()f x =[4,9]上连续,()f x '=,即知()f x =(4,9)内可导,由(9)(4)1945f f -==-得254x =, 即在(4,9)内存在254ξ=使拉格朗日中值公式成立.(3) 显然函数23)(,1)(x x g x x f =+=在区间]2,1[上连续,在开区间)2,1(内可导,且 .02)(≠='x x g 于是)(),(x g x f 满足柯西中值定理的条件.由于,3712)11()12()1()2()1()2(233=-+-+=--g g f f,23)()(x x g x f ='' 令,3723=x 得.914=x 取),2,1(914∈=ξ则等式)()()1()2()1()2(x g x f g g f f ''=--成立.这就验证了柯西中值定理对所给函数在所给区间上的正确性.2.不求导数函数()(1)(2)f x x x x =++的导数, 判断方程()0f x '=有几个实根,并指出这些根的范围.解 因为(2)(1)(0)0,f f f -=-==所以)(x f 在闭区间[2,1]--和[1,0]-上均满足罗尔定理的三个条件,从而,在(2,1)--内至少存在一点,1ξ使,0)(1='ξf 即1ξ是)(x f '的一个零点;又在(1,0)-内至少存在一点,2ξ使,0)(2='ξf 即2ξ是)(x f '的一个零点.又因为)(x f '为二次多项式,最多只能有两个零点,故)(x f '恰好有两个零点,分别在区间(2,1)--和(1,0)-.3.设函数)(x f 是定义在(,)-∞∞处处可导的奇函数,试证对任意正数a ,存在(,)a a ξ∈-, 使 ()()f a af ξ'=.证 因()f x (,)-∞∞处处可导,则()f x 在[]a a -,上应用拉格朗日中值定理:存在()a a ξ∈-,,使()()()(())f a f a f a a ξ'--=⋅--.由)(x f 是奇函数,则上式为()()2()f a f a af ξ'+=, 故有()()f a af ξ'=.4.应用拉格朗日中值定理证明下列不等式:(1) 当0b a >>时,ln b a b b aa a b-->>; (2) 若1x ≠, 则x e xe >.证(1) 当0b a >>时,设()ln ,f x x =则)(x f 在[,]a b 上满足拉格朗日定理的条件.故()()()()f b f a f b a ξ'-=- (),a b ξ<< 由1(),f x x '=且111,a bξ>>得:ln b a b b a b aa a bξ--->=>. (2) 若1x ≠,不妨设>1x ,令(),x f x e =则)(x f 在[1,]x 上满足拉格朗日定理的条件.故()(1)()(1)f x f f x ξ'-=- (1),x ξ<< 从而1x e xe e xe xe ξξ=+->>.5.应用拉格朗日中值定理的推论证明下列恒等式: (1) arcsin arccos (11)2x x x π+=-≤≤;(2) arctan 2x π+=.证(1) 设()f x x =,],1,1[-∈x,01111)(22=⎪⎪⎭⎫⎝⎛--+-'x x x f ∴,)(C x f ≡].1,1[-∈x 又 ,220arccos 0arcsin )0(ππ=+=+=x f 即.2π=C∴.2arccos arcsin π=+x x(2)设()arctan f x x =+因为21()01+f x x '==,所以 ()f x C ≡,是常数. 又(1)arctan1442f πππ=+=+=, 即.2π=C故arctan 2x π+=.6.设函数)(x f 在[0, 1]上连续, 在(0, 1)内可导. 试证明至少存在一点)1,0(∈ξ, 使2()3[(1)(0)].f f f ξξ'=-证 作辅助函数3(),g x x =则)(),(x g x f 在]1,0[上满足柯西中值定理的条件,故在)1,0(内至少存在一点,ξ使2(1)(0)().103f f f ξξ'-=-即 2()3[(1)(0)].f f f ξξ'=-习题4-21.写出函数x x x f ln )(3=在10=x 处的四阶泰勒公式. 解 x x x f ln )(3=, ,0)1(=f22()3ln ,f x x x x '=+ ,1)1(='f()6ln 5,f x x x x ''=+ (1)5,f ''= ()6ln 11,f x x '''=+ (1)11,f '''= (4)6(),f x x= ,6)1()4(=f,6)(2)5(x x f -= .6)(2)5(ξξ-=f 于是所求泰勒公式为x x ln 3)1(-=x 2)1(!25-+x 3)1(!311-+x 4)1(!46-+x ,)1(!5652--x ξ其中ξ在1与x 之间.2. 写出函数1()f x x=在01x =-处的带皮亚诺余项的n 阶泰勒公式. 解 1()f x x =, (1)0,f -= 21(),f x x '=- (1)1,f '-=-32(),f x x ''= (1)2,f ''-=-46(),f x x'''=- (1)6,f '''-=- ()1!()(1),n n n n f x x+=- ()(1)!n f n -=-于是所求的带皮亚诺余项的n 阶泰勒公式为()0(1)()(1)((1))!k nk n k f f x x o x k =-=+++∑(1)((1)).nk n k x o x ==-+++∑3.求下列函数的带皮亚诺余项的n 阶麦克劳林公式: (1)x xe x f -=)(;(2) 1()1xf x x-=+. 解 (1)因为),()!1()(!2)()(1112---+--++-+-+=n n xx o n x x x e所以312(1)()2!(1)!n nxn x x xe x x o x n ---=-+-++-11(1)()(1)!k nkn k x o x k -=-=+-∑. (2) 由 )(1112n n x o x x x x+++++=- 知211(1)()1n n n x x x o x x=-+-+-++ 故 1()1x f x x -=+212111x x x--==-++22[1(1)()]1n n n x x x o x =-+-+-+-1(1)2()nk k n k x o x ==-+-⋅+∑.4. 用泰勒公式计算下列极限:(1) 2230cos limx x x e-→-; (2) 0(cos )sin x x e x→-⋅ 解 (1) x cos ),(!4!21442x o x x ++-=22x e -244211(),222!x x o x =-++⋅∴22cos x x e--44211()(),4!22!x o x =-+⋅ 又3sin x x 4~,x 从而2230cos lim sin x x x e x x -→-44401()12lim x xo x x→-+=1.12=- (2) 24661131()242!83!x x x o x =+-++⋅⋅ ∴22x -46611()44x x o x =-++x cos ),(!4!21442x o x x ++-=2x e ),(!211442x o x x +++= ∴2cos x x e -2443(),224x x o x=--+ 又2sin x 2~,x从而0(cos )sin x x e x →-⋅46646611()443()224x x o x x x o x -++=--+114362-==-. 5. 利用四阶泰勒公式计算下列各数的近似值,并估计误差: (1) 6ln5;(2)e .解 (1) 23111(1)ln(1)(1)23(1)(1)nn n n n x x x x x x n n x θ+-+-+=-+-+-+++ 上式中,取3n =得2344ln(1)234(1)x x x x x x θ+=-+-+).10(<<θ 以15x =代入得6ln 525111110.182752535≈-+=,(取小数点后四位) 其误差 4R 4444111()=4105454(1)5θ-=<⨯⨯+. (2) xe 12)!1(!!21+++++++=n xn x n e n x x x θ (01)θ<<. 取,1=x 5n =得 e 111111 2.7083,2!3!4!5!≈+++++=(取小数点后四位) 其误差 6R 6!e <30.0042.6!<= 习题4-31.计算下列极限:(1) 0lim sin x xx e e x-→-;(2) 2ln cos 2lim()x xx ππ→-;(3) 02lim sin x x x e e xx x-→---;(4) 1ln(1)limarctan 2x x x π→+∞+-; (5) cot limcot 3x xxπ→; (6) 0ln lim ln cot x xx+→;(7) 20tan lim tan x x xx x→-;(8) 22301lim sin 2x x e x x x-→+-;(9) 0ln sin 3lim ln sin 2x xx+→;(10) 2lim xx x e-→+∞;(11) 2lim cot ln()2x x x ππ+→⋅-;(12) 2011lim()sin x x x x→-; (13) 11lim 1ln x x x x →⎛⎫-⎪-⎝⎭; (14) 011lim 1xx e x →⎛⎫-⎪-⎝⎭; (15) 21lim(cos 2)x x x →;(16) 11lim (ln )x x x -→+∞;(17) lim x x x xx e e e e --→+∞-+; (18) sin lim sin x x xx x →∞-+; 解 (1) 00lim lim 2sin cos x x x xx x e e e e x x--→→-+==;(2) 2ln cos 2lim ()x x x ππ→-2tan 2lim2()x xx ππ→-=-24sec 2lim 2x x π→-==-2; (3) 02lim sin x x x e e x x x -→---0002lim lim lim 21cos sin cos x x x x x xx x x e e e e e e x x x ---→→→+--+====-;(4) 1ln(1)lim arctan 2x x x π→+∞+-2111lim 11x x x x →+∞-+=-+221lim11x x x x →+∞-+=-+221lim x x x x →+∞+=+=1; (5) cot lim cot 3x x x π→22csc lim 3csc 3x x x π→-=-22sin 3lim3sin x x x π→=2sin 3cos33lim 32sin cos x x x x x π→⋅=⋅;sin 3cos3lim lim sin cos x x x x x x ππ→→=⋅3cos3lim 1cos x x xπ→=⋅=3(6) 0ln lim ln cot x x x +→201lim csc cot x x x x +→=-201lim csc cot x x x x+→=-0sin cos lim x x x x+→=-=-1; (7) 20tan lim tan x x x x x →-30lim tan x x x x →=-2203lim sec 1x x x →=-2203lim 3tan x x x→==;(8) 22301lim sin 2x x e x x x -→+-22301lim (2)x x e x x x -→+-=23022lim 84x x xe x x -→-+=⋅2201lim 16x x e x -→-= 2021lim 3216x x xe x -→==; (9) 0ln sin 3lim ln sin 2x x x +→03cot 3lim 2cot 2x x x +→=03tan 2lim 2tan 3x x x +→=032lim 123x xx+→==;(10) 2lim xx x e -→+∞2lim x x x e→+∞=22lim lim 0x x x x x e e →+∞→+∞===;(11) 2lim cot ln()2x x x ππ+→⋅-2ln()2lim tan x x x ππ+→-=2212lim sec x x x ππ+→-= 22cos lim 2x x x ππ+→=-22cos sin lim 01x x xπ+→-==;(12) 2011lim()sin x x x x →-20sin lim sin x x x x x →-=30sin lim x x xx →-=20cos 1lim 3x x x →-=0sin lim 6x x x →-=16=-; (13) 11lim 1ln x xx x →⎛⎫- ⎪-⎝⎭1ln 1lim (1)ln x x x x x x →-+=-1ln lim 1ln x x x x x→=-+1211lim112x xx x →==+;(14) 011lim 1x x e x →⎛⎫- ⎪-⎝⎭01limx x x x e xe x →-+=-01lim 1x x x x e xe e →-=+- 0lim 2x xx x e xe e →-=+12=-; (15) 2221ln cos2ln cos2limlim(cos 2)lim x x x x xx x x x ee →→→==,又20ln cos 2limx x x →002tan 2tan 2lim lim 22x x x xx x→→--===-故21lim(cos 2)x x x →=2e -;(16) 11lim (ln )x x x -→+∞=ln ln 1lim xx x e-→+∞,又11ln ln ln lim lim 011x x x x x x →+∞→+∞⋅==-, 故11lim (ln )x x x -→+∞=0e =1;(17) lim x x xx x e e e e --→+∞-+221lim 11xxx e e --→+∞-=+;(18) sin 1lim1sin 1x x x x x→∞-=+. 2. 设(0)0f =,(0)2f '=,(0)6f ''=,求20()2lim x f x xx→-. 解 20()2l i mx f x x x →-0()2l i m 2x f x x →'-=0()lim 2x f x →''=(0)32f ''==. 习题4-41.判断函数x y e x =-的单调性.解 .1-='x e y 又).,(:+∞-∞D在)0,(-∞内,,0<'y ∴函数单调减少; 在),0(+∞内,,0>'y ∴函数单调增加. 2.判断函数cos sin y x x x =+在区间3[,]22ππ的单调性.解 cos y x x '=,在区间3(,)22ππ,,0<'y ∴函数单调减少.3.求下列函数的单调区间: (1) 31292)(23-+-=x x x x f ; (2) 2()2ln f x x x =-;(3) ()f x =(4) 2()1x f x x=+.解 (1) ).,(:+∞-∞D 2()61812f x x x x '=-+),2)(1(6--=x x 解方程0)(='x f 得.2,121==x x当1<<-∞x 时,,0)(>'x f ∴)(x f 在(]1,∞-上单调增加; 当21<<x 时,,0)(<'x f ∴)(x f []2,1上单调减少; 当+∞<<x 2时,,0)(>'x f ∴)(x f 在),2[+∞上单调增加.(2) :(0,).D +∞1()4f x x x '=-241x x-=,解方程0)(='x f 得12x =,在1(0,)2内,,0)(<'x f ∴)(x f 在1(0,)2内单调减少;在1(,)2+∞内,,0)(<'x f ∴)(x f 在1(,)2+∞单调增加.(3) ).,(:+∞-∞D y'13=令,0='y 解得14,3x =在21,x =32x =处y '不存在.在(),1-∞内,,0>'y 函数单调增加;在41,3⎛⎫⎪⎝⎭内,,0>'y 函数单调增加;故函数在4,3⎛⎫-∞ ⎪⎝⎭内函数单调增加;在4,23⎛⎫⎪⎝⎭内,,0<'y 函数单调减少; 在()2,+∞内,,0>'y 函数单调增加. (4) :(,1)(1,).D -∞--+∞21()111x f x x x x ==-+++,221(2)()1(1)(1)x x f x x x +'=-=++, 令,0='y 解得12,x =-20,x =在(,2)-∞-内,,0>'y 函数单调增加; 在(2,1)--内,,0<'y 函数单调减少; 在(1,0)-内,,0<'y 函数单调减少; 在(0,)+∞内,,0>'y 函数单调增加.4.当0>x 时,应用单调性证明下列不等式成立:(1) 2x +>(2) 21ln(1)2x x x x >+>-. 证 (1)令()2f x x =+- 则()1f x '==.当0>x 时,,0)(>'x f ∴)(x f 在],0[+∞上单调增加,,0)0(=f ∴当0>x 时,()(0)0,f x f >=即2x +-,故2x +>(2)设),1ln()(x x x f +-=则.1)(xx x f +=' )(x f 在],0[+∞上连续,且在),0(+∞内可导,,0)(>'x f ∴)(x f 在],0[+∞上单调增加, ,0)0(=f ∴当0>x 时,,0)1ln(>+-x x 即).1ln(x x +>又设21()ln(1),2g x x x x =+-+因为()g x 在),0[+∞上连续,在),0(+∞内可导,且1()11g x x x'=-++,12x x +=当0>x 时,()0,g x '>又(0)0.g = 故当0>x 时,()(0)0,g x g >=所以.21)1ln(2x x x ->+ 综上,当0>x 时,有21ln(1)2x x x x >+>-,证毕. 5.证明方程53210x x x ++-=有且只有一个小于1的正根. 证 令53()21f x x x x =++-,因)(x f 在闭区间[0,1]连续,且)0(f 1=-,0<(1)f 30=>.根据零点定理)(x f 在(0,1)内有一个零点,即方程53210x x x ++-=至少有一个小于1的正根.在(0,1)内,)(x f '42561x x =++,0> 所以)(x f 在[0,1]内单调增加,即曲线)(x f y =在(0,1)内与x 轴至多只有一个交点.综上所述,方程53210x x x ++-=有且只有一个小于1的正根. 6.求下列曲线的凹凸区间及拐点: (1) 14334+-=x x y ;(2) 2y = (3) 241y x =+;(4) (y x =-解 (1)函数的定义域为),,(+∞-∞,121223x x y -='.3236⎪⎫ ⎛-=''x x y 令,0=''y 得,01=x .22=x)(2) 函数的定义域为),,(+∞-∞ y '13=- y ''=函数y 在1x =处不可导,但1x <时,,0<''y 曲线是凸的,时,,0>''y 曲线是凹的.故凹区间为[1,)+∞,凸区间为(,1]-∞,拐点为(1,2);(3) 函数的定义域为),,(+∞-∞ y '228(1)xx =-+ , y ''223248(1)x x -=+ 令,0=''y 得1x =2x =在(,-∞,,0>''y 曲线是凹的;在(,,0<''y 曲线是凸的;在)+∞,,0>''y 曲线是凹的.因此凹区间为(,-∞,)+∞,凸区间为[,拐点为(,3)和.(4) 函数的定义域为),,(+∞-∞ 5233(y x x x =-=-,y '21335233x x -=-=, y ''143310299x x --=+=, 令,0=''y 得11,5x =-在20x =处y ''不存在,在1(,)5-∞-,,0<''y 曲线是凸的;在1(,0)5-,,0>''y 曲线是凹的;在(0,)+∞,,0>''y 曲线是凹的;故凹区间为1(,0]5-,[0,)+∞,凸区间为1(,]5-∞-,拐点为1(,5-.7.利用函数的凹凸性证明:若,0,x y x y >≠,则不等式2()x yxyxe ye x y e ++>+成立.证 令()t f t te =(0t >),则所要证明的不等式改写为()()<()22f x f y x yf ++.因此问题转化为要证明()f t 在(0,)+∞内为凹.由()t t f t te e '=+,()2t tf t te e ''=+,因0t >,()0f t ''>,故()f t 在(0,)+∞内为凹,于是不等式成立.习题4-51.求下列函数的极值: (1) 32()393f x x x x =--+;(2) 2()1xf x x =+; (3) 2()2ln f x x x =-;(4) ()f x =(5) 23()(1)1f x x =--;解 (1) )3)(1(3963)(2-+=--='x x x x x f ,令,0)(='x f 得驻点.3,121=-=x x所以, 极大值(1)8,f -=极小值(3)24f =-.(2) 2221(1)(1)()11x x x f x x x--+'==++,令,0)(='x f 得驻点121, 1.x x =-= 所以, 极小值(1),2f -=-极大值(1)2f =. (3) 函数的定义域为(0,),+∞1()4f x x x '=-241x x-=,令,0)(='x f 得驻点12x =,在1(0,)2内,,0)(<'x f )(x f 在1(0,)2内单调减少;在1(,)2+∞内,,0)(<'x f )(x f 在1(,)2+∞单调增加.所以,有极小值11()ln 222f =+.(4) ).,(:+∞-∞D y '13=令,0='y 解得14,3x =在21,x =32x =处y '不存在.在(),1-∞内,,0>'y 函数单调增加;在41,3⎛⎫⎪⎝⎭内,,0>'y 函数单调增加;在4,23⎛⎫⎪⎝⎭内,,0<'y 函数单调减少; 在()2,+∞内,,0>'y 函数单调增加.因此,有极大值4(),33f =极小值(2)0f =. (5) 由,0)1(6)(22=-='x x x f 得驻点,11-=x .1,032==x x ).15)(1(6)(22--=''x x x f因(0)60,f ''=>/故)(x f 在0=x 处取得极小值,极小值为(0) 2.f =-因,0)1()1(=''=-''f f 考察一阶导数)(x f '在驻点11-=x 及13=x 左右邻近的符号: 当x 取1- 左侧邻近的值时, ;0)(<'x f 当x 取1-右侧邻近的值时, ;0)(<'x f 因)(x f '的符号没有改变,故)(x f 在1-=x 处没有极值.同理,)(x f 在1-=x 处也没有极值.2. 设3x π=是函数1()sin sin 33f x a x x =+的极值点,则a 为何值?此时的极值点是极大值点还是极小值点?并求出该值.解 由()cos cos3f x a x x '=+,因3x π=是极值点,故()coscos 033f a πππ'=+=,得a =2,又()(2cos cos3)2sin 3sin3f x x x x x '''=+=--,()2sin 3sin 033f πππ''=--=,所以,3x π=是极大值点,极大值为:1()2sinsin 333f πππ=+=3. 求下列函数在指定区间的最大值与最小值:(1) 42()23f x x x =-+, 3[2]2-,;(2) ()f x x =[3,1]-;(3)()sin cos f x x x x =+,[],ππ-.解 (1)3()444(1)(1),f x x x x x x '=-=+- 解方程,0)(='x f 得1231,0, 1.x x x =-==计算357();216f -=(1)(1)2;f f -==(0)3;f =(2)11f =. 比较得最大值(2)11f =,最小值(1)(1)2f f -==.(2) ()1f x '==,令,0)(='x f 得34x =, 计算(3)1f -=-,35()44f =,(1)1f =.从而得最大值35()44f =,最小值(3)1f -=-.(3) ()cos f x x x '=,令,0)(='x f 在[],ππ-得驻点123,0,.22x x x ππ=-==计算()()222f f πππ-==,(0)1f =,()()1f f ππ-==-.故得到,最大值为()()222f f πππ-==,最小值为()()1f f ππ-==- .4. 求下列曲线的渐近线: (1) 1sin x y x+=; (2) 111x y e-=+.解 (1)因1sin lim0x xx →∞+=, 得水平渐近线0;y = 因01sin limx xx→+,=∞ 得铅直渐近线.0=x (2) 因11lim(1)2x x e-→∞+=, 得水平渐近线2;y =因111lim(1)x x e +-→+=+∞, 得铅直渐近线 1.x =5. 作出下列函数的图形: (1) 3()31f x x x =-+; (2) 43()21f x x x =-+;(3) 2y =(4) 2()1x f x x=+.解 (略) 6. 设A 、B 两个工厂共用一台变压器,其位置如右下图所示,问变压器设在输电干线的什么位置时,所需电线最短?解 设变压器设在输电干线距C 点x km 处,由已知条件可得电线的总长度为()6)f x x =≤≤求导()f x '=,令()0f x '=,在[0,6]内,得为唯一驻点,容易判断,此时,函数有最小值,故变压器设在输电干线距C 点2.4 km 处,所需电线最短.习题4-61.某钟表厂生产某类型手表日产量为Q 件的总成本为21()200100040C =++Q Q Q (元), (1) 日产量为100件的总成本和平均成本为多少? (2) 求最低平均成本及相应的产量;(3) 若每件手表要以400元售出,要使利润最大,日产量应为多少?并求最大利润及相应的平均成本?解 (1) 日产量为100件的总成本为2100(100)20010010002125040C =+⨯+=(元)平均成本为21250(100)212.5100C ==(元). (2) 日产量为Q 件的平均成本为()1000()20040C C ==++Q Q Q Q Q, 211000()40C '=-Q Q,令()0C '=Q ,因0>Q ,故得唯一驻点为200=Q .D又20031000(200)0C =''=>Q Q ,故200=Q 是()C Q 的极小值点,即当日产量为200件时,平均成本最低,最低平均成本为1000()20021040200200200C =++= (元).(3) 若每件手表要以400元售出,此时利润为()L Q 21400()400200100040C ==---Q -Q Q Q Q 21200100040=-+-Q Q , 1()20020L '=-+Q Q ,令()0L '=Q ,得唯一驻点为400=Q ,此时,1()020L ''=-<Q , 因此,要使利润最大,日产量应为400件,此时的最大利润为21()200100075 00040400400400L =-⋅+⨯-=(元) 相应的平均成本为1000()200212.540400400400C =++=(元).2.设大型超市通过测算,已知某种手巾的销量Q (条)与其成本C 的关系为23()100060.003(0.01)C =+-+Q Q Q Q (元),现每条手巾的定价为6元, 求使利润最大的销量.解 利润函数为()L Q 236()10000.003(0.01)C ==-+-Q -Q Q Q ,求导2()0.0060.03(0.01)L '=-Q Q Q ,令()0L '=Q ,因0>Q ,故得唯一驻点为2000=Q ,此时,22000()0.0060.03(0.0120.00602000)L =''=-⨯⨯=-<Q Q ,因此,要使利润最大,销量应为2000条,此时的最大利润为23()10000.003(0.013000200020002000)L =-+⨯-⨯=(元).3. 设某种商品的需求函数为1000100P =-Q , 求当需求量300=Q 时的总收入, 平均收入和边际收入,并解释其经济意义.解 设需求量Q 件价格为P 的产品收入为(),R P =⋅Q Q由需求函数1000100P =-Q 得100.01P =-Q 代入得总收入函数2()(100.01)100.01.R =-⋅=-Q Q Q Q Q平均收入函数为 ()()100.01.R R ==-Q Q Q Q 边际收入函数为2()(100.01)100.02.R ''=-=-Q Q Q Q 当300=Q 时的总收入为 ,210030001.030010)300(2=⨯-⨯=R 平均收入为 ,730001.010)300(=⨯-=R边际收入为 (300)100.02300R '=-⨯=,其经济意义是:当需求量为300件时,每增加1个单位商品的需求,将增加4元的收入.4.设某工艺品的需求函数为800.1P =-Q (P 是价格,单位:元, Q 是需求量,单位:件), 成本函数为 500020C =+Q (元).(1) 求边际利润函数()L 'Q , 并分别求200=Q 和400=Q 时的边际利润,并解释其经济意义.(2) 要使利润最大,需求量Q 应为多少?解 (1)已知800.1P =-Q ,500020C =+Q ,则有 2()(800.1)800.1,R P =⋅=-=-Q Q Q Q Q Q2()()()(800.1)(500020)L R C =-=--+Q Q Q Q Q Q边际利润函数为2()(0.1605000)0.260,L ''=-+-=-+Q Q Q Q当200=Q 时的边际利润为(200)0.22006020.L '=-⨯+=当400=Q 时的边际利润为.20604002.0)400(-=+⨯-='L可见销售第201个产品,利润会增加20元,而销售第401个产品后利润将减少20元. (2) 令()0,L '=Q 得,300=x02.0)300(<-=''L故要使利润最大,需求量300=Q 件,此时最大利润为 4000)300(=L (元).5.设某商品的需求量Q 与价格P 的关系为16004P=Q (1) 求需求弹性)(P η,并解释其经济含义;(2) 当商品的价格10=P (元)时, 若价格降低1%, 则该商品需求量变化情况如何? 解 (1) 需求弹性为)()()(P Q P Q PP '=η1600416004P P P '⎛⎫ ⎪⎝⎭=1600ln 4416004P PP -=⋅ ln 4P =-⋅P )2ln 2(-=.39.1P -≈需求弹性为负, 说明商品价格P 上涨1%时, 商品需求量Q 将减少1.39P %.(2) 当商品价格10=P (元)时, ,9.131039.1)10(=⨯-≈η 这表示价格10=P (元)时, 价格上涨1%, 商品的需求量将减少13.9%. 若价格降低1%, 商品的需求量将增加13.9%.6.某商品的需求函数为3P e -=Q (Q 是需求量,P 是价格),求:(1) 需求弹性)(P η; (2) 当商品的价格2,34P =,时的需求弹性, 并解释其经济意义.解 (1) 需求弹性为33()()3PP e P P Pe η--'==-; (2) 2(2)13η=<,说明当2P =时,价格上涨1%, 需求减少0.67 %;(3)1η=,说明当3P =时,价格与需求变动幅度相同;4(4)>13η=,说明当4P =时,价格上涨1%, 需求减少1.33 %.7.已知某商品的需求函数为275P =-Q (Q 是需求量,单位:件,P 是价格,单位:元).(1) 求5P =时的边际需求, 并解释其经济含义.(2) 求5P =时的需求弹性, 并解释其经济含义.(3) 当5P =时, 若价格P 上涨1%, 总收益将变化百分之几?是增加还是减少? (4) 当6=P 时, 若价格P 上涨1%, 总收益将变化百分之几?是增加还是减少? 解 设,75)(2P P f Q -==需求弹性)(0P P =)()(|0000P f P P f P P ⋅'==η 刻划了当商品价格变动时需求变动的强弱. (1) 当5P =时的边际需求5(5)210P f P='=-=-它说明当价格P 为5元,每上涨1元, 则需求量下降10件. (2) 当5P =时的需求弹性225(5)(5)(10)175755P f P η'=⋅=-⨯=---它说明当5P =时, 价格上涨1%, 需求减少1%.(3) 由 ()(1)R f P η'=⋅+. 又 ()R P P f P =⋅=⋅Q ,于是()()1()()ER P R P R P EP R P f P η''=⋅==+ 由(5)1η=-,得5110P EREP==-= 所以当5P =时,价格上涨1%,总收益不变,此时总收益取得最大值.(4) 由,753P P PQ R -==(6)234,R =(6)R '2675333,P P ==-=- 66(6)0.85(6)P ER R EP R ='=⋅≈- 所以当6=P 时,价格上涨1%,总收益将减少0.85%.复习题4(A )1.设函数)(x f y =在闭区间[a , b ]上连续,在开区间(a , b )内可导,12a x x b <<<,则下式中不一定成立的是A . ()()()()f b f a f b a ξ'-=-()a b ξ<<; B . ()()()()f a f b f a b ξ'-=- ()a b ξ<<;C . ()()()()f b f a f b a ξ'-=- (12x x ξ<<);D . 2121()()()()f x f x f x x ξ'-=- (12x x ξ<<).答:C 2.当x =4π时,函数1()cos cos 44f x a x x =-取得极值,则a =A .-2 B.CD .2答:B3.若在区间I 上,()0f x '>,()0f x ''<,则曲线)(x f y =在I 是 A .单调减少且为凹弧; B .单调减少且为凸弧; C .单调增加且为凹弧; D .单调增加且为凸弧.答:D4.曲线y =322(1)x x -A .既有水平渐近线,又有垂直渐近线;B .只有水平渐近线;C .有垂直渐近线x =1;D .没有渐近线.答:C5.用中值定理证明下列各题:(1) 设函数)(x f y =在闭区间[a , b ]上连续,在开区间(a , b )内可导,()()0f a f b ==,且在(a , b )内()0f x ≠,试证:对任意实数k , 存在),(b a <<ξξ使得()()f k f ξξ'=. (2) 设函数)(x f y =在闭区间[a , b ]上连续,在开区间(a , b )内可导,()()1f a f b ==,试证:存在,(,)a b ξη∈,使得[()()]1e f f ξηξξ-'+=证 (1) 对任意实数k ,设()()kx F x e f x -=,()()()kx kx F x ke f x e f x --''=-+,显然()F x 在闭区间[a , b ]上连续,在开区间(a , b )内可导,且()()0F a F b ==,故在[a , b ] 应用罗尔定理,存在),(b a <<ξξ使()0F ξ'=,即()()()0k k F ke f e f ξξξξξ--''=-+=,整理得()()0kf f ξξ'-+=,即()()f k f ξξ'=. (2)设()()x F x e f x =,()()()x x F x e f x e f x ''=+,在闭区间[a , b ]上应用拉格朗日中值定理()()()b a e f b e f a F b aξ-'=-,(,)a b ξ∈即[()()]b a e e e f f b aξξξ-'+=-令()xG x e =,()[()()]b a e e G e e f f b aηξηξξ-''===+-,,(,)a b ξη∈ 故有 [()()]1e f f ξηξξ-'+=,,(,)a b ξη∈.6.求函数1()3f x x=-的1n +麦克劳林公式.解 1()3f x x =-=13(1)3x =-01()33k n nk k x o x ==+∑10()3k nn k k x o x +==+∑ 7. 计算下列极限:(1) lim(arctan )2x x π-;(2) 011lim()1x x e x→--; (3) 1ln 0lim(cot )xx x +→;(4) 110(1)lim xxx x e →⎡⎤+⎢⎥⎢⎥⎢⎥⎣⎦. 解 (1) lim(arctan )2x x π-arctan 2lim 1x x π→+∞-=211lim 11x x →+∞+=22lim01x x →+∞=-=+; (2) 011lim 1x x e x →⎛⎫- ⎪-⎝⎭01lim x x x x e xe x →-+=-01lim 1x x x x e xe e →-=+- 0lim 2x xx x e xe e →-=+12=-; (3) 1ln 0lim(cot )xx x +→ln cot ln cot limln ln 00lim x xxxx x e e+→+→==而0ln cot lim ln x x x +→20csc cot lim 1x xx x +→-=20csc lim cot x x x x+→-= 20csc lim cot x x x x+→-=0lim 1cos sin x xx x +→-==-, 所以 原式=1e -;(4) 110(1)lim xxx x e→⎡⎤+⎢⎥⎢⎥⎢⎥⎣⎦1ln(1)10lim x x xx e ++-→= 01ln(1)1lim x x x x→+-20ln(1)lim x x x x →+-=0111lim 2x x x →-+= 01lim2(1)x x →-=+12=- 所以 原式=12e-.8.问,,a b c 为何值时,点(-1,1)是曲线32y x ax bx c =+++的拐点,且是驻点? 解 32y x ax bx c =+++,232y x ax b '=++,62y x a ''=+, 由已知(1)620y a ''-=-+=,得3a =,2(1)3(1)23(1)0y b '-=-+⨯-+=,得3b =,点(-1,1)代入曲线方程:32(1)3(1)3(1)1c -+-+-+=,得2c =9. 证明方程 1ln -=e xx 在区间),0(+∞内有两个实根. 证 令()ln 1x f x x e =-+,11()f x x e '=-e xex-=,(1)当0x e <<时,()0f x '>,即函数单调增加,而()ln 110ef e e e=-+=>,0lim ()x f x +→=-∞,例如11121()ln 10e f e e e e---=-+=-<,因此,函数在(0,)e 内有且只有一个零点,即方程1ln -=exx 在(0,)e 内有且只有一个根;(2)当x e >时,()0f x '<,即函数单调减少,()()f x f e <又()ln 110e f e e e =-+=>,即()ln 11xf x x e =-+<于是ln xx e<,因此lim ()x f x →+∞=-∞,所以函数在(,)e +∞内有且只有一个零点,即方程1ln -=exx 在(,)e +∞内有且只有一个根;综上,即证方程 1ln -=exx 在区间),0(+∞内有两个实根..10.确定函数32()231210f x x x x =+-+的单调区间,并求其在区间[3,3]-的极值与最值.解 2()66126(1)(2)f x x x x x '=+-=-+,令,0)(='x f 得驻点122, 1.x x =-=所以, 函数在(],2-∞-,[1,)+∞单调增加,在[]2,1-单调减少,极小值(1)3f =,极小值(2)30f -=;又(3)55f =,(3)18f -=,因此得最大值(3)55f =,最小值(1)3f =.(B )1. 设00()()0f x f x '''==,0()0f x ''<,则有( ) A .0()f x 是()f x 极大值; B .0()f x 是()f x 极小值;C .0()f x '是()f x '的极值;D .点00(())x f x ,是曲线)(x f y =的拐点.答: D2. 设()(1)f x x x =-,则( )A .0x =是()f x 极值点,但(0, 0)不是曲线)(x f y =的拐点;B .0x =是()f x 极值点,且(0, 0)不是曲线)(x f y =的拐点;C .0x =不是()f x 极值点,但(0, 0)是曲线)(x f y =的拐点;D .0x =不是()f x 极值点,且(0, 0)也不是曲线)(x f y =的拐点.答:B3. 设120ea ->>,证明方程ax x ae =有且只有一个小于1a -的正根.证:因120ea ->>,则12e a ->,即21a e <令()ax f x x ae =-,显然()f x 在1[0,]a -连续,由(0)0f a =-<,1112()(1)0f a a ae a a e ---=-=->, 所以方程ax x ae =在1(0,)a -内至少有一实根,又2()1ax f x a e '=-,在1(0,)a -内0ax e e <<,所以220ax a e a e <<,于是2()10ax f x a e '=->,即函数()ax f x x ae =-在1(0,)a -单调增加,至多与x 轴有一个交点;因此,方程ax x ae =有且只有一个小于1a -的正根.4. 设(0)0f =,()0f x ''<,证明对任意120,0x x >>,恒有1212()()()f x x f x f x +<+.证 由()0f x ''<,知)(x f '单调减少,对任意120,0x x >>, 在1[0,]x 上应用拉氏定理知,11(0,),x ξ∃∈使11111()()(0)()0f x f x f f x x ξ-'==- 在112[,]x x x +上应用拉氏定理知,2112(,),x x x ξ∃∈+使12212221122()()()()()()f x x f x f x x f x f x x x x ξ+-+-'==+-)(x f '单调减少,∴)()(21ξξf f '>' ⇒122111()()()f x x f x f x x x +-<所以1212()()()f x x f x f x +<+. 证毕.5. 当10x >>时,证明不等式212xx +<成立.证 令2()12x f x x =+-,当10x >>时,(0)(1)0f f ==,()22ln 2x f x x '=-,又2()22ln 2>0x f x ''=-,(10x >>),故()f x '在(0,1)单调增加,由(0)ln 2<0f '=-,(1)22ln 2>0f '=-,故()f x '在(0,1)有且只有一个零点,设为k .易知在(0,)k 内()<0f x ',在(,1)k 内()>0f x ', 因此点x =k 必为()f x 的极小值点. 从而在(0,)k 内,()f x 单调减少,即有0k x >>时,()<(0)0f x f =,于是有212x x +<(0k x >>)在(,1)k 内,()f x 单调增加,即有1x k >>时,()<(1)0f x f =,于是有212x x +<(1x k >>)因在(0,)k 和(,1)k 内()<0f x ,()f k 是函数()f x 的极小值,所以()<0f k .综上即得,在(0,1)内()<0f x ,于是,当10x >>时,不等式212xx +<成立. 证毕. 6. 已知0a b <<,函数)(x f y =在闭区间[a , b ]上连续,在开区间(a , b )内可导,证明在(a , b )内至少存在,ξη使得2()()f f abηηξ''=.证 )(x f y =在区间[a , b ]上应用拉氏定理知,在(a , b )内至少存在一点),(b a <<ξξ使得- 21 - ()()()f b f a f b a ξ-'=-, 又()f x ,1x在[a , b ]上满足柯西中值定理的条件,故在(a , b )内至少存在一点η,使 2()()().111f b f a f b a ηη'-=--整理得:2()()()f b f a f b a ab ηη'-=-.因此得到,在(a , b )内至少存在,ξη使得2()()f f ab ηηξ''=.证毕.。

第3章中值定理与导数的应用(包括题)

第3章中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用一、 基本内容(一) 中值定理1.罗尔定理如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf .2.拉格朗日中值定理如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得ab a f b f f --=')()()(ξ 其微分形式为x f x f x x f ∆⋅'=-∆+)()()(ξ这里10,<<∆⋅+=θθξx x .推论 如果函数)(x f 在开区间),(b a 内的导数恒为零,那么)(x f 在),(b a 内是一个常数.3.柯西中值定理如果函数)(x f 及)(x g 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)(x g '在),(b a 内的每一点均不为零,那么在),(b a 内至少有一点ξ,使得)()()()()()(ξξg f a g b g a f b f ''=-- 中值定理是导数应用的理论基础,在应用中值定理证明题时,关键是构造适当的辅助函数.(二) 洛必达法则1.法则1如果函数)(x f 及)(x g 满足条件:(1)0)(lim =→x f a x , 0)(lim =→x g ax ; (2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ;(3))()(l i m x g x f a x ''→存在(或为无穷大),那么 )()(lim )()(lim x g x f x g x f a x ax ''=→→ 2.法则2如果函数)(x f 及)(x g 满足条件:(1)0)(lim =∞→x f x , 0)(lim =∞→x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) )()(limx g x f x ''∞→存在(或为无穷大); 那么)()(lim )()(lim x g x f x g x f x x ''=∞→∞→ 以上两个法则是针对00型未定式. 对∞∞型未定式,也有相应的两个法则. 对∞⋅0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞∞型来求. (三) 泰勒公式1.带拉格朗日余项的泰勒公式设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有+-''+-'+=200000)(2)())(()()(x x x f x x x f x f x f ! )()(!)(00)(x R x x n x f n n n +-+ 10)1()()!1()()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项.(四) 函数的单调性函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导.(1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;(2) 如果在),(b a 内0)(<'x f ,那么函数)(x f y =在],[b a 上单调减少.(五) 函数的极值与最值1.函数在一点取得极值的必要条件设函数)(x f y =在0x 点取得极值,如果)(x f 在0x 点可导,那么0)(0='x f .使0)(='x f 的点x 称为函数)(x f 的驻点.驻点不一定是极值点.驻点和不可导点是函数的所有可能的极值点.2.极值点的两个判别定理判别之一 设函数)(x f y =在0x 点连续,在0x 的某去心领域),(0δx U内可导,有(1) 如果在),(00x x δ-内0)(<'x f ,在),(00δ+x x 内0)(>'x f ,那么)(x f 在0x 取得极小值;(2) 如果在),(00x x δ-内0)(>'x f ,在),(00δ+x x 内0)(<'x f ,那么)(x f 在0x 取得极大值;(3) 如果)(x f '在),(0δx U 内符号保持不变,那么)(x f 在0x 没有极值.判别之二 设函数)(x f y =在0x 点处有二阶导数,且0)(0='x f ,则有(1) 如果0)(0>''x f ,那么在0x 取得极小值;(2) 如果0)(0<''x f ,那么在0x 取得极大值.3.函数的最大值与最小值的求法(1) 求出)(x f '在),(b a 内的零点和不存在的点n x x x ,,,21 ,计算出)(x f 在这些点处的函数值)(,),(),(21n x f x f x f ;(2) 计算出)(x f 在],[b a 的两个端点上的值)(),(b f a f(3) )}(),()(,),(),(m ax {21b f a f x f x f x f n 是)(x f 在],[b a 上的最大值)}(),()(,),(),(m in{21b f a f x f x f x f n 是)(x f 在],[b a 上的最小值. (六)曲线的凹凸与函数的作图1.凹凸的定义设函数)(x f y =在闭区间],[b a 上连续,如果对于],[b a 上任意两点21,x x ,恒有2)()()2(2121x f x f x x f +<+那么称曲线)(x f y =在],[b a 上是凹的;如果恒有2)()()2(2121x f x f x x f +>+ 那么称曲线)(x f y =在],[b a 上是凸的.2.凹凸的判定设函数)(x f y =在],[b a 上连续,在),(b a 内具有二阶导数,那么(1) 如果在),(b a 内0)(>''x f ,那么函数)(x f y =在],[b a 上的图形是凹的;(2) 如果在),(b a 内0)(<''x f ,那么函数)(x f y =在],[b a 上的图形是凸的.3.拐点及其求法连续曲线)(x f y =上凹弧与凸弧的分界点称为这曲线的拐点.求出所有0)(=''x f 或)(x f ''不存在的点n x x x ,,,21 ,拐点从),,2,1())(,(n i x f x i i =中找.4.函数作图(1) 确定函数的定义域;(2) 求出函数的单调区间和极值点,曲线的凹凸区间和拐点;(3) 求函数图形的水平渐近线和铅直渐近线;(4) 求出函数在特殊点(包括间断点及一阶导数、二阶导数为零或不存在的点)处的函数值,定出图形上相应的点,结合前面的结果,连结这些点画出函数图形的大概形状.(七)曲率1. 定义 称dSd S K S αα=∆∆=→∆0lim 为曲线)(x f y =在M 点处的曲率.其中S ∆是 M M '的长度,α∆是曲线在M 与M '处切线的夹角,M 与M '是曲线上两点.2. 计算公式若)(x f y =,则232)1()(y y x K '+''=.3. 曲率与曲率半径ρ的关系K1=ρ二、练习题3.1 设)(x f 可导,求证:)(x f 的两个零点之间一定有)()(x f x f '+的零点. 证明 设0)()(==b f a f ,a<b ,令)()(x f e x F x =,则0)()(==b F a F , 根据罗尔定理,存在),(b a ∈ξ使得0)(='ξF ,即0)]()([='+ξξξf f e .于是0)()(='+ξξf f .3.2 设函数)(x f 在]1,0[上三次可导,且0)1()0(==f f ,设)()(3x f x x F =.证明;存在)1,0(∈ξ,使0)(='''ξF .证明 由条件可知 0)1()0(==F F ,F(x)在]1,0[上可导,根据罗尔定理,存在)1,0(1∈ξ使得0)(1='ξF又由)()(3)(32x f x x f x x F '+='知道0)0(='F这样0)()0(1='='ξF F ,0)(='x F 在],0[1ξ可导. 根据罗尔定理,存在)1,0(),0(12⊂∈ξξ使得0)(2=''ξF又由)()(6)(6)(32x f x x f x x xf x F ''+'+=''知道0)0(=''F根据罗尔定理,存在)1,0(),0(2⊂∈ξξ使得0)(='''ξF3.3 设)(x f 在闭区间[a ,b ]上连续,在开区间(a ,b )内可导,0>a .证明:在 (a ,b )内存在321,,x x x ,使233222213)()(2)()()(x x f b ab a x x f b a x f '++='+='证明 由拉格朗日中值定理 .存在),(1b a x ∈,使得)()()(1x f ab a f b f '=-- 根据柯西中值定理,存在),(),,(32b a x b a x ∈∈使得))((3)()()())((2)()()(32333322222x x F x x f a b a f b f x x F x x f a b a f b f ='=--='=-- 由上面三个等式可知原结论成立 .3.4 设)(x f 在[0,1]上连续,在(0,1)内可导,且)1()0(f f =.求证:在(0,1)内存在的两个不同的21,c c ,使0)()(21='+'c f c f .证明 将[0,1]分成两部分]1,21[],21,0[分别在其上应用拉格朗日中值定理,得 )1,21()(211)21()1()21,0()(021)0()21(2211∈'=--∈'=--c c f f f c c f f f 又由条件)1()0(f f =,可知0)()(21='+'c f c f3.5 已知 0)3sin (lim 230=++→b xa x x x ,求b a ,的值 . 解 因 0)3sin (lim 230=++→b x a x x x ,由洛必达法则 )00(333cos 3lim )00(3sin lim 220330x bx a x x bx ax x x x ++=++→→由033cos 3lim 20=++→bx a x x 可知3-=a 再继续用洛必达法则0663cos 27lim )00(663sin 9lim )00(3333cos 3lim 00220=+-=+-=+-→→→b x x bx x xbx x x x x 于是 063cos 27lim 0=+-→b x x ,知 29=b3.6用洛必达法则求下列极限:(1)21)1ln(lim x e x x +++∞→;(2)x x x ln 1)arctan 2(lim -∞→π; (3)210)ln ln (lim x x x x bx b a x a --→; (4))0,,()3(lim 10>++→c b a c b a x xx x x解 (1)21)1ln(lim x e x x +++∞→ =21)1(lim x x e e x xx +++∞→ =1111lim2+⋅+-+∞→xe x x =1 (2)x x x ln 1)arctan 2(lim -∞→π =x x x e ln )arctan 2ln(lim -∞→π=xx x x e arctan 21lim2-+-∞→π =x x x x x e arctan 211lim 22-⋅+-∞→π =x xx e arctan 21lim --∞→π=22111lim x x x e +---∞→ =1-e(3) 令y b x b a x a x x x x =--→210)ln ln (lim )00()ln ln()ln ln(lim ln 20x b x b a x a y x x x ---=→ = xb x b b b b a x a a a a x x x x x 2ln ln ln ln ln ln lim 0-----→ xa x a aa a x x x 2ln ln ln lim 0--→ )1ln (2ln )1(lim 0→--=→a x a xa a x x x =2ln 2ln lim 220a a a x x =→ 同理 2ln 2ln ln ln lim 20b x b x b bb b x x x =--→ 故 2ln ln ln 22b a y -= 原式=2ln ln 22b a e-(4) 令y c b a x xx x x =++→10)3(lim3ln 3ln ln ln 3ln ln ln 3lim )00(3ln lim ln 00abc c b a c c b b a a c b a x c b a y x x x x x x x xx x x =++=++⋅++=++=→→ 故 原式33ln abc e abc ==3.7 设)(x f 与)(x g 在),0[+∞存在二阶导数,且满足条件:)0()0(g f =,)0()0(g f '=',)0)(()(>''>''x x f x g .试分别用函数的单调性、拉格朗日中值定理和泰勒公式证明:0>x 时,)()(x f x g >.证明 (法一)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F于是)(x F '在),0(+∞单调递减又由)0(F ''存在,故)(x F '在0=x 连续,即有)(x F '在[]+∞,0 单调递减 .所以,当0>x 时,0)0()(='<'F x F ,于是)(x F 在[]+∞,0单调递减,所以,当0>x 时,0)0()(=<F x F 即0)()(<-x g x f ,)()(x f x g >. (法二)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F由拉格朗日中值定理,得()0)),0(()()]0()([),0()()0()(<∈⋅⋅''=⋅'-'=∈'=-ξηξηξξξx F x F F x xF F x F 故 0)(<x F ,)()(x f x g >.(法三)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F根据泰勒公式 2)(21)0()0()(x F x F F x F ξ''+'+= 其中),0(,0x x ∈>ξ 故 0)(<x F ,)()(x f x g >.3.8 利用泰勒公式计算极限:)cot 1(1lim0x x x x -→. 解 原式=xx x x x tan tan lim 20-→ =)~(tan tan lim 30x x x x x x -→ =)1~(cos cos sin lim 30x xx x x x -→ =322330)](21[)(6lim xx o x x x o x x x +--+-→ =3330)(31lim xx o x x +→ =313.9 设函数)(x f 在[0,1]上具有连续的三阶导数,且2)1(,1)0(==f f ,0)21(='f . 证明 在(0,1)内至少存在一点ξ,使24|)(|≥'''ξf . 证明 将)(x f 在210=x 点展开,并分别令0=x 和1=x ,得)2()21(6)()21(2)21()21)(21()21()1()1()21(6)()21(2)21()21)(21()21()0(322312ξξf f f f f f f f f f '''+''+'+=-'''+-''+-'+= (2)—(1)得: )]()([481112ξξf f '''-'''= 48|)()(||)(||)(|1221='''-'''≥'''+'''ξξξξf f f f取ξ为1ξ和2ξ中三阶导数的绝对值较大的点,因)1,21(),21,0(21∈∈ξξ故)1,0(∈ξ,且有 24|)(|≥'''ξf3.10 数列 ,,,3,2,13n n 中哪一项最大解 令 xx x f 1)(=,则)ln 1()ln 1()(211x x x x x x f x x -='='- 当),0(e x ∈时,0)(>'x f ,f(x)在],0(e 单增;当),(+∞∈e x 时,0)(<'x f ,f(x)在),[+∞e 单减因为 32<<e ,故值最大的项只能为2或33,而由2332<可知,2<33,所以33最大.3.11 证明:当0>x 时,有)1l n()1(1x x e x ++>-.证明 令),1ln()1(1)(x x e x f x ++--=则0)0(=f0)0(,)1ln(1)(='+--='f x e x f xxe xf x +-=''11)( 当0>x 时,0)(=''x f ,)(x f '在),0[+∞单增,而0)0(='f ,故0)(>'x f ,)(x f 在),0[+∞单增,而0)0(=f 故0)(>x f ,即当0>x 时,有)1ln()1(1x x e x ++>-3.12 在椭圆12222=+by a x 位于第一象限的部分上求一点P ,使该点处的切线、椭圆及两坐标所围图形的面积为最小)0,0(>>b a .解 要使所述的面积最小,因椭圆在第一象限部分面积为定值,只要使切线与两坐标所围三角形面积最小即可 .设),(00y x P .则由02222=⋅+dxdy b y a x yx a b b y a x dx dy ⋅-=-=222222 可知P 点处椭圆切线方程为 )(000220x x y x a b y y -⋅-=- 分别令y=0和x=0,可得两截距为 022020022020y a b y x Y x b a x y X +⋅=+⋅=故此三角形面积为))((2102202002200y ab y x x b a x y +⋅+⋅ 因),(00y x 在椭圆上,可令0000sin ,cos θθb y a x ==.代入上式,可得此面积为02sin θab ,因此当12sin 0=θ即40πθ=时,此面积最小,此时b y a x 22,2200== . 综上,当P 点坐标为)22,22(b a 师,题中所述面积最小.测验题(三)1. 设)(x f 和)(x g 在[a ,b ]上连续,在(a ,b )内可导,且0)()(==b f a f ,证明:0)()()()(='+'x g x f x g x f 在(a ,b )内有解证明 令)()()(x g x f x F =,则F(x)在[a ,b ]满足罗尔定理的条件,存在),(b a ∈ξ使得0)(='ξF ,即0)()()()()(='+'='x g x f x g x f x F 在(a ,b )内有解.2. 设)(x f 在],0[π上连续,在()π,0内可导,且0)0(=f ,证明:存在),0(πξ∈使)(2tan )(2ξξξf f ='.证明 欲证)(2tan )(2ξξξf f =',只要 02sin )(212cos )(=-'ξξξξf f 令2cos )()(x x f x F =,有0)0(=f 得0)()0(==πF F . )(x F 在[0,π]满足罗尔定理的条件,故存在),0(πξ∈使得0)(='ξF ,即02si n )(212cos )(=-'ξξξξf f .3. 用洛必达法则求下列极限(1)()1sin lim 20--→x x e x x x ; (2)])11[(lim e xx x x -+∞→. 解()()()61642cos lim 412sin lim 12cos 1lim 1sin lim )1(20202020=+++=++-=+--=--→→→→x x x x x xx x x xx x x x e x xe e e x e x xe e x e x e x x e x xx221)1ln(1lim )1ln()1(lim )11,)1(()1()]1ln()1([)1(lim 1]111)1ln(1[)1(lim )1(lim )1(])11[(lim )2(02012101010e tt e t t t t e t e t t t t t t t t t t t t te t x t e xx t t t t t t t t t x x -=-+-=+⋅+-=→+→+++⋅+-+=+⋅++⋅-+=-+==-+→→→→→∞→注意令4. 已知bx ax x x f ++=23)(在1=x 处有极值2-,试确定系数a 和b ,并求出)(x f 的所有极值和曲线)(x f y =的拐点.解 b ax x x f ++='23)(2因)(x f 在1=x 处有极值2-,故⎩⎨⎧-=++==++='21)1(023)1(b a f b a f 解得⎩⎨⎧-==30b a ,因此有x x x f 3)(3-=. 解33)(2-='x x f ,得1±=x .当)1,(--∞∈x 时,0)(>'x f ;当)1,1(-∈x 时,0)(<'x f ;当),1(+∞∈x 时,0)(>'x f ,所以)(x f 在1-=x 点处取得极大值2)1(=-f ,在1=x 处取得极小值2)1(=f .解06)(==''x x f ,得0=x .当0<x 时,0)(<''x f ,当0>x 时,0)(>''x f ,故(0,0)点是曲线)(x f y =的拐点.5. 证明:当e x x >>12时,有122121ln ln x x x x x x << 证明 考虑函数x x y ln = ),(,0ln 12+∞∈<-='e x xx y 所以函数在),(+∞e 单调递减,即当e x x >>12时有2211ln ln x x x x >即2121ln ln x x x x < 再考虑函数x x y ln =,),(,0ln 1+∞∈>+='e x x y所以函数在),(+∞e 单调递增,即当e x x >>12时有2211ln ln x x x x <即1221ln ln x x x x <6. 若)(x f '在),0[+∞严格单调递增,且0)0(=f ,证明:x x f )(在),0(+∞严格单调递增.证明 对任意的0>x ,)(x f 在],0[x 连续,在(0,x )可导,故存在),0(x ∈ξ使得 )()()0()(ξf xx f x f x f '==- xf x f x x x f x f x x f x f x x x f )()()()()()()(2ξ'-'=-'=-'='⎥⎦⎤⎢⎣⎡ 因)(x f '在),0[+∞严格单调递增,故)()(ξf x f '>',所以0)(>'⎥⎦⎤⎢⎣⎡x x f 则x x f )(在),0(+∞严格单调递增.7. 设在],1[+∞上处处有0)(<''x f ,且3)1(,2)1(-='=f f ,证明:在),1(+∞内方程0)(=x f 仅有一个实根.证明 由0)(<''x f 知)(x f '在),1[+∞严格递减.由零阶泰勒公式,有)2,1(),12)(()1()2(∈-'+=ξξf f f 由于3)1()(-='<'f f ξ,2)1(=f ,故01)2(<-<f由连续函数的介值定理,存在)2,1(0∈x 使得0)(0=x f又由于)(x f '在),1[+∞严格递减.,0)1(<'f 可知对任意的),1[+∞∈x 有0)1()(<'≤'f x f ,故)(x f 在),1[+∞严格递减.所以0)(=x f 在),1(+∞内有唯一实根.。

(整理)第三章微分中值定理与导数的应用习题详解wang1

(整理)第三章微分中值定理与导数的应用习题详解wang1

第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然()f x 在[1,1]-上连续,(1)(1)f f -=,且()f x 在(1,1)-内可导。

可见,()f x 在[1,1]-上满足罗尔中值定理的条件,因此,必存在一点ξ(1,1)∈-,使得()0f ξ'=,即:22120(21)ξξ-=+ ,满足,0ξ=; (2)虽然()f x 在[1,1]-上连续,(1)(1)f f -=,但()f x 在(1,1)-内0x =点不可导。

可见,()f x 在[1,1]-上不满足罗尔中值定理的条件,且1,0<1(), =01,1<0x f x x x <⎧⎪'=⎨⎪--<⎩不存在,因此不存在一点ξ(1,1)∈-,使得()0f ξ'=.2.因为函数是一初等函数,易验证满足条件.3.解:令33arccosarccos(34)y x x x =--,2y '=,化简得0,C y y '=∴=(C 为常数),又(0.5)y π=,故当0.50.5x -≤≤,有()y x π=。

4.证明:显然(),(f x F x 都满足在0,2π⎡⎤⎢⎥⎣⎦上连续,在0,2π⎛⎫⎪⎝⎭内可导()cos ,()1sin f x x F x x ''==-且对任一0,2x π⎛⎫∈ ⎪⎝⎭,()0F x '≠,(),()f x F x ∴满足柯西中值定理条件。

(0)121(0)22f f F F πππ⎛⎫- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭,而sin cos ()cos 242()1sin 1cos sin 242x x f x x x F x x x ππππ⎛⎫⎛⎫-- ⎪ ⎪'⎝⎭⎝⎭==='-⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭, 令()1()12f x F x π'='-,即t a n 1422x ππ⎛⎫-=- ⎪⎝⎭,此时2a r c t a n 142x ππ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦,显然0,2x π⎛⎫∈ ⎪⎝⎭,即2arctan 10,422πππξ⎡⎤⎛⎫⎛⎫∃=--∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,使得(0)(3)2(3)(0)2f f f F F F ππ⎛⎫- ⎪'⎝⎭='⎛⎫- ⎪⎝⎭。

第四章中值定理导数应用习题课(11级)

第四章中值定理导数应用习题课(11级)

个实根 .
证: 令 F (x) a0 a1x an xn , 则可设
F ( x)
a0 x
a1 2
x2
an n 1
x n 1
显然, F (x) 在 [0,1]上连续, 在 (0,1)内可导, 且 F (0)
F (1) 0, 由罗尔定理知存在一点 (0,1), 使 F ( ) 0,
即 a0 a1x an xn 0 在(0,1)内至少有一个实根 .
7. 有关中值问题旳解题措施 利用逆向思维,设辅助函数.
8. 经典例题
【例1】若方程 a0 x n a1 x n1 an1 x 0有一种正根
x x0 ,证明方程 a0nx n1 a1 (n 1)x n2 an1 0 必有一种不大于x0 旳正根.
分析 假如令 f ( x) a0nx n1 a1 (n 1)x n2 an1 ,无法鉴定 f (0) f (x0 ) 0 , 所以不能利用零点定理, 考虑利用罗尔定理证明。 首先构造一种函数F ( x), 使F ( x) f ( x),其中 f ( x)是欲证方程
处理措施:
0
00
通分
转化
0 取倒数
取对数
0
转化
转化
1
0
例1. 求极限 lim 1 x tan x
x1
2

原式
1 x
lim
x1
cot
x
2
lim
x1
1
csc x
2
2
2
lim
x1
sin
2
x
2
2
2
1
例2. 求 lim x1 x .
( 1 )

x1

中值定理习题

中值定理习题

第五章中值定理习题课一、主要内容1、中值定理从极值点处的导数性质出发,依次得到Fermat定理、Rolle定理、Lagrange定理、Cauchy定理,应该准确掌握各个定理的内容,掌握定理证明的思想,掌握定理的几何意义,熟练掌握定理的应用。

2、Taylor公式从微分的定义或中值定理出发,从近似计算的角度,得到了函数的高阶展开式,掌握常用的函数的Taylor公式,熟练掌握各种Taylor展开式的计算方法,掌握利用Taylor展开式计算极限的技巧。

注、从定理的结论形式上看,中值定理和Taylor公式都能建立函数和导数的关系,但是,二者在使用中是有差别的。

中值定理只是建立了相差一阶导数的相邻函数的关系式,而且结论形式中,原函数的点可以是任意的(涉及到两个原函数的点(),()f a f b,这两个点都可以是任意的),涉及到导数的点不具备任意性,它依赖于原函数中取定的两个点,因此,通常用于利用导函数的性质,研究原函数的性质,当然,若对相应的导函数用中值定理,可以用高阶导数的性质研究低一阶的导函数的性质;而Taylor公式中,展开点是可以任意选取的,因而,可以用于研究所涉及到的中间各阶导数的性质,特别是用两头控制中间的中间导数估计的问题。

3、L’Hospital法则这是极限计算中一个非常重要的法则,也是一个非常高级的法则,利用这一法则,使得一类非常重要,也非常复杂的极限的计算变得非常简单,因此,必须掌握法则的灵活的应用。

4、应用利用上述理论,解决函数研究中的如零点问题、介值问题、中值问题、极值问题、最值问题、导数估计、单调性问题、凸性问题、不等式问题、函数展开、极限计算等各种关键而又重要的问题。

二、典型例题1、零点问题(介值问题、中值问题)这里主要指涉及到导函数的零点问题,因而,处理的基本工具就是Fermat定理、Rolle定理和中值定理。

但是,特别要注意的是,几个定理的根本的出发点就是极值点处的导数性质,这是处理这类问题的基本思想,因此,在涉及到这类问题时,最简便的手段是直接利用相应的定理,但是当定理不能直接应用时,就要考虑最基本的思想了。

微积分中值定理习题

微积分中值定理习题

1第三章 中值定理与导数的应用§1 中值定理一、 证明:当1>x 时,x e e x ⋅>。

二、证明方程015=-+x x 只有一个正根。

三、设)()(x g x f 、在],[b a 上连续,在),(b a 内可导,证明在),(b a 内有一点ξ,使得 )()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-= 四、证明:若函数)(x f 在),(+∞-∞内满足关系式)()(x f x f =',且1)0(=f ,则x e x f =)(。

五、设函数)(x f y =在0=x 的某邻域内具有n 阶导数,且 )0()0()0()1(-=='=n f f f , 试用柯西中值定理证明:10 !)()()(<<=θθ,n x f xx f n n §2 洛必达法则一、 求下列极限(1)2031)cos(sinlim xx x -→= (2)xx x x 30sin arcsin lim -→= (3)x x x 21sin 1)1cos(ln lim π--→= (4)x x x x 21cot ])1[ln( lim π--+→= (5)21)arcsin ( lim 0x xx x →= (6)x cb ac b a x x x x 1)( lim 1110+++++++→,其中0≠++c b a 。

§3 泰勒公式一、 求函数x x f tan )(=的二阶麦克劳林公式。

二、 求函数x xe x f =)(的n 阶麦克劳林公式。

、当40=x 时,求函数x y =的三阶泰勒公式。

三、 当10=x 时,求函数x x x f ln )(2=的n 阶泰勒公式。

2§4 函数单调性的判定法一、 确定下列函数的单调区间:(1)x x y ln 22-=;(2))0())(2(32>--=a x a a x y ,二、证明:当0>x 时,221)1ln(1x x x x +>+++;三、设在],[b a 上0)(>''x f ,证明函数a x a f x f x --=)()()(ϕ在],(b a 上是单调增加的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


( x0 )( x x0 ) ( )( x x0 )
( n 1)
n 1
2. 微分中值定理的主要应用 (1) 研究函数或导数的性态 (2) 证明恒等式或不等式
(3) 证明有关中值问题的结论
3. 有关中值问题的解题方法
利用逆向思维 , 设辅助函数 . 一般解题方法: (1) 证明含一个中值的等式或根的存在 , 多用罗尔定理, 可用原函数法找辅助函数 . (2) 若结论中涉及到含中值的两个不同函数 , 可考虑用 柯西中值定理 . (3) 若结论中含两个或两个以上的中值 , 必须多次应用 中值定理 . (4) 若已知条件中含高阶导数 , 多考虑用泰勒公式 ,
f ( ) ab f ( ) 2 , 即要证 f ( )(b a ) b a
2 2


f ( ) 2
.
因 f ( x ) 在 [ a , b ] 上满足拉氏中值定理条件, 故有
f (b) f (a) f ( )(b a) ,
2
( a , b)

a b x 柯西中值定理 o
F ( x) x
y
f (b) f ( a ) F (b) F ( a ) f ( ) F ( )
n0
y f (x)
泰勒中值定理
o f ( x) f ( x0 ) f ( x0 )( x x0 ) a
b x
n 1 n! f 1 ( n 1) ! f (n)
x
f ( x)
例10. 求数列
1 x 1 2 x
的最大项 . 极大值
[ 1, e ) ( e , )
证: 设 f ( x) x ( x 1), 用对数求导法得
f ( x) x (1 ln x )
令 列表判别: 因为 处 又因


0
e
1 e

在 [ 1 , ) 只有唯一的极大点 x e , 因此在 也取最大值 .
内可导, 且 使
证明至少存在一点
证: 问题转化为证 f ( ) 2 f ( ) 0 .
设辅助函数
显然 少存在一点
( x) x f ( x)
2
在 [ 0 , 1 ] 上满足罗尔定理条件, 故至 使
( ) 2 f ( ) 2 f ( ) 0
即有
例3. 试证存在 证: 欲证
1
1

(0 x x 1)
上单调增. ] 1 x x 1 1
f 故当 x > 0 时,( x) [ ln(1 x) ln x ]在 x [ 从而 f ( x)
例9. 设

上可导, 且
证明 f ( x ) 至多只有一个零点 .
x 证: 设 ( x) e f ( x)
f ( x) f ( x0 ) f ( )( x x0 ) f ( x0 ) f ( ) x x0 f ( x0 ) M (b a ) K
(定数)
可见对任意 x (a , b) , f ( x) K , 即得所证 .
例2. 设

上连续, 在
证: 令 F ( x) a0 a1 x an x n , 则可设
F ( x ) a0 x a1 2 x
2
an n 1
x
n 1
且 F (0)
F (1) 0 , 由罗尔定理知存在一点 (0 ,1) , 使
即 a0 a1x an x 0 在 0, 内至少有一个实根 . ( 1 )
则 f (0) 0
f ( x) (1 2 x) e f ( x) 4 x e
2x
2x
f (0) 0
0
(0 x 1)
f ( )
利用一阶泰勒公式, 得
f ( x ) f (0) f (0) x x
2
2 e
2
x 0
2
2! (0 x 1)
f ( x)
2( x 1) x
3 2
1 x
2
,
法1 由 f (x) 在 x 1 处的二阶泰勒公式 , 得
f (x)
f (1) 2!
2
( x 1)
2
2
f ( ) 3!
( x 1)
3
3
( x 1)
1
3
3
( x 1)
0
( x 0, 在 x
3. 其他应用 : 相关变化率; 求不定式极限 ; 证明不等式 ; 几何应用 ; 研究方程实根等.
4. 补充定理 (见下页)
定理. 设函数 f ( x) , g ( x) 在 且
(1) f
(k )
上具有n 阶导数,
(a) g
(k )
(a ) ( k 0 ,1, 2 ,, n 1)
则当
又因 f ( x) 及 x 在[a, b] 上满足柯西定理条件 , 故有
② 将①代入② , 化简得 f ( )
ab 2 f ( ),
, ( a , b)
例4. 设实数
a0 a1 2
满足下述等式
an n 1 0
证明方程
个实根 .
在 ( 0 , 1) 内至少有一
且在


存在 , 且单调
证: 设 ( x) f (a x) f (a) f ( x) , 则
( x) f (a x) f ( x)
所以当 令 x b, 得 即所证不等式成立 .
例13.
证: 只要证
设 f ( x) (1 x) e
2x
1 x, 1,
习题课 中值定理及导数的应用
一、 微分中值定理及其应用
二、 导数应用
一、 微分中值定理及其应用
1. 微分中值定理及其相互关系
罗尔定理
f ( ) 0
y
f (a) f (b)
拉格朗日中值定理
f ( ) f (b) f ( a ) ba
F ( x)y x(x) f
f ( a ) f (b)
2
(0 1)
f (0) f (x) f ( x) x 1 f ( ) x 2
2 2
(0 1)
2 2
两式相减得

0 f ( x) 1 f ( )(1 x) 1 f ( ) x
2
f ( x)
1 2
f ( )(1 x) 1 f ( ) x
n
例5. 设函数 f (x) 在[0, 3] 上连续, 在(0, 3) 内可导, 且
f (0) f (1) f (2) 3, f (3) 1, 试证必存在 (0, 3) , 使
f ( ) 0. (03考研)
证: 因 f (x) 在[0, 3]上连续, 所以在[0, 2]上连续, 且在 [0, 2]上有最大值 M 与最小值 m, 故
中的最大项 .
例11. 证明 ln(1 x)
arctan x 1 x
( x 0) .
证: 设 ( x) (1 x) ln(1 x) arctan x , 则 (0) 0
( x) 1 ln(1 x)
1 1 x
2
0
( x 0)
故 x 0 时, (x)单调增加 , 从而 ( x) (0) 0 即 思考: 证明
x
f (x)
提示:
的正负作 f (x) 的示意图.
x1 o
x2
x
例8. 证明
证: ln f ( x) x ln(1 1 ) x

上单调增加.
x [ ln(1 x) ln x ]
令 F (t ) ln t , 在 [ x , x +1 ]上利用拉氏中值定理, 得
ln(1 x) ln x
x 1
2
1 ,
x
x
f (x) f (x) f (x)
( 0 , 1)
3
分析: 所给条件可写为
f (c )
f (0) f (1) f ( 2) f (0) (1) f ( 2) f1 3
例6. 设函数 且 证明

上二阶可导,
证: x [0 , 1] , 由泰勒公式得
f (1) f ( x) f ( x)(1 x) 1 f ( )(1 x) 2
m f (0), f (1), f (2) M
m
f (0) f (1) f ( 2) 3
M
由介值定理, 至少存在一点 c [0, 2] , 使
1, f (3) 1 f (c) f (3) 1, 且 f ( x) 在[c, 3] 上连续,f在(c, 3)) 内可导 , f (0) (1) f ( 2 想到找一点 c , 使 f (c) 3 由罗尔定理知, 必存在 (c, 3) (0, 3) , 使 f ( ) 0.
的正负作 f (x) 的示意图.
x
(2) 设函数
的图形如图所示, 则函数 f (x) 的图
y
f (x)
x1 o x2
形在区间 ( x1 , 0), ( x2 , )上是凹弧;
在区间 (, x1 ), (0 , x2 ) 上是凸弧 ; 拐点为
( x1 , f ( x1 )) , ( x2 , f ( x2 )) , (0, f (0)) .
有时也可考虑对导数用中值定理 .
(5) 若结论为不等式 , 要注意适当放大或缩小的技巧.
例1. 设函数
相关文档
最新文档