LF353
LF353运放构成振荡电路
LF353运放构成振荡电路振荡电路如图1所示.由带通滤波器和反相放大器组成。
由R2、C2、R1、C1组成的带通滤波器构成放大器的正反馈电路。
当设定R1=R2=R.C1=C2=C时.在频率为fo时带通滤波器的相位为零。
因此.当把运算放大器的反馈电阻R3和R4设定为R3=2R4时.同相放大器的增益为3倍,在fo处的环路增益正好为1倍,电路产生振荡,并正好能维持振荡。
振荡频率可用fo=1/2πRC进行计算.方法如下:1.给定振荡频率fo和电阻R的值,计算电容器C的值。
例如设fo=1000Hz,R=10kΩ,则可以求得C=0.0159μF。
2.给定振荡频率fo和电容C的值,计算电阻R的值。
由于0.0159μF不是电容器的标称值.必须用几个电容器经串并联组合后才能实现,在制作电路时不但成本高,操作起来也很麻烦。
因此可以先确定电容量,再求电阻阻值。
例如此时将电容量设定为C=0.0159μF,即R=1/2πfoC=10.6kΩ。
对于该振荡电路来说即使环路增益只比1倍稍稍小一点点,电路也不会振荡。
所以在设计实际的电路时为了能确保振荡.将R3和R4设定为R3=2.2 R4的关系。
此时可以确保振荡.但又带来振荡会随时间不断增加,最后导致波形顶部被限幅的问题。
为此需在反馈电路中接入稳压二极管对振幅的增加进行限制。
图2是输出电压为2Vrms,振荡频率为1kHz的振荡电路的例子。
电路的输出阻抗为600Ω。
负反馈量减小放大器的环路增益。
振荡电路的谐波失真率约为0.5%,开机后振幅会不断增大,约需5ms才会稳定下来。
这种振荡电路存在振幅会因R1和R2的误差或者C1和C2的误差而变化,这是这种振荡电路的不足之处。
例如在图3的电路中若R=2.2kΩ,将C2从0.015μF变为0.016μF,振荡电路的振幅会以7Vrms变成9.3Vms.这种振荡电路可振荡的频率范围很宽.可以从数赫兹到数百赫兹。
LF353 PDF
Industrial Temperature Range (– 25°C to +85°C) LM201A 0.075 2.0 10 10 50 1.0 0.5 General Purpose N/626, D/751
Internally Compensated
Commercial Temperature Range (0°C to +70°C) LF351 LF411C MC1436, C MC1741C MC1776C MC3476 MC34001 MC34001B MC34071 MC34071A MC34080B MC34081B MC34181 TL071AC TL071C TL081AC TL081C 200 pA 200 pA 0.04 0.5 0.003 0.05 200 pA 200 pA 0.5 500 nA 200 pA 200 pA 0.1 nA 200 pA 200 pA 200 pA 400 pA 10 2.0 10 6.0 6.0 6.0 10 5.0 5.0 3.0 1.0 1.0 2.0 6.0 10 6.0 15 10 10 12 15 15 15 10 10 10 10 10 10 10 10 10 10 10 100 pA 100 pA 10 200 3.0 25 100 pA 100 pA 75 50 100 pA 100 pA 0.05 50 pA 50 pA 100 pA 200 pA 25 25 70 20 100 50 25 50 25 50 25 25 25 50 25 50 25 4.0 8.0 1.0 1.0 1.0 1.0 4.0 4.0 4.5 4.5 16 8.0 4.0 4.0 4.0 4.0 4.0 13 25 2.0 0.5 0.2 0.2 13 13 10 10 55 30 10 13 13 13 13 ±5.0 +5.0 ±15 ±3.0 ±1.2 ±1.5 ±5.0 ±5.0 +3.0 +3.0 ±5.0 ±5.0 ±2.5 ±5.0 ±5.0 ±5.0 ±5.0 ±18 ±22 ±34 ±18 ±18 ±18 ±18 ±18 +44 +44 ±22 ±22 ±18 ±18 ±18 ±18 ±18 JFET Input JFET Input, Low Offset, Low Drift High Voltage General Purpose µPower, Programmable Low Cost, µPower, Programmable JFET Input JFET Input High Performance Single Supply Decompensated High Speed, JFET Input Low Power, JFET Input Low Noise, JFET Input Low Noise, JFET Input JFET Input JFET Input N/626, D/751 N/626, D/751 P1/626, D/751 P1/626, D/751 P1/626, D/751 P1/626 P/626, D/751 P/626, D/751 P/626, D/751 P/626, D/751 P/626, D/751 P/626, D/751 P/626 P/626 D/751 P/626 D/751
LF353双高阻运算放大器
产品特性● 低功耗● 宽共模(最高为V CC +)、差模电压范围 ● 低输入偏置和失调电流 ● 输出短路保护● 高输入阻抗JFET 输入级 ● 内部频率补偿 ● 无闩锁 ● 高转换速率产品概述该电路为高速JFET 输入双通道运算放大器,单片集成了高匹配、高压JFET 和双极型晶体管。
该器件的特点有高转换速率、低输入偏置和失调电流、低失调电压漂移。
引脚描述(1)金属圆8线 (2)陶瓷双列8线图1 LF353引出端排列(俯视图)电原理图图2 电原理图电参数表表1. LF353电特性,若无其他说明,工作温度为-55℃~+125℃,V CC=±15V。
注1:输入偏置电流是结漏电流,结温每增加10℃,电流值约增加一倍。
绝对最大额定值表2 绝对最大额定值注1:除差模电压外,其他所有电压都是相对于零参考电压(地),即V CC和V CC的中间值。
注2:输入电压的幅度不得超过电源电压和15V二者的较低值。
注3:差分电压是指正相输入端相与反相输入端的电压差。
注4:短路会导致过热和破坏性损耗,各数值为典型值。
注5:输出可能会短路到地或者任一电源,温度或电源电压必须有所限制以保证耗散值不会过大。
应用手册●电压跟随器图3 电压跟随器电路●增益为10的反相放大器图4 增益为10的反相放大器电路封装信息器件采用8引线D型封装和8引线T型封装。
D型封装外形尺寸按GB/T 7092-1993的规定,未注公差的尺寸按GB/T 1804-2000执行,外形尺寸如图5和表3所示。
T型封装外形尺寸按图6和表4的规定。
图5 D型(D08S2)陶瓷双列8线表3 D型(D08S2)封装外形尺寸图6 T型(T08A4)金属圆8线。
LF353中文资料_数据手册_参数
D低输入偏置电流…50 pA型低输入噪声电流0.01 pA/√Hz型低输入噪声电压…18 nV/√Hz型低供电电流…3.6 mA型高输入阻抗…1012年ΩTypD内部削减抵消电压增益带宽……3mhz类型,高转化率…13 V /µs TypdescriptionThis设备是一个低成本、高速、JFET-input运算放大器输入补偿电压很低。
它要求低的供电电流,但LF353保持了一个大的增益带宽产品和快速的转换速度。
此外,调制的高压JFET输入提供非常低的输入偏置和偏置电流。
LF353可用于高速积分器、数模转换器、采样保持电路和许多其他电路。
LF353的特点是在0°C到70°C之间运行。
(每个放大器的输出值+可用选项)包装可用胶带和卷绕。
将后缀R添加到设备类型(即。
LF353DR)。
绝对最大额定参数在操作自由空气的温度范围(除非另外说明)电源电压应用提示(续)由于将输入提高到共模范围内,再次将输入级和放大器置于正常工作模式。
超过单个输入的正共模极限不会改变输出的相位;然而,如果两者都超过了极限,放大器的输出将被迫处于高状态。
放大器的工作将与共模输入电压年龄等于正电源;然而,在这种情况下,增益带宽和旋转速率可能会降低。
当负共模电压荡到负电源的3v以内时,输入偏置伏特可能增加。
每个放大器由齐纳基准分别偏置,允许在±6V功率支持下正常电路运行。
LF353电源电压低于这些可能导致低增益带宽和摆频。
放大器将drivea2kΩ负载电阻±10 v在全温度范围0˚C + 70˚C。
然而,如果放大器被迫驱动更大的负载电流,则可能在负伏特翼上出现输入偏置电压的增加,并最终在正振荡和负振荡上达到有源电流的极限。
LF353应采取措施确保权力supplyfor集成电路不会成为逆转polarityor单位不是无意中安装在asocket向后无限通过resultingforward二极管集成电路中的电流冲击可能导致融合internalconductors和导致破坏单元。
运放的选择
运放的选择:接触过很多电路设计新手,在设计模拟电路时,有的人根本不知道如何选择运放,手头有什么就用什么,也许你曾经这样做了100次,都幸运的成功了,但是第101次会怎么样哪?另外一些人是恰恰相反,抱这五六本原厂资料翻来翻去,结果好不容易寻到了梦中情人,中关村又买不到。
不才向大家推荐一些俗俗的运放,肯定能买到,能适应大多场合。
1. 速度要求不高,或直流放大:LF441(单),LF442(双),LF444(四),TL084(四)(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)OP07(单,高精度,有调零端,速度可是特别慢,用于直流放大不错)2. 速度比较高,音频范围,倍数不超过100:LF356(单),LF353(双),LF347(四),TL074(四)(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)OP27(单,高精度,有调零端,速度比LF356快)NE5534(用于音响放大,音质很好,但输入阻抗低)3. 高速OP37(单位频响50MHz,但一定不能用做跟随器!在闭环增益小于5时会自激)LF441(单),LF442(双),LF444(四),TL084(四)(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)OP07(单,高精度,有调零端,速度可是特别慢,用于直流放大不错)2. 速度比较高,音频范围,倍数不超过100:LF356(单),LF353(双),LF347(四),TL074(四)(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)OP27(单,高精度,有调零端,速度比LF356快)NE5534(用于音响放大,音质很好,但输入阻抗低)3. 高速OP37(单位频响50MHz,但一定不能用做跟随器!在闭环增益小于5时会自激)4. 低压或单电源LM324(四,说实话,我不喜欢它,太慢)CA3130 高输入阻抗运算放大器 Intersil[DATA]CA3140 高输入阻抗运算放大器CD4573 四可编程运算放大器 MC14573ICL7650 斩波稳零放大器LF347(NS[DATA])带宽四运算放大器 KA347LF351 BI-FET单运算放大器 NS[DATA]LF353 BI-FET双运算放大器 NS[DATA]LF356 BI-FET单运算放大器 NS[DATA]LF357 BI-FET单运算放大器 NS[DATA]LF398 采样保持放大器 NS[DATA]LF411 BI-FET单运算放大器 NS[DATA]LF412 BI-FET双运放大器 NS[DATA]LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA] LM1458 双运算放大器 NS[DATA]LM148 四运算放大器 NS[DATA]LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA] LM2902 四运算放大器 NS[DATA]/TI[DATA]LM2904 双运放大器 NS[DATA]/TI[DATA]LM301 运算放大器 NS[DATA]LM308 运算放大器 NS[DATA]LM308H 运算放大器(金属封装) NS[DATA]LM318 高速运算放大器 NS[DATA]LM324(NS[DATA]) 四运算放大器 HA17324,/LM324N(TI)LM348 四运算放大器 NS[DATA]LM358 NS[DATA] 通用型双运算放大器 HA17358/LM358P(TI) LM380 音频功率放大器 NS[DATA]LM386-1 NS[DATA] 音频放大器 NJM386D,UTC386LM386-3 音频放大器 NS[DATA]LM386-4 音频放大器 NS[DATA]LM3886 音频大功率放大器 NS[DATA]LM3900 四运算放大器LM725 高精度运算放大器 NS[DATA]LM733 带宽运算放大器LM741 NS[DATA] 通用型运算放大器 HA17741 MC34119 小功率音频放大器NE5532 高速低噪声双运算放大器 TI[DATA] NE5534 高速低噪声单运算放大器 TI[DATA] NE592 视频放大器OP07-CP 精密运算放大器 TI[DATA]OP07-DP 精密运算放大器 TI[DATA]TBA820M 小功率音频放大器 ST[DATA]TL061 BI-FET单运算放大器 TI[DATA]TL062 BI-FET双运算放大器 TI[DATA]TL064 BI-FET四运算放大器 TI[DATA]TL072 BI-FET双运算放大器 TI[DATA]TL074 BI-FET四运算放大器 TI[DATA]TL081 BI-FET单运算放大器 TI[DATA]TL082 BI-FET双运算放大器 TI[DATA]TL084 BI-FET四运算放大器 TI[DATA]。
lm353
DUAL OPERATIONAL AMPLIFERThe LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides with bandwidth, low input bias currents and offset currents.FEATURES• Internally trimmed offset voltage: 10mV • Low input bias current: 50pA • Wide gain bandwidth: 4MHz • High slew rate: 13V/µs• High Input impedance: 1012ΩBLOCK DIAGRAMORDERING IN FORMATIONiSCHEMATIC DIAGRAM (One Section Only)Device Package Operating TemperatureLF353N 8 DIP LF353M 8 SOP 0 ~ + 70°CLF353S9 SIP©1999 Fairchild Semiconductor CorporationRev. BABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC =+15V, V EE = -15V, T A =25°C, unless otherwise specified)CharacteristicsSymbol Value Unit Power Supply Voltage Differential Input Voltage Input Voltage Range Output Short Circuit Duration Power DissipationOperating Temperature Range Storage Temperature RangeV CC V I(DIFF)V IP D T OPR T STG ±1830±15Continuous5000 ~ +70-65 ~ +150V V VmW °C °C CharacteristicSymbol Test ConditionsMin Typ Max Unit 5.010°C ≤T A ≤+70°C Input Offset Voltage Drift ∆V IO /∆T R S =10K Ω°C ≤T A ≤+70°C 10 µV/°C 25100pA 0°C ≤T A ≤+70°C4 nA 50200pA 0 °C ≤T A ≤+70°C8nAInput ResistanceR I 1012ΩV O(P-P) = ±0V 25100R L = 2K Ω0°C ≤T A ≤+70°C15 Output Voltage Swing V O(P.P)R L = 10K Ω±12±13.5V Input Voltage RangeV I(R)±11±15/-12V Common Mode Rejection Ratio CMRR R S ≥10K Ω70100dB Power Supply Rejection Ratio PSRR R S ≥10K Ω70100dBPower Supply Current I CC 3.6 6.5mA Slew RateSR G V = 113V/µs Gain-Bandwidth Product GBM 4MHz Channel SeperationCS f = 1Hz ~ 20Khz (Input referenced)120120dB Equivalent Input Noise Voltage V NI R S = 100Ωf = 1KHz 1616nV/√ Equivalent Input Noise CurrentI NIf = 1KHz0.010.01pA/√Hz HzInput Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain G V I BIAS I IO V IO R S =10K ΩV/mV mVTRADEMARKSACEx™CoolFET™CROSSVOLT™E 2CMOS TM FACT™FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROV AL OF FAIRCHILD SEMICONDUCTOR CORPORA TION.As used herein:ISOPLANAR™MICROWIRE™POP™PowerTrench™QS™Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of TermsDatasheet Identification Product Status Definition Advance InformationPreliminary No Identification Needed Obsolete This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.Formative or In DesignFirst ProductionFull ProductionNot In ProductionDISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.。
音频运放使用心得
音频运放使用心得(陈嘉春cjc0412)多年来,玩过众多的运放,我想也到了可以总结的时候了,下面谈谈玩过的一些运放的印象,希望借此抛砖引玉。
首先说双运放,玩过的有:JRC4558、NE5532、CA3240、TL082、TL072、NJM2114、LF353、LM833、MC33078、NE5535、AD8620、AD827、AD828、AD712、OP275、OP285、OP249、OPA2604、OPA2134、OPA2111、OPA2228、OPA2107、LM4562、LME49720、LME49860、EL2224、EL2244、、MUSES01、MUSES02、MUSES8820; 单运放有OPA134、OPA604、OPA627、AD797。
接下来逐一点评:JRC4558:声音尖剌、薄,不愧是臭肉,不浪费文字。
推荐度:★NE5532(全是塑封):电源电压可提高到±18V供电仍然能够正常工作,声音总体偏暖,声场窄、高频有点毛剌,低频肥厚而下潜一般。
几个版本中,当属飞利浦最好,声音平衡度和中频最好听。
ON(安森美)和JRC的版本次之,应该是做了微调,声音比较现代化,高频细节多一些,ON相对更好一些。
再次是大小S的,典型的5532声音,低频特别肥厚,总体不好听。
最差的是TI的5532P,高频剌耳,低频也差。
推荐度:★★☆CA3240:声场窄、高频很一般,但低频非常力度,没有韵味。
推荐度:★★TL082、TL072:声音走清澈路线,声场也较窄,低频下潜一般,但比较耐听。
总体上072要好于082,特点更加突出。
推荐度:★★☆NJM2114:声音比较暖,声场窄,三频平衡度尚可,胜在输出电流大,电源电压可提高到±18V供电仍然能够正常工作,我用在耳放中,8块并联输出推耳机,比5532好许多。
推荐度:★★★LF353:声场窄,声音走清澈路线但解析力一般,用在音频回路没有优势,用在中点伺服上更好。
lf353工作原理
lf353工作原理
LF353是一款专用的宽带高速运算放大器。
该芯片由两个独立的、高性能的运算放大器组成,具有低噪声、高增益带宽和高输入电阻等特点。
它被广泛应用于精密量测和高保真音频放大器等领域。
LF353的工作原理基于差分对输入的放大器电路。
每个运算放大器由一个输入级、一个差动放大级和一个输出级组成。
输入级对输入信号进行阻抗扩展,并将信号传递给差动放大级。
差动放大器使用两个晶体管配对,将差分输入信号放大,并通过输出级将放大的信号输出。
在工作时,差分输入信号被分别连接到运放的非反相和反相输入端。
当输入信号的差异引起非线性失真时,差动放大器会通过增益控制来抵消这种失真。
差动放大器的增益与输出信号的相位差紧密相关,从而实现了对输入信号的线性放大。
LF353还具有高输入阻抗,这意味着它对输入信号的负载影响很小,从而使得输入信号的失真减小。
同时,该芯片的低噪声特性使其能够接收较小幅度的输入信号,并输出高保真度的放大信号。
总之,LF353的工作原理基于差分输入的放大器电路结构,通过差动放大器将输入信号放大,并通过输出级输出放大信号。
它的高增益带宽、低噪声和高输入阻抗等特性使其成为广泛应用于各种精密测量和音频放大器应用的理想选择。
LF353N_NL中文资料
©2001 Fairchild Semiconductor CorporationRev. 1.0.0Features•Internally trimmed offset voltage: 10mV •Low input bias current: 50pA •Wide gain bandwidth: 4MHz •High slew rate: 13V/µs•High Input impedance: 1012ΩDescriptionThe LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide bandwidth, low input bias currents and offset currents.8-DIP18-SOP1Internal Block DiagramLF353Dual Operational Amplifier (JFET)LF3532Schematic Diagram(One Section Only)Absolute Maximum RatingsParameterSymbol Value UnitPower Supply Voltage V CC ±18V Differential Input Voltage V I(DIFF)30V Input Voltage Range V I ±15V Output Short Circuit Duration -Continuous-Power DissipationP D 500mW Operating Temperature Range T OPR 0 ~ +70°C Storage Temperature RangeT STG-65 ~ +150°CLF3533Electrical Characteristics(V CC =+15V, V EE = -15V, T A =25 °C, unless otherwise specified)ParameterSymbol ConditionsMin.Typ.Max.Unit Input Offset Voltage V IOR S =10K Ω- 5.010mV 0 °C ≤T A ≤+70 °C ----Input Offset Voltage Drift ∆V IO /∆T R S =10K Ω0 °C ≤T A ≤+70 °C -10- µV/ °C Input Offset Current I IO -25100pA 0 °C ≤T A ≤+70 °C --4 nA Input Bias Current I BIAS -50200pA 0 °C ≤T A ≤+70 °C --8 nAInput ResistanceR I --1012-ΩLarge Signal Voltage Gain G VV O(P-P) = ±10V 25100-V/mV R L = 2K Ω0 °C ≤T A ≤+70 °C 15---Output Voltage Swing V O(P_P)R L = 10K Ω±12±13.5-V Input Voltage RangeV I(R)-±11±15/-12-V Common Mode Rejection Ratio CMRR R S ≤ 10K Ω70100-dB Power Supply Rejection Ratio PSRR R S ≤ 10K Ω70100-dB Power Supply Current I CC -- 3.6 6.5mA Slew RateSR G V = 1-13-V/µS Gain-Bandwidth Product GBW --4-MHz Channel SeperationCS f = 1Hz ~ 20KHz (Input referenced)-120-dB Equivalent Input Noise Voltage V NI R S = 100Ωf = 1KHz -16- nV/Equivalent Input Noise CurrentI NIf = 1KHz-0.01- pA/HzHzLF353Mechanical DimensionsPackage8-DIP4LF353 Mechanical DimensionsPackage8-SOP5LF3536/1/01 0.0m 001Stock#DSxxxxxxxx2001 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureLF353N 8-DIP 0 ~ + 70°CLF353M8-SOP。
lf353运放音评论
lf353运放音评论【最新版】目录1.运放音评论简介2.运放音评论的特点3.运放音评论的优势4.运放音评论的应用领域5.运放音评论的展望正文【运放音评论简介】运放音评论,全称“线性反馈 353 运放音评论”,是一种新型的音频处理技术。
它结合了线性反馈和 353 运放的优势,广泛应用于各类音响设备和音乐制作领域,为用户提供优质的音频体验。
【运放音评论的特点】运放音评论具有以下特点:1.高精度:运放音评论技术能够对音频信号进行精确的处理,使音频信号更加真实、自然。
2.低失真:通过线性反馈和 353 运放的结合,运放音评论技术能够降低音频信号的失真,提高音质。
3.宽广的应用范围:运放音评论技术不仅可以应用于音响设备,还可以应用于音乐制作、音频处理等领域。
【运放音评论的优势】运放音评论技术具有以下优势:1.提高音质:通过高精度和低失真的处理,运放音评论技术能够显著提高音质,为用户提供更好的音频体验。
2.广泛的适用性:运放音评论技术可以应用于各种类型的音响设备和音频处理领域,满足不同用户的需求。
3.可定制性:运放音评论技术可以根据用户的需求进行定制,提供个性化的音频处理方案。
【运放音评论的应用领域】运放音评论技术广泛应用于以下领域:1.家庭音响:通过运放音评论技术,家庭音响设备可以提供更好的音质,为用户带来更好的听觉享受。
2.汽车音响:运放音评论技术也可以应用于汽车音响设备,提高驾驶过程中的音频体验。
3.音乐制作:在音乐制作领域,运放音评论技术可以帮助音乐制作人员提高音频质量,制作出更好的音乐作品。
【运放音评论的展望】随着科技的不断发展,运放音评论技术将会有更广泛的应用前景。
lf353运放音评论
lf353运放音评论摘要:1.运放音评论简介2.运放音评论的特点3.运放音评论的优势4.运放音评论的应用领域5.运放音评论的局限性6.结论正文:1.运放音评论简介运放音评论,即LF353 运放音评论,是一种针对音频放大器设计的集成电路。
运放在电子设备中有着广泛的应用,尤其是在音频处理领域,例如音频放大器、均衡器、音量控制器等。
LF353 运放音评论以其出色的性能和稳定性,成为音频设计领域中的佼佼者。
2.运放音评论的特点LF353 运放音评论具有以下几个主要特点:a.高增益:LF353 运放具有高达100dB 的增益,能够有效地放大音频信号。
b.低失真:LF353 运放的失真度非常低,可以提供高质量的音频输出。
c.宽频带:LF353 运放的频带宽度高达1.5MHz,能够处理宽频带的音频信号。
d.高输入阻抗和低输出阻抗:LF353 运放的输入阻抗高达1MΩ,输出阻抗仅为10Ω,能够有效地驱动后级负载。
3.运放音评论的优势LF353 运放音评论在音频处理领域具有以下优势:a.音质优秀:LF353 运放的低失真和宽频带特性,使得处理后的音频信号具有较高的保真度和良好的听感。
b.应用广泛:LF353 运放音评论可应用于各种音频放大器、均衡器、音量控制器等设备,满足多种音频处理需求。
c.设计简便:LF353 运放音评论集成度高,可降低设计复杂度,减少电路板面积,降低系统成本。
4.运放音评论的应用领域LF353 运放音评论在以下领域有着广泛的应用:a.家庭音响系统:LF353 运放音评论可应用于家庭音响系统中的功放、均衡器等设备,提供高质量的音频输出。
b.专业音响设备:LF353 运放音评论也可应用于专业音响设备,如舞台音响、录音设备等,满足专业音频处理需求。
c.消费电子产品:LF353 运放音评论在消费电子产品中也有广泛应用,如手机、平板电脑等设备的音频放大器等。
5.运放音评论的局限性尽管LF353 运放音评论在音频处理领域具有诸多优势,但仍存在以下局限性:a.功耗较高:LF353 运放的功耗相对较高,对于低功耗设备而言可能不太适用。
实验七 自制RC有源滤波电路
实验七 自制RC 有源滤波电路一 实验目的1.掌握由运算放大器与电阻、电容构成的RC 有源滤波器的电路原理。
2.掌握滤波器幅频特性的测试方法。
二 实验原理及实验参考电路滤波电路是一种选频电路,它是一种能使有用频率的信号通过,而同时对无用频率的信号进行衰减的电子装置。
本实验采用宽带集成运算放大器LF353和电阻、电容构成RC 有源滤波电子装置。
根据频率特性的基本知识可知,滤波电路的阶数越高,过渡带将越窄,滤波特性越接近理想滤波器的滤波特性,而高于二阶的滤波电路可以由一阶和二阶滤波电路构成,本实验制作RC 二阶有源滤波电路。
1.压控电压源二阶低通滤波电路 电路如图1所示。
图 1 压控电压源二阶低通滤波电路实验电路中R 1=R 2=R=4.7k Ω,R 3=1k Ω,R 4=586Ω,C 1=C 2=C=10nF(涤仑电容103)。
电路传递函数为式中通带放大倍数341R R A up +=。
2)()3(1)(sRC sRC A A s A up upu+-+=电压放大倍数为20)3()(1)(f f A j f f A f A up upu -+-=式中特征频率RCf π210= 令upA Q -=31,则Q 称为该滤波电路的品质因数。
电路的幅频特性与品质因数的取值相关,如图2所示。
图2 压控电压源二阶低通滤波电路的幅频特性实验电路中通带放大倍数品质因数Q=1/(3-A up )=1/(3-1.586)=0.707,称为巴特沃思滤波器,电路的上限截止频率f H 则刚好等于特征频率f 0。
图1所示电路中如果品质因数Q ≥1,则电路的上限截止频率可大于特征频率。
由图2可知Q 大于1的幅频特性曲线的过渡带更陡,幅频特性更好。
2.压控电压源二阶高通滤波电路586.110005861134=+=+=R R A up )(33871010107.428.6121930Hz RC πf f H ≈⨯⨯⨯⨯===-电路如图3所示。
单、双电源供电运放芯片特点
单、双电源供电运放芯片特点大部分运放电路,从电路简洁和信号精度考虑,多采纳±15V典型供电电源。
少部分运放电路,系采纳单电源供电,那么当供电电源有(单、双)差异时,如何选择运放芯片,以及可否互为代换,是一个需要留意的问题。
适用于双电源供电的芯片型号有:LF353,LF347;TL072,TL074;TL082,TL084等。
从器件资料上可以看到其电源电压范围±3V~±18V;供电引脚标注VCC+、VCC-,或Vcc、VEE,或V+、V-等(意为需正、负两组供电电源)。
适用于单电源供电的典型芯片型号有:LM358,LM324等。
从器件资料上可以看到其电源电压范围3V~32V(±1.5V~±16V);供电引脚标注Vcc、GND。
从供电引脚的标注上,可以区分芯片的供电类型。
运放芯片采纳单还是双电源供电,和内部结构设计是相关的。
(1)双电源供电的芯片,仅相宜做为线性放大器应用,其动态范围在双电源供电时表现优良,单电源供电时可能会不尽人意。
做为比较器应用,在单电源供电时,因内部电气结构所限,其输出下限电平不到能0V,如输出低电平不能至0V四周,(15V电源供电时)输出最低电平仍高达6~8V。
这使得输出高、低电平的界限变得模糊,有可能使后级规律电路推断失误,造成传输错误。
(2)特地据此开发的单电源供电芯片,则在电路结构上弥补了这个缺点,如LM324芯片,在单电源供电作为比较器应用时,其输出低电平能达到接近地电平0V。
做为比较器应用时表现更为精彩。
另外,因制造工艺水平的提高,尤其是专用比较器芯片的开发,在适用比较器的地方,往往已经很少采纳运算放大器来替代了。
专用单电源供电的运放芯片,在双电源应用(工作于线性放大区)时,同双电源供电芯片的性能是一样的。
可以得出结论:(1)单电源供电运放芯片(多用通用型运放),适应于单、双电源供电,甚至在某些程度上,可做为比较器应用,其代换性较好。
基于LF353的简易助听器的制作
的距离发生变化, 使电容发生 了变化 , 因为驻极体
两 侧 的异性 电荷 为 固有 常 量 , 因此 电容 两 端 的 电
压发生了变化 , 从而实现 了声电转换 。另外 , 传声
器 内包 含一 个结 型场 效应 管放 大器 , 作 用是 : 一是 便 于 与音频 放 大器 匹配 ; 二是 提高话 筒 的灵 敏度 。
[ 关键词】 L F 3 5 3 ; M u h i s i m l 0仿真; 助听器
[ 中图分 类号 ] T P 3 4 2 [ 文献标识码 ] A [ 文章编号 】 1 6 7 1 — 5 3 3 0 ( 2 0 1 6 ) 0 5 — 0 1 0 2 — 0 3
O 引言
助 听器 ( h e a i t n g A i d ) 是一 个 有助 于 听力 残 疾
基于 L F 3 5 3的简 易助听器的制作
崔 瑾 娟
( 山西机 电职业技术学 院 , 山西 长治 0 4 6 0 1 1 )
[ 摘要 】 助听器实质上是一种低频放大器 , 可用耳机进行放音 , 当使用者 用上耳机后 , 可提 高听者 的听觉。本文利用
L F 3 5 3设计并制作了一款简易集成助听器 , 在m u l t i s i m l 0环境下仿真测试 , 制作完成后 , 经调试效果 良好 。
2 元器件介绍
集 成 算 放 大 器 L F 3 5 3 , 它 是 一 种 双 路 运 算
o U T
…
I N
l N
+I N
ห้องสมุดไป่ตู้0UT
放大器, 属于高输入 阻抗低噪声集成器件。其输
入 阻抗 高为 1 0 M Q, 输入 偏 置 电流 仅有 5 0×1 0
8个型号的运算放大器分析对比
8个型号的运算放⼤器分析对⽐关于运算放⼤器⽤于发烧⾳频放⼤,问题集中在3个⽅⾯:⼀是运放可不可以⽤,⼆是到底哪个型号的运放好,三是现在的市场鱼龙混杂,怎么能知道买到的是“好”运放。
关于第⼀个问题,我个⼈的意见是肯定的,不多赘述。
后⾯两个问题,⽹上的精品帖⼦不少,但个⼈认为,很多介绍都是在谈听⾳感受,虽然描述得很精彩,但多少有些雾⾥看花的感觉。
为此,个⼈从⼿头多个型号双运放中选出8个型号,⽤直观定性的⽅法做⼀简单对⽐。
8个双运放分别是:TL062、TL082、LM2904、LF353、AD827、NE5532、AD712、OPA2134。
个⼈认为对于说明问题⾜够了。
⾸先在运放参数上做⼀简单对⽐。
运算放⼤器的参数很多,⽣产⼚家给出的参数⽂件⾮常详尽,但⽤于⾳频放⼤只要关注⼏个有关参数就可以了。
如下表:序号型号转换速率V/us增益带宽Mhz等效输⼊噪声电压Nv/√hz共模抑制⽐db失真度 %最⼤输出电流(short-circuit current) MA1TL062 3.5142862TL08213318860.0033LM29040.30.74080404LF353134251000.025AD827300501595326NE55329105100387AD71216316908OPA213420881000.0000840从列表对⽐情况可以看出:等效输⼊噪声电压-越⼩越好,NE5532、OPA2134、AD827胜出;转换速率-越⾼越好,AD827、OPA2134、AD712胜出;单位增益带宽-越⼤越好,AD827、NE5532、OPA2134胜出;共模抑制⽐-越⼤越好,OPA2134、NE5532、LF353、AD827胜出。
失真度,当然越⼩越好;最⼤输出电流,应该是越⼤越好,但这两个指标没有找全,不做⽐较吧。
⼩结:综合看,OPA2134、AD827、NE5532综合参数最好,也是⼝碑最好的。
lf353工作原理
lf353工作原理
LF353是一种高速低功耗双运放,其工作原理如下:
1. 电流放大器:LF353的输入阻抗非常高,通常在10^12Ω的范围内。
它将输入电流放大为相应的输出电压。
输入电流一般很小,可忽略不计。
2. 差动放大器:LF353有两个输入引脚,一个是非反馈输入引脚(即正输入引脚)(+),另一个是反馈输入引脚(即负输入引脚)(-)。
它们之间的电压差称为差动输入电压。
差动放大器根据差动输入电压放大和输出一个信号。
3. 反相放大器:LF353可以通过连接一个适当的电阻和电容将差动输入引脚连接到输出引脚,从而形成一个反相放大器。
当差动输入电压发生变化时,经过放大后的信号会在输出引脚上生成一个反相的输出电压。
4. 非反相放大器:通过改变差动输入引脚和输出引脚之间的连接方式,可以将LF353设置为非反相放大器。
当差动输入电压变化时,经过放大后的信号会在输出引脚上生成一个与输入信号同相的输出电压。
总之,LF353通过差动放大器的原理将输入信号放大并进行反相或非反相处理,最终输出一个放大后的信号。
LF353MX,LF353MNOPB,LF353NNOPB, 规格书,Datasheet 资料
LF353LF353 Wide Bandwidth Dual JFET Input Operational AmplifierLiterature Number: SNOSBH3D 芯天下--/LF353Wide Bandwidth Dual JFET Input Operational AmplifierGeneral DescriptionThese devices are low cost,high speed,dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II ™technology).They require low supply current yet maintain a large gain bandwidth product and fast slew rate.In addition,well matched high voltage JFET input devices provide very low input bias and offset currents.The LF353is pin compatible with the standard LM1558allowing designers to immediately upgrade the overall performance of existing LM1558and LM358designs.These amplifiers may be used in applications such as high speed integrators,fast D/A converters,sample and hold circuits and many other circuits requiring low input offset voltage,low input bias current,high input impedance,high slew rate and wide bandwidth.The devices also exhibit low noise and offset voltage drift.Featuresn Internally trimmed offset voltage:10mV n Low input bias current:50pA n Low input noise voltage:25nV/√Hz n Low input noise current:0.01pA/√Hzn Wide gain bandwidth:4MHz n High slew rate:13V/µs n Low supply current: 3.6mA n High input impedance:1012Ωn Low total harmonic distortion :≤0.02%n Low 1/f noise corner:50Hz nFast settling time to 0.01%:2µsTypical Connection 00564914Simplified Schematic1/2Dual00564916Connection DiagramDual-In-Line Package00564917Top ViewOrder Number LF353M,LF353MX or LF353N See NS Package Number M08A or N08EBI-FET II ™is a trademark of National Semiconductor Corporation.December 2003LF353Wide Bandwidth Dual JFET Input Operational Amplifier©2003National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage ±18VPower Dissipation(Note 2)Operating Temperature Range 0˚C to +70˚CT j (MAX)150˚CDifferential Input Voltage ±30V Input Voltage Range (Note 3)±15VOutput Short Circuit Duration Continuous Storage Temperature Range −65˚C to +150˚CLead Temp.(Soldering,10sec.)260˚CSoldering Information Dual-In-Line Package Soldering (10sec.)260˚CSmall Outline Package Vapor Phase (60sec.)215˚C Infrared (15sec.)220˚CSee AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.ESD Tolerance (Note 8)1000V θJA M PackageTBDNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.Elec-trical Characteristics state DC and AC electrical specifications under particu-lar test conditions which guarantee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guar-anteed for parameters where no limit is given,however,the typical value is a good indication of device performance.DC Electrical Characteristics(Note 5)Symbol ParameterConditionsLF353Units MInTyp Max V OS Input Offset VoltageR S =10k Ω,T A =25˚C 510mV Over Temperature 13mV ∆V OS /∆T Average TC of Input Offset Voltage R S =10k Ω10µV/˚C I OS Input Offset Current T j =25˚C,(Notes 5,6)25100pA T j ≤70˚C4nA I B Input Bias Current T j =25˚C,(Notes 5,6)50200pA T j ≤70˚C 8nA R IN Input ResistanceT j =25˚C1012ΩA VOLLarge Signal Voltage GainV S =±15V,T A =25˚C 25100V/mVV O =±10V,R L =2k ΩOver Temperature15V/mVV O Output Voltage Swing V S =±15V,R L =10k Ω±12±13.5V V CM Input Common-Mode Voltage V S =±15V±11+15V Range−12V CMRR Common-Mode Rejection Ratio R S ≤10k Ω70100dB PSRR Supply Voltage Rejection Ratio (Note 7)70100dB I SSupply Current3.66.5mAAC Electrical Characteristics(Note 5)SymbolParameterConditionsLF353UnitsMinTyp MaxAmplifier to Amplifier CouplingT A =25˚C,f=1Hz−20kHz −120dB (Input Referred)SR Slew RateV S =±15V,T A =25˚C 8.013V/µs GBW Gain Bandwidth Product V S =±15V,T A =25˚C 2.74MHze n Equivalent Input Noise Voltage T A =25˚C,R S =100Ω,16f=1000Hzi nEquivalent Input Noise CurrentT j =25˚C,f=1000Hz0.01L F 353 2AC Electrical Characteristics(Continued)(Note5)Symbol Parameter Conditions LF353UnitsMin Typ MaxTHD Total Harmonic Distortion A V=+10,RL=10k,V O=20Vp−p,BW=20Hz-20kHz<0.02%Note2:For operating at elevated temperatures,the device must be derated based on a thermal resistance of115˚C/W typ junction to ambient for the N package, and158˚C/W typ junction to ambient for the H package.Note3:Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.Note4:The power dissipation limit,however,cannot be exceeded.Note5:These specifications apply for V S=±15V and0˚C≤T A≤+70˚C.V OS,I B and I OS are measured at V CM=0.Note6:The input bias currents are junction leakage currents which approximately double for every10˚C increase in the junction temperature,T j.Due to the limited production test time,the input bias currents measured are correlated to junction temperature.In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation,P D.T j=T A+θjA P D whereθjA is the thermal resistance from junction to e of a heat sink is recommended if input bias current is to be kept to a minimum.Note7:Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.V S =±6V to±15V.Note8:Human body model,1.5kΩin series with100pF.Typical Performance CharacteristicsInput Bias Current Input Bias Current0056491800564919Supply Current Positive Common-Mode Input Voltage Limit0056492000564921LF3533Typical Performance Characteristics(Continued)Negative Common-Mode Input Voltage LimitPositive Current Limit0056492200564923Negative Current Limit Voltage Swing0056492400564925Output Voltage Swing Gain Bandwidth0056492600564927L F 353 4Typical Performance Characteristics(Continued)Bode PlotSlew Rate0056492800564929Distortion vs.Frequency Undistorted Output Voltage Swing0056493000564931Open Loop Frequency Response Common-Mode Rejection Ratio0056493200564933LF3535Typical Performance Characteristics(Continued)Power Supply Rejection RatioEquivalent Input Noise Voltage0056493400564935Open Loop Voltage Gain (V/V)Output Impedance0056493600564937Inverter Settling Time00564938L F 353 6Pulse ResponseSmall Signaling Inverting00564904Large Signal Inverting00564906Small Signal Non-Inverting00564905Large Signal Non-Inverting00564907Current Limit(R L=100Ω)00564908Application HintsThese devices are op amps with an internally trimmed inputoffset voltage and JFET input devices(BI-FET II).TheseJFETs have large reverse breakdown voltages from gate tosource and drain eliminating the need for clamps across theinputs.Therefore,large differential input voltages can easilybe accommodated without a large increase in input current.The maximum differential input voltage is independent of thesupply voltages.However,neither of the input voltagesshould be allowed to exceed the negative supply as this willcause large currents to flow which can result in a destroyedunit.Exceeding the negative common-mode limit on either inputwill force the output to a high state,potentially causing areversal of phase to the output.Exceeding the negativecommon-mode limit on both inputs will force the amplifieroutput to a high state.In neither case does a latch occurLF3537Application Hints(Continued)since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.Exceeding the positive common-mode limit on a single input will not change the phase of the output;however,if both inputs exceed the limit,the output of the amplifier will be forced to a high state.The amplifiers will operate with a common-mode input volt-age equal to the positive supply;however,the gain band-width and slew rate may be decreased in this condition.When the negative common-mode voltage swings to within 3V of the negative supply,an increase in input offset voltage may occur.Each amplifier is individually biased by a zener reference which allows normal circuit operation on ±6V power sup-plies.Supply voltages less than these may result in lower gain bandwidth and slew rate.The amplifiers will drive a 2k Ωload resistance to ±10V over the full temperature range of 0˚C to +70˚C.If the amplifier is forced to drive heavier load currents,however,an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both posi-tive and negative swings.Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarityor that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.As with most amplifiers,care should be taken with lead dress,component placement and supply decoupling in order to ensure stability.For example,resistors from the output to an input should be placed with the body close to the input to minimize “pick-up”and maximize the frequency of the feed-back pole by minimizing the capacitance from the input to ground.A feedback pole is created when the feedback around any amplifier is resistive.The parallel resistance and capacitance from the input of the device (usually the inverting input)to AC ground set the frequency of the pole.In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed loop gain and consequently there is negligible effect on stability margin.However,if the feed-back pole is less than approximately 6times the expected 3dB frequency a lead capacitor should be placed from the output to the input of the op amp.The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.Detailed Schematic00564909L F 353 8Typical ApplicationsThree-Band Active Tone Control0056493900564940Note 1:All controls flat.Note 2:Bass and treble boost,mid flat.Note 3:Bass and treble cut,mid flat.Note 4:Mid boost,bass and treble flat.Note 5:Mid cut,bass and treble flat.•All potentiometers are linear taper•Use the LF347Quad for stereo applicationsLF3539Typical Applications(Continued)Improved CMRR Instrumentation Amplifier00564941Fourth Order Low Pass Butterworth Filter00564942L F 353 10Typical Applications(Continued)Fourth Order High Pass Butterworth Filter00564943LF35311Typical Applications(Continued)Ohms to Volts Converter00564944L F 353 12Physical Dimensionsinches (millimeters)unless otherwise notedOrder Number LF353M or LF353MXNS Package Number M08AMolded Dual-In-Line PackageOrder Number LF353N NS Package N08ELF35313NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user. 2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L F 353W i d e B a n d w i d t h D u a l J F E T I n p u t O p e r a t i o n a l A m p l i f i e rNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAudio /audio Communications and Telecom /communicationsAmplifiers Computers and Peripherals /computersData Converters Consumer Electronics /consumer-appsDLP®Products Energy and Lighting /energyDSP Industrial /industrialClocks and Timers /clocks Medical /medicalInterface Security /securityLogic Space,Avionics and Defense /space-avionics-defense Power Mgmt Transportation and Automotive /automotiveMicrocontrollers Video and Imaging /videoRFID OMAP Mobile Processors /omapWireless Connectivity /wirelessconnectivityTI E2E Community Home Page Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments Incorporated。
三阶低通滤波器上图为三阶低通滤波器电路图图中所用运放为LF353
1.三阶低通滤波器上图为三阶低通滤波器电路图图中所用运放为LF353,而实际试验所用运放为LM324,一下为两者区别:LF353内部为场效应管,LM324为晶体管,所以LM324有偏置电流,而LF353可忽略,LF353的输入负载阻抗电压较高,而LM324较小,如在6V 下工作时,输入电压最好维持在4.5V 以下。
LF353较LM324带宽较宽,分别为小于1.2MHz 、小于4MHz ,所以在设计高通滤波器时最好选用LF353。
根据资料,在本试验中,324可以代替353使用。
分析电路图:a . 一阶系统的的级联:H 1(ω)=- H 2(ω)=-G(s)= H 1(ω)* H 2(ω)b . 二阶系统(加入反馈电路):H 2(s)=c . 三阶系统:令;;;则有H(s)= 则选取R1C1=R3C3=1、R3=R4、RxR2C1C2=1即可。
由于本电路在大信号即大电阻时较为准确,所以选用fc=1kHz,R1=R2=R3=R4=10kΩ,R6=20k Ω,C1=C2=10μF ,C3=10μF如图连接电路并测量:实验测得数据:峰值频率为1392Hz ,与由截止频率计算得到的理论值1414Hz 相比误差不大。
2. VV oV i2V o2a.虚线之前的电路共模输入:为实现Kc=0,令R4/R3=R2/R1,选取R4=R2=150Ω,R3=R2=10Ω开始时输出出现失真,经过直流偏置和衰减波形正常。
直流偏置是因为没有提供偏置电阻,衰减是因为LM324的限制,在供电5V时输入不能过大,在输入5.85V时出现失真,超出了运放的工作范围,在3.82V以内,运放正常工作,且输出基本为零。
b.虚线之后的电路共模输入:实验数据如下共模输入时输出波形良好,输出电压接近于零。
c.整体电路运供电作电压为5V,输入为0-5.55V时,输出电压为0V,输入大于5.55V时,出现右图波形,需将运放供电电压调小到4V,输出电压为0V。
LF353运放PDF
260 C
260 C
(Note 1) 0 C to a 70 C 150 C
g 30V g 15V
Continuous
b 65 C to a 150 C
215 C 220 C See AN-450 ‘‘Surface Mounting Methods and Their Effect on Product Reliability’’ for other methods of soldering surface mount devices ESD Tolerance (Note 7) 1700V iJA M Package TBD
Symbol Parameter Amplifier to Amplifier Coupling SR GBW en in Slew Rate Gain Bandwidth Product Equivalent Input Noise Voltage Equivalent Input Noise Current Conditions Min TA e 25 C f e 1 Hzb20 kHz (Input Referred) VS e g 15V TA e 25 C VS e g 15V TA e 25 C TA e 25 C RS e 100X f e 1000 Hz Tj e 25 C f e 1000 Hz 80 27 LF353 Typ
Features
Y Y Y Y Y Y Y Y Y
Y Y
Internally trimmed offset voltage 10 mV Low input bias current 50pA Low input noise voltage 25 nV 0Hz Low input noise current 0 01 pA 0Hz Wide gain bandwidth 4 MHz High slew rate 13 V ms Low supply current 3 6 mA High input impedance 1012X k 0 02% Low total harmonic distortion AV e 10 RL e 10k VO e 20Vpbp BW e 20 Hz-20 kHz Low 1 f noise corner 50 Hz Fast settling time to 0 01% 2 ms
LF353N
运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V,μA791集成运放的输出电流可达1A。
编辑本段主要参数
1.共模输入电阻(RINCM)
该参数表示运算放大器工作在线性区时,输入共模电压范围与该范围内偏置电流的变化量之比。
2.直流共模抑制(CMRDC)
该参数用于衡量运算放大器对作用在两个输入端的相同直流信号的抑制能力。
3.交流共模抑制(CMRAC)
CMRAC用于衡量运算放大器对作用在两个输入端的相同交流信号的抑制能力,是差模开环增益除以共模开环增益的函数。
3.低温漂型运算放大器
在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP07、OP27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器
15.电源电流(ICC、IDD)
该参数是在指定电源电压下器件消耗的静态电流,这些参数通常定义在空载情况下。
16.单位增益带宽(BW)
该参数指开环增益大于1时运算放大器的最大工作频率。
17.输入失调电压(VOS)
该参数表示使输出电压为零时需要在输入端作用的电压差。
18.输入失调电压温漂(TCVOS)
1.通用型运算放大器
通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LF353Wide Bandwidth Dual JFET Input Operational AmplifierGeneral DescriptionThese devices are low cost,high speed,dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II ™technology).They require low supply current yet maintain a large gain bandwidth product and fast slew rate.In addition,well matched high voltage JFET input devices provide very low input bias and offset currents.The LF353is pin compatible with the standard LM1558allowing designers to immediately upgrade the overall performance of existing LM1558and LM358designs.These amplifiers may be used in applications such as high speed integrators,fast D/A converters,sample and hold circuits and many other circuits requiring low input offset voltage,low input bias current,high input impedance,high slew rate and wide bandwidth.The devices also exhibit low noise and offset voltage drift.Featuresn Internally trimmed offset voltage:10mV n Low input bias current:50pA n Low input noise voltage:25nV/√Hz n Low input noise current:0.01pA/√Hzn Wide gain bandwidth:4MHz n High slew rate:13V/µs n Low supply current: 3.6mA n High input impedance:1012Ωn Low total harmonic distortion :≤0.02%n Low 1/f noise corner:50Hz nFast settling time to 0.01%:2µsTypical Connection 00564914Simplified Schematic1/2Dual00564916Connection DiagramDual-In-Line Package00564917Top ViewOrder Number LF353M,LF353MX or LF353N See NS Package Number M08A or N08EBI-FET II ™is a trademark of National Semiconductor Corporation.December 2003LF353Wide Bandwidth Dual JFET Input Operational Amplifier©2003National Semiconductor Corporation Absolute Maximum Ratings (Note1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage ±18VPower Dissipation(Note 2)Operating Temperature Range 0˚C to +70˚CT j (MAX)150˚CDifferential Input Voltage ±30V Input Voltage Range (Note 3)±15VOutput Short Circuit Duration Continuous Storage Temperature Range −65˚C to +150˚CLead Temp.(Soldering,10sec.)260˚CSoldering Information Dual-In-Line Package Soldering (10sec.)260˚CSmall Outline Package Vapor Phase (60sec.)215˚C Infrared (15sec.)220˚CSee AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.ESD Tolerance (Note 8)1000V θJA M PackageTBDNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.Elec-trical Characteristics state DC and AC electrical specifications under particu-lar test conditions which guarantee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guar-anteed for parameters where no limit is given,however,the typical value is a good indication of device performance.DC Electrical Characteristics(Note 5)Symbol ParameterConditionsLF353Units MInTyp Max V OS Input Offset VoltageR S =10k Ω,T A =25˚C 510mV Over Temperature 13mV ∆V OS /∆T Average TC of Input Offset Voltage R S =10k Ω10µV/˚C I OS Input Offset Current T j =25˚C,(Notes 5,6)25100pA T j ≤70˚C4nA I B Input Bias Current T j =25˚C,(Notes 5,6)50200pA T j ≤70˚C 8nA R IN Input ResistanceT j =25˚C1012ΩA VOLLarge Signal Voltage GainV S =±15V,T A =25˚C 25100V/mVV O =±10V,R L =2k ΩOver Temperature15V/mVV O Output Voltage Swing V S =±15V,R L =10k Ω±12±13.5V V CM Input Common-Mode Voltage V S =±15V±11+15V Range−12V CMRR Common-Mode Rejection Ratio R S ≤10k Ω70100dB PSRR Supply Voltage Rejection Ratio (Note 7)70100dB I SSupply Current3.66.5mAAC Electrical Characteristics(Note 5)SymbolParameterConditionsLF353UnitsMinTyp MaxAmplifier to Amplifier CouplingT A =25˚C,f=1Hz−20kHz −120dB (Input Referred)SR Slew RateV S =±15V,T A =25˚C 8.013V/µs GBW Gain Bandwidth Product V S =±15V,T A =25˚C 2.74MHze n Equivalent Input Noise Voltage T A =25˚C,R S =100Ω,16f=1000Hzi nEquivalent Input Noise CurrentT j =25˚C,f=1000Hz0.01L F 353 2AC Electrical Characteristics (Continued)(Note5)Symbol Parameter Conditions LF353UnitsMin Typ MaxTHD Total Harmonic Distortion A V=+10,RL=10k,V O=20Vp−p,BW=20Hz-20kHz<0.02%Note2:For operating at elevated temperatures,the device must be derated based on a thermal resistance of115˚C/W typ junction to ambient for the N package, and158˚C/W typ junction to ambient for the H package.Note3:Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.Note4:The power dissipation limit,however,cannot be exceeded.Note5:These specifications apply for V S=±15V and0˚C≤T A≤+70˚C.V OS,I B and I OS are measured at V CM=0.Note6:The input bias currents are junction leakage currents which approximately double for every10˚C increase in the junction temperature,T j.Due to the limited production test time,the input bias currents measured are correlated to junction temperature.In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation,P D.T j=T A+θjA P D whereθjA is the thermal resistance from junction to e of a heat sink is recommended if input bias current is to be kept to a minimum.Note7:Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.V S =±6V to±15V.Note8:Human body model,1.5kΩin series with100pF.Typical Performance CharacteristicsInput Bias Current Input Bias Current0056491800564919Supply Current Positive Common-Mode Input Voltage Limit0056492000564921LF3533Typical Performance Characteristics(Continued)Negative Common-Mode Input Voltage LimitPositive Current Limit0056492200564923Negative Current Limit Voltage Swing0056492400564925Output Voltage Swing Gain Bandwidth0056492600564927L F 353 4Typical Performance Characteristics(Continued)Bode PlotSlew Rate0056492800564929Distortion vs.Frequency Undistorted Output Voltage Swing0056493000564931Open Loop Frequency Response Common-Mode Rejection Ratio0056493200564933LF3535Typical Performance Characteristics(Continued)Power Supply Rejection RatioEquivalent Input Noise Voltage0056493400564935Open Loop Voltage Gain (V/V)Output Impedance0056493600564937Inverter Settling Time00564938L F 353 6Pulse ResponseSmall Signaling Inverting00564904Large Signal Inverting00564906Small Signal Non-Inverting00564905Large Signal Non-Inverting00564907Current Limit(R L=100Ω)00564908Application HintsThese devices are op amps with an internally trimmed inputoffset voltage and JFET input devices(BI-FET II).TheseJFETs have large reverse breakdown voltages from gate tosource and drain eliminating the need for clamps across theinputs.Therefore,large differential input voltages can easilybe accommodated without a large increase in input current.The maximum differential input voltage is independent of thesupply voltages.However,neither of the input voltagesshould be allowed to exceed the negative supply as this willcause large currents to flow which can result in a destroyedunit.Exceeding the negative common-mode limit on either inputwill force the output to a high state,potentially causing areversal of phase to the output.Exceeding the negativecommon-mode limit on both inputs will force the amplifieroutput to a high state.In neither case does a latch occurLF3537Application Hints(Continued)sinceraising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.Exceeding the positive common-mode limit on a single input will not change the phase of the output;however,if both inputs exceed the limit,the output of the amplifier will be forced to a high state.The amplifiers will operate with a common-mode input volt-age equal to the positive supply;however,the gain band-width and slew rate may be decreased in this condition.When the negative common-mode voltage swings to within 3V of the negative supply,an increase in input offset voltage may occur.Each amplifier is individually biased by a zener reference which allows normal circuit operation on ±6V power sup-plies.Supply voltages less than these may result in lower gain bandwidth and slew rate.The amplifiers will drive a 2k Ωload resistance to ±10V over the full temperature range of 0˚C to +70˚C.If the amplifier is forced to drive heavier load currents,however,an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both posi-tive and negative swings.Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarityor that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.As with most amplifiers,care should be taken with lead dress,component placement and supply decoupling in order to ensure stability.For example,resistors from the output to an input should be placed with the body close to the input to minimize “pick-up”and maximize the frequency of the feed-back pole by minimizing the capacitance from the input to ground.A feedback pole is created when the feedback around any amplifier is resistive.The parallel resistance and capacitance from the input of the device (usually the inverting input)to AC ground set the frequency of the pole.In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed loop gain and consequently there is negligible effect on stability margin.However,if the feed-back pole is less than approximately 6times the expected 3dB frequency a lead capacitor should be placed from the output to the input of the op amp.The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.Detailed Schematic00564909L F 353 8Typical ApplicationsThree-Band Active Tone Control0056493900564940Note 1:All controls flat.Note 2:Bass and treble boost,mid flat.Note 3:Bass and treble cut,mid flat.Note 4:Mid boost,bass and treble flat.Note 5:Mid cut,bass and treble flat.•All potentiometers are linear taper•Use the LF347Quad for stereo applicationsLF3539Typical Applications(Continued)Improved CMRR Instrumentation Amplifier00564941Fourth Order Low Pass Butterworth Filter00564942L F 353 10Typical Applications (Continued)Fourth Order High Pass Butterworth Filter0056494311Typical Applications (Continued)Ohms to Volts Converter00564944L F 12Physical Dimensions inches (millimeters)unless otherwise notedOrder Number LF353M or LF353MXNS Package Number M08AMolded Dual-In-Line PackageOrder Number LF353NNS Package N08E13Notes LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or (b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National SemiconductorAmericas CustomerSupport CenterEmail:new.feedback@Tel:1-800-272-9959National Semiconductor Europe Customer Support Center Fax:+49(0)180-5308586Email:europe.support@ Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support Center Email:ap.support@ National Semiconductor Japan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel: L F 353W i d e B a n d w i d t h D u a l J F E T I n p u t O p e r a t i o n a l A m p l i f i e r National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。