八年级数学上册_第十一章_全等三角形_单元测试题C
人教版八年级上学期数学《全等三角形》单元测试卷(带答案)
(2)已知B C=7,A D=5,求AF的长.
21.如图,在△A B C和△A DE中,A B=A C,A D=AE,且∠B A C=∠D AE,点E在B C上.过点D作DF∥B C,连接D B.
求证:(1)△A B D≌△A CE;
(2)DF=CE.
22.如图,DE⊥A B于E,DF⊥A C于F,若B D=C D、BE=CF,
[点睛]本题考查了全等三角形的性质的应用,能根据全等三角形的性质求出A C=DE是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
4.边长都为整数的△A B C≌△DEF,A B与DE是对应边,A B=2,B C=4.若△DEF的周长为偶数,则DF的长为( )
A.3B.4C.5D.3或4或5
三、解答题:
19.如图,点E在△A B C的外部,点D边B C上,DE交A C于点F,若∠1=∠2,AE=A C,B C=DE,
(1)求证:A B=A D;
(2)若∠1=60°,判断△A B D的形状,并说明理由.
20.如图所示,在△A B C中,A D⊥B C于D,CE⊥A B于E,A D与CE交于点F,且A D=C D,
(5)全等三角形的面积相等;(6)面积相等的两个三角形全等.
其中不正确的是( )
A.(4)(5)B.(4)(6)C.(3)(6)D.(3)(4)(5)(6)
[答案]B
[解析]
[分析]
根据全等三角形的性质逐个分析即可.
[详解]根据全等三角形的性质可得:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形不一定相等;全等三角形的面积相等;面积相等的两个三角形不一定全等.
八年级数学上册全等三角形单元测试题
八年级数学上册全等三角形单元测试题以下是查字典数学网为您推荐的八年级数学上册全等三角形单元测试题,希望本篇文章对您学习有所帮助。
八年级数学上册全等三角形单元测试题一.选择题(每小题3分,共30分)1.在⊿ABC和⊿A/B/C/中,AB=A/B/,A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是( )(A)B/ (B)C/ (C)BC=B/C/ (D)AC=A/C/2.如图,已知:△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是( )(A)AC=DF (B)AD=BE (C) DF=EF (D)BC=EF3..如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )(A)带①去(B)带②去(C)带③去(D)带①和②去4、如图,△ABD和△ACE都是等边三角形,则ADC≌ABE 的根据是( )(A)SSS (B)SAS (C)ASA (D)AAS5.如图所示,在下列条件中,不能作为判断△ABD≌△BAC 的条件是( )(A)C,BAD=ABC (B)BAD=ABC,ABD=BAC(C)BD=AC,BAD=ABC (D)AD=BC,BD=AC6. 如图,E、B、F、C四点在同一条直线上,EB=CF,D,再添一个条件仍不能证明△ABC≌△DEF的是( )(A)AB=DE (B)DF∥AC (C)ABC (D)AB∥DE7. 如图,要测量河两岸相对的两点A,B的距离,先在AB 的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是( )(A) (B) (C) (D)8.如图,从下列四个条件:①BC=BC,②AC=AC,③ACA=BCB,④AB=AB中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )(A)1个(B)2个(C)3个(D)4个9.在RtABC中,ACB=90,E是AB上一点,且BE=BC,过E作DEAB交AC于D,如果AC=5cm,则AD+DE=( )(A)3 cm (B)4 cm (C)5 cm (D)6 cm10.如图,△ABC中,A=90,AB=AC,BD平分ABC交AC 于D,DEBC于点E,且BC=6,则△DEC的周长是( )(A)6cm (B)4 cm (C)10 cm (D)以上都不对二、填空题(每小题3分,共15分)11. 如图,已知AE∥BF, F,要使△ADE≌△BCF,可添加的条件是__________.12. 如图,在△ABC中,C=90,AD是BAC的角平分线,若BC=5㎝,BD=3㎝,则点D到AB的距离为.13.如图,AD沿AM折叠使D点落在BC上,若AD=7cm,DM=5cm,DAM=30,则AN=_ __ cm,NAM=_________。
八年级数学上册最新每章的单元测试题_附答案
八年级数学上册《第十一章全等三角形》单元测试题一、选择题:*1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS”证明△ABD与△ACE全等的条件顺序是()A. ①②③B. ②③④C. ①②④D. ①③④*2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么下列判断中正确的是()A. 只能证明△AOB≌△CODB. 只能证明△AOD≌△COBC. 只能证明△ABD≌△CBDD. 能证明四对三角形全等3. 在下列条件中,不能判定直角三角形全等的是()A. 两条直角边分别对应相等B. 斜边和一个锐角分别对应相等C. 两个锐角分别对应相等D. 斜边和一条直角边分别对应相等4. 如图,已知AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中的全等三角形有()A. 1对B. 2对C. 3对D. 4对5. 如图18,已知△ABC的六个元素如图所示,则甲、乙、丙三个三角形中和△ABC全等的是()A. 甲、乙B. 乙、丙C. 只有乙D. 只有丙二、填空题:6. 如图,AB=AC ,BE=CD ,要使△ABE ≌△ACD ,依据“SSS ”,则还需添加条件: 。
**7. 如图,AD 和A ’D ’分别是锐角△ABC 和锐角△A ’B ’C ’中BC 和B ’C ’边上的高,且BC=B ’C ’,AD=A ’D ’,若使△ABC ≌△A ’B ’C ’,请你补充条件 。
(填一个你认为适当的条件)三、解答题:9. 已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,。
求证:(1)△OAB ≌△OCD ;(2)AB CD =。
《第十二章 轴对称》单元测试题一选择题:(每小题3分,共24分) 1、下列说法正确的是 ( )A 轴对称涉及两个图形,轴对称图形涉及一个图形B 如果两条线段互相垂直平分,那么这两条线段互为对称轴C 所有直角三角形都不是轴对称图形D 有两个内角相等的三角形不是轴对称图形2、若等腰三角形的一边长为10,另一边长为7,则它的周长为 ( ) A 17 B 24 C 27 D 24或273、若一个三角形的三个外角的度数之比为5∶4∶5,则这个三角形是( ) A 等腰三角形,但不是等边三角形,也不是等腰直角三角形 B 直角三角形,但不是等腰三角形 C 等腰直角三角形 D 等边三角形4、等腰三角形底边长为5cm,一腰上的中线分其周长的两部分的差为3cm ,则腰长为 ( ) A 2cm B 8cm C 2cm 或8cm D 以上答案都不对5、下列说法正确的个数有( )⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角 A 1个 B 2个 C 3个 D 4个6、若一个三角形一条边上的中点到其他两边的距离相等,那么这个三角形一定是( ) A 等边三角形 B 等腰三角形 C 不等边三角形 D 不确定 在平面直角坐标系中,直线y=2x-3关于x 轴对称的直线是( ) A y=2x+3 B y=-2x+3 C y=-2x-3 D y=-3x+27、如图,∠BAC=90o ,AD ⊥BC ,DE ⊥AC ,DF ⊥AB ,AC=12BC,除图中AC 和BC 外,关系形如a=12b 的线段对还有( )A 2对B 4对C 6对D 7对 二、填空题:(每小题3分,共24分)1、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________. 2.点A (3,-12),B (3,12)关于_______轴对称,点C (-5.4,-10),D (5.4,-10)关于________轴对称。
人教版八年级上学期数学《全等三角形》单元检测卷含答案
22.如图,在 中, , 是 的平分线, 于点 ,点 在 上, ,求证: .
A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:5
[答案]C
[解析]
[分析]
直接根据角平分线的性质即可得出结论.
[详解]∵O是△A B C三条角平分线的交点,A B、B C、A C的长分别12,18,24,∴S△OA B:S△OB C:S△OA C=A B:OB:A C=12:18:24=2:3:4.
∴∠A′C B′=∠A C B=10k,
在△A B C中,∠B′C B=∠A+∠B=3k+5k=8k,
∴∠A′C B=∠A′C B′-∠B′C B′=10k-8k=2k,
∴∠B C A′:∠B C B′=2k:8k=1:4.
故选D.
6.如图,已知∠A B C=∠D C B,下列所给条件不能证明△A B C≌△D C B的是()
①是根据边边边(SSS);
②是根据两边夹一角(SAS);
③是根据两角夹一边(ASA)都成立.
根据三角形全等的判定,都可以确定唯一的三角形;
而④则不能.
故选A.
8.如图,在△A B C中,∠B=42°,A D⊥B C于点D,点E是B D上一点,EF⊥A B于点F,若ED=EF,则∠AEC的度数为( )
人教版八年级上册《全等三角形》单元测试卷
(时间:120分钟 满分:150分)
达标测试人教版八年级数学上册第十一章三角形章节测试试卷(详解版)
人教版八年级数学上册第十一章三角形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( )A .正三角形和正方形B .正三角形和正六边形C .正方形和正六边形D .正方形和正八边形2、如图,将ABC 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140∠=︒,则2∠的度数为( )A .12B .60︒C .90︒D .140︒3、如图,ABC 中,60,40,//A B DE BC ︒︒∠=∠=,则AED ∠的度数是( )A.50︒B.60︒C.70︒D.80︒4、如图,∠B+∠C+∠D+∠E―∠A等于()A.180°B.240°C.300°D.360°5、下面四个图形中,线段BE能表示三角形ABC的高的是()A.B.C.D.6、下列说法中正确的是()A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部7、如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A .①、②都正确B .①、②都不正确C .①正确②不正确D .①不正确,②正确8、如图,ACD ∠是ABC 的外角,//CE AB .若75ACB ∠=︒,50ECD ∠=︒,则A ∠的度数为( )A .50︒B .55︒C .70︒D .75︒9、如图,在CEF △中,80E ∠=︒,50F ∠=︒,AB CF ,AD CE ,连接BC ,CD ,则A ∠的度数是( )A .45°B .50°C .55°D .80°10、如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于A .16B .14C .12D .10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,射线AB 与射线CD 平行,点F 为射线AB 上的一定点,连接CF ,点P 是射线CD 上的一个动点(不包括端点C ),将PFC △沿PF 折叠,使点C 落在点E 处.若=62DCF ∠︒,当点E 到点A 的距离最大时,=CFP ∠_____.2、如图,将△ABC 沿BC 方向平移到△DEF (B 、E 、F 在同一条直线上),若∠B =46°,AC 与DE 相交于点G ,∠AGD 和∠DFB 的平分线GP 、FP 相交于点P ,则∠P =______°.3、如图,A 、B 、C 均为一个正十边形的顶点,则∠ACB=_____°.4、如图,在ABC 中A α∠=,作∠ABC 的角平分线与∠ACB 的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ;如此下去,则2022A ∠=________.5、如图,点D 在线段BC 上,AC ⊥BC ,AB =8cm ,AD =6cm ,AC =4cm ,则在△ABD 中,BD 边上的高是__cm .三、解答题(5小题,每小题10分,共计50分)1、已知a ,b ,c 满足2|(0a c =.(1)求a 、b 、c 的值(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.2、如图所示,求A B C D E F ∠+∠+∠+∠+∠+∠的度数.3、如图,点B 、C 、D 在同一条直线上,请你从下面三个条件中,选出两个作为已知条件,另一个作为结论,推出一个正确的命题.①CE AB ∥;②A B ∠=∠;③CE 平分ACD ∠.(1)上述问题有哪几种正确命题,请按“☆☆☆”的形式一一书写出来;(2)选择(1)中的一个真命题加以说明.4、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF 交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.5、如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.-参考答案-一、单选题1、C【解析】【分析】由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y 表示多边形的个数).【详解】解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;D、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;故选:C.【考点】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.2、D【解析】【分析】根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.3、D【解析】【分析】由三角形的内角和定理求出∠C 的度数,然后由平行线的性质,即可得到答案.【详解】解:在ABC 中,60,40A B ︒︒∠=∠=,∴180604080C ∠=︒-︒-︒=︒,∵//DE BC ,∴80AED C ∠=∠=︒;故选:D .【考点】本题考查了三角形的内角和定理,以及平行线的性质,解题的关键是掌握所学的性质,正确求出角的度数.4、A【解析】【分析】根据三角形的外角的性质,得∠B +∠C =∠CGE =180°-∠AGF ,∠D +∠E =∠DFG =180°-∠AFG ,两式相加再减去∠A,根据三角形的内角和是180°可求解.【详解】∵∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,∴∠B+∠C+∠D+∠E-∠A=360°-(∠AGF+∠AFG+∠A),又∵∠AGF+∠AFG+∠A=180°,∴∠B+∠C+∠D+∠E-∠A=180°,故选A.【考点】本题考查了三角形外角的性质、三角形内角和定理,熟练掌握三角形外角的性质以及三角形内角和等于180度是解题的关键.5、B【解析】【分析】根据三角形的高的定义(从三角形一个顶点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称为三角形这条边上的高)即可得.【详解】解:由三角形的高的定义可知,只有选项B中的线段BE能表示三角形ABC的高,故选:B.【考点】本题考查了三角形的高,熟记定义是解题关键.6、A【解析】【分析】根据三角形中线及高线的定义逐一判断即可得答案.【详解】A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A.【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键.7、C【解析】【分析】根据三角形的角平分线的定义,三角形的中线的定义可知.三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,连接一个顶点和它所对边的中点的线段叫做三角形的中线.【详解】解:AD是三角形ABC的角平分线,则是∠BAC的角平分线,所以AO是△ABE的角平分线,故①正确;BE是三角形ABC的中线,则E是AC是中点,而O不一定是AD的中点,故②错误.故选:C.【考点】本题考查了三角形的中线,角平分线的定义,理解定义是解题的关键.8、B【解析】【分析】根据平行线的性质及三角形的内角和定理即可求解.【详解】∵//CE AB ,∴∠B=50ECD ∠=︒∴∠A=180°-∠B -55ACB ∠=︒故选B .【考点】此题主要考查三角形的内角和,解题的关键是熟知三角形的内角和等于180°.9、B【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】解:连接AC 并延长交EF 于点M .AB CF,∴∠=∠,31AD CE,24∴∠=∠,∴∠=∠+∠=∠+∠=∠,3412BAD FCE∠=︒-∠-∠=︒-︒-︒=︒,FCE E F180180805050BAD FCE∴∠=∠=︒,50故选B.【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.10、A【解析】【分析】根据三角形的中线把三角形分成面积相等的两个三角形依次求解即可.【详解】∵DF是△CDE的中线,∴S△CDE=2S△DEF,∵CE是△ACD的中线,∴S△ACD=2S△CDE=4S△DEF,∵AD是△ABC的中线,∴S△ABC=2S△ACD=8S△DEF,∵△DEF的面积是2,∴S△ABC =2×8=16.故选A【考点】本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.二、填空题1、59︒##59度【解析】【分析】利用三角形三边关系可知:当E 落在AB 上时,AE 距离最大,利用AB CD 且=62DCF ∠︒,得到=62CFA ∠︒,再根据折叠性质可知:EFP CFP ∠=∠,利用补角可知118EFP CFP ∠+∠=︒,进一步可求出59EFP CFP ∠=∠=︒.【详解】解:利用两边之和大于第三边可知:当E 落在AB 上时,AE 距离最大,如图:∵AB CD 且=62DCF ∠︒,∴=62CFA ∠︒,∵PCF 折叠得到PEF ,∴EFP CFP ∠=∠,∵118EFP CFP ∠+∠=︒,∴59EFP CFP ∠=∠=︒.故答案为:59︒【考点】本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E 落在AB 上时,AE 距离最大,再解答即可.2、67【解析】【分析】设BCA α∠=,A β∠=,根据平移的性质和角平分线的定义可表示出PGD ∠、OFD ∠和GOP ∠,再根据三角形内角和定理得出α和β的和,进而求出∠P 的值.【详解】解:将DG 与PF 的交点标为O ,如图由平移的性质得,DEF ABC ≅,DE AB ∥设BCA α∠=,A β∠=,则D AGD A β∠=∠=∠=,EFD BCA α∠=∠=,GP 平分∠AGD ,122PGD AGD β∴∠=∠=FP 平分∠DFB ,122OFD EFD α∴∠=∠=, 1802FOD αβ∴∠=--,1802GOP αβ∴∠=--,在ABC 中,180134B αβ+=-∠=在GPO 中,180P PGO GOP ∠=-∠-∠1180()2802αββ=----2αβ+=67=.故答案为:67.【考点】本题主要考查了平移的性质、全等三角形的性质、平行线的性质和三角形内角和定理,牢固掌握以上知识点是做出本题的关键.3、18【解析】【分析】根据正多边形外角和和内角和的性质,得DAE ∠、144BAE E F ∠=∠=∠=︒;根据四边形内角和的性质,计算得EAC ∠;根据五边形内角和的性质,计算得ABC ∠,再根据三角形外角的性质计算,即可得到答案.如图,延长BA∵正十边形 ∴3603610DAE ︒∠==︒,正十边形内角()102180=14410-⨯︒=︒,即144BAE E F ∠=∠=∠=︒ 根据题意,得四边形ACFE 内角和为:360︒,且EAC FCA ∠=∠ ∴360362E F EAC FCA ︒-∠-∠∠=∠==︒ ∴72DAC DAE EAC ∠=∠+∠=︒根据题意,得五边形ABCFE 内角和为:()52180540=-⨯︒=︒,且ABC FCB ∠=∠ ∴540542BAE E F ABC FCB ︒-∠-∠-∠∠=∠==︒ ∴725418ACB DAC ABC ∠=∠-∠=︒-︒=︒故答案为:18.【考点】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.4、202212α⋅【解析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长于点D ,∵180ACD ACB ∠=︒-∠,ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2022202212A A ∠=∠,∵A α∠=,∴2022202212A α∠=, 故答案为:202212α.【考点】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和定理,熟练掌握三角形外角的性质和角平分线的定义,找出角度之间的规律,是解题的关键.5、4cm【解析】【分析】从三角形的一个顶点向它对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高.这条边叫做底.【详解】因为AC⊥BC,所以三角形ABD 中,BD 边上的高是:AC=4cm故答案为:4cm【考点】考核知识点:三角形的高.理解三角形的高的定义是关键.三、解答题1、(1)a =5b =,c =;(2)能,5+【解析】【分析】(1)根据非负数的性质可求出a 、b 、c 的值;(2)根据三角形三边关系,再把三角形三边相加即可求解.解:(1)由题意得: 0a ,50b -=,0c ,解得:a =5b =,c ==(2)根据三角形的三边关系可知,a 、b 、c 能构成三角形此时三角形的周长为55a b c ++=+=+【考点】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.2、360°【解析】【分析】先根据三角形的外角性质可得,EHC CGH C CGH D E ∠=∠+∠∠=∠+∠,再根据四边形的内角和即可得.【详解】∵EHC ∠是GHC ∆的一个外角∴EHC CGH C ∠=∠+∠同理可得CGH D E ∠=∠+∠∴EHC E D C ∠=∠+∠+∠∴BHF EHC E D C ∠=∠=∠+∠+∠又360A B BHF F ∠+∠+∠+∠=︒∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒故A B C D E F ∠+∠+∠+∠+∠+∠的度数为360︒.本题考查了四边形的内角和、三角形的外角性质、对顶角相等,熟记并灵活运用各性质是解题关键.3、 (1)有三种正确命题,命题1:⇒①②③;命题2:⇒①③②;命题3:⇒②③①(2)答案不唯一,见解析【解析】【分析】(1)根据题意,结合平行线的性质和角平分线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题.(2)任选一个命题,根据平行线的性质,角平分线的性质和三角形内角和定理即可证明.(1)解:上述问题有三种正确命题,分别是:命题1:⇒①②③;命题2:⇒①③②;命题3:⇒②③①.(2)解:选择命题1:⇒①②③.证明:∵CE AB ∥,∴ACE A ∠=∠,DCE B ∠=∠.∵A B ∠=∠,∴∠=∠ACE DCE .∴CE 平分ACD ∠.选择命题2:⇒①③②.证明:∵CE AB ∥,∴ACE A ∠=∠,DCE B ∠=∠.∵CE 平分ACD ∠,∴∠=∠ACE DCE .∴A B ∠=∠.选择命题3:⇒②③①.证明:∵CE 平分ACD ∠,∴∠=∠ACE DCE .∴()1801802ACB ACE DCE ACE ∠=︒-∠+∠=︒-∠,∵A B ∠=∠,∴()1801802ACB A B A ∠=︒-∠+∠=︒-∠.∴ACE A ∠=∠,∴CE AB ∥.【考点】本题考查写出一个命题并求证,正确利用平行线的性质和角平分线的性质写出命题并求证是解题的关键.4、 (1)见解析;(2)24°【解析】【分析】(1)先根据AD 是△ABE 的角平分线得出∠EAB=2∠GAF,,再由2∠1+∠EAB =180°得出∠AGF+∠GAF =90°,进而可得出结论;(2)根据三角形内角和定理及外角的性质求解即可.(1)证明:∵AD是△ABE的角平分线,∴∠EAB=2∠GAF,∵2∠1+∠EAB=180°,∴2∠1+2∠GAF=180°,∵∠1=∠AGF,∴2∠AGF+2∠GAF=180°,∴∠AGF+∠GAF=90°,∴∠AFG=90°,∵BC⊥AB,∴∠AFG=∠ABC==90°,∴EF∥BC;(2)解:∵∠C=72°,∠ABC==90°,∴∠CAB==90°-∠C==90°-72°==18°,∴∠EAB=2∠CAB=36°,∵∠AEB=78°,∴∠ABE==180°-(∠AEB+∠EAB)==90°-(78°+36°)==66°,∴∠CBE=90°-∠ABE==90°-66°==24°.【考点】此题考查了平行线的判定及三角形的内外角性质,熟记平行线的判定定理是解题的关键.5、∠DEC=58°.【解析】【分析】先根据∠A=55°,∠ACB=70°得出∠ABC的度数,再由∠ABD=32°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,最后用三角形的外角即可得出结论.【详解】在△ABC中,∵∠A=55°,∠ACB=70°,∴∠ABC=55°,∵∠ABD=32°,∴∠CBD=∠ABC-∠ABD=23°,∵CE平分∠ACB,∠ACB=35°,∴∠BCE=12∴在△BCE中,∠DEC=∠CBD+∠BCE=58°.【考点】此题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.。
人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
2021年新人教版数学八年级上人教新课标第十一章全等三角形全章检测题
数学:第11章全等三角形全章检测题(人教新课标八年级上)一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB的平分线的交点3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°5.所对的角的关系是( )A.相等B.不相等C.互余或相等 6,如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD A.∠1=∠EFD B.BE =EC C.BF =DF =7.如图所示,BE ⊥AC 于点D ,且AD =CD ,A.25° B.27° C.30°A D A CB O DC B AA B C E F A BC D F EO 8.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB于F ,则( )A.AF =2BFB.AF =BFC.AF >BFD.AF <BF9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA10.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°二、填空题(每小题3分,共24分)11. (08牡丹江)如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).12.如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由 可得△AFC ≌△AEB .13.如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .DOC B AFED C B A A EC B A ′ E ′D14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.16.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有______对.17.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.18.如图,AD ,A ′D ′分别是锐角三角形ABC 和锐角三角形A ′B ′C ′中BC ,B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写一个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.20. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.21.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③A B C D A ′ B ′ D ′ C ′ D C E量出DE 的长a 米,FG 的长b 米.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.23.如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.24.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.25.(1)如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?A D E CB F G G D F AC B E GD FA CB E F E DC B AG参考答案:一、选择题1.A2.D3.C 提示:∵△ABD ≌△CDB ,∴AB =CD ,BD =DB ,AD =CB ,∠ADB =∠CBD ,∴△ABD 和△CDB 的周长和面积都分别相等.∵∠ADB =∠CBD ,∴AD ∥BC .4.D5.A6.D7.B 解析:在Rt △ADB 与Rt △EDC 中,AD =CD ,BD =ED ,∠ADB =∠EDC =90°,∴△ADB ≌△CDE ,∴∠ABD =∠E .在Rt △BDC 与Rt △EDC 中,BD =DE ,∠BDC =∠EDC =90°,CD =CD ,∴Rt △BDC ≌Rt △EDC ,∴∠DBC =∠E .∴∠ABD =∠DBC =12∠ABC ,∴∠E =∠DBC =12×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD =∠DBC =∠E. 8.B 9.D 10. C二、填空题11. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 12.SAS 13.60°,10 14. 14提示:角平分线上的一点到角的两边的距离相等.15.互补或相等 16.5 17.35° 18.答案不惟一三、解答题19.解:∵△DEF ≌△MNP ,∴DE =MN ,∠D =∠M ,∠E =∠N ,∠F =∠P ,∴∠M =48°,∠N =52°,∴∠P =180°-48°-52°=80°,DE =MN =12cm.20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o ,因为EB ⊥AC ,所以∠E+∠ECB=90o (直角三角形两锐角互余).所以∠ACD=∠E(同角的余角相等).因为AD ⊥AC ,BE ⊥AC(已知),所以∠A=∠EBC=90o (垂直的定义).在Rt △ACD 和Rt △BEC 中,A EBC ACD E CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以Rt △ACD ≌Rt △BEC(AAS).所以AD=BC ,AC=BE(全等三角形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE.21.解:DE =AE .由△ABC ≌△EDC 可知.22.证明∵DA ⊥OM ,EB ⊥ON ,∴∠OAD=∠OBE=90°.在△OAD 和△OBE 中,,,(),OAD OBE AOD BOE OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩公共角∴△OAD ≌△OBE(ASA),∴OD=OE ,∠ODA=∠OEB ,∴OD-OB=OE-OA .即BD=AE . A G F C B D E 图1 图2。
数学八年级上学期《全等三角形》单元测试题(附答案)
所以∠C A D=30°.
故答案为30.
3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()
A. 76°B. 62°
C. 42°D. 76°、62°或42°都可以
[答案]B
[解析]
[分析]
根据全等三角形的性质求解即可.
[详解]∵对应边的对角是对应角,
∴∠DFB=∠B A D=20°.
故选B.
[点睛]本题主要利用全等三角形对应角相等的性质,准确识图也是考查点之一.
9.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②C D=A B;③∠C D A=∠A B C;其中正确 结论是()
A. ①②B. ①②③C. ①③D. ②③
A 1个B.2个C.3个D.4个
5.如图,点A,D,C,E在同一条直线上,A B∥EF,A B=EF,∠B=∠F,AE=10,A C=7,则C D的长为( )
A.5.5B.4C.4.5D.3
6.如图所示,将两根钢条 的中点O连在一起,使 可以绕着点O自由转动,就做成了一个测量工具,则 的长等于内槽宽A B,那么判定 的理由是:()
26.问题:如图①,在直角三角形 中, , 于点 ,可知 (不需要证明);
(1)探究:如图②, ,射线 在这个角的内部,点 、 在 的边 、 上,且 , 于点 , 于点 .证明: ;
(2)证明:如图③,点 、 在 的边 、 上,点 、 在 内部的射线 上, 、 分别是 、 的外角.已知 , .求证: ;
17.如图,要测量池塘的宽度A B,在池塘外选取一点P,连接AP、BP并各自延长,使PC=PA,PD=PB,连接C D,测得C D长为25m,则池塘宽A B为________ m,依据是________
人教版八年级数学上册《全等三角形》练习题
第十一章全等三角形测试 1全等三角形的观点和性质学习要求讲堂学习检测一、填空题1. _____的两个图形叫做全等形.2.把两个全等的三角形重合到一同,_____叫做对应极点;叫做对应边; _____叫做对应角.记两个三角形全等时,往常把表示_____的字母写在 _____上.3.全等三角形的对应边_____,对应角 _____,这是全等三角形的重要性质.4.假如ABC ≌DEF ,则 AB 的对应边是 _____,AC 的对应边是 _____,∠ C 的对应角是_____,∠ DEF 的对应角是 _____.图 1-15.如图 1- 1 所示,ABC≌DCB.( 1)若∠ D= 74°∠ DBC = 38°,则∠ A= _____,∠ABC= _____( 2)假如 AC= DB ,请指出其余的对应边_____;( 3)假如AOB≌DOC ,请指出全部的对应边_____,对应角 _____.图 1-2图 1-36.如图 1-2,已知△ ABE≌△ DCE,AE= 2 cm,BE= 1.5 cm,∠ A= 25°,∠ B= 48°;那么 DE = _____cm, EC= _____cm,∠ C=_____°;∠ D= _____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但 __________ 都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1- 3,ABD ≌CDB ,若 AB∥ CD ,则 AB 的对应边是()A .DB B. BC C. CD D. AD9.以下命题中,真命题的个数是①全等三角形的周长相等③全等三角形的面积相等A .4B.3()②全等三角形的对应角相等④面积相等的两个三角形全等C. 2D. 110.如图1- 4,△ ABC≌△ BAD ,A=4,那么 BC 等于()和B、 C和D是对应极点,假如AB= 5,BD =6, ADA . 6B. 5C. 4D.没法确立图1-4图1-5图1-611.如图 1- 5,△ ABC≌△ AEF ,若∠A .∠ ACB B.∠ CAF 12.如图 1- 6,△ ABC≌Δ ADE ,若∠ABC 和∠ AEF 是对应角,则∠EAC 等于(C.∠ BAF D.∠ BACB= 80°,∠ C= 30°,∠ DAC= 35°,则∠)EAC 的度数为()A.40°B. 35°C. 30°D. 25°三、解答题13.已知:如图1- 7 所示,以 B 为中心,将若∠ E= 35°,求∠ ADB 的度数.Rt△ EBC绕 B 点逆时针旋转90°获得△ABD ,图 1-7图 1-8图 1-9综合、运用、诊疗一、填空题14.如图 1- 8,△ ABE 和△ ADC 是△ ABC 分别沿着AB,AC 翻折 180°形成的若∠1∶∠ 2∶∠ 3= 28∶ 5∶ 3,则∠α的度数为 ______ .15.已知:如图1-9,△ ABC≌△ DEF ,∠ A= 85°,∠ B= 60°, AB= 8, EH = 2.(1)求∠ F 的度数与 DH 的长;(2)求证: AB∥ DE .拓展、研究、思虑16.如图 1- 10, AB⊥ BC,ABE ≌ECD.判断 AE 与 DE 的关系,并证明你的结论.图 1-10测试 2三角形全等的条件(一)学习要求1.理解和掌握全等三角形判断方法1——“边边边”,2.能把证明一对角或线段相等的问题,转变为证明它们所在的两个三角形全等.讲堂学习检测一、填空题1.判断 _____的 _____ 叫做证明三角形全等.2.全等三角形判断方法1——“边边边”(即 ______)指的是 ________________________________________________________________________________ .3.由全等三角形判断方法1——“边边边”能够得出:当三角形的三边长度一准时,这个三角形的 _____也就确立了.图 2-1图 2-2图 2-34.已知:如图2- 1,△ RPQ 中, RP= RQ, M 为 PQ 的中点.求证: RM 均分∠ PRQ.剖析:要证RM 均分∠ PRQ,即∠ PRM= ______,只需证 ______≌ ______证明:∵M 为 PQ 的中点(已知),∴______= ______在△ ______和△ ______中,RP RQ(已知 ),PM ______,______ ______(),∴______≌ ______().∴∠ PRM = ______( ______).即 RM.5.已知:如图2- 2, AB= DE , AC= DF , BE= CF.求证:∠ A=∠ D.剖析:要证∠A=∠ D,只需证 ______≌ ______.证明:∵ BE=CF (),∴BC= ______.在△ ABC 和△ DEF 中,AB ______,BC ______,AC ______,∴______≌ ______().∴∠ A=∠ D ( ______).6.如图 2- 3, CE= DE,EA = EB, CA=DB ,求证:△ ABC≌△ BAD.证明:∵ CE= DE , EA= EB,∴______+______=______+______,即 ______= ______.在△ ABC 和△ BAD 中,= ______(已知),______ ______( 已知 ),______ ______( 已证 ),______ ______(),∴△ ABC ≌△ BAD ().综合、运用、诊疗一、解答题7.已知:如图2- 4, AD = BC. AC= BD .试证明:∠ CAD =∠ DBC .图 2-48.画一画.已知:如图2- 5,线段 a、 b、c.求作:ABC,使得 BC= a, AC= b,AB =c.图 2-59.“三月三,放风筝” .图 2- 6 是小明制作的风筝,他依据DE =DF ,EH = FH,不用胸怀,就知道∠ DEH =∠ DFH .请你用所学的知识证明.图 2-6拓展、研究、思虑10.画一画,想想:利用圆规和直尺能够作一个角等于已知角,你能说明其作法的理论依照吗?测试 3三角形全等的条件(二)学习要求1.理解和掌握全等三角形判断方法2——“边角边” .2.能把证明一对角或线段相等的问题,转变为证明它们所在的两个三角形全等图 3-1图 3-2讲堂学习检测一、填空题1.全等三角形判断方法2——“边角边”(即______)指的是_________________________________________________________________________________ .2.已知:如图3- 1, AB、 CD 订交于 O 点, AO= CO,OD = OB.求证:∠ D=∠ B.剖析:要证∠D=∠ B,只需证 ______≌ ______证明:在△ AOD 与△ COB 中,AO CO(),____________(),OD ______(),∴△ AOD ≌△ ______ ().∴∠ D=∠ B(______).3.已知:如图3- 2, AB∥ CD , AB= CD .求证: AD∥BC .剖析:要证AD ∥ BC,只需证∠ ______=∠ ______,又需证 ______≌ ______.证明:∵AB∥ CD (),∴∠ ______=∠ ______ (),在△ ______和△ ______中,______ ______(),______ ______(),______ ______(),∴______≌______ ().∴ ∠ ______=∠ ______ ().∴ ______ ∥ ______().综合、运用、诊疗一、解答题4.已知:如图3- 3, AB= AC,∠ BAD=∠ CAD .求证:∠ B=∠ C.图 3-35.已知:如图3- 4, AB= AC, BE= CD .求证:∠ B=∠ C.图 3-46.已知:如图3- 5, AB= AD , AC= AE,∠ 1=∠ 2.求证: BC=DE .图 3-5拓展、研究、思虑7.如图 3- 6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB= DB,∠ ABC=∠ EBD= 90°),连结 AE、CD,试确立 AE 与 CD 的地点与数目关系,并证明你的结论.图 3-6测试 4三角形全等的条件(三)学习要求1.理解和掌握全等三角形判断方法3——“角边角”,判断方法 4——“角角边”;能运用它们判断两个三角形全等.2.能把证明一对角或线段相等的问题,转变为证明它们所在的两个三角形全等.讲堂学习检测一、填空题1.( 1)全等三角形判断方法3——“角边角”(即 ______)指的是 _________________________________________________________________________________ ;(2)全等三角形判断方法 4——“角角边”(即 ______)指的是 _________________________________________________________________________________ .图 4-12.已知:如图4- 1, PM = PN,∠ M =∠ N.求证: AM= BN.剖析:∵ PM= PN,∴要证AM=BN,只需证PA= ______ ,只需证 ______≌ ______.证明:在△ ______与△ ______中,____________(),____________(),____________(),∴△ ______≌△ ______ ().∴ PA= ______ ().∵PM=PN (),∴PM - ______= PN- ______,即 AM = ______.3.已知:如图4- 2, AC BD .求证: OA= OB,OC= OD .剖析:要证OA= OB, OC= OD ,只需证 ______≌ ______.证明:∵AC∥ BD ,∴∠ C=______.在△ ______与△ ______中,AOC______(),C ______(),______ ______(),∴ ______≌ ______ ().∴OA= OB,OC= OD().图 4-2二、选择题4.能确立△ ABC≌△ DEF 的条件是()A.AB= DE, BC= EF,∠ A=∠ EB. AB=DE ,BC =EF,∠ C=∠ EC.∠ A=∠ E, AB= EF,∠ B=∠ DD.∠ A=∠ D , AB=DE ,∠ B=∠ E5.如图 4- 3,已知△ ABC 的六个元素,则下边甲、乙、丙三个三角形中,和△ABC 全等的图形是()图 4-3A .甲和乙B.乙和丙C.只有乙D.只有丙6. AD 是△ ABC 的角均分线,作DE⊥ AB 于 E, DF⊥ AC 于 F ,以下结论错误的选项是()A .DE =DF B. AE= AF C. BD =CD D.∠ ADE =∠ ADF三、解答题7.阅读下题及一位同学的解答过程:如图4-4, AB 和 CD 订交于点 O,且 OA= OB,∠ A =∠C.那么△ AOD 与△ COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△ AOD ≌△ COB.证明:在△ AOD 和△ COB 中,图 4-4A C (已知 ),OA OB(已知 ),AODCOB (对顶角相等 ),∴△ AOD ≌△ COB ( ASA ).问:这位同学的回答及证明过程正确吗?为何?综合、应用、诊疗8.已知:如图4- 5, AB⊥ AE, AD⊥ AC,∠ E=∠ B, DE= CB.求证: AD =AC .图 4-59.已知:如图4- 6,在△ MPN 中, H 是高 MQ 和 NR 的交点,且MQ =NQ.求证: HN =PM .图 4-610.已知: AM 是ABC 的一条中线, BE⊥ AM 的延伸线于 E,CF⊥ AM 于 F,BC= 10,BE=4.求 BM 、 CF 的长.拓展、研究、思虑11.填空题(1)已知:如图 4- 7, AB= AC, BD ⊥AC 于 D, CE⊥ AB 于 E. 欲证明 BD = CE,需证明______≌△ ______,原因为 ______.( 2)已知:如图 4- 8,AE=DF ,∠ A=∠ D,欲证ACE ≌Δ DBF ,需要增添条件______,证明全等的原因是______;或增添条件 ______,证明全等的原因是______;也能够增添条件 ______,证明全等的原因是______.图 4-7图4-812.如图 4- 9,已知ABC≌A'B'C', AD 、 A'D '分别是ABC 和A'B'C'的角均分线.(1)请证明 AD = A'D';(2)把上述结论用文字表达出来;(3)你还可以得出其余近似的结论吗?图 4-913.如图 4- 10,在△ ABC 中,∠ ACB= 90°, AC= BC,直线 l 经过极点C,过 A、 B 两点分别作 l 的垂线 AE、 BF , E、 F 为垂足.( 1)当直线l 不与底边AB 订交时,求证:EF = AE+BF .图 4-10( 2)如图 4- 11,将直线l 绕点 C 顺时针旋转,使l 与底边 AB 交于点 D ,请你研究直线 l 在以下地点时, EF、 AE、 BF 之间的关系.① AD> BD ;② AD= BD;③ AD< BD .图 4-11测试 5直角三角形全等的条件学习要求掌握判断直角三角形全等的一种特别方法一“斜边、直角边”(即“ HL ”),能娴熟地用判断一般三角形全等的方法及判断直角三角形全等的特别方法判断两个直角三角形全等.讲堂学习检测一、填空题1.判断两直角三角形全等的“HL ”这类特别方法指的是_____.2.直角三角形全等的判断方法有_____ (用简写).3.如图 5- 1,E、B、 F、C 在同一条直线上,若∠D =∠ A= 90°, EB =FC ,AB= DF .则ABC≌_____,全等的依据是 _____.图 5-14.判断知足以下条件的两个直角三角形能否全等,不全等的画“×”,全等的注明原因:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()( 3)一个锐角和斜边对应相等;()( 4)两直角边对应相等;()( 5)一条直角边和斜边对应相等.()二、选择题5.以下说法正确的选项是()A.向来角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图 5- 2,AB= AC,AD ⊥ BC 于 D ,E、F 为 AD上的点,则图中共有()对全等三角形.A .3B. 4C. 5D. 6图 5-2三、解答题7.已知:如图5- 3, AB⊥ BD , CD⊥ BD ,AD = BC.求证:( 1) AB= DC :(2) AD∥ BC.图 5-38.已知:如图5- 4, AC= BD , AD⊥ AC, BC⊥BD.求证: AD =BC ;图 5-4综合、运用、诊疗9.已知:如图5- 5, AE⊥ AB, BC⊥ AB, AE= AB, ED= AC.求证: ED ⊥AC .图 5-510.已知:如图5-6, DE ⊥ AC, BF⊥ AC, AD=BC ,DE= BF.求证: AB∥ DC.图 5-611.用三角板可按下边方法画角均分线:在已知∠AOB 的两边上,分别取OM = ON (如图5- 7),再分别过点 M、 N 作 OA、OB 的垂线,交点为 P,画射线 OP,则 OP 均分∠ AOB,请你说出此中的道理.图 5-7拓展、研究、思虑12.以下说法中,正确的画“√”;错误的画“×” ,并作图举出反例.( 1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()( 2)有两边和此中一边上的高对应相等的两个三角形全等.()( 3)有两边和第三边上的高对应相等的两个三角形全等.()13.( 1)已知:如图5- 8,线段 AC、BD 交于 O,∠ AOB 为钝角, AB= CD ,BF⊥ AC 于 F ,DE⊥ AC 于 E, AE= CF .求证: BO= DO.图 5-8( 1)中的结论能否仍旧成( 2)若∠ AOB 为锐角,其余条件不变,请画出图形并判断立?若建立,请加以证明;若不建立,请说明原因.测试 6三角形全等的条件(四)学习要求能娴熟运用三角形全等的判断方法进行推理并解决某些问题.讲堂学习检测一、填空题1.两个三角形全等的判断依照除定义外,还有①_____;② _____;③ _____;④ _____;⑤_____.2.如图6- 1,要判断ABC≌Δ ADE ,除掉公共角∠ A 外,在以下横线上写出还需要的两个条件,并在括号内写出由这些条件直接判断两个三角形全等的依照.( 1)∠ B=∠ D, AB= AD();(2) _____, _____();(3) _____, _____();(4) _____, _____();(5) _____, _____();(6) _____, _____();(7) _____, _____().图 6-13.如图 6- 2,已知 AB⊥ CF , DE ⊥CF,垂足分别为B, E, AB= DE.请增添一个适合条件,使 ABC≌ DEF ,并说明原因增添条件: _________________________________________________________________ ,原因是: ___________________________________________________________________ .图 6-24.在ABC 和DEF中,若∠ B=∠ E=90°,∠ A=34°,∠ D=56°,AC=DF,贝ABC和DEF能否全等?答:______ ,原因是______.二、选择题5.以下命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A .1B. 2C. 3D. 46.如图 6- 3, AB= CD,AD =CB, AC、 BD 交于 O,图中有()对全等三角形.A .2B. 3C. 4D. 5图 6-37.如图6- 4,若 AB= CD, DE = AF, CF = BE,∠ AFB= 80°,∠ D =60°,则∠ B 的度数是()A .80°B. 60°C. 40°D. 20°8.如图 6- 5,△ ABC 中,若∠ B=∠ C, BD =CE, CD= BF,则∠ EDF =()A .90°-∠ AB .90o1A2C. 180°- 2∠A D .45o1A2图 6-4图6-5图6-69.以下各组条件中,可保证△ABC 与△ A'B'C'全等的是()A.∠ A=∠ A',∠ B=∠ B',∠ C=∠ C'B. AB= A'B', AC =A'C',∠ B=∠ B'C. AB= C'B',∠ A=∠ B',∠ C=∠ C'D.CB= A'B', AC= A'C',BA = B'C'10.如图 6-6,已知 MB = ND,∠ MBA =∠ NDC ,以下条件不可以判断△ABM≌△ CDN 的是()A .∠ M=∠ N B. AB= CD C. AM =CN D. AM∥ CN综合、运用、诊疗一、解答题11.已知:如图6- 7,AD = AE, AB= AC,∠ DAE =∠ BAC.求证: BD = CE.图 6-712.已知:如图6-8, AC 与 BD 交于 O 点, AB∥ DC, AB= DC .( 1)求证: AC 与 BD 相互均分;图 6-8(2)若过 O 点作直线 l ,分别交 AB 、DC 于 E、F 两点,求证: OE= OF.13.如图 6- 9, E 在 AB 上,∠ 1=∠ 2,∠ 3=∠ 4,那么 AC 等于 AD 吗?为何?图 6-9拓展、研究、思虑14.如图 6- 10,△ ABC 的三个极点分别在2× 3 方格的 3 个格点上,请你试着再在格点上找出三个点 D、E、F,使得△ DEF ≌△ ABC,这样的三角形你能找到几个?请一一画出来.图 6-1015.请分别按给出的条件画△ABC (标上小题号,不写作法),并说明所作的三角形能否独一;假如有不独一的,想想,为何?①∠ B= 120°, AB= 2cm, AC= 4cm;②∠ B= 90°, AB =2cm, AC= 3cm;③∠ B= 30°, AB =2cm, AC= 3cm;④∠ B= 30°, AB =2cm, AC= 2cm;⑤∠ B= 30°, AB =2cm, AC= 1cm;⑥∠ B= 30°, AB =2cm, AC= 1.5cm.测试 7三角形全等的条件(五)学习要求能娴熟运用三角形全等的知识综合解决问题.讲堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.假如跷跷板的支点O (即跷跷板的中点)到地面的距离是 50 cm,当小敏从水平地点 CD 降落 40 cm 时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明此中的道理.图 7-12.如图7- 2,工人师傅要在墙壁的 O 处用钻打孔,要使孔口从墙壁对面的 B 点处翻开,墙壁厚是35 cm, B 点与 O 点的铅直距离 AB 长是 20 cm,工人师傅在旁边墙上与 AO 水平的线上截取 OC=35 cm ,画 CD ⊥OC,使 CD = 20 cm,连结 OD,而后沿着 DO 的方向打孔,结果钻头正好从 B 点处打出,这是什么道理呢?请你说出原因.图 7-23.如图 7- 3,公园里有一条“Z”字形道路ABCD ,此中 AB∥ CD ,在 AB、 BC、 CD 三段路旁各有一只小石凳E,F ,M,且 BE= CF , M 在 BC 的中点,试判断三只石凳E, M,F恰幸亏向来线上吗?为何?图 7-34.在一池塘边有A、 B两棵树,如图7- 4.试设计两种方案,丈量A、 B两棵树之间的距离.方案一:方案二:图 7-4测试 8角的均分线的性质(一)学习要求1.掌握角均分线的性质,理解三角形的三条角均分线的性质.2.掌握角均分线的判断及角均分线的画法.讲堂学习检测一、填空题1. _____叫做角的均分线.2.角的均分线的性质是___________________________ .它的题设是 _________,结论是 _____.3.到角的两边距离相等的点,在_____. 因此,假如点P 到∠ AOB 两边的距离相等,那么射线 OP 是 _____.4.达成以下各命题,注意它们之间的差别与联系.( 1)假如一个点在角的均分线上,那么_____;(2)假如一个点到角的两边的距离相等,那么_____;(3)综上所述,角的均分线是 _____的会合.5.( 1)三角形的三条角均分线_____它到 ___________________________ .(2)三角形内,到三边距离相等的点是 _____.....6.如图 8- 1,已知∠ C=90°,AD 均分∠ BAC,BD = 2CD,若点 D 到 AB 的距离等于5cm,则 BC 的长为 _____cm.图 8-1二、作图题7.已知:如图8- 2,∠ AOB.求作:∠ AOB 的均分线OC.作法:图 8-28.已知:如图8- 3,直线 AB 及其上一点P.求作:直线MN ,使得 MN⊥ AB 于 P.作法:图 8-39.已知:如图8- 4,△ ABC.求作:点P,使得点 P 在△ ABC 内,且到三边AB、 BC、 CA 的距离相等.作法:图 8-4综合、运用、诊疗一、解答题10.已知:如图8- 5,△ ABC 中, AB= AC,D 是 BC 的中点, DE ⊥ AB 于 E, DF ⊥AC 于 F.求证: DE=DF.图 8-511.已知:如图8- 6,CD ⊥ AB 于 D, BE⊥ AC 于 E, CD 、 BE 交于 O,∠ 1=∠ 2.求证: OB= OC.图 8-612.已知:如图8- 7,△ ABC 中,∠ C=90°,试在 AC 上找一点 P,使 P 到斜边的距离等于PC.(画出图形,并写出画法)图 8-7拓展、研究、思虑13.已知:如图8- 8,直线 l1, l 2, l 3表示三条相互交错的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地址有几处?(2)你能画出塔台的地点吗?图 8-814.已知:如图8- 9,四条直线两两订交,订交部分的线段组成正方形ABCD .试问:是否存在到起码三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明原因.图 8-9测试 9角的均分线的性质(二)学习要求娴熟运用角的均分线的性质解决问题.讲堂学习检测一、选择题1.如图 9- 1,若 OP 均分∠ AOB, PC⊥OA,PD ⊥ OB,垂足分别是C、 D,则以下结论中错误的选项是()A .PC= PDC.∠ CPO=∠ DPO B.OC=OD D .OC=PC2.如图 9- 2,在n, AB= m,则Rt图 9-1ABC 中,∠ C= 90°, BD 是∠ ABCABD 的面积是()的均分线,交AC于D,若CD =A . 1 mn3 C. mnB . 1 mn2D . 2mn 图 9-2二、填空题3.已知:如图9- 3,在 Rt ABC 中,∠ C= 90°,沿着过点 B 的一条直线使 C 点恰巧落在AB 边的中点 D 处,则∠ A 的度数等于 _____.BE 折叠ABC,图 9-34.已知:如图9-4,在O,过O 作OP⊥BC系为 _____.ABC 中, BD 、 CE 分别均分∠于 P,OM⊥AB 于 M,ON⊥AC ABC、∠ ACB,且 BD、 CE 交于点于 N,则 OP、 OM 、ON 的大小关图 9-4三、解答题5.已知:如图9- 5, OD 均分∠ POQ,在 OP、 OQ 边上取 OA=OB,点 C 在 OD 上, CM ⊥AD 于 M,CN⊥BD 于 N.求证: CM= CN.图 9-56.已知:如图9- 6,ABC 的外角∠ CBD 和∠ BCE 的均分线BF、 CF 交于点 F .求证:一点 F 必在∠ DAE 的均分线上.图 9-67.已知:如图 9- 7, A 、B 、 C 、 D 四点在∠ MON 的边上, AB =CD , P 为∠ MON 内一点,而且△ PAB 的面积与△ PCD 的面积相等.求证:射线 OP 是∠ MON 的均分线.图 9-78.如图 9- 8,在 ABC 中,∠ C = 90°, BD 均分∠ ABC ,DE ⊥ AB 于 E ,若△ BCD 与△ BCA的面积比为 3∶ 8,求△ ADE 与△ BCA 的面积之比.图 9-89.已知:如图 9- 9,∠ B =∠ C = 90°, M 是 BC 的中点, DM 均分∠ ADC .( 1)求证: AM 均分∠ DAB ;( 2)猜想 AM 与 DM 的地点关系怎样?并证明你的结论.图 9-9拓展、研究、思虑10.已知:如图 9-10,在 ABC 中, AD 是△ ABC 一点,而且有∠ EDF +∠ EAF = 180°.试判断的角均分线, E 、 F 分别是 AB 、 AC 上DE 和 DF 的大小关系并说明原因.图 9-10。
八年级上册数学《全等三角形》单元测试题(含答案)
【解析】
试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长=△DEF的周长
【解析】
【分析】
根据判定方法,结合图形和已知条件,寻找添加条件
【详解】解:我们可以先利用HL判定ΔABD≌ΔA'B'D'得出对应Байду номын сангаас相等,对应角相等.
此时若添加CD=C'D',可以利用SAS来判定其全等;
添加∠C=∠C',可以利用AAS判定其全等;还可添加AC=A'C',∠CAD=∠C'A'D'等.故答案为CD=C'D'(或AC=A'C,或∠C=∠C'或∠CAD=∠C'A'D')答案不唯一.
请你以其中两个为条件,另外三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
21.如图22,在∠AOB 两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.
四、拓广探索(本题17分)
22.(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由.
在Rt△ABG和Rt△DEH中,
人教版八年级上册数学 第十一章 三角形 单元综合测试题
人教版八年级上册数学第十一章 三角形 单元综合测试题一.选择题(每小题只有一个是符合题意,每小题3分,共24分)1.在等腰三角形ABC 中,它的两边长分别为8cm 和3cm ,则它的周长为( )A .19cm 或11cmB .19cm 或14cmC .11cm 或14cmD .19cm2.不等边三角形的两边长为10和12,那么它的第三边长x 的取值范围为( )A .2<x≤10 B.2<x<12 C .0<x≤10 D.2<x<223.具备下列条件的△ABC 中,不是直角三角形的是( )A .∠A-∠B=∠CB .∠A=3∠C ,∠B=2∠C C .∠A=∠B=2∠CD .∠A=∠B=21∠C 4.△ABC 的三个内角∠A ,∠B ,∠C 满足关系式∠B +∠C =3∠A ,则此三角形( )A .一定是直角三角形B .一定有一个内角为60°C .一定是钝角三角形D .一定有一个内角为45°5.东东同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,东东说:“射线OP 就是∠BOA 的平分线.”他这样做的依据是( )A .角平分线上的点到这个角两边的距离相等B .三角形三条角平分线的交点到三条边的距离相等C .角的内部到角的两边的距离相等的点在角的平分线上D .以上均不正确6.如图,琪琪从一张三角形纸片ABC 的AC 边上选取一点N ,将纸片沿着BN 对折一次使得点A 落在A′处后,再将纸片沿着BA′对折一次,使得点C 落在BN 上的C′处,已知∠CMB =68°,∠A =18°,则原三角形的∠C 的度数为( )A .87°B .84°C .75°D .72°7.如图,点A、B、C、D、E在同一平面内,连接AB,BC,CD,DE,EA,若∠BCD=100°,则∠A+∠B +∠D+∠E=( )A.220° B.240° C.260° D.280°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E作EF⊥AC,垂足为F.若∠DAE=15∘,∠AEF=50∘,则∠B的度数为()A.55∘ B.65∘ C.75∘ D.80∘二.填空题(每小题3分,共21分)9.一个多边形内角和是外角和的3倍,则这个多边形的边数为______.10.如图所示,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是______.11.一个三角形的三边长都是整数,其中两条边的长度分别为3和8,第三边长为奇数,那么三角形的周长是.12.如图,一个零件的横截面是六边形,这个六边形的内角和为______.13.如图所示,AB∥CD,AD∥BC,∠1=65°,∠2=55°,求∠C的度数.14.如图,BP是∠ABC的平分线,CP是△ACB的外角平分线.若∠ABP=20°,∠ACP=50°,则∠P的度数为.15.如图,已知∠B=∠BAC,∠D=∠ACD,∠BAD=69∘,则∠ACD=.三.解答题(要求写出必要的解答步骤,共计55分)16.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15°,∠BAD=40°,则∠BED= °;(2)请在图中作出△BED中BD边上的高EF;(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?17.已知一个多边形的边数为n.(1)若n=5,求这个多边形的内角和.(2)若这个多边形的内角和的比一个四边形的内角和多90°,求n的值.18.工人师傅要剪下一块四边形ABCD的铁皮如图所示,并且要求该铁皮相对两边的夹角一个为20°,一个为40°,从图中只知道∠B=65°,∠C=75°,∠D=84°,问:这块下料的铁皮合不合格?为什么?19.如图,在△ABC中,∠ABC,∠ACB的平分线交于点0,(1)若∠ABC=600,∠ACB=800,求∠BOC的度数;(2)若∠A=50°,求∠BOC的度数.20.观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”).(2)将(1)中点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.21.在平面直角坐标系中,点A的坐标是(0,4),点B的坐标是(4,0)点E是y轴正半轴上的一个动点(不与A重合),过点A作AC⊥BE交直线BE于D.交x轴于C.(1)如图,当点E的坐标是(0,2)时,求点C的坐标;(2)连接OD,当点E在y轴正半轴上运动时,∠ODB的大小是否会发生变化,如果不变,求出∠ODB的值,如果改变,请说明理由.。
【人教版】八年级上册数学:第11章三角形单元测试(含答案)
第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。
八年级上册第11章全等三角形水平测试题
八年级数学上册第11章全等三角形总复习11.下列判断不正确的是( ) .A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等 2.下面四个图形中,线段AD 是△ABC 的高的是( )。
A .(1)B .(2)C .(3)D .(4)3.△ABC 中,∠A∶∠B∶∠C =1∶3∶5,则∠C= ,这个三角形按角分类时,属于 三角形.4.如图所示,在△ABE 和△DCF 中,∠AEB =∠DFC =90°, AB =CD ,BF =CE ,则△ABE 全等于△_____.5.如图AD=BC ,DC=AB ,AE=CF ,找出图中的一对全等三角形,并说明你的理由.FEDCBA6.如图在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2。
请选择其中两个论断为条件,一个论断为结论,另外构造一个命题.(1)写出所有的正确命题(写成“--------⇒⎭⎬⎫--------------”形式,用序号表示): . (2)请选择一个正确的命题加以说明. 你选择的正确命题是:--------⇒⎭⎬⎫--------------;说明:图173.已知一个三角形的周长为15 厘米,且其中两边都等于第三边的2倍,那么这个三角形的最短边为( ) A .1厘米 B .2厘米 C .3厘米 D .4厘米4.在△ABC 中,∠A =55°,∠B 比∠C 大25°,则∠B 的度数为( )A .50°B .75°C .100°D .125° 5.如图,已知CD ⊥AB 于D ,现有四个条件:①AD=ED ②∠A=∠BED③∠C=∠B ④AC=EB ,那么不能得出△ADC ≌△EDB 的条件是( ) A .①③ B .②④ C .①④ D .②③6.有四条线段,长分别是3厘米,5厘米,7厘米,9厘米,如果用这些线段组成三角形,可以组成不同的三角形的个数为( ).A .2个B .3个C .4个D .5个7.如图2所示,AB =CD ,∠ABD =∠CDB ,则图中全等三角形共有( )A .5对B .4对C .3对D .2对图2 8.如图3所示,已知∠1=∠2,要使△ABC ≌△ADE ,还 需条件( ).A .AB =AD ,BC =DE B .BC =DE ,AC =AE C .∠B =∠D ,∠C =∠E D .AC =AE ,AB =AD 。
八年级数学上册第十一章《全等三角形》单元测试题
第13题八年级数学第十一章《全等三角形》单元测试题(检测时间:100分钟 满分:120分)班级:________ 姓名:________ 座号:________ 得分:_______一、选择题(每小题4分,共40分)1、下列说法错误的是( )A 、全等三角形对应角所对的边是对应边B 、全等三角形两对应边所夹的角是对应角C 、如果两个三角形都与另一个三角形全等,那么这两个三角形也全等D 、等边三角形都全等2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A 、2 B 、3 C 、5 D 、2.53、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个4、如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A 、2 B 、3 C 、4 D 、55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E , ∠B=40°,∠BAC=82°,则∠DAE=( )A 、7°B 、8°C 、9°D 、10° 6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF , ③BD=CD ,④AD ⊥BC 。
其中正确的个数有( )A 、1个B 、2个C 、3个D 、4个7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( ) A 、AB=CD B 、EC=BF C 、∠A=∠D D 、AB=BC8、下列各组条件中,不能判定△ABC ≌△A /B /C /的一组是( )A 、∠A=∠A /,∠B=∠B /,AB= A /B /B 、∠A=∠A / ,AB= A /B /,AC=A /C /C 、∠A=∠A / ,AB= A /B /,BC= B /C /D 、AB= A /B /, AC=A /C / ,BC= B /C /9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A 、1个 B 、2个 C 、3个 D 、4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝,则△DEB 的周长是( )A 、6㎝B 、4㎝C 、10㎝D 、以上都不对二、填空题(每小题4分,共20分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= ; 12、如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC ,∠CED=35°,则∠EAB= ;13、如图:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_______, ∠C=_____14、如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______;15、如图:AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB ,你补充 的条件是 ;三、解答题(16-20每题8分,21、22每题10分,共60分)16、如图,三条公路两两相交于A、B 、C 三点,现计划建一座综合供应中心,要求到三条公路的距离相等,则你能找出符合条件的地点吗?在图中画出来。
八年级数学上册《全等三角形》单元测试卷(有答案)
八年级数学上册《全等三角形》单元测试卷(有答案)一.选择题1.下列各组图形中不是全等形的是()A.B.C.D.2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积3.下列图形是全等图形的是()A.B.C.D.4.如图线段AB、DC相交于点O,已知OC=OB,添加一个条件使△OCA≌△OBD,下列添加条件中,不正确的是()A.AC=DB B.∠C=∠B C.OA=OD D.∠A=∠D5.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个6.在△ABC和△ADC中,有下列三个论断:(1)AB=AD,(2)∠BAC=∠DAC,(3)BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数为()A.1个B.2个C.3个D.0个7.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或58.如图,AC与BD相交于点O,∠D=∠C.添加下列哪个条件后,仍不能使△ADO≌△BCO的是()A.AD=BC B.AC=BD C.OD=OC D.∠ABD=∠BAC9.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④10.下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点二.填空题11.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)12.如图,在正方形网格中,∠1+∠2+∠3=.13.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.14.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.16.如图所示,尺规作图作∠AOB的平分线,方法如下:以O为圆心,任意长为半径画弧交OA,OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得到△OCP≌△ODP的根据是.17.如图,△ABC与△ADC中,∠B=∠D=90°,要使△ABC≌△ADC,还需添加的一个条件是(写一个即可).18.在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是.19.如图,图中由实线围成的图形与①是全等形的有.(填序号)20.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为.三.解答题21.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF ≌△CBE.22.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.23.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.24.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,求∠ADC的度数.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.26.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.参考答案与解析一.选择题1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选:A.3.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.4.解:根据题意,已知OC=OB,∠AOC=∠COB,∴只需添加对顶角的邻边,即OA=OD,或任意一组对应角,即∠C=∠B,∠A=∠D;所以,选项A错误;故选:A.5.解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选:B.6.解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选:B.7.解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选:C.8.解:添加AD=CB,根据AAS判定△ADO≌△BCO,添加OD=OC,根据ASA判定△ADO≌△BCO,添加∠ABD=∠CAB得OA=OB,可根据AAS判定△ADO≌△BCO,故选:B.9.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.10.解:A、射线OP无限长,所以A选项不符合题意;B、量出A、B点的距离,所以B选项不符合题意;C、射线OA不需要延长,只能反向延长射线OA,所以C选项不符合题意;D、用直尺可以连接A、B两点,所以D选项符合题意.故选:D.二.填空题11.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.12.解:∵在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.13.解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=20.故答案为:20.14.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.15.解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.16.解:∵OC=OD,PC=PD(同圆或等圆的半径相等),OP=OP(公共边),∴△OCP≌△ODP(SSS).故填SSS.17.解:已知∠B=∠D,AC是公共边,故添加CB=CD、AB=AD、∠1=∠2、∠3=∠4后可分别根据HL,AAS,AAS能判定△ABC≌△ADC.18.解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.19.解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.20.解:∵△ABC≌△DCB,∴DB=AC=7,∴DE=BD﹣BE=7﹣5=2,故答案为:2.三.解答题21.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).22.解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).23.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.24.解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣80°﹣70°=130°.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.26.证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.。
数学八年级上学期《全等三角形》单元测试卷(含答案)
9.如图,在△A B C中,A B=A C,∠A B C、∠A C B的平分线B D,CE相交于O点,且B D交A C于点D,CE交A B于点E.某同学分析图形后得出以下结论:① B C D≌ C BE;② B A D≌ B C D;③ B D A≌ CEA;④ BOE≌ COD;⑤ A CE≌ B CE;上述结论一定正确的是
A.①②③B.②解析]
根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法A AS或ASA判定全等的三角形.
解:∵A B=A C,∴∠A B C=∠A C B.
∵B D平分∠A B C,CE平分∠A C B,
∴∠A B D=∠C B D=∠A CE=∠B CE.
A B的对应边应是FD,
根据三角形全等的判定,当A C=FD时,有△A B C≌△FED.
故选C.
考点:本题考查的是全等三角形的判定
点评:判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:A A A、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
人教版八年级上册《全等三角形》单元测试卷
时间:90分钟 总分: 100
一、选择题(每小题3分,共30分)
1.下列说法正确 是( )
A.形状相同的两个三角形全等
B.面积相等的两个三角形全等
C.完全重合的两个三角形全等
D.所有的等边三角形全等
2.如图2, 、 、 分别表示△A B C的三边长,则下面与△A B C一定全等的三角形是
即
在△B C D和△A CE中
△B C D≌△A CE
初中数学第11章 全等三角形单元测试卷及评讲课教案
第十一章 全等三角形测试卷(测试时间:90分钟 总分:100分)班级 姓名 得分一、选择题(本大题共10题;每小题2分,共20分)1. 对于△ABC 与△DEF ,已知∠A =∠D ,∠B =∠E ,则下列条件①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 2. 下列说法正确的是( )A .面积相等的两个三角形全等B .周长相等的两个三角形全等C .三个角对应相等的两个三角形全等D .能够完全重合的两个三角形全等 3. 下列数据能确定形状和大小的是( )A .AB =4,BC =5,∠C =60° B .AB =6,∠C =60°,∠B =70° C .AB =4,BC =5,CA =10D .∠C =60°,∠B =70°,∠A =50°4. 在△ABC 和△DEF 中,∠A=∠D ,AB = DE ,添加下列哪一个条件,依然不能证明△ABC ≌△DEF ( )A .AC = DFB .BC = EF C .∠B=∠ED .∠C=∠F 5. OP 是∠AOB 的平分线,则下列说法正确的是( )A .射线OP 上的点与OA ,OB 上任意一点的距离相等 B .射线OP 上的点与边OA ,OB 的距离相等C .射线OP 上的点与OA 上各点的距离相等D .射线OP 上的点与OB 上各点的距离相等 6. 如图,∠1=∠2,∠E=∠A ,EC=DA ,则△ABD ≌△EBC 时,运用的判定定理是( )A .SSSB .ASAC .AASD .SAS7. 如图,若线段AB ,CD 交于点O ,且AB 、CD 互相平分,则下列结论错误的是( )A .AD=BCB .∠C=∠DC .AD ∥BC D .OB=OC8. 如图,AE ⊥BD 于E ,CF ⊥BD 于F ,AB = CD ,AE = CF ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 9. 如图,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.以上结论正确的( )A .只有①B .只有②C .只有③D .有①和②和③10.如图,DE ⊥BC ,BE=EC ,且AB =5,AC =8,(第8题)A D CB E F A B FC ED (第9题)O A D C B (第7题) B A C E D (第6题) 2 1ON M PC BA 则△ABD 的周长为( ) A .21B .18C .13D .9二、填空题(本大题共6小题;每小题2分,共12分) 11.如图,除公共边AB 外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC 与△ABD 全等:(1) , (ASA);(2) ,∠3=∠4 (AAS). 12.如图,AD 是△ABC 的中线,延长AD 到E ,使DE =AD ,连结BE ,则有△ACD ≌△ 。
人教版八年级上册数学第十一章 《三角形》单元测试卷(含答案)
人教版八年级上册数学第十一章《三角形》单元测试卷一.选择题1.如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC 2.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cm B.3cm C.5cm D.8cm3.如图,在△ABC中,AB=AC,∠A=112°,E,F,D分别是AB,AC,BC上的点,且BE=CD,BD=CF,则∠EDF的度数为()A.30°B.34°C.40°D.56°4.花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③)、④),若要配块与原来大小一样的三角形玻璃,应该带()A.第①块B.第②块C.第③块D.第④块5.下列说法:(1)三角形具有稳定性;(2)有两边和一个角分别相等的两个三角形全等(3)三角形的外角和是180°(4)全等三角形的面积相等.其中正确的个数是()A.1个B.2个C.3个D.4个6.已知△ABC的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙7.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④8.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.109.如图,在△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,DE=DF,G是AC上一点,DG∥AB,下列一定正确的是()①△ADE≌△ADF;②BE=CF;③AG=DG.A.①②B.①③C.②③D.①②③10.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.4二.填空题11.如图,在△ABC中,D、E分别是AC,AB上的点,若△ADE≌△BDE≌△BDC,则∠DBC的度数为.12.在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BC于F,则下列说法中正确的是.①∠BOE=60°,②∠ABD=∠ACE,③OE=OD④BC=BE+CD13.如图,四边形ABCD的对角线AC、DB交于点E,AB=CD,AC=DB,图中全等的三角形共。
八年级数学上册第十一章全等三角形复习题(附答案)
八年级数学上册第十一章全等三角形复习题一、选择题(每小题3分,共30分) 1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA = B. 4AB =,3BC =,30A ∠= C. 60C ∠=,45B ∠=,4AB = D. 90C ∠=,6AB =3.如图1,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF =B .AE AF =C .△APE ≌ △APFD .AP PE PF =+4.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③5.如图2, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个6.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等7.如图3,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( ) A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°AD CB图1E F AD CB图2E FAD OCB图3AD ECB图4F G AEC 图5B A ′E ′D8.已知:如图4,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对9.将一张长方形纸片按如图5所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95° 10.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6二、填空题(每小题3分,共24分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)2.如图6,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______. 3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______. 4.如图7,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.5.如图8,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.6.如图9,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.7.如图10,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.AD ECB 图6ADECB图7ADOCB 图88. 如图11,在等腰Rt ABC ∆中,90C ∠=,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;三、解答题 (本大题共46分)1. (本题6分)如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
人教新版八年级上册《第11章 三角形》单元测试卷
人教新版八年级上册《第11章三角形》单元测试卷一.选择题(共18小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.72.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°3.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°4.如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°5.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°6.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°7.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°8.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数()A.19°B.20°C.22°D.25°9.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°10.如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°11.在平面内,若AB=6,BC=4,∠A=30°,则可以构成的△ABC的个数是()A.0个B.1个C.2个D.不少于2个12.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°13.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°14.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°15.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°16.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°17.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°18.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个二.解答题(共9小题)19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.20.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.21.如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.求证:△ABC ≌△DEF.22.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.23.直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC交AD于E,求∠4的度数.26.已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).(1)∠ABC+∠ADC=(用含α、β的代数式直接填空);(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为角(只填序号);①锐角;②直角;③钝角.(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.27.同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小;(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG,的值是否变化?如果不变,请求出比值;如果变化,请说明理由.人教新版八年级上册《第11章三角形》参考答案与试题解析一.选择题(共18小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7【分析】依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,即BC的长可能值有4个,故选:A.【点评】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.2.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,∠BCD的度数为60°或10°,故选:D.【点评】本题考查了三角形的内角和定理,分情况讨论是解决本题的关键.3.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°【分析】由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.【解答】解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,故选:A.【点评】本题考查三角形的内角和定理和四边形的内角和,掌握三角形的内角和定理是解本题的关键.4.如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°【分析】由∠O=30°可分两种情况:若∠A为钝角,则90°<∠A<180°﹣30°,可直接求解∠A的范围;若∠A为锐角,则90°<∠A<180°﹣30°,再根据三角形外角的性质可求解.【解答】解:∵∠O=30°,若∠A为钝角,则90°<∠A<180°﹣30°,即90°<∠A<150°,若∠A为锐角,则0°<∠APN<90°,∵∠APN=∠O+∠A,∴∠A+30°<90°,∴0°<∠A<60°,综上,∠A的取值范围为0°<∠A<60°或90°<∠A<150°,故选:D.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,分类讨论是解题的关键.5.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°【分析】分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.【解答】解:由折叠的性质知:∠BPD=∠APD=∠BP A,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠P AC=∠C=70°,则∠APC=40°.∵∠BPD=(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠P AC,则∠APC=55°.∵∠BPD=(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.故选:D.【点评】本题考查了折叠的性质、三角形的内角和定理、等腰三角形的性质等知识点,掌握折叠、等腰三角形的性质、三角形的内角和定理及分类讨论的思想方法是解决本题的关键.6.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°【分析】已知∠A=18°,欲求∠C,需求∠ABC.如图,由题意得:△ABN≌△A′BN,△C′BN≌△CBM,得∠1=∠2=∠3,∠CMB=∠C′MB=68°,则需求∠3.根据三角形内角和定理,得∠3+∠C=112°,∠ABC+∠C+18°=180°,即3∠3+∠C=162°,故求得∠3=25°.【解答】解:如图,由题意得:△ABN≌△A′BN,△C′BN≌△CBM.∴∠1=∠2,∠2=∠3,∠CMB=∠C′MB=68°.∴∠1=∠2=∠3.∴∠ABC=3∠3.又∵∠3+∠C+∠CMB=180°,∴∠3+∠C=180°﹣∠CMB=180°﹣68°=112°.又∵∠A+∠ABC+∠C=180°,∴18°+2∠3+(∠3+∠C)=180°.∴18°+2∠3+112°=180°.∴∠3=25°.∴∠C=112°﹣∠3=112°﹣25°=87°.故选:A.【点评】本题主要考查折叠的性质以及三角形内角和定理,熟练掌握三角形内角和定理是解决本题的关键.7.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°【分析】设∠ABC=x,∠E=y,则∠BAC=x+102°,∠D=y+27°.由∠BAC+∠ABC+∠ACB=180°,得∠ACB=78°﹣2x°.由AE平分∠CAG,得∠GAE=39°﹣.同理可得:∠DBF=90°﹣.由∠GAE=∠ABC+∠E,∠DBF=∠D+∠ACB,得39°﹣=x+y,90°﹣=y+27°+78°﹣2x,得x=18°.那么,∠ACB=78°﹣2x=78°﹣2×18°=42°.【解答】解:设∠ABC=x,∠E=y,则∠BAC=x+102°,∠D=y+27°.∵∠BAC+∠ABC+∠ACB=180°,∴∠ACB=180°﹣(∠ABC+∠BAC)=78°﹣2x°.∵AE平分∠CAG,∴∠GAE===39°﹣.同理可得:∠DBF=90°﹣.∵∠GAE=∠ABC+∠E,∴39°﹣=x+y.∵∠DBF=∠D+∠ACB,∴90°﹣=y+27°+78°﹣2x.∴x=18°.∴∠ACB=78°﹣2x=78°﹣2×18°=42°.故选:D.【点评】本题主要考查三角形外角的性质以及角平分线的定义,熟练掌握三角形外角的性质是解决本题的关键.8.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数()A.19°B.20°C.22°D.25°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=(48°﹣10°)=19°.故选:A.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.9.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°【分析】分三种情形:①当AE=AF时,②当AF=EF时,③当AE=EF时,分别求解即可.【解答】解:①当AE=AF时,则∠AFE=∠AEF=(180°﹣∠A),∵∠B=∠EFD=90°﹣∠A,∠CFD=60°,∴∠AFD=120°,∴(180°﹣∠A)+90°﹣∠A=120°,∴∠A=40°.②当AF=EF时,∠AFE=180°﹣2∠A,同法可得180°﹣2∠A+90°﹣∠A=120°,∴∠A=50°.③当AE=EF时,点F与C重合,不符合题意.综上所述,∠A=40°或50°,故选:B.【点评】本题考查三角形内角和定理,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.10.如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°【分析】先根据角平分线定义求出∠CAD=∠BAD=∠CAB=45°,再根据直角三角形两锐角互余求出∠ACB及∠ACE,再通过∠ECD=∠ACE﹣∠BCA求解.【解答】解:∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=∠BAD=∠CAB=45°,∵CE⊥AD,∴∠ECA=∠CEA﹣∠CAE=45°,∵∠BCA=∠CAB﹣∠B=20°,∴∠ECD=∠ACE﹣∠BCA=25°,故选:C.【点评】本题考查三角形的内角和定理,解题关键掌握三角形内角和定理及直角三角形两个锐角互余.11.在平面内,若AB=6,BC=4,∠A=30°,则可以构成的△ABC的个数是()A.0个B.1个C.2个D.不少于2个【分析】利用30°角所对的直角边是斜边的一半可求出BH=3,再根据BC>3,可知符合条件的三角形有2个.【解答】解:如图,∵∠A=30°,AB=6,BH⊥AD,∴BH=3,∵BC=4>3,∴AD边上存在两个点C,使得BC=4,∴可以构成的△ABC的个数是2个,故选:C.【点评】本题主要考查了30°角所对的直角边是斜边的一半这一性质,解决问题的关键是作图,求出B到AD的距离.12.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°【分析】根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【解答】解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,故选:D.【点评】本题考查了三角形的外角性质和折叠的性质,能熟记三角形的外角性质是解此题的关键,注意:三角形的一个外角等于与它不相邻的两个内角的和.13.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°【分析】设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,利用三角形的外角的性质构建方程组解决问题即可.【解答】解:∵∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF,∴可以假设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,∵∠DFE=∠ACF+∠CAF,∠FDE=∠DAB+∠ABD,∠DEF=∠CBE+∠BCE,∴54°=2x+z,60°=x+2y,66°=y+2z,解得x=16°,y=22°,z=22°,∴∠BAC=3x=48°,故选:D.【点评】本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.14.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°【分析】先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.【解答】解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,故选:A.【点评】本题是折叠问题,考查了折叠的性质,熟练掌握折叠前后的两个角相等,结合三角形的内角和求出角的度数.15.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°【分析】欲求∠AOG,可求∠AOC,则需求∠BCO、∠OAB、∠B.因为五边形ABCDE 是正五边形,所以∠EAB=∠E=∠BCD=108°.又因为AO平分∠EAB,CG平分∠DCF,所以可求得∠OAB=54°,∠BCG=108°+=144°.【解答】解:∵任意多边形的外角和等于360°,∴∠DCF=360°÷5=72°.∴这个正五边形的每个内角为180°﹣72°=108°.∴∠B=∠EAB=∠BCD=108°.又∵AO平分∠EAB,∴∠OAB=.又∵CG平分∠DCF,∴∠DCG=.∴∠BCO=∠BCD+∠DCG=108°+36°=144°.∴∠AOC=360°﹣(∠BAO+∠B+∠BCG)=360°﹣(54°+108°+144°)=54°.∴∠AOG=180°﹣∠AOC=180°﹣54°=126°.故选:B.【点评】本题主要考查任意多边形的外角和、正多边形的性质、角平分线的定义以及四边形的内角和,熟练掌握正多边形的性质、角平分线的定义以及四边形的内角和是解决本题的关键.16.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°【分析】如图,延长DC交直线n于2点H.由m∥n,得∠2=∠CHG.由四边形内角和等于360°,得∠4+∠5+∠A+∠B=360°,故∠1+∠A+∠B+∠5=360°,那么∠5=144°﹣∠1.由∠3+∠GCH+∠CGH=180°,得∠CGH=108°﹣∠2,故108°﹣∠2=144°﹣∠1.进而推断出∠1=36°﹣∠2.【解答】解:如图,延长DC交直线n于2点H.由题意得:∠A=∠B=∠DCB=108°.∴∠GCH=180°﹣∠DCB=180°﹣108°=72°.∵∠1和∠4是对顶角,∴∠1=∠4.∵∠4+∠5+∠A+∠B=360°,∴∠4+∠5=360°﹣(∠A+∠B)=360°﹣(108°+108°)=144°.∴∠1+∠5=144°.∴∠5=144°﹣∠1.∵∠5与∠CGH是对顶角,∴∠5=∠CGH.∵m∥n,∴∠2=∠CHG.又∵∠GCH+∠3+∠CGH=180°,∴72°+∠2+∠5=180°.∴∠5=108°﹣∠2.∴108°﹣∠2=144°﹣∠1.∴∠1=∠2+36°.故选:C.【点评】本题主要考查正多边形的性质、平行线的性质、对顶角的性质以及三角形内角和定理,熟练掌握正多边形的性质、平行线的性质、对顶角的性质以及三角形内角和定理是解决本题的关键.17.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.【点评】本题主要考查全等三角形的性质,由全等三角形的性质求解∠ACD的度数是解题的关键.18.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个【分析】根据全等三角形的判定依据题目要求画出图形即可.【解答】解:如图满足条件的三角形如图所示,有5个.故选:C.【点评】本题考查全等三角形的判定,解题的关键是理解题意,灵活运用所学知识解决问题.二.解答题(共9小题)19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.【分析】(1)由△ABD≌△CFD,得出∠BAD=∠DCF,再利用三角形内角和即可得出答案;(2)根据全等三角形的性质得出AD=DC,即可得出BD=DF,进而解决问题.【解答】(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【点评】此题考查了全等三角形的性质,熟练应用全等三角形的性质是解决问题的关键.20.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.【分析】根据SAS证明即可.【解答】证明:∵AB∥CD,∴∠A=∠DCF,∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).【点评】本题考查全等三角形的判定,平行线的性质等知识,解题的关键是根据平行线的性质得到∠A=∠DCF.21.如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.求证:△ABC ≌△DEF.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,再根据全等三角形的判定定理推出即可.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).【点评】本题考查了平行线的性质和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.22.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=或时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.23.直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是∠MPN+∠OMP+∠ONP=320°;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.【分析】(1)①延长OP至点E,利用三角形的外角性质和整体思想求证;②分类讨论,点P在△OMN内部和外部进行讨论;③直线MN和直线AB、直线CD将平面分为7个部分,讨论点P在∠MON外部的5个部分进行讨论;(3)直线MN和直线AB、直线CD将平面分为6个部分,讨论点P在这6个部分时三个角之间的关系.【解答】(1)①证明:如图1,延长OP至点E,∵∠MPE和∠NPE分别是△MOP和△NOP的外角,∴∠MPE=∠MOP+∠OMP,∠NPE=∠NOP+∠ONP,∴∠MPE+∠NPE=∠MOP+∠NOP+∠OMP+∠ONP,即∠MPN=∠MON+∠OMP+∠ONP,∴∠MPN﹣∠OMP﹣∠ONP=∠MON=40°.②解:如图2,当点P在∠MON内部,且在直线MN右侧时,延长OP至点E,则∠MPO+∠MOP+∠OMP=180°,∠NPO+∠NOP+∠ONP=180°,∴∠MPO+∠NPO+∠MOP+∠NOP+∠OMP+∠ONP=360°,即∠MPN+∠MON+∠OMP+∠ONP=360°,∴∠MPN+∠OMP+∠ONP=360°﹣∠MON=360°﹣40°=320°.故答案为:∠MPN+∠OMP+∠ONP=320°.③解:如图3,当点P落在直线MN左侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OEP是△MEP和△OEN的外角,∴∠OEP=∠MPN+∠OMP,∠OEP=∠MON+∠ONP,∴∠MPN+∠OMP=∠MON+∠ONP,即∠MPN+∠OMP﹣∠ONP=∠MON,∴∠MPN+∠OMP﹣∠ONP=40°;如图4,当点P落在直线MN的右侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OMP是△MEP的外角,∠OEP是△OEN的外角,∴∠OMP=∠MPN+∠OEP,∠OEP=∠MON+∠ONP,∴∠OMP=∠MPN+∠MON+∠ONP,即∠OMP﹣∠ONP﹣∠MPN=∠MON,∴∠OMP﹣∠ONP﹣∠MPN=40°;如图5,当点P落在直线MN左侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF和△FNP的外角,∴∠OFP=∠MON+∠OMP,∠OFP=∠MPN+∠ONP,∴∠MON+∠OMP=∠MPN+∠ONP,即∠MPN+∠ONP﹣∠OMP=∠MON,∴∠MPN+∠ONP﹣∠OMP=40°;如图6,当点P落在直线MN右侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF的外角,∠ONP是△FNP的外角,∴∠OFP=∠MON+∠OMP,∠ONP=∠MPN+∠OFP,∴∠ONP=∠MPN+∠MON+∠OMP,∴∠MPN+∠OMP+∠ONP=∠MON=40°;如图7,当点P落在∠AOC内部时,延长PO至点G,∵∠MOG和∠NOG分别是△MOP和△NOP的外角,∴∠MOG=∠MPO+∠PMO,∠NOG=∠NPO+∠PNO,∴∠MOG+∠NOG=∠MPO+∠NPO+∠PMO+∠PNO,即∠MON=∠MPN+∠PMO+∠PNO,∴∠MPN+∠PMO+∠PNO=40°,综上所述:当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种.(2)解:如图8,当点P在直线MN右侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AMP是△MPH的外角,∴∠AMP=∠MPN+∠AHP,∴∠AMP=∠MPN+∠CNP;如图9,当点P在直线MN的左侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AHP是△MPH的外角,∴∠AHP=∠MPN+∠AMP,∴∠CNP=∠MPN+∠AMP;如图10,当点P在直线MN右侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠BMP+∠PMN+∠PNM+∠PND=180°,∵∠BMP=180°﹣∠AMP,∠PND=180°﹣∠PNC,∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP+MPN=360°,如图11,当点P在直线MN左侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠AMP+∠PMN+∠CNP+∠PNM=180°,∵∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP=∠MPN,如图12,当点P在直线MN右侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CNP是△NHP的外角,∴∠CNP=∠CHP+∠MPN,∴∠CNP=∠AMP+∠MPN;如图13,当点P在直线MN的左侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CHP是△PHN的外角,∴∠CHP=∠MPN+∠CNP,∴∠AMP=∠MPN+∠CNP,综上所述,当AB∥CD时,∠MPN与∠AMP、∠CNP之间存在的所有数量关系是:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.故答案为:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN =360°.【点评】本题考查了平行线的性质、三角形的外角性质和三角形的内角和定理,解题的关键是根据点P的位置进行分类讨论.分类情况较多,同学们可以将对应的图形一一画出,然后求出给定的三个角的数量关系.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=45°;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.【分析】(1)根据BP、AE分别是∠ABC、∠BAD的平分线,得∠ABP=∠ABC,∠EAB=∠BAD,再根据外角的性质得∠BAD=∠ABC+∠ACB,∠EAB=∠ABP+∠P,化简即可;(2)①由AQ、FQ分别是∠CAF、∠AFB的平分线,导出∠AQF=90°+∠ACF,由(1)知:∠P=∠ACB,则∠APB+∠AQF=90°+∠ACF+∠ACB=180°,从而解决问题;②根据外角的性质得:∠AGC﹣∠HQF=∠GQF,由①知:∠AQF=90°+∠ACF,则∠GQF=90°﹣∠ACF,而∠ACB=180°﹣∠ACF,即可得出答案.【解答】解:(1)∵BP、AE分别是∠ABC、∠BAD的平分线,∴∠ABP=∠ABC,∠EAB=∠BAD,∵∠BAD是△ABC的外角,∴∠BAD=∠ABC+∠ACB,∴∠BAD=∠ABC+∠ACB,∵∠EAB是△ABP的外角,∴∠EAB=∠ABP+∠P,∴∠P=∠ACB,当∠ACB=90°时,∠P=45°;当∠ACB=α时,∠P=;故答案为:45°,;(2)①∵AQ、FQ分别是∠CAF、∠AFB的平分线,∴∠QAF=∠CAF,∠AFQ=∠AFC,∴∠QAF+∠AFQ=(∠CAF+∠AFC),∴∠AQF=180°﹣(∠QAF+∠AFQ)=180°﹣(∠CAF+∠AFC)=180°﹣(180°﹣∠ACF)=90°+∠ACF,由(1)知:∠P=∠ACB,∴∠APB+∠AQF=90°+∠ACF+∠ACB=180°,∴∠APB+∠AQF的值不变,为180°;②∵QH∥CF,∴∠HQF=∠QFG,∴∠AGC﹣∠HQF=∠GQF,由①知:∠AQF=90°+∠ACF,∴∠GQF=90°﹣∠ACF,∵∠ACB=180°﹣∠ACF,∴=,故答案为:.【点评】本题主要考查了三角形角平分线的定义、三角形内角和定理等知识,能熟练进行角之间的转化是解题的关键.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC交AD于E,求∠4的度数.【分析】首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.【解答】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.【点评】本题主要考查三角形的内角和,三角形的外角,解答的关键结合图形找出角与角之间的关系.26.已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).(1)∠ABC+∠ADC=360°﹣α﹣β(用含α、β的代数式直接填空);(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为①角(只填序号);①锐角;②直角;③钝角.(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.【分析】(1)由四边形内角和等于360°,可得∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β,得∠ABC+∠ADC=180°.由DG平分∠CDN,得∠CDG=90°﹣.欲证∠BDG与90°的大小关系,需证∠CDG+∠BDC与90°的大小关系,即证∠BDC与的关系.由BE平分∠ABC,得∠ABF =∠CBF,故∠ABD<CBD.由∠A+∠ABD+∠ADB=∠C+∠CBD+∠BDC,得∠ABD>∠BDC,故∠BDC<.进而推断出∠BDG为锐角.(3)如图3,连接PC并延长至Q.由BP平分∠MBC,得∠PBC=.同理可证:∠CDP=.那么,∠BCD=∠PBC+∠CDP+∠BPD=β=210°﹣=210°﹣.又因为α+β=110°,所以α=25°,β=85°.(4)如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE,得∠BCG=∠EBC =90°﹣,故∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.若∠CDF=∠GCD,则=β+﹣90°,即α=β,则GH∥DF,故BE∥DF.此时,P不存在.【解答】解:(1)∵四边形内角和等于360°,∴∠A+∠ABC+∠C+∠ADC=360°.∴∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.故答案为:360°﹣α﹣β.(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β.∵α=β=90°,∴∠ABC+∠ADC=360°﹣90°﹣90°=180°.∵DG平分∠CDN,∴∠CDG==.∵BE平分∠ABC,∴∠ABE=∠CBE.∴∠ABD<∠CBD.又∵∠A=∠C=90°,∴∠ABD+∠ADB=∠CBD+∠CDB.∴∠ADB>∠BDC.∴2∠BDC<∠BDC+∠ADB=∠ADC.∴∠BDC<.∴0<∠BDG=∠CDG+∠BDC=90°﹣+∠BDC<90°﹣+=90°.∴∠BDG为锐角.故答案为:①.(3)①:如图3,连接PC并延长至Q.∵BP平分∠MBC,∴∠PBC=.同理可证:∠CDP=.∵∠QCB=∠PBC+∠BPC,∠QCD=∠CDP+∠CPD,∴∠QCB+∠QCD=∠CBP+∠BPC+∠CDP+∠CPD.∴∠BCD=∠PBC+∠CDP+∠BPD.∴β=90°﹣+90°﹣+30°.∴β=210°﹣=210°﹣.∴β﹣α=60°.又∵α+β=110°,∴α=25°,β=85°.②:∠BPD不一定存在,当α=β时,∠BPD不存在.如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE.由①,可证:∠EBC=90°﹣,∠CDF=90°﹣.由(1)得:∠ABC+∠ADC=360°﹣α﹣β.∴∠ADC=360°﹣α﹣β﹣∠ABC.∴∠CDF=.∵BE∥GH,∴∠BCG=∠EBC=90°﹣.∴∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.若∠CDF=∠GCD,则=β+﹣90°,即α=β.∴GH∥DF.又∵BE∥GH,∴BE∥DF.此时,P不存在,即∠BPD不存在.∴当α=β时,∠BPD不存在.【点评】本题主要考查四边形内角和等于360°、角平分线的定义、三角形外角的性质以及平行线的性质,熟练掌握四边形内角和等于360°、角平分线的额定义以及三角形外角的性质是解决本题的关键.27.同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小;(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG,的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【分析】(1)如图1,延长AM交EG于M.由题意知:DF∥EG,∠ACB=90°,故∠α=∠GMC,∠ACB=∠GMC+∠CGM=90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC交EG于N.由题意知:DF∥EN,∠ACB=90°,得∠1=∠GNC,∠CGN+∠GNC=90°,故∠1+∠CGN=90°.因为∠DFC的平分线与∠EGC的平分线相交于点Q,所以∠QFC=,∠GQC=90°﹣.那么,∠FQG=360°﹣∠QFC﹣∠QGC﹣∠ACB=135°.(3)由题意知:DF∥EG,得∠FOG=∠EGO,故==1.【解答】解:(1)如图1,延长AM交EG于M.∠β+∠α=90°,理由如下:由题意知:DF∥EG,∠ACB=90°.∴∠α=∠GMC,∠ACB=∠GMC+∠CGM=90°.∵∠EGB和∠CGM是对顶角,∴∠β=∠CGM.∴∠β+∠α=90°.(2)如图2,延长AC交EG于N.由题意知:DF∥EN,∠ACB=90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
E
A
F
B
C
E
F
C B
A D 八年级数学全等三角形元测试
一、选择题(24分)
1.用尺规作已知角的平分线的理论依据是( )
A .SAS
B .AAS
C .SSS
D .ASA 2.三角形中到三边距离相等的点是( )
A .三条边的垂直平分线的交点
B .三条高的交点
C .三条中线的交点
D .三条角平分线的交点
3. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( )
A. 5
B. 6
C. 7
D. 8
4.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )
A. 15°
B. 20°
C. 25°
D. 30°
4题图 5题图 6题图
5.如图,在Rt △AEB 和Rt △AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠E =∠F =90°,∠EAC =∠FAB ,AE =AF .给出下列结论:①∠B =∠C ;②CD =DN ;③BE =CF ;④△CAN ≌△ABM .其中正确的结论是( )
A .①③④
B .②③④
C .①②③
D .①②④
6.如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,
有下面四个结论:①DA 平分∠EDF ;②AE=AF ;③AD 上的点到B ,C 两点的距离相等;④到AE ,AF 的距离相等的点到DE ,DF 的距离也相等.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 7.已知AD 是△ABC 的角平分线,DE ⊥AB 于E ,且DE=3cm ,则点D 到AC 的距 离是( )
A.2cm
B.3cm
C.4cm
D.6cm
8.下列说法:①角的内部任意一点到角的两边的距离相等;•②到角的两边 距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边 的距离相等;④△ABC 中∠BAC 的平分线上任意一点到三角形的三边的距离 相等,其中正确的( )
A .1个
B .2个
C .3个
D .4个
二、填空题(30分)
9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是
28 cm 2,AB=20cm ,AC=8cm ,则DE 的长为_________ cm .
10. 已知△ABC ≌△DEF ,AB =DE ,BC =EF ,则AC 的对应边是__________,∠ACB 的对应角是__________.
11. 如图所示,把△ABC 沿直线BC 翻折180°到△DBC ,那么△ABC 和△DBC______全等图形(填“是”或“不是”);若△ABC 的面积为2,那么△BDC 的面积为__________.
12. 如图所示,△ABE ≌△ACD ,∠B =70°,∠AEB =75°,则∠CAE =__________°.
9题图 11题图 12题图
13. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D 的对应角是__________,图中相等的线段有__________.
13题图 14题图 15题图 14. 如图所示,已知△ABC ≌△DEF ,AB =4cm ,BC =6cm ,AC =5cm ,CF =2cm ,∠A =70°,∠B =65°,则∠D =__________,∠F =__________,DE =__________,BE =__________.
15.如图,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,需添加一个条件是__________(只要求写一个条件).
16. 已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 .
17.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E
,且CD =CE ,则∠DOC
=_________.
A
B
C
E
M
F D
N
18.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .
三、解答题
19.(6分)已知:如图,∠1=∠2,∠C =∠D ,求证:AC =AD.
20.(8分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ;(2)BO =DO .
21.(8分)如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,AD =BD .
(1)求证:AC =BE ;(2)求∠B 的度数。
22.(10分)如图,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD .求证:AD 平分∠BAC .
23.(10分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .
24.(12分) MN 、PQ 是校园里的两条互相垂直的小路,小强和小明分别站在距交叉口C 等距离的B 、E 两处,这时他们分别从B 、E 两点按同一速度沿直线行走,如图所示,经过一段时间后,同时到达A 、D 两点,他们的行走路线AB 、DE 平行吗?请说明你的理由.
25.(12分)如图,△ABC 中,E 、F 分别是AB 、AC 上的点.
① AD 平分∠BAC ,② DE ⊥AB ,DF ⊥AC ,
图1
图2
17题图
18题图
M Q
E
A
C D B
A
B
C
D
1
2
D
C B
A O 1
2 3 4
③ AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①②⇒③,①③⇒②,②③⇒①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.。