考数学二轮复习12新定义型

合集下载

专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测

专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测
则 = .
5.(2021•浙江)在中,∠ = °, = ,是的中点, = ,则 = ;

∠ = .

6.(2022•甲卷)已知中,点在边上,∠ = °, = , = .当 取得最小值时,
,得 = 2或 =
∈ 0, ,得sin = 1
7
− 2(舍),
− cos 2
2
2
15
4
=
=

2sin⋅cos
3 15

4


3
3
= sin,所以 = 6cos.
在 △ 中,再由余弦定理得 cos =

所以 6 =
15

4
所以△ 的面积 = 1 sin = 1 × 3 × 2 ×
2
=
3

= 0, ∴ ∠ = , =
2
2
3
7
1+4−2
7
,解得AD为
9
1
+
16
3

2
− )=
=
3
,cos∠
3
129
12
4
3 3
,sin∠ =

43
43
3
1
, sin∠ = ,
2
2
7 3
+ ∠) = 2 43,

cos∠ = −cos∠ = −
cos∠ = cos(

(2)在△ 中,由正弦定理得sin = sin ⇒ sin2 = sin ⇒
16+2 −9
2×4×
,解得 = 21.
2 + 2 − 2
2⋅

2020年中考数学二轮复习(通用)专题:几何压轴题型含答案

2020年中考数学二轮复习(通用)专题:几何压轴题型含答案

几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =。

高考数学二轮复习考点十二《数列综合练习》课件

高考数学二轮复习考点十二《数列综合练习》课件

数列,当 n 为偶数时,bn+2=bn+1,数列为以 1 为公差的等差数列,∴S23
1-212
11×(11-1)
=(b1+b3+…+b23)+(b2+b4+…+b22)= 1-2 +11×4+
2
×1=212-1+44+55=4194.
2.等差数列{an}中,a1+a2=152,a2+a5=4,设 bn=[an],[x]表示不超 过 x 的最大整数,[0.8]=0,[2.1]=2,则数列{bn}的前 8 项和 S8=( )
A.12<a2<1
B.{an}是递增数列
C.12<a3<34
D.34<a2022<1
答案 ABD
解析 由 an+1=an+ln (2-an),0<a1<12,设 f(x)=x+ln (2-x),则 f′(x) =1-2-1 x=12- -xx,所以当 0<x<1 时,f′(x)>0,即 f(x)在(0,1)上单调递增, 所以 f(0)<f(x)<f(1),即12=ln e<ln 2<f(x)<1+ln 1=1,所以12<f(x)<1,即12 <an<1(n≥2),故 A 正确;因为 f(x)在(0,1)上单调递增,0<an<1(n∈N*),所 以 an+1-an=ln (2-an)>ln (2-1)=0,所以{an}是递增数列,故 B项中,只有一项符合题目要求) 1.已知数列{bn}满足 b1=1,b2=4,bn+2=1+sin2n2πbn+cos2n2π,则该 数列的前 23 项和为( ) A.4194 B.4195 C.2046 D.2047
答案 A
解析 由题意,得当 n 为奇数时,bn+2=2bn,数列为以 2 为公比的等比

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e x f x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.4.(2023秋ꞏ河南信阳ꞏ高三信阳高中校考期末)已知函数()()212ln ,e (0)x b f x x x a x g x xx -=--=->,其中0,,e a b ⎤>∈⎥⎦是自然对数的底数. (1)若()f x 在区间()1,+∞上单调递增,求a 的取值范围;(2)设函数()()()()()2f xg x f x g xh x +--=,证明:存在唯一的正实数a ,使得()h x 恰好有两个零点.5.(2023秋ꞏ内蒙古呼和浩特ꞏ高三统考期末)已知函数()e 2xx x a f x a =-+.(1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围.6.(2023秋ꞏ河北衡水ꞏ高三河北衡水中学校考阶段练习)已知函数()e sin xf x x ax =+,π0,2x ⎡⎤∈⎢⎥⎣⎦. (1)若1a =-,求()f x 的最小值;(2)若()f x 有且只有两个零点,求实数a 的取值范围.7.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知函数()e cos xf x x =.(1)求()f x 在区间π0,2⎛⎫⎪⎝⎭内的极大值;(2)令函数()1()e xaf x F x x =-,当πa >时,证明:()F x 在区间π0,2⎛⎫ ⎪⎝⎭内有且仅有两个零点.8.(2023秋ꞏ江苏南通ꞏ高三统考期末)已知函数()ln f x a x =,()()1e xg x x =-,其中a 为实数.(1)若函数()f x ,()g x 的图象在1x =处的切线重合,求a 的值;(2)若e a >,设函数()()()h x f x g x =-的极值点为0x .求证:①函数()h x 有两个零点1x ,2x (12x x <);②01231x x x -->.9.(2023ꞏ全国ꞏ模拟预测)已知函数()()2sin ln 1f x x x x =-+-. (1)当10-<≤x 时,求()f x 的最小值;(2)设()()g x f x x =+,(]1,2πx ∈-,证明:()g x 有且仅有3个零点.(1.414≈,πln 1 1.544⎛⎫-≈- ⎪⎝⎭.)10.(2023春ꞏ云南ꞏ高三校联考开学考试)已知函数()(01)x f x a ax a a =->≠且. (1)当e a =时,求函数()f x 的极值;(2)讨论()f x 在区间(0,1)上的水平切线的条数.11.(2023秋ꞏ广西南宁ꞏ高三南宁二中校考期末)已知函数()()()22ln 11af x x x =+-+有两个不同的零点x 1,x 2.(1)当112x -<<-时,求证:()12ln 11x x +>-+;(2)求实数a 的取值范围;12.(2023秋ꞏ湖北武汉ꞏ高三统考期末)已知函数()xf x a =与()log a g x x =(0a >,且1a ≠)(1)求()g x 在()()1,1g 处的切线方程;(2)若1a >,()()()h x f x g x =-恰有两个零点,求a 的取值范围13.(2023秋ꞏ浙江ꞏ高三浙江省永康市第一中学校联考期末)已知函数()e x f x ax =-,()2g x x a =-+(1)当1a =时,求函数()()y f x g x =-的最小值;(2)设01a <<,证明:曲线()y f x =与曲线()y g x =有两条公切线.14.(2023ꞏ全国ꞏ模拟预测)已知函数()ln f x a x x =-1e a ⎛⎫> ⎪⎝⎭(e 是自然对数的底数).(1)若12,x x (120x x <<)是函数()y f x =的两个零点,证明:12112ln x x x x <-; (2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()e 1xf x a x a =--∈R .(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()ln e 0f x x +-=在()1,+∞无实数解,求实数a 的取值范围.16.(2023ꞏ全国ꞏ高三专题练习)已知函数2()eln (R),()eln x f x ax x a g x x x=+∈=-. (1)讨论函数()()2F x f x =在()0,∞+上的单调性;(2)若函数()f x 的图象与()g x 的图象有三个不同的交点,求实数a 的取值范围.17.(2023ꞏ全国ꞏ高三专题练习)已知函数()ln f x a x x =-(e 是自然对数的底数). (1)讨论函数()f x 的单调性;(2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.参考答案【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况. 【答案解析】(1)因为()()ln 11f x x a x =--+,所以()()11(0)f x a x x'=-->, 当10a -≤,即1a ≤时,()0f x ¢>,则()f x 为单调递增函数,不可能有极值,舍去; 当10a ->,即1a >时,令()0f x '=,解得11x a =-, 当101x a <<-时,()0f x ¢>;当11x a >-时,()0f x '<;所以()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减, 所以()f x 在11x a =-取得极大值,符合题意; 综上:1a >,故实数a 的取值范围为()1,+∞.(2)当2a =时,()ln 1sin (0)g x x x x x =-++>,则()11cos g x x x'=-+, 令()()11cos 0h x x x x =-+>,则()21sin h x x x'=--, (i )当(]0,πx ∈时,()0h x '<,则()h x 单调递减,即()g x '单调递减, 注意到()cos101g '=>,()120ππg '=-<, 所以存在唯一的()01,πx ∈使()00g x '=,且当00x x <<时,()0g x '>,()g x 单调递增, 当0πx x <≤时,()0g x '<,()g x 单调递减,注意到22211121sin 0e e e g ⎛⎫=--++< ⎪⎝⎭,()1sin10g =>,2ln πln e 2π1<=<-,则()πln ππ10g =-+<,所以()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点;(ii )当(]π,2πx ∈时,sin 0x ≤,故()ln 1g x x x ≤-+, 令()()ln 1π2πx x x x ϕ=-+<≤,则()110x xϕ'=-<, 所以()x ϕ在(]π,2π上单调递减,故()()πln ππ10x ϕϕ<=-+<, 所以()()0g x x ϕ≤<,故()g x 在(]π,2π上无零点; (iii )当()2π,x ∈+∞时,sin 1x ≤,则()ln 2g x x x ≤-+, 令()()ln 22πm x x x x =-+>,则()110m x x=-<',所以()m x 在()2π,+∞上单调递减, 又3ln 2πln e 32π2<=<-,故()()2πln 2π2π20m x m <=-+<, 所以()()0g x m x ≤<,故()g x 在()2π,+∞上无零点;综上:()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点,共有两个零点.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.【答案解析】(1)证明:因为()()1e cos ,0,2πx f x x x -=+∈,所以()1e sin x f x x --'=- 设()()1e sin xg x f x x -==--',()0,2πx ∈,所以()()111e cos e 1e cos xx x g x x x ---=--'=,其中1e 0x ->恒成立,令()11e cos x h x x -=-,()0,2πx ∈,则()111πecos e sin sin 4x x x h x x x x ---⎛⎫=-+='- ⎪⎝⎭,因为()0,2πx ∈,所以ππ7π,444x ⎛⎫-∈- ⎪⎝⎭, 所以当π0,4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递减,当π5π,44x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,函数()h x 单调递增,当5π,2π4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递增;又()π1104π01e 0,1e 1e 0422h h --⎛⎫=->=->-> ⎪⎝⎭,5ππ044h h ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,7π1147π1e 1e 0422h -⎛⎫=-<-< ⎪⎝⎭,()7π2π04h h ⎛⎫<< ⎪⎝⎭所以05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得()01001e cos 0x h x x -=-= ,即010e cos xx -=,故对于()()1e x g x h x -'=有()00g x '=,当()00,x x ∈时,()00g x '>,函数()f x '单调递增,当()0,2πx x ∈时,()00g x '<,函数()f x '单调递减,所以0x 是函数()f x '的极大值点,()f x '无极小值点,故()f x '有且仅有一个极值点. (2)()f x 的所有零点之和大于2π,理由如下:函数()()1e cos ,0,2xf x x x π-=+∈,其导函数()1e sin x f x x --'=-,05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得当()00,x x ∈时,()f x '单调递增,当()0,2πx x ∈时,函数()f x '单调递减,又010ecos x x -=,所以()()0100000π0e 0,e sin cos sin 4xf f x x x x x -⎛⎫=-<=--=--=+' ⎝'⎪⎭,因为057π,π44x ⎛⎫∈ ⎪⎝⎭,所以0π3π,2π42x ⎛⎫+∈ ⎪⎝⎭,所以()00f x '>,又()12π2πe0f -'=-<, 故()100,x x ∃∈,使得()10f x '=,()20,2πx x ∃∈,使得()20f x '=,于是可得:当()10,x x ∈时,()0f x '<,()f x 单调递减,当()12,x x x ∈时,()0f x ¢>,()f x 单调递增,当()2,2πx x ∈时,()0f x '<,()f x 单调递减, 又()3π11π23ππe0,e 102f f --⎛''⎭<⎫=-=-+> ⎪⎝,故13ππ,2x ⎛⎫∈ ⎪⎝⎭,则()π11π2πe 0,πe 102f f --⎛⎫=>=-< ⎪⎝⎭,所以存在π,π2α⎛⎫∈ ⎪⎝⎭使得()0f α=,所以()()1π0f x f <<,又3π123πe 02f -⎛⎫=> ⎪⎝⎭,所以()23π02f x f ⎛⎫>> ⎪⎝⎭,则存在3ππ,2β⎛⎫∈ ⎪⎝⎭使得()0f β=,又()12π2πe10f -=+>,所以函数()f x 在区间()2,2πx x ∈上无零点;故函数在()0,2πx ∈上有两个零点,αβ,且π3ππ22αβ<<<<, 由()()0f f αβ==可得:11e cos 0,e cos 0αβαβ--+=+=,所以11cos e ,cos e αβαβ--=-=-, 又111111e e e e αβαβαβαβ----<⇒->-⇒>⇒-<-, 所以()cos cos cos 2παββ<=-, 根据π3ππ22αβ<<<<,可得:ππ2α<<,π2ππ2β<-<,并且函数cos y x =在π,π2⎛⎫⎪⎝⎭上单调递减,所以2παβ>-,即2παβ+>,故()f x 的两个零点之和大于2π.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.【答案解析】(1)因为1a =,所以()2()ln 0f x x x x x =-->,令()()ln 0x x x x ϕ=->,则()111x x x xϕ-'=-=, 令()0x ϕ'>,得1x >;令()0x ϕ'<,得01x <<; 所以()x ϕ在()0,1上单调递减,在()1,+∞上单调递增, 所以()()11ln10x ϕϕ≥=->,即ln 0x x ->恒成立, 所以2()ln f x x x x =-+,则1()21f x x x'=-+, 所以切线的斜率为()12k f '==,又切点为(1,0),所以切线方程为()21y x =-,即22y x =-.(2)令()0f x =,则2ln x x a x =-,该式等价于2ln x x a x =-或2ln x x a x =-+,当2ln x x a x =-时,有2ln x a x x =--,令()()20m x x x x =->,()ln n x a x =-,则2ln x x a x =-的解的个数即为()m x 与()n x 的交点个数,易知()m x 开口向上,对称轴为12x =, 所以()m x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,且()()010m m ==,而ln y x =在()0,∞+上单调递增,02e a <<,所以()ln n x a x =-在()0,∞+上单调递减,且()10n =,作出()m x 与()n x 的图像,如图,所以()m x 与()n x 的交点只有一个,且为()1,0,故2ln x x a x =-只有一个解;当2ln x x a x =-+时,因为当1x =时,该式不成立,所以2ln x a xx=+,令()()20ln x x h x x x+=>,则2(12)ln (1)()(ln )x x x h x x +-+'=, 令()()(12)ln (1)0s x x x x x =+-+>,则1()2ln 1s x x x'=++, 令()()12ln 10g x x x x=++>,则()221x g x x -'=,令()0g x '>,得12x >;令()0g x '<,得102x <<;所以()g x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 112ln 2132ln 2022g x g ⎛⎫==++=-> ⎪⎝⎭,故()()0s x g x '=>,所以()s x 在(0,)+∞上单调递增,因为()10,e e 02ss =-<=>,所以存在0x ∈,使得()00s x =,则()s x 在0(0,)x 上()0s x <,在0(,)x +∞上()0s x >, 所以()()2()ln s x h x x '=在()0,1上()0h x '<,在()01,x 上()0h x '<,在()0,x +∞上()0h x '>,所以() h x 在()0,1上单调递减,在()01,x 上单调递减,在()0,x +∞上调递增, 因为()00s x =,所以000(12)ln (1)0x x x +-+=,即000121ln 1x x x +=+, 所以()()()2200000000min0012ln 112x x x h x h x x x x x x x ++===+⋅=++,因为22y x x =+在()0,∞+上单调递增,0x ,所以20022e 2e 2x x +>⨯+>,故()()02e h x h x ≥>, 又因为02e a <<,所以方程()a h x =无解,即方程2ln x a x x=+无解,故2ln x x a x =-+无解;综上:当02e a <<时,2ln x x a x =-与2ln x x a x =-+只有一个解,即()f x 只有一个零点. 例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.【答案解析】(1)由题意()0f x ≥在(π,π)-上恒成立,得π()sin e 0x f x x a --≥= ,即πe e sin x a x ≤恒成立,令()e sin x m x x =,则()()e sin cos xm x x x '=+ ,当(π,π)x ∈-时,π3π5π(,)444x +∈-,令()()e sin cos 0xm x x x '=+>π04x +>,则π(0,π)4x +∈,得π3π44x -≤<,令()()e sin cos 0xm x x x '=+<π04x +<,π3π(,0)44x +∈-或π5π(π,)44x +∈得 ππ4x -<<-或3ππ4x <<, 所以()()e sin cos xm x x x '=+在π(π,)4--和(3π,π)4为减函数,在π3π(,)44-上为增函数,()π(π)=0m m =- ,ππ()()44ππ(e sin()44m ---=-=,故π()4min ()m x -=,故π(π4e a -≤,即5π()4a -≤,综上 ,实数a 的取值范围5π()4(,e ]2--∞ .(2)由题意()sin e ()cos e x x f x x a f x x a π-π-'=-=+,, ()π10,1f a a '=-+=∴= ,由()1f x =-,得πsin e 10x x --+= , 令()πsin e1xs x x -=-+ ,()πcos e x s x x -'=+ 令()πcos e x x x g -=+,π()sin e x g x x -'=--,令ππ()sin e ()cos e ,x x h x x h x x --'=--=-+()h x '在[]*(21)π,(22)π,N k k k ++∈上单调递减,注意到2ππ2π((21)π)1e 0,((22)π))1e 0k k h k h k ---''+=+>+=-+<, ∴存在()()021π,22()πx k k ∈++,使0()0h x '=, 且当()021πk x x +≤<时,()0h x '> ,()g x ' 单调递增, 当()02π2x x k <≤+时,()0h x '<,()g x '单调递减,且2ππ2π((21)π)e 0,((22)π)e 0k k g k g k ---''+=-<+=-< ,π2π23((21e 02k g k --'+=-> ,所以()g x '在3(21)π,(22k k ⎛⎫++ ⎪⎝⎭和3(2)π,(22)π2k k ⎛⎫++ ⎪⎝⎭上各有一个零点,设为12,x x ,且当()1[21π,)x k x ∈+时,()s x '单调递减;12(,)x x x ∈时,()s x '单调递增, 当()2(,22π]x x k ∈+时,()s x '单调递减 且()()()()2ππ2π211ππe0,221e 0k k s k s k ---''+=-+<+=+> ,∴当()121πk x x +≤≤时,()()()21π0x s k s +''<< , 当()222πx x k <≤+ 时,()()()22π0x s k s +''>>, 故()s x '在12(,)x x 上有唯一的零点,设为3x ,且当()321πk x x +<< ,时,()0s x '< ,()s x 在()321π)(,k x +上单调递减; 当()322πx x k <<+ 时,()0s x '>,()s x 在()3,22π()x k +上单调递增. 注意到2ππ2π((21)π)e 10,((22)π)e 10k k s k s k ---+=-+>+=-+> ,π2π23((2)π)e 02k s k --+=-< ,所以:()s x 在3((21)π,(2)π)2k k ++和3((22)π)2k k ++上各有一个零点,设为45,x x ,所以()s x 共两个零点,故方程()1f x =-()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数为2. 例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e xf x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.【答案解析】(1)()()2e 2x h x x x a =-++定义域为R ,所以()()2e 2x h x a x '=+-,①当20a +≤即2a ≤-时,()0h x '≤恒成立, 函数()h x 在(),x ∈-∞+∞上为单调递减函数.②当20a +>即2a >-时,令()0h x '>得:x <<,令()0h x '<得:x <x >所以,函数()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减综上所述,当2a ≤-时,函数()h x 在(),x ∈-∞+∞上为单调递减;当2a >-时,()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减;(2)构造()()()2e 2x F xf xg x x x a =-=+--,所以()22e xF x x '=+-.记()()m x F x '=,()20e xm x '=+>恒成立,即()m x 在(),x ∈-∞+∞上单调递增.而()00210e m =-=-<,1102m ⎛⎫=> ⎪⎝⎭,所以存在唯一的010,2x ⎛⎫∈ ⎪⎝⎭使得()00m x =,即000e 22xx +-=,由()e x f x =,()22g x x x a =-++可得()e xf x '=,()22g x x '=-+,所以()00e xf x '=,()0022g x x '=-+,所以()()00f x g x ''=,即曲线()y f x =与()y g x =在点M 处有相同的切线.又因为当()0,x x ∈-∞时,()0F x '<,当()0,x x ∈+∞时,()0F x '>, 故()F x 在()0,x x ∈-∞上单调递减,在()0,x x ∈+∞上单调递增, 故()F x 在0x x =上取得极小值,也是最小值, 即()()min 0F x F x =,由于函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,所以()00F x =,即0200e 20x x x a +--=,故()02220000e 24222x a x x x x x =+-=-+=--,010,2x ⎛⎫∈ ⎪⎝⎭,所以()2022a x =--在010,2x ⎛⎫∈ ⎪⎝⎭上单调递减,所以1,24a ⎛⎫∈ ⎪⎝⎭,综上,曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.【答案解析】(1)函数2()e x f x x x =-,x ∈R ,则()()1e 2xf x x x =+-', 令()()()1e 2x h x f x x x ==+-',则()()2e 2x h x x +'=-,设()()2e 2xm x x =+-,则()()3e 0x m x x +'==,得3x =-,故(),3x ∈-∞-时,()0m x '<,函数()m x 即()h x '单调递减,()3,x ∈-+∞时,()0m x '>,函数()m x 即()h x '单调递增,所以min 31()(3)20e h x h =-=--<',又x →-∞时,()h x '→-∞,又(0)0h '=, 所以(),0x ∈-∞时,()0h x '<,函数()f x '单调递减,()0,x ∈+∞时,()0h x '>,函数()f x '单调递增,故()f x '的单调减区间为(),0∞-,增区间为()0,∞+;(2)关于x 的方程21e =e 2x x x ax +有两个不相等的实根,即函数()21e e 2x xg x x ax =-+,在x ∈R 上有两个零点,又()()()1e e e x x xg x x ax x a =+-+=+',①当0a ≥时,()0g x '=,得0x =,所以当(),0x ∈-∞时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()min 01g x g ==-,又x →-∞时,()g x →+∞,()22e 20g a =+>,则函数()g x 在x ∈R上有两个零点;②当0a <时,()0g x '=,得0x =,()ln x a =-,(i )当1a =-时,()ln 0a -=,此时()0g x '≥恒成立,函数()g x 单调递增,在x ∈R 上不可能有两个零点,不符合题意;(ii )当10a -<<时,()ln 0a -<,则当()(),ln x a ∈-∞-时,()0g x '>,函数()g x 单调递增,()()ln ,0x a ∈-时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()()()()()2211ln ln ln ln 11022g a a a a a a a a ⎡⎤-=--++-=--+<⎣⎦,()01g =-,故函数()g x 在区间(),0x ∈-∞无零点,在()0,x ∈+∞不可能存在两个零点,故不符合题意;(iii )当1a <-时,()ln 0a ->,则当(),0x ∈-∞时,()0g x '>,函数()g x 单调递增,()()0,ln x a ∈-时,()0g x '<,函数()g x 单调递减,当()()ln ,x a ∈-+∞时,()0g x '>,函数()g x 单调递增,又()01g =-,故函数()g x 在区间()(),ln x a ∈-∞-无零点,在()()ln ,x a ∈-+∞不可能存在两个零点,故不符合题意; 综上,实数a 的取值范围[)0,∞+.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.【答案解析】(1)2()e x f x ax =-,则()e 2x f x ax '=-, 因为2x =是函数()f x 的极值点,所以(2)0f '=,即2e 40a -=,解得2e 4a =.当2e 4a =时,2e ()e 2xf x x '=-,当(1,2)x ∈时,()0f x '<,函数()f x 单调递减, 当(2,)x ∈+∞时,()0f x '>,函数()f x 单调递增, 所以2x =是函数()f x 的极小值点,故2e 4a =; (2)由(1)知,22e ()e 4xf x x =-,令()0f x =,则22e e 4xx =,作e xy =和22e 4y x =函数图象,如图所示,由图可知,两函数图象有2个交点,且一个交点分布在(,0)-∞上,另一个分布在(0,)+∞上, 所以方程()0f x =有2个解,即函数()y f x =有2个零点. 易知2是函数()f x 的一个零点,设另一个零点为0x ,又(0)10=>f ,2222e e 2e 2()e ()e 10e 4ef ---=--=-<,所以2(0)()0e f f -<,又函数()f x 在定义域上连续,由零点的存在性定理,知02(,0)ex ∈-;(3)由(1)知,22e ()e 4xf x x =-,当0x =时,(0)1f =, 当0x ≠时,令()0f x =,则22e 14x x -=, 设22e (0)()x h x x x -=≠,则()0h x >,23e (2)()x x x h x --=',令()00h x x '>⇒<或2x >,令()002h x x '<⇒<<,所以函数()h x 在(,0)-∞和(2,)+∞上单调递增,在(0,2)上单调递减, 又1(2)0,(2)4h h ->=,2ln 221-<-<-,得111ln 222-<<-- 所以213132,0()1ln 222ln 22-<-<-<<--,又332e >16e 4⇒>,所以当1ln 22x =-时,1322ln 2223322221e e (ln 22)11()11ln 224(()e e ln 22ln 22h ----=<=<<---, 作出函数()y h x =和14y =的图象,如图所示,由图可知,两函数图象的交点的的横坐标都大于1ln 22-,故函数()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.【答案解析】(1)函数f (x )的定义域为()()()21,00,,e xf x x '-∞⋃+∞=-记()()g x f x '=,则()3332e 2e x x x g x x x '+=+=. 当()0,x ∈+∞时,()0g x '>,则()g x 在()0,+∞上单调递增,当(),0x ∈-∞时,记()()()32e 2,3e xx x x x x x ϕϕ'=+=+,所以(),3x ∈-∞-时,()0x ϕ'<,()x ϕ递减;()3,0x ∈-时,()0x ϕ'>,()x ϕ递增,()x ϕ的极小值为()333332e e 332e 0ϕ⎛⎫-=-> ⎪-⎝=⎭,即有()0x ϕ>, 因此()0g x '<, g (x )在(,0)-∞上单调递减,所以函数()f x '在()0,+∞上单调递增,在(,0)-∞上单调递减.(2)令()()()()211e ,e xx F x f x ax ax F x f x a a x x'=-=+-=-=--' 方程()f x ax =(R a ∈)有三个实数根等价于F (x )有三个零点123,,x x x ,12301x x x <<<<,当0a ≤时,因为0x >,则()0F x >,此时F (x )在()0,+∞无零点; 当0a >时,由(1)知()F x '在()0,+∞上单调递增,显然1()402F a '=--<,21(ln(e ))e e 10(ln(e ))F a a '+=->->+, 因此存在00x >,使得()00F x '=,()00,x x ∈,()()0,F x F x '<单调递减,()0,x x ∈+∞,()()0,F F x x '>单调递增,①若e 1a =+,则()1e 10F a =+-=,不符合题意;②若0e 1a <<+,()1e 10F a =+->,当01x ≥时,(0,1)x ∈,()0F x >,()F x 在()0,1上无零点,当01x <时,()()1,,0x F x ∈+∞>,()F x 在()1,+∞上无零点,不符合题意, ③若e 1a >+,则()1e 10F a =+-<,()1e 10F a '=--<,于是01x >, 而当01x <<时,1e e x <<,0a ax -<-<,但1x的取值集合是(1,)+∞, 因此存在(0,1)t ∈,使得()0F t >,当1x >时,令2()e x h x x =-,()e 2x h x x '=-,令()()e 2x u x h x x '==-,则()e 2e 20x u x '=->->,即()h x '在(1,)+∞上单调递增,()(1)e 20h x h ''>=->, ()h x 在(1,)+∞上单调递增,()(1)e 10h x h >=->,因此当1x >时,2e x x >,有()2211e xF x ax x ax x ax x x=+->+->-,因为当x a ≥时,二次函数2x ax -的值域是[0,)+∞,于是得当x a ≥时,()0F x >,因此存在2301x x <<<,使得()()230F x F x ==,此时当0x <时,()e 10xF x a a '<-<-<,即函数F (x )在(,0)-∞上单调递减, 由()11111e 10,e 1e e 0a a F a F a a ---⎛⎫-=-+>-=-+<-< ⎪⎝⎭因此存在10x <,使得()10F x =,从而当e 1a >+时,F (x )有三个零点123,,x x x ,且12301x x x <<<<, 所以实数a 的取值范围是()e 1,++∞.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【答案解析】(1)因为()e x f x =,则()e x f x '=,所以,()()001f f '==,所以,()y f x =在0x =处的切线方程为1y x =+. (2)当()1,x ∈+∞时,不等式()ln g x x x a <+等价于()1ln 01a x x x -->+. 设()()1ln 1a x p x x x -=-+,则()()()()2222111211x a x a p x x x x x +-+'=-=++,且()10p =. 对于函数()2211y x a x =+-+,()()241442a a a ∆=--=-.(ⅰ)当2a ≤且()1,x ∈+∞时,()22211210x a x x x +-+≥-+>,故()0p x '>,则()p x 在()1,+∞上单调递增,因此()()10p x p >=; (ⅱ)当2a >时,令()0p x '=得11x a =-21x a =-由122110x x x x =⎧⎨>>⎩得101x <<,21x >,故当()21,x x ∈时,()0p x '<,()p x 在()21,x 单调递减,因此()()210p x p <=,不合乎题意.综上,a 的取值范围是(],2-∞.(3)①()e xh x ax =-的定义域为R ,而()e x h x a '=-,若0a ≤,则()0h x '>,此时()h x 无最小值,故0a >. 函数()ln g x ax x =-的定义域为()0,∞+,而()11ax g x a x x-'=-=. 当ln x a <时,()0h x '<,故()h x 在(),ln a -∞上为减函数, 当ln x a >时,()0h x '>,故()h x 在()ln ,a +∞上为增函数, 故()()min ln ln h x h a a a a ==-. 当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数, 当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, 故()min 111ln 1ln g x g a a a ⎛⎫==-=+ ⎪⎝⎭.因为()e xh x ax =-和()ln g x ax x =-有相同的最小值,故1n ln l a a a a =-+,整理得到1ln 1a a a-=+,其中0a >, 设()1ln 1a s a a a -=-+,其中0a >,则()()()222211011a s a a a a a --'=-=<++, 故()s a 为()0,∞+上的减函数,而()10s =,故()0s a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =.②由①可得()e xh x x =-和()ln g x x x =-的最小值为1ln11+=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1xS x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数, 所以()()min 010S x S b ==-<, 而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即方程e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,()0T x '<,当1x >时,()0T x '>, 故()T x 在()0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<, 而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由①讨论可得ln x x b -=、e x x b -=仅有一个解, 当1b <时,由①讨论可得ln x x b -=、e x x b -=均无根,故若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x t x x x =+-,其中0x >,故()1e 2xt x x'=+-, 设()e 1x r x x =--,其中0x >,则()e 10xr x '=->,故()r x 在()0,∞+上为增函数,故()()00r x r >=即e 1x x >+, 所以()11210t x x x'>+-≥->,所以()t x 在()0,∞+上为增函数, 而()1e 20t =->,31e 333122e 3e 30e e e t ⎛⎫=--<--< ⎪⎝⎭,故()t x 在()0,∞+上有且只有一个零点2x ,且2311e x <<, 当20x x <<时,()0t x <,即e ln x x x x -<-,即()()h x g x <, 当2x x >时,()0t x >,即e ln x x x x ->-,即()()h x g x >,因此若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点, 故()()221b h x g x ==>,此时e x x b -=有两个不同的根1x 、()2120x x x <<, 此时ln x x b -=有两个不同的根2x 、()32301x x x <<<,故11e xx b -=,22e x x b -=,33ln 0x x b --=,22ln 0x x b --=,所以33ln x b x -=,即33e x bx -=,即()33e 0x bx b b ----=,故3x b -为方程e x x b -=的解,同理2x b -也为方程e x x b -=的解,又11e x x b -=可化为11e xx b =+,即()11ln 0x x b -+=,即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理2x b +也为方程ln x x b -=的解,所以{}{}1223,,x x x b x b =--,而1b >,故2312x x bx x b =-⎧⎨=-⎩,即1322x x x +=.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.【答案解析】(1)()f x 的定义域是(1,)-+∞,22212(42)(1)()1(2)(1)(2)a x a x f x x x x x +'-+=-=++++. ①当2a ≤时,()0f x '≥,所以()f x 在(1,)-+∞上单调递增, 又因为(0)0f =,所以当0x ≥时,()(0)0f x f ≥=,满足题意; ②当2a >时,令22()(42)(1)(42)(42)g x x a x x a x a =+-+=+-+-, 由()0g x =,得1(2)0x a =-<,2(2)0x a -=>. 当()20,x x ∈时,()0g x <,()0f x '<,所以()f x 在()20,x 上单调递减, 所以()()200f x f <=,不满足题意. 综上所述,2a ≤.(2)①当2a ≤时,由(1)可得()f x 在(1,)-+∞上单调递增,且(0)0f =,所以()f x 在(1,)-+∞上存在1个零点;②当2a >时,由(1)可得()0g x =必有两根1x ,2x ,又因为(1)10g -=>,(0)420g a =-<所以1(1,0)x ∈-,2(0,)x ∈+∞.x ()11,x -1x()12,x x2x()2,x +∞()f x '+-+()f x单调递增 极大值()1f x 单调递减 极小值()2f x 单调递增当()12,x x x ∈时,因为(0)0f =,所以()f x 在()12,x x 上存在1个零点, 且()()100f x f >=,()()200f x f <=; 当()11,x x ∈-时,因为()()e 12ee 1ln e 0e 1e l---------=-=<++a aa a aaa a f ,1e 10--<-<a ,而()f x 在1(0,)x 单调递增,且1()0f x '=,而(e 1)0a g -->,故11e 1ax --<-<,所以()f x 在()11,x -上存在1个零点; 当()2,x x ∈+∞时,因为()()e 12e 1ln e 0e 1e 1a a a a a a af --=-=>++, e 10a ->,而()f x 在2(,)x +∞单调递增,且2()0f x '=,而(e 1)0ag ->, 所以2e 1ax ->,所以()f x 在()2,x +∞上存在1个零点.从而()f x 在()1,-+∞上存在3个零点.综上所述,当2a ≤时,()f x 存在1个零点;当2a >时,()f x 存在3个零点.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围. 【答案解析】(1)由题意可得()ln f x x x '=-, 设()()ln h x f x x x '==-,则()111xh x x x-'=-=由()0h x '>,得01x <<,由()0h x '<,得1x >则()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,即()f x '在(0,1)单调递增,在(1,)+∞上单调递减,从而()(1)10f x f ''≤=-<,故()f x 的单调递减区间是(0,)+∞,无递增区间(2)由题意可得21(2)1(1)(1)()2a x a x a x a x g x x a x x x-+-+-+--'=+-+==, ()g x 的定义域是(0,)+∞,①当10a -<,即1a >时,1x >时()0g x '>,01x <<时()0g x '<, 则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 因为0x →时,()g x →+∞,x →+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--<,解得52a <,故152a <<;②当10a -=,即1a =时,由21()102g x x x =--=,解得x 1=因为0x >,所以1x =()g x 有且仅有1个零点,故1a =不符合题意; ③当011a <-<,即01a <<时,由()0g x '>,得01x a <<-或1x >, 由()0g x '<,得11a x -<<,则()g x 在(0,1)a -和(1,)+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0,g x x <→+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--=或21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=, 若(1)0g =,解得52a =,不符合题意, 若(1)0g a -=,设1(0,1)t a =-∈,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=, 01t <<时,ln 0t t <,221111(1)0222t t t ---=-+-<,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故01a <<不符合题意;④当11a -=,即0a =时,()0g x '≥恒成立,则()g x 在(0,)+∞上单调递增,从而()g x 最多有1个零点,则0a =不符合题意;⑤当11a ->,即a<0时,由()0g x '>,得01x <<或1x a >-,由()0g x '<,得11x a <<-, 则()g x 在(0,1)和(1),a -+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0g x x <→+∞,时,()g x ∞→+ 所以()g x 要有两个零点,则(1)0g =或(1)0g a -=,若1(1)2102g a =+--=,解得52a =,不符合题意,若21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=. 设1(1,)t a =-∈+∞,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,由(1)知21ln 12y t t t t =---在(1,)+∞上单调递减,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解, 即(1)0g a -=无解,故a<0不符合题意.综上,a 的取值范围是51,2⎛⎫⎪⎝⎭.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围. 【答案解析】(1)由()1e e e 1log e e ea g a =⇒++=⇒=, 所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>, 所以()f x 在(,1)-∞上递减,在(1,)+∞上递增, 所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >), ()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭, 令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+, 令()10ln x x aϕ'=⇒=-, 当10ln x a<<-时,()0x ϕ'<; 当1ln x a>-时,()0x ϕ'>, 所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增, 所以()11ln min11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,。

备考2022年中考数学二轮复习-数与式_代数式_定义新运算

备考2022年中考数学二轮复习-数与式_代数式_定义新运算

备考2022年中考数学二轮复习-数与式_代数式_定义新运算定义新运算专训单选题:1、(2018滨州.中考模拟) 已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…若公式 Cn m= (n>m),则C125+C126=()A .B .C .D .2、(2018滨州.中考真卷) 如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A .B .C .D .3、(2018新乡.中考模拟) 定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A . 当m=﹣3时,函数图象的顶点坐标是(,)B . 当m>0时,函数图象截x轴所得的线段长度大于C . 当m≠0时,函数图象经过同一个点D . 当m<0时,函数在x> 时,y随x的增大而减小4、(2019深圳.中考真卷) 定义新运算nx n-1dx=a n-b n,例如2xdx=k2-h2,若-x-2dx=-2.则m=().A . -2B .C . 2D .5、(2020百色.中考模拟) 对于任意实数m、n,定义一种新运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6﹣2﹣6+3=7.请根据上述定义解决问题:若a<4※x<8,且解集中有2个整数解,则a的取值范围是()A . ﹣1<a≤2B . ﹣1≤a<2C . ﹣4≤a<﹣1D . ﹣4<a≤﹣16、(2020云梦.中考模拟) 定义:形如的数称为复数(其中和为实数,为虚数单位,规定),称为复数的实部,称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如,因此,的实部是﹣8,虚部是6.已知复数的虚部是12,则实部是()A . ﹣6B . 6C . 5D . ﹣57、(2020上海.中考真卷) 用换元法解方程+ =2时,若设=y,则原方程可化为关于y的方程是( )A . y2﹣2y+1=0B . y2+2y+1=0C . y2+y+2=0D . y2+y﹣2=08、(2020宝安.中考模拟) 定义一种新运算:(x1, y1)(x2, y2)=x1x2+y1y2,如(2,5)(1,3)=2×1+5×3=17,若(1,x)(2,-5)=7,则x=()A . -1 B . 0 C . 1 D . 29、(2020龙华.中考模拟) 定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点,这个矩形叫做和谐矩形,已知点P(m,n)是抛物线y=x²+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A . -12B . 0C . 4D . 1610、(2021怀化.中考模拟) 函数的零点是指使函数值等于零的自变量的值,则下列函数中存在零点的是()A .B .C .D .填空题:11、(2017漳州.中考模拟) 定义:式子1﹣(a≠0)叫做a的影子数.如:3的影子数是1﹣= ,已知a1=﹣,a2是a1的影子数,a3是a2的影子数,…,依此类推,则a2017的值是________.12、(2019封开.中考模拟) 在实数范围内规定a#b=﹣,若x#(x﹣2)=,则x=________.13、(2018龙岗.中考模拟) 在实数范围内定义一种运算“*”,其规则为,根据这个规则求方程的解为________.14、(2017福田.中考模拟) 在实数范围内规定新运算“△”,其规则是:a△b=a+b-1,则x△(x-2)>3的解集为________.15、(2019贵港.中考模拟) 若a是不为2的有理数我们把称为a的“哈利数”.如3的“哈利数”是=﹣2;﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a 3是a2的“哈利数”,a4是a3的“哈利数”,以此类推,a2019=________.16、(2020五峰土家族自治.中考模拟) 定义a*b=ab+a+b,若3*x=27,则x的值是________。

小题专练24-2021届高考数学二轮复习新高考版含解析

小题专练24-2021届高考数学二轮复习新高考版含解析
【解析】因为an+1= an,所以数列 为等比数列,公比为 ,所以数列 也为等比数列,公比为2,故a1+a3+a5+a7+a9= =31.
【答案】A
6.(考点:双曲线,★★)已知直线y=2b与双曲线 - =1(a>0,b>0)的渐近线在第一象限交于点C,双曲线的左、右焦点分别为F1,F2,若tan∠CF2F1= ,则双曲线的离心率为().
D.直四棱柱的外接球的体积为
10.(考点:椭圆,★★)过椭圆C: + =1(a>b>0)的右焦点F2作x轴的垂线,交椭圆C于A,B两点,直线l过椭圆C的左焦点和上顶点,以AB为直径的圆与l相切,则下列结论正确的是().
A.直线l的斜率为2
B.椭圆C的长轴长为短轴长的 倍
C.椭圆C的离心率为
D.|AF2|与点A到直线x= 的距离之比为
D.f(x)在 的值域为[-1,1]
【解析】根据题意,-1=2sinφ,∴φ=- ,∴f(x)=2sin ,平移后的函数解析式为g(x)=2sin =2sin ,∴ωπ=2kπ,∴ω=2k,k∈Z,又 - ≤ = ,∴ω≤ ,故ω=2,∴f(x)=2sin ,故A正确;令2x- =kπ+ ,k∈Z,得x= + ,k∈Z,当 + = 时,k无整数解,故B错误;令2x- =kπ,k∈Z,得x= + ,k∈Z,∵-π≤ + ≤π,k∈Z,∴k=-2,-1,0,1,故C正确;∵x∈ ,2x- ∈ ,∴f(x)∈[-1,2],故D错误.
A.3B.1C.-1D.-3
【解析】根据诱导公式,sin =cos =sin ,所以原式= = = ,
分子、分母同时除以cosαcos ,得出原式= =-3.

重庆市中考数学二轮复习 新定义题真题演练.doc

重庆市中考数学二轮复习 新定义题真题演练.doc

题型六 新定义题针对演练1. (2016郴州)设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =⎩⎪⎨⎪⎧b a (a >0)a -b (a ≤0).例如:1⊕(-3)=-31=-3,(-3)⊕ 2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题:(1)2⊕ 4=________,(-2)⊕ 4=________;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.2. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+02=1,.规定F 1(n )=F (n ),F k +1(n )=F (F k (n )).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)和F 2015(4);(2)若F 3m (4)=89,求正整数m 的最小值.3. 如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13-(-1)3,26=33-13,所以2、26均为“麻辣数”.【立方差公式:a 3-b 3=(a -b )(a 2+ab +b 2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)求在不超过2016的自然数中,所有的“麻辣数”之和为多少?4. (2015重庆A 卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数1232+22=131,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此1232+22=131是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?__________ ____________________ __________ _________________________ _____ 并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式. 5. (2016重庆一中三模)当一个多位数为偶数位时,在其中间位插入一位数k (0≤k ≤9)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足此条件的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.6. (2016重庆外国语学校二诊)定义:如果M 个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M 个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…. (1)我们发现,3和6,4和12,5和20,6和30,…,都是两个数的祖冲之数组;由此猜测n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想; (2)若(4a ,5a ,6a )是三个数的祖冲之数组,求满足条件的所有三位正整数a .7. (2016重庆南开阶段测试三)进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n (n ≤10)进制表示的数,通常使用n 个阿拉伯数字0~(n -1)进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76.(1)请将以下两个数转化为十进制:(331)5=________,(46)7=________; (2)若一个正数可以用七进制表示为(abc )7,也可以用五进制表示为(cba )5,请求出这个数并用十进制表示.8. (2016重庆实验外国语学校一诊)有一个n 位自然数abcd …gh 能被x 0整除,依次轮换个位数字得到的新数bc d …gha 能被(x 0+1)整除,再依次轮换个位数字得到的新数cd …ghab_____ _____ _____ __________ __________ 能被(x 0+2)整除,按此规律轮换后,d …ghabc 能被(x 0+3)整除,…,habc …g 能被(x 0+n -1)整除,则称这个n 位数abcd …gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:32+22=134能被2整除,243能被3整除,432+22=13能被4整除,则称三位数32+22=134是2的一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”;(2)若三位自然数abc 是3的一个“轮换数”,其中a =2,求这个三位自然数abc .9. 把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…,如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如: 32+22=13→32+22=13→12+02=1, →12+02=1, 72+02=→72+02=42+92=97→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32+22=13和72+02=都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.10. 定义一种对于三位数abc (a 、b 、c 不完全相同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213时,则213――→F 198(32+22=131-123=198)――→F 792(981-189=792). (1)579经过三次“F 运算”得________; (2)假设abc 中a >b >c ,则abc 经过一次“F 运算”得______(用代数式表示); (3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想.11. (2016大渡口区诊断性检测)若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知S =x 2+4y 2+4x -12y +k (x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由;(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”. 12. (2016重庆西大附中第九次月考)对于实数x ,y 我们定义一种新运算L (x ,y )=ax +by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=x +3y ,则L (2,1)=________,L (32,12)=________;(2)已知L (1,-2)=-1,L (13,12)=2.①a =________,b =________;②若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;③若正格线性数L (x ,y )=76,求满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.13. (2016重庆巴蜀二诊)古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第n 个k 边形数N (n ,k )=k -22n 2+4-k2n (n ≥1,k ≥3,k 、n 都为整数),如第1个三角形数N (1,3)=3-22×12+4-32×1=1;第2个三角形数N (2,3)=3-22×22+4-32×2=3; 第3个四边形数N (3,4)=4-22×32+4-42×3=9; 第4个四边形数N (4,4)=4-22×42+4-42×4=16. (1)N (5,3)=________,N (6,5)=________;(2)若N (m ,6)比N (m +2,4)大10,求m 的值;(3)若记y =N (6,t )-N (t ,5),试求出y 的最大值.题型六 新定义题针对演练1. 解:(1)2,-6.【解法提示】2⊕ 4=42=2,(-2)⊕ 4=-2-4=-6.(2)∵x >12,∴2x -1>0,∴(2x -1)⊕(4x 2-1)=12142--x x =-4-(1-4x ),即2x +1=-5+4x , 解得x =3. ∴x 的值为3.2. 解:(1)F 2(4)=F (F 1(4))=F (F (4))=F (16)=12+62=37; F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89, F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,通过观察发现,每进行7步运算是一个循环,2015÷7=287……6,因此F 2015(4)=F 6(4)=26.(2)由(1)可知,每进行7步运算是一个循环,F 4(4)=89=F 11(4)=F 18(4)=F 4+7i (4),其中i =0,1,2,3,…,要求m 的最小值,则(4+7i )为3的最小公倍数,因为3m >4,所以3m =18,所以m =6.3. 解:(1)98是麻辣数,169不是麻辣数,理由如下: 设k 为整数,则2k +1,2k -1为两个连续奇数, 设M 为麻辣数,则M =(2k +1)3-(2k -1)3=24k 2+2,∵98=53-33,故98是麻辣数;M =24k 2+2为偶数,故169不是麻辣数.(2)同(1)令M ≤2016,则24k 2+2≤2016,解得k 2≤100712<84,故k 2=0,1,4,9,16,25,36,49,64,81,故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860. 所以,在不超过2016的自然数中,所有的“麻辣数”之和为6860. 4. 解:(1)1331,2442,1001.猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为: 1000x +100y +10y +x =1001x +110y =11(91x +10y ), ∵x 、y 是0~9之间的整数, ∴11(91x +10y )能被11整除.∴任意一个四位“和谐数”能被11整除.(2)设这个三位“和谐数”为xyx ,用十进制表示为: 100x +10y +x =101x +10y , ∵它是11的倍数,_____ __________ ___ ∴1110101yx +为整数.将这个式子变形:1110101y x +=11291121199yx y x y x y x -++=-++, ∵x 、y 是0~9之间的整数, ∴112yx -应为整数. 又∵1≤x ≤4,0≤y ≤9, ∴2≤2x ≤8,-9≤-y ≤0, ∴-7≤2x -y ≤8, ∵要使112yx -是整数,则2x -y 只能是0, ∴2x -y =0,即y =2x ,∴y 与x 的函数关系式是y =2x (1≤x ≤4,x 为自然数). 5. (1)解:如:135,225,315,405. 【解法提示】设原来的两位数为xy ,插入的数字为k .由题意得:9(10x +y )=100x +10k +y , 化简得:4y -5x =5k , 当k =0时,4y -5x =0, 则x =4,y =5;当k =1时,4y -5x =5, 则x =3,y =5;当k =2时,4y -5x =10, 则x =2时,y =5;当k =3时,4y -5x =15, 则x =1,y =5.(2)证明:设一个位数为2n 位的多位数为ab ,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数)为amb , 由题意得,amb -10ab =a ×10n +1+m ×10n +b -10(a ×10n +b )=m ×10n-9b ,∵m 是3的倍数, ∴m ×10n能被3整除,又∵9b 能被3整除,∴m ×10n-9b 能被3整除,故对于任何一个位数为偶数的多位数,中间插入数字m (0≤m ≤9,且m 为3的倍数),所得的关联数与原数10倍的差一定能被3整除.6. (1)证明:∵n +n (n -1)=n +n 2-n =n 2, ∴n ·n (n -1)÷[n +n (n -1)]=n -1, ∵n ≥2,n 为整数, ∴n -1是整数,∴n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组. (2)解:∵(4a ,5a ,6a )是三个数的祖冲之数组,_____ __________ _____ _____ _____ _____ _____ _____ _____∴可设⎪⎩⎪⎨⎧+=⋅+=⋅+=⋅p a a a a n a a a a m a a a a )65(65)64(64)54(54,即⎪⎩⎪⎨⎧===p a n a m a 1130512920, ∴920m =512n =1130p , 化简得:22p =25n =27m ; ∵m 、n 、p 均为整数,∴m =22×25×i (i 为整数),∴a =920×22×25i =25119i ⨯⨯,∵a 是整数, ∴i 为偶数,当i =2时,a =495, 当i =4时,a =990,当i =6时,a =1485,不是三位数,舍去,综上所述,满足条件的所有三位正整数a 为495和990.7. 解:(1)(331)5=3×52+3×5+1=91; (46)7=4×7+6=34. (2)∵(abc )7=a ×72+b ×7+c , (cba)5=c ×52+b ×5+a , ∴25c +5b +a =49a +7b +c , 即24a +b =12c ,∵a 、b 、c 是0~6的整数, ∴b =0,c =2a ,当a =1时,c =2,这个十进制的数为51; 当a =2时,c =4,这个十进制的数为102; 当a =3时,c =6,这个十进制的数为153. 8. (1)证明:设此两位数为a 2a ,∵a 2a =10a +2a =12a 为6的倍数,轮换后2aa =20a +a =21a 为7的倍数,∴a 2a 为6的一个轮换数. 故这个两位自然数一定是“轮换数”. (2)解:∵此三位数为2bc =200+10b +c =198+9b +(2+b +c ),为3的倍数, ∴(2+b +c )为3的倍数, 第一次轮换后:bc 2=100b +10c +2=100b +8c +(2c +2),为4的倍数,∴(c +1)为2的倍数,即c 为奇数,第二次轮换后:c 2b =100c +20+b ,为5的倍数,则b 为0或者5.当b =0时,2+b +c =2+c ,为3的倍数且c 为奇数,则c =1,或7,即三位数为201 或207;当b =5时,2+b +c =7+c 为3的倍数且c 为奇数,则c =5,即三位数为255._____ _____综上所述,这个三位自然数abc 为201,207或255.9. 解:(1)最小的两位“快乐数”是10; 19是“快乐数”. 证明:由题意可知,用反证法证明数字4经过若干次运算后都不会出现数字1即可. ∵4→16→37→58→89→145→42→20→4→16…→4出现两次, ∴后面将重复出现,永远不会出现1,∴任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设这个三位“快乐数”为abc ,由题意知,经过两次运算后结果为1,所以第一次运算后结果一定是10或100,所以a 2+b 2+c 2=10或100,又因为a 、b 、c 为整数,且a ≠0,所以a 2+b 2+c 2=12+32+02=10或a 2+b 2+c 2=0+62+82=100.(i)当a =1,b =3或0,c =0或3时,这个三位“快乐数”为130,103; (ii)当a =2时,b 、c 无解;(iii)当a =3时,b =1或0,c =0或1时,这个三位“快乐数”为310,301;同理当a 2+b 2+c 2=100时,因为62+82=100, 所以这个三位“快乐数”的所有可能为680,608,806,860.综上所述,一共有130,103,310,301,680,608,806,860八个. 又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,经计算知只有310和860满足条件. 10. 解:(1)495.【解法提示】①975-579=396;②963-369=594;③954-459=495. (2)99(a -c ). 【解法提示】(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =99a -99c =99(a -c ).(3)证明:设这个三位数中三个数字为a ,b ,c ,且a ≥b ≥c ,a ≥c +1,则经过“F 运算”有abc -cba =99(a -c )=100(a -c -1)+10×9+(10+c -a ),因此所得的三位数中必有一个9,而另外两个数字之和为9,共有990,981,972,963,954五种情况;以990为例得,990-099=891,981-189=792,972-279=693,963-369=594,954-459=495,…,由此可知最后得到495时就会循环.∴任意一个三位数经过若干次“F 运算”都会得到一个定值,这个定值为495. 11. 解:(1)0,1,2,4,8,9均可.∵29=52+22,∴29是“完美数”.(2)根据题意S =x 2+4y 2+4x -12y +k =(x 2+4x )+(4y 2-12y )+k =(x +2)2-4+(2y -3)2-9+k =(x +2)2+(2y -3)2+(k -13).要使S 为“完美数”,则k -13=0,即k =13.(3)设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 都是整数),则 mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =a 2c 2+2abcd +b 2d 2+b 2c 2-2abcd +a 2d 2=(ac +bd )2+(bc -ad )2, ∴mn 也是“完美数”. 12. 解:(1)5;3.【解法提示】由新定义得,L(2,1)=2+3×1=2+3=5; L(32,12)=32+3×12=3. (2)①3;2.【解法提示】由定义得, ⎪⎩⎪⎨⎧=+-=-2213112b a b a ,解得⎩⎨⎧==23b a . ②由新定义,得L (m ,m -2)=3m +2(m -2)=5m -4,∵50<L (m ,m -2)<100,∴⎩⎨⎧<->-100455045m m ,解得545<m <1045,∵m 和m -2均为正整数,∴经计算可知满足50<L (m ,m -2)<100的正格数对共有10个. ③由L (x ,y )=3x +2y =76,得y =2376x-, ∵x >0,y >0,即2376x->0,解得x <763,又∵x ,y 均为正整数,∴x 为偶数,∴经计算可知共有12个满足条件的正格数对, 若x ,y 满足问题②,则x -y =2,即x -2376x-=2, 解得x =16, ∴y =x -2=14,∴在这些正格数对中,有满足问题②的数对,为⎩⎨⎧==1416y x .13. 解:(1)15;51.【解法提示】根据题意得,N (5,3)=3-22×52+4-32×5=252+52=15;N (6,5)=5-22×62+4-52×6=54-3=51. (2)由题意得,6-22m 2+4-62m =4-22(m +2)2+4-42(m +2)+10, 化简得m 2-5m -14=0,解方程得,m =7或m =-2(不合题意,舍去), 故m =7.(3)由题意得,y =22-t ×62+24t -×6-5-22t 2-4-52t =-32t 2+312t -24,整理得y =-32(t -316)2+38524,∵a =-32<0,且t 是整数,∴当t =5时,y 有最大值,其最大值为16.。

初中 数学 新定义

初中 数学 新定义

初中数学中的“新定义”问题,通常是指定义了一些初中数学中未涉及的新概念、新运算或新符号,要求学生结合已有知识进行理解,并运用这些新定义进行运算、推理或迁移。

这类问题旨在考查学生的阅读理解能力、数学应用能力和思维灵活性。

具体来说,初中数学中的“新定义”问题可以分为以下几种类型:
定义新运算:例如绝对值运算、取整运算、取余运算和阶乘运算等。

定义初、高中知识衔接的“新知识”:例如将一些能与初中知识相衔接的高中数学知识,通过阅读材料呈现给初中学生,让他们将这些新知识与已学知识联系起来,通过类比、猜想、迁移来运用新知识解决实际问题。

定义新概念:例如将某个特征的图形或运算方式、代数式等数学元素赋予一个新的名字,形成新的概念。

解决这类问题时,学生需要将新定义的知识与已学知识联系起来,利用已有的知识经验来解决问题。

同时,还需要具备良好的阅读理解能力和思维灵活性,能够理解并运用这些新定义进行运算和推理。

专题08 新定义问题(1)(解析版)-2021年中考数学二轮复习经典问题专题训练

专题08  新定义问题(1)(解析版)-2021年中考数学二轮复习经典问题专题训练

专题08 新定义问题(1)【规律总结】※知识精要新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。

其主要目的是通过对新定义的理解与运用来考查学生的自主学习能力,便于学生养成良好的学习习惯。

※要点突破解决此类题的关键是(1)深刻理解“新定义”——明 确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

【典例分析】例1.(2020·湖南广益实验中学七年级月考)规定:用{}m 表示大于m 的最小整数,例如5{}32=,{4}5=,{1.5}1-=-等;用[]m 表示不大于m 的最大整数,例如7[]32=,[2]2=,[3.2]4-=-,如果整数x 满足关系式:2{}3[]32x x +=,则x 的值为( ) A .3B .5-C .6D .7【答案】C【分析】 根据题意,可将2x +3[x]=32变形为2x +2+3x =32,解方程后即可得出结论.【详解】解:∵x 为整数,∵{x}=x +1, [x]=x ,∵2{x}+3[x]=32可化为:2(x +1)+3x =32去括号,得 2x +2+3x =32,移项合并,得5x =30,系数化为1,得x =6.故选:C .【点睛】本题结合新定义主要考查解一元一次方程,比较新颖,注意仔细审题,理解新定义运算的规则是解题的关键.例2.(2021·河南安阳市·八年级期末)对于有理数a ,b ,定义{}min ,a b :当a b ≥时,{}min ,a b b =;当a b ≤时,{}min ,a b a =.若{}22min 40,12440m n m n -+--=,则n m 的值为______.【答案】36【分析】根据22124-+--m n m n 与40的大小,再根据{}22min 40,12440m n m n-+--=,从而确定m ,n 的值即可得出n m 的值.【详解】解:∵{}22min 40,12440m n m n -+--=,∵40≤22124-+--m n m n ;∵22412400+-≤++m n n m∵(m+6)2+(n -2)2≤0,∵(m+6)2+(n -2)2≥0,∵m+6=0,n -2=0,∵m=-6,n=2,∵()2636=-=n m故答案为:36.【点睛】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.例3.(2021·北京西城区·八年级期末)给出如下定义:在平面直角坐标系xOy 中,已知点123(,),(,),(,)P a b P c b P c d ,这三个点中任意两点间的距离的最小值称为点123,,P P P 的“最佳间距”.例如:如图,点123(1,2),(1,2),(1,3)P P P -的“最佳间距”是1.(1)点1(2,1)Q ,2(4,1)Q ,3(4,4)Q 的“最佳间距”是__________;(2)已知点(0,0)O ,(3,0)A -,(3,)B y -.①若点O ,A ,B 的“最佳间距”是1,则y 的值为__________;②点O ,A ,B 的“最佳间距”的最大值为________;(3)已知直线l 与坐标轴分别交于点()0,3C 和()4,0D ,点()P m n ,是线段CD 上的一个动点.当点()0,0O ,(),0E m ,()P m n ,的“最佳间距”取到最大值时,求此时点P 的坐标.【答案】(1)2;(2)①±1;②3;(3)P (127,127). 【分析】(1)根据题意,分别求出点1(2,1)Q ,2(4,1)Q ,3(4,4)Q 任意两点间的距离,比较后即可得出结论;(2)①根据三个点的坐标特点可得AB∵y 轴,由此可求出OA 、OB 均不满足点O ,A ,B 的“最佳间距”是1,则可得AB =1,从而求出y 值的两种情况;② 根据OA =3,且OA 为定值,可得无论y 取何值,点O ,A ,B 的“最佳间距”的最大值为3;(3)根据题目中的已知条件,可利用待定系数法求出直线CD 的解析式,由(),0E m ,()P m n ,可判断PE∵x 轴,同(2)②则可得出点()0,0O ,(),0E m ,()P m n ,的“最佳间距”取到最大值时的条件为OE =PE ,从而可列出关于m 的方程,求解后即可求出点P 的坐标.【详解】解:(1)∵点1(2,1)Q ,2(4,1)Q ,3(4,4)Q ,∵212Q Q =,323Q Q =,13Q Q ==,∵2<3∵点1(2,1)Q ,2(4,1)Q ,3(4,4)Q 的“最佳间距”是2.故答案为:2.(2)①∵点(0,0)O ,(3,0)A -,(3,)B y -,∵AB∵y 轴,∵OA =3,OB >OA ,∵点O ,A ,B 的“最佳间距”是1,∵AB =1,∵y =±1.故答案为:±1.②当-3≤y≤3时,点O ,A ,B 的“最佳间距”是y =AB≤3,当y >3或y <-3时,AB >3,点O ,A ,B 的“最佳间距”是OA =3,∵点O ,A ,B 的“最佳间距”的最大值为3.故答案为:3.(3)如图,设直线CD 的解析式为y =k 1x +b 1,将()0,3C ,()4,0D 代入得:111340b k b =⎧⎨+=⎩ 解得11343k b ⎧=-⎪⎨⎪=⎩ ∵334y x =-+, ∵()P m n ,,(),0E m ,∵PE∵x 轴,当且仅当OE =PE 时,点()0,0O ,(),0E m ,()P m n ,的“最佳间距”取到最大值, ∵OE =m ,PE =n =334m -+, ∵334m m =-+, 解得127m =, ∵P (127,127),当点O ,E ,P 的“最佳间距”取到最大值时,点P 的坐标为(127,127). 【点睛】本题考查了新定义运算的综合应用,弄清新定义的规则,并灵活应用所学知识求解是解题的关键.【真题演练】一、单选题1.(2020·福建省泉州实验中学八年级月考)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( )A 2B .2:C .2D .无法确定【答案】B【分析】作Rt∵ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt∵BCE 中∵BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt∵ABC 的三条中线AD 、BE 、CF ,∵∵ACB=90°, ∵12CF AB AB =≠, 又在Rt∵ABC 中,AD >AC >BC ,,AD BC ∴≠∵满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt∵BCE 中∵BCE=90°,∵,BC ==在Rt∵ABC 中,,AB ===∵AC :BC :AB=22:a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.2.(2021·上海徐汇区·九年级一模)定义:[]x 表示不超过实数x 的最大整数例如:[]1.71=,305⎡⎤=⎢⎥⎣⎦,1234⎡⎤-=-⎢⎥⎣⎦根据你学习函数的经验,下列关于函数[]y x =的判断中,正确的是( )A .函数[]y x =的定义域是一切整数 B .函数[]y x =的图像是经过原点的一条直线C .点2(2,2)5在函数[]y x =图像上 D .函数[]y x =的函数值y 随x 的增大而增大【答案】C【分析】根据题意描述的概念逐项分析即可.【详解】A 、对于原函数,自变量显然可取一切实数,则其定义域为一切实数,故错误;B 、因为原函数的函数值是一些整数,则图象不会是一条过原点的直线,故错误;C 、由题意可知2225⎡⎤=⎢⎥⎣⎦,则点2(2,2)5在函数[]y x =图像上,故正确; D 、例如113⎡⎤=⎢⎥⎣⎦,112⎡⎤=⎢⎥⎣⎦,即当13x =,12x =时,函数值均为1y =,不是y 随x 的增大而增大,故错误;故选:C .【点睛】本题考查函数的概念以及新定义问题,仔细审题,理解材料介绍的的概念是解题关键.二、填空题 3.(2020·浙江杭州市·七年级其他模拟)定义运算“※”:, ,a a b a b a b b a b b a ⎧>⎪⎪-=⎨⎪<⎪-⎩※,若5x ※的值为整数,则整数x 的值为_______.【答案】0或4或6或10【分析】根据题中的新定义可分若5>x ,若5<x ,两种情况分别求解,最后合并结果.【详解】解:若5>x ,则5x ※=55x-为整数, 则x=0或4或6(舍)或10(舍),若5<x ,则5x ※=5551555x x x x x -+==+---为整数, 则x=0(舍)或4(舍)或6或10,综上:整数x 的值为:0或4或6或10,故答案为:0或4或6或10.【点睛】此题主要考查了分式的值的求法,要熟练掌握,解答此题的关键是理解题中的新定义. 4.(2020·浙江嘉兴市·七年级期末)材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 【答案】3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∵223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.三、解答题6.(2021·北京顺义区·七年级期末)我们规定:若有理数,a b 满足a b ab +=,则称,a b 互为“等和积数”,其中a 叫做b 的“等和积数”,b 也叫a 的“等和积数”.例如:因为()11122+-=-,()11122⨯-=-,所以()()221111-=⨯-+,则12与1-互为“等和积数”. 请根据上述规定解答下列问题:(1)有理数2的“等和积数”是__________;(2)有理数1_________(填“有”或“没有”)“等和积数”;(3)若m 的“等和积数”是25,n 的“等和积数”是37,求34m n +的值. 【答案】(1)2;(2)没有;(3)-5【分析】(1)根据“等和积数”的定义列方程求解即可;(2)根据“等和积数”的定列方程求解即可;(3)根据“等和积数”的定列方程求出m 和n 的值,代入34m n +计算即可.【详解】解:(1)设有理数2的“等和积数”是x ,由题意得2+x=2x ,解得x=2,故答案为:2;(2)设有理数1的“等和积数”是y ,由题意得1+y=y ,∵y -y=1,∵此方程无解,∵有理数1没有 “等和积数”;故答案为:没有;(3)∵m 的“等和积数”是25, ∵m+25=25m ,解得m=23-; ∵n 的“等和积数”是37, ∵n+37=37n , 解得 n=34-; ∵34m n +=3×(23-)+4×(34-)=-5. 【点睛】本题考查了新定义,以及一元一次方程的应用,根据新定义列方程求解是解答本题的关键.6.(2021·北京海淀区·北理工附中七年级期末)我们把a cb d 称为二阶行列式,且a cad bc b d =-.如:121(4)321034=⨯--⨯=--.(1)计算:2135=-_______;4235=-________;(2)小明观察(1)中两个行列式的结构特点及结果,归纳总结,猜想:若行列式中的某一行(列)的所有数都乘以同一个数k ,等于用数k 乘以此行列式.即ka kca cka ca kca ck b d kb kd kb d b kd b d ====,你认为小明的猜想正确吗?若正确请说明理由,若错误请举出反例.(3)若1k ≠,且113232x x x xk k ++=,求x 的值.【答案】(1)13;26;(2)不正确;反例见解析;(3)2.【分析】(1)各式利用题中的新定义计算即可求出值;(2)小明的说法不正确,举一个反例即可;(3)已知等式利用题中的新定义化简,计算即可求出x 的值.【详解】解:(1)原式=2×5-1×(-3)=10+3=13;原式=4×5-2×(-3)=20+6=26;故答案为:13;26;(2)小明的说法错误,当k=0时,203054145⨯⨯=-=, 而002345=⨯,不相等;(3)已知等式整理得:2(x+1)-3x=2k (x+1)-3kx ,去括号得:2x+2-3x=2kx+2k -3kx ,整理得:(k -1)x=2(k -1),∵k≠1,∵k -1≠0,解得:x=2.【点睛】此题考查了有理数的混合运算,整式的加减、新定义,解一元一次方程等知识,熟练掌握运算法则是解本题的关键.。

2019新定义题型中考专题复习课

2019新定义题型中考专题复习课


类型之四
定义一种新函数

类型之四
定义一种新函数
课堂小结:
解题策略和解法总结:“新定义 型专题”关键要把握两点: 一是掌握问题原型的特点及其问 题解决的思想方法; 二是根据问题情景的变化,通过 认真思考合理进行思想方法的迁移 .
(三)定义一种新图形
(2013•台州)如果三角形有一边上的中线长恰好等于
这边的长,那么称这个三角形为“好玩三角形”.
如图在Rt△ABC中,∠C=90°,tanA=
求证:△ABC是“好玩三角形”;
3 2
C
B
A
专题突破二
弄清新概念图形的定义,把新概念图形分解转化,化为熟 悉的图形或条件,运用熟悉的知识加以解决.

类型之四
定义一种新函数
请参考小明的方法解决下面的问题: (1)写出函数 y=-x2+3x2)若函数 y=-x +3mx-2 与 y=x2-2nx+n 互为“旋转函数”,求(m+ n)2015 的值;
1 (3)已知函数 y=-2(x+1)(x-4)的图象与 x 轴交于 A,B 两点,与 y 轴交于 1 C1 的二次函数与函数 y=- (x+1)(x-4)互为“旋转函数”. 2
[解析] (1001)2=1×23+0×22+0×21+1×20=9.
解答此类问题时,要弄清楚新数的定义,在新定义下进行运算.
·新课标
(一)定义一种新数
任给a、b 两数,按规则c = a + b + ab 扩充 一个新数c,称这样的新数c 为“吉祥数”.又在a、 b、c 三个数中任取两数,按规则又可扩充一个“吉 祥数”,…,每扩充一个“吉祥数”称为一次操 作. 现有数1和4,按上述规则操作三次得到的最大 “吉祥数”是多少? .

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。

高考数学二轮复习函数的新定义问题

高考数学二轮复习函数的新定义问题
专题强化练
考点一
特征函数
考向1 高斯函数
例1 (2022·长治模拟)已知函数f(x)=x-[x]([x]表示不超过x的最大整数, 例如[1.5]=1,[-0.5]=-1),则以下关于f(x)的性质说法错误的是
√A.f(x)是R上的增函数
B.f(x)是周期函数 C.f(x)是非奇非偶函数 D.f(x)的值域是[0,1)
√D.任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立
因为 f(x)=10, ,xx为 为有 无理 理数 数, , 所以函数的定义域为R,值域为{0,1},故A,B错误; 因为f(x)=0或f(x)=1,且0与1均为有理数, 所以f(f(x))=f(0)=1或f(f(x))=f(1)=1,故C错误; 对于任意一个非零有理数T,若x为有理数, 则x+T也为有理数,则f(x+T)=f(x)=1; 若x为无理数,则x+T也为无理数,则f(x+T)=f(x)=0, 综上可得,任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立, 故D正确.
2an1an ≠常数,
故f(x)=2x不是“保等比数列函数”;
对于③,ffaan+n1=|a|an+n|1|=aan+n 1=|q|,
故f(x)=|x|是“保等比数列函数”;
对于④,ffaan+n1=lnln|a|an+n|1|=lnln|a|an·nq| | =ln|alnn|+|anl|n|q|=1+llnn||aqn||≠常数, 故f(x)=ln|x|不是“保等比数列函数”.
跟踪演练2 (1)定义方程f(x)=f′(x)的实数根x0为函数f(x)的“新不动点”,给
出下列函数: ①g(x)= 1 x2;②g(x)=-ex-2x;
2 ③g(x)=ln x;④g(x)=sin x+2cos x.

2023届高考数学二轮复习导数经典技巧与方法:数形结合与巧用放缩法

2023届高考数学二轮复习导数经典技巧与方法:数形结合与巧用放缩法

第12讲数形结合与巧用放缩法知识与方法数形结合思想就是根据试题中给出的条件和结论,考虑几何含义来证明不等式.若想要运用好数形结合思想,必须灵活地把抽象笼统的数量关系式与直观明了的图形结合起来,然后在几何与代数的背景下寻找解题的突破口.数形结合有两种情况:一是以数解形,二是以形助数,而通常情况下我们是以形助数来解题,所谓“以形助数”就是构造出与题意相吻合的图形,并通过图象的性质来帮助解决“数”的问题.典型例题x2−ax有两个极值点x1,x2(e为自然对数的底数).【例1】已知函数f(x)=e x−12(1)求实数a的取值范围;(2)求证:f(x1)+f(x2)>2.x2−ax,则f′(x)=e x−x−a,【解析】(1)由于f(x)=e x−12设g(x)=f′(x)=e x−x−a,则g′(x)=e x−1.令g′(x)=e x−1=0,解得x=0.所以当x∈(−∞,0)时,g′(x)<0;当x∈(0,+∞)时,g′(x)>0.所以g(x)min=g(0)=1−a.(1)当a⩽1时,g(x)=f′(x)⩾0,所以函数f(x)单调递增,没有极值点;(2)当a>1时,g(x)min=1−a<0,且当x→−∞时,g(x)→+∞;当x→+∞时,g(x)→+∞.此时,g(x)=f′(x)=e x−x−a有两个零点x1,x2,不妨设x1<x2,则x1<0<x2,所以函数x2−ax有两个极值点时,实数a的取值范围是(1,+∞);f(x)=e x−12(2)由(1)知,x1,x2为g(x)=0的两个实数根,x1<0<x2,g(x)在(−∞,0)上单调递减.下面先证x1<−x2<0,只需证g(−x2)<g(x1)=0.由于g(x2)=e x2−x2−a=0,得a=e x2−x2,所以g(−x2)=e−x2+x2−a=e−x2−e x2+2x2.−e x+2<0,设ℎ(x)=e−x−e x+2x(x>0),则ℎ′(x)=−1e x所以ℎ(x)在(0,+∞)上单调递减,所以ℎ(x)<ℎ(0)=0,ℎ(x2)=g(−x2)<0,所以x1<−x2<0.由于函数f(x)在(x1,0)上也单调递减,所以f(x1)>f(−x2).要证f(x1)+f(x2)>2,只需证f(−x2)+f(x2)>2,即证e x2+e−x2−x22−2>0.设函数k(x)=e x+e−x−x2−2,x∈(0,+∞),则k′(x)=e x−e−x−2x.设φ(x)=k′(x)=e x−e−x−2x,则φ′(x)=e x+e−x−2>0,所以φ(x)在(0,+∞)上单调递增,φ(x)>φ(0)=0,即k′(x)>0.所以k(x)在(0,+∞)上单调递增,k(x)>k(0)=0.故当x∈(0,+∞)时,e x+e−x−x2−2>0,则e x2+e−x2−x22−2>0,所以f(−x2)+f(x2)>2,亦即f(x1)+f(x2)>2.【点睛】第一问函数f(x)有两个极值点实质上就是其导数f′(x)有两个零点,亦即函数y=e x 与直线y=x+a有两个交点,如图所示,显然实数a的取值范围是(1,+∞).第二问是极值点偏移问题的泛化,是拐点的偏移,依然可以使用极值点偏移问题的有关方法来解决.只不过需要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的x1<−x2<0,如果“脑中有'形'”,如图所示,并不难得出.【例2】已知函数f(x)=e x−ax2,且曲线y=f(x)在点x=1处的切线与直线x+(e−2)y=0垂直.(1)求函数f(x)的单调区间;(2)求证:x>0时,e x−ex−1⩾x(ln⁡x−1).【解析】(1)由f(x)=e x−ax2,得f′(x)=e x−2ax.因为曲线y=f(x)在点x=1处的切线与直线x+(e−2)y=0垂直,所以f′(1)=e−2a=e−2,所以a=1,即f(x)=e x−x2,f′(x)=e x−2x.令g(x)=e x−2x,则g′(x)=e x−2,g′(ln⁡2)=0.所以x∈(−∞,ln⁡2)时,g′(x)<0,g(x)单调递减;x∈(ln⁡2,+∞)时,g′(x)>0,g(x)单调递增.所以g(x)min=g(ln⁡2)=2−2ln⁡2>0,所以f′(x)>0,f(x)单调递增.即f(x)的单调递增区间为(−∞,+∞),无递减区间;(2)由(1)知f(x)=e x−x2,f(1)=e−1,所以y=(x)在x=1处的切线为y−(e−1)=(e−2)(x−1),即y=(e−2)x+1.令ℎ(x)=e x−x2−(e−2)x−1,则ℎ′(x)=e x−2x−(e−2)=e x−e−2(x−1),且ℎ′(1)=0,ℎ′′(x)=e x−2,x ∈(−∞,ln⁡2)时,ℎ′′(x)<0,ℎ′(x)单调递减; x ∈(ln⁡2,+∞)时,ℎ′′(x)>0,ℎ′(x)单调递增.因为ℎ′(1)=0,所以ℎ′(x)min =ℎ′(ln⁡2)=4−e −2ln⁡2<0, 因为ℎ′(0)=3−e >0,所以存在x 0∈(0,1),使x ∈(0,x 0)时,ℎ′(x)>0,ℎ(x)单调递增; x ∈(x 0,1)时,ℎ′(x)<0,ℎ(x)单调递减; x ∈(1,+∞)时,ℎ′(x)>0,ℎ(x)单调递增. 又ℎ(0)=ℎ(1)=0,所以x >0时,ℎ(x)⩾0,即e x −x 2−(e −2)x −1⩾0,所以e x −(e −2)x −1⩾x 2. 今ेφ(x)=ln⁡x −x ,则φ′(x)=1x −1=1−x x.所以x ∈(0,1)时,φ′(x)>0,φ(x)单调递增;x ∈(1,+∞)时,φ′(x)<0,φ(x)单调递减,所以φ(x)⩽φ(1)=−1,即ln⁡x +1⩽x , 因为x >0,所以x(ln⁡x +1)⩽x 2,所以x >0时,e x −(e −2)x −1⩾x(ln⁡x +1), 即x >0时,e x −ex −1⩾x(ln⁡x −1).强化训练1.若关于x 的不等式a −ax >e x (2x −1)(a >−1)有且仅有两个整数解,则实数a 的取值范围为 A.(−34,53e 2] B.(−1,−32e ] C.(−32e ,−53e 2] D.(−34,−53e 2]【答案】C【解析】设g(x)=a −ax,ℎ(x)=e x (2x −1), 不等式a −ax >e x (2x −1)(a >−1)即g(x)>ℎ(x),ℎ′(x)=e x (2x +1),由ℎ′(x)>0得x >−12,由ℎ′(x)<0得x <−12,ℎ(x)在(−∞,−12)单调递减,在(−12,+∞)单调递增.作出g(x)的图象如图所示,直线g(x)=a −ax 过定点(1,0).若不等式g(x)>ℎ(x)有且仅有两个整数解,则这两个整数只能是0和−1,所以{g(−1)>ℎ(−1),g(−2)⩽ℎ(−2),得−32e <a ⩽−53e 2,实数a 的取值范围是(−32e ,−53e 2],故选:C .2.已知关于x 的不等式|ln⁡x+x−4e x|>ax 的解集中只有两个整数,则实数a 的取值范围为()A.(ln⁡22e 4,2−ln⁡22e 2] B.[ln⁡3−13e 3,2−ln⁡22e 2) C.[ln⁡3+13e 3,2−ln⁡22e 2)D.(ln⁡3+13e 3,2−ln⁡22e 2)【答案】A 【解析】依题意,a <|ln⁡x+x−4|xe x=|ln⁡x+x−4xe x|,令ℎ(x)=ln⁡x+x−4xe x,则ℎ′(x)=−(x+1)(ln⁡x+x−5)x 2e x,令φ(x)=ln⁡x +x −5,则φ′(x)=1x +1>0,则φ(x)在(0,+∞)上单调递增, 又φ(3)=ln⁡3−2<0,φ(4)=ln⁡4−1>0,所以存在t ∈(3,4),使得φ(t)=0,所以x ∈(0,t),φ(x)<0即ℎ′(x)>0,ℎ(x)在(0,t)单调递增,当x ∈(t,+∞),φ(x)>0,即ℎ′(x)<0,ℎ(x)在(t,+∞)单调递减, 因为ℎ(1)=−3e <0,ℎ(2)=ln⁡2−22e 2<0,ℎ(3)=ln⁡3−12e 3>0,且当x >3时,ℎ(x)>0, 又|ℎ(1)|=3e ,|ℎ(2)|=2−ln⁡22e 2>|ℎ(3)|=ln⁡3−12e 3,|ℎ(4)|=ln⁡22e 4>|ℎ(3)|,故要使不等式|ln⁡x+x−4e x|>ax 的解集中只有两个整数,a 的取值范围应为ln⁡22e 4<a ⩽2−ln⁡22e 2.故选:A .3.已知函数f(x)=ln⁡x +12x 2+ax(a ∈R),g(x)=e x +32x 2−x .(1)讨论f(x)的单调性; (2)定义:对于函数f(x),若存在x 0,使f (x 0)=x 0成立,则称x 0为函数f(x)的不动点.如果函数F(x)=f(x)−g(x)存在不动点,求实数a 的取值范围. 【解析】(1)f(x)的定义域为(0,+∞),f ′(x)=x 2+ax+1x(x >0),对于函数y =x 2+ax +1,(1)当Δ=a 2−4⩽0时,即−2⩽a ⩽2时,x 2+ax +1⩾0在x >0恒成立. 所以f ′(x)=x 2+ax+1x⩾0在(0,+∞)恒成立.所以f(x)在(0,+∞)为增函数; (2)当Δ>0,即a <−2或a >2时, 当a <−2时,由f ′(x)>0, 得x <−a−√a 2−42或x >−a+√a 2−42,0<−a−√a 2−42<−a+√a 2−42,所以f(x)在(0,−a−√a 2−42)上递增,在(−a−√a 2−42,−a+√a 2−42)上递减.在(−a+√a 2−42,+∞)上递增;当a >2时,由f ′(x)=x 2+ax+1x>0在(0,+∞)恒成立,所以f(x)在(0,+∞)为增函数.综上:当a<−2时,f(x)在(0,−a−√a2−42)上为增函数,在(−a−√a2−42,−a+√a2−42)上为减函数,在(−a+√a2−42,+∞)上为增函数;当a⩾−2时,f(x)在(0,+∞)上为增函数.(2)F(x)=f(x)−g(x)=ln⁡x−x2+ax+x−e x(x>0),因为F(x)存在不动点,所以方程F(x)=x有实数根,即a=e x−ln⁡x+x2x有解,令ℎ(x)=e x+x2−ln⁡xx(x>0),ℎ′(x)=e x(x−1)+ln⁡x+(x+1)(x−1)x2=(e x+x+1)(x−1)+ln⁡xx2,令ℎ′(x)=0,得x=1,当x∈(0,1)时,ℎ′(x)<0,ℎ(x)单调递减;当x∈(1,+∞)时,ℎ′(x)>0,ℎ(x)单调递增;所以ℎ(x)⩾ℎ(1)=e+1,当a⩾e+1时,F(x)有不动点,所以a的范围为[e+1,+∞).【点睛】导数式含参数时,如何讨论参数范围而确定到数值的正负是解决这类题的难点,般采用求根法和图像法.(1)对函数f(x)求导,结合二次函数的性质讨论a的范围,即可判断f(x)的单调性;(2)由F(x)存在不动点,得到F(x)=x有实数根,即a=e x−ln⁡x+x2x有解,构造函数令ℎ(x)=e x+x2−ln⁡xx(x>0),通过求导即可判断ℎ(x)的单调性,从而得到ℎ(x)的取值范围,即可得到a的范围.巧用放缩法知识与方法放缩法就是针对不等式的结构特征,运用不等式的性质,将不等式的一边或两边进行放大或缩小,也就是对代数式进行恰到好处的变形,使问题便于解决.放缩法大致分为以下几类:1.将代数式中的分母和分子同时扩大和缩小;2.利用均值不等式或其它的不等式放缩数式;3.也可以在不等式两边同时加上或减去某一项;4.可以把代数式中的一些项进行分解再重新组合,这样就可以消去一些项便于求解,这也是我们常用的裂项法.导数的解答题中,经常会用到一些不等式进行放缩,主要分为五类:1.切线不等式(1)e x⩾x+1;(2)ln⁡x⩽x−1;(3)e x⩾ex;(4)ln⁡x⩽1e x;(5)ln⁡x⩾1−1x.2.与三角有关的一些不等式(1)当x⩾0时,sin⁡x⩽x,cos⁡x⩾1−x22;(2)当0⩽x⩽π2时,cos⁡x⩽1−x24;(3)当0<x<π2时,sin⁡x<x<tan⁡x;(4)当0<x⩽π2时,sin⁡xx⩾2π.3.一些常见不等式(稍微提高)(1)当x>1时,x2−1x2+1<2(x−1)x+1<ln⁡x<√x−√x<12(x−1x);(2)当0<x<1时,12(x−1x)<√x√x<ln⁡x<2(x−1)x+1<x2−1x2+1;(3)对数平均不等式:∀x1>x2>0,√x1x2<x1−x2ln⁡x1−ln⁡x2<x1+x22.4.一些不常见的不等式(1)当x>0时,e x>1+x+12x2;(2)当0<x<1时,ln⁡1+x1−x >2x+23x3;当−1<x<0时,ln⁡1+x1−x<2x+23x3.5.偶尔用上的不等式当n>1,n∈N∗,x>−1时,则:(1+x)n⩾1+nx,(1+x)1n⩽1+1nx.(当且仅当x=0时等号成立.)在解答导数问题时,我们经常使用到函数的切线、割线逼近进行放缩,两个常用的结论为ln⁡x⩽x−1(当且仅当x=1时取等号),e x⩾x+1(当且仅当x=0时取等号),借助这两个结论可以将超越函数放缩成一次函数.针对高考压轴导数问题,放缩法可以起到很好的效果.使用放缩法需要较高的拆分组合技巧,一定要点睛意同向传递,还要把握好放缩的“尺度”,否则将达不到预期的目的,或者会得出错误的结论.典型例题指数放缩【例1】已知函数f(x)=ae x+2x−1(其中常数e=2.71828⋯,是自然对数的底数).(1)讨论f(x)的单调性;(2)证明:对任意的a⩾1,当x>0时,f(x)⩾(x+ae)x.【解析】(1)求导,得f′(x)=ae x+2.当a⩾0时,f′(x)>0,f(x)在R上单调递增;当a<0时,令f′(x)=0,得x=ln⁡(−2a).当x∈(−∞,ln⁡(−2a))时,f′(x)>0,f(x)单调递增;当x∈(ln⁡(−2a),+∞)时,f′(x)<0,f(x)单调递减.综上,当a⩾0时,f(x)在R上单调递增;当a<0时,f(x)在(−∞,ln⁡(−2a ))上单调递增,在(ln⁡(−2a),+∞)上单调递减.(2)解法1:指对处理技巧xe x型当a⩾1,x>0时,要证f(x)⩾(x+ae)x,即ae x−x2+(2−ae)x−1⩾0,即1−x2−(2−ae)x+1ae x⩾0,令g(x)=1−x 2−(2−ae)x+1ae x,则g′(x)=(x−1)(x+ae−3)ae x,(i)当a⩾3e时,令g′(x)=0,得x=1,故当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,+∞),g′(x)>0,g(x)单调递增.所以g(x)⩾g(1)=0,即f(x)⩾(x+ae)x.(ii)当1⩽a<3e吋,令g′(x)=0,得x=1,或x=3−ae.当x∈(0,3−ae),(1,+∞),g′(x)>0,g(x)单调递增;当x∈(3−ae,1),g′(x)<0,g(x)单调递减.又g(0)=1−1a⩾0,g(1)=0,故此时g(x)⩾0,即f(x)⩾(x+ae)x.综上,对任意的a⩾1,当x>0时,f(x)⩾(x+ae)x.解法2:指对处理技巧e xx+主元放缩当a⩾1,x>0时,要证f(x)⩾(x+ae)x,即a(e x−ex)−(x−1)2⩾0,即证e xx −xa−1ax+2a−e⩾0,令g(x)=e xx −xa−1ax+2a−e,则g′(x)=(x−1)(ae x−x−1)ax2,当a⩾1时,ae x−x−1⩾e x−x−1,当且仅当a=1时等号成立,令ℎ(x)=e x−x−1,则ℎ′(x)=e x−1>0在(0,+∞)上恒成立,故ℎ(x)单调递增,ℎ(x)>ℎ(0)=0,g′(x)=0,则x=1,所以x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)单调递增.所以g(x)⩾g(1)=0,即e xx −xa−1ax+2a−e⩾0,即f(x)⩾(x+ae)x.综上,对任意的a⩾1,当x>0时,f(x)⩾(x+ae)x.解法3:直接讨论法当a⩾1,x>0时,要证f(x)⩾(x+ae)x,即a(e x−ex)−(x−1)2⩾0,令g(x)=ae x−x2+(2−ae)x−1,则g′(x)=ae x−2x−(ae−2),因此g′′(x)=ae x−2在(0,+∞)上单调递增.(i)当a⩾2时,g′′(x)>0在(0,+∞)上恒成立,故g′(x)单调递增,又g′(1)=0,故当x∈(0,1)时,g′(x)<0,g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,g(x)单调递增.所以g(x)⩾g(1)=0,即f(x)⩾(x+ae)x.当1⩽a<2时,令g′′(x)=0,得x=ln⁡2a∈(0,1).当x∈(0,ln⁡2a),g′′(x)<0,g′(x)单调递减;当x∈(ln⁡2a,+∞),g′′(x)>0,g′(x)单调递增.(ii)当2e−1⩽a<2时,g′(0)=a(1−e)+2⩽0,又g′(1)=0,g′(ln⁡2a)<g′(1)=0,故当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)单调递增.所以g(x)⩾g(1)=0,即f(x)⩾(x+ae)x.(iii)当1⩽a<2e−1时,则g′(0)=a(1−e)+2>0,又g′(ln⁡2a )<g′(1)=0,故存在唯一x0∈(0,ln⁡2a),使得ℎ(x0)=0,当x∈(0,x0),(1,+∞)时,g′(x)>0,g(x)单调递增;当x∈(x0,1)时,g′(x)<0,g(x)单调递减.又g(0)=a−1⩾0,g(1)=0.故此时g(x)⩾0,即f(x)⩾(x+ae)x.综上,对任意的a⩾1,当x>0时,f(x)⩾(x+ae)x.解法4:主元放缩+指数放缩法当a⩾1,x>0时,要证f(x)⩾(x+ae)x,即a(e x−ex)−(x−1)2⩾0,令g(x)=e x−ex,则g′(x)=e x−e,令g′(x)=0,得x=1.当x∈(−∞,1),g′(x)<0,g(x)单调递减;当x∈(1,+∞),g′(x)>0,g(x)单调递增.所以g(x)⩾g(1)=0,即e x−ex⩾0,当且仅当x=1时等号成立,故a(e x−ex)⩾e x−ex,当且仅当a=1,x=1时等号成立;要证a (e x −ex )−(x −1)2⩾0,只需要证e x −ex −(x −1)2⩾0. 策略一:直接讨论法令ℎ(x)=e x −ex −(x −1)2(x >0),则ℎ′(x)=e x −e −2(x −1),ℎ′′(x)=e x −2,令ℎ′′(x)=0,得x =ln⁡2. 当x ∈(0,ln⁡2)时,ℎ′′(x)<0,ℎ′(x)单调递减; 当x ∈(ln⁡2,+∞)时,ℎ′′(x)>0,ℎ′(x)单调递增. 又ℎ′(0)=3−e >0,ℎ′(1)=0,ℎ′(ln⁡2)<0, 因此存在唯一x 0∈(0,ln⁡2),使得ℎ′(x 0)=0.当x ∈(0,x 0)时,ℎ′(x)>0,ℎ(x)单调递增;当x ∈(x 0,1),ℎ′(x)<0,ℎ(x)单调递减. 又ℎ(0)=0,ℎ(1)=0,故此时ℎ(x)⩾0恒成立,即f(x)⩾(x +ae)x . 综上,对任意的a ⩾1,当x >0时,f(x)⩾(x +ae)x . 策略二:指数处理,同解法1 即证1−ex+(x−1)2e x⩾0,令g(x)=1−ex+(x−1)2e x,则g ′(x)=(x−1)(x+e−3)e x,令g ′(x)=0,得x =1,或x =3−e .当x ∈(0,3−e),(1,+∞)时,g ′(x)>0,g(x)单调递增; 当x ∈(3−e,1)时,g ′(x)<0,g(x)单调递减.又g(0)=0,g(1)=0,故此时g(x)⩾0,即f(x)⩾(x +ae)x . 综上,对任意的a ⩾1,当x >0时,f(x)⩾(x +ae)x . 策略三:指对处理,同解法2 即证e xx −x −1x +2−e ⩾0,令g(x)=e x x−x −1x +2−e ,则g ′(x)=(x−1)(e x −x−1)x 2.令ℎ(x)=e x −x −1,则ℎ′(x)=e x −1>0在(0,+∞)上恒成立,故ℎ(x)单调递增,从而ℎ(x)>ℎ(0)=0,令g′(x)=0,则x=1.当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)单调递增.所以g(x)⩾g(1)=0,即e xx −x−1x+2−e⩾0,从而f(x)⩾(x+ae)x.综上,对任意的a⩾1,当x>0时,f(x)⩾(x+ae)x.【点睛】本题的第(2)问是一道开放性较强的试题,可以从多角度入手分析.当a⩾1,x>0时,要证f(x)⩾(x+ae)x,即ae x−x2+(2−ae)x−1⩾0,观察此时含有指数项ae x,也含有二次项,直接讨论至少要求两次导数才便于探究(解法2),结合指对处理技巧,可考虑同时除以ae x,这样求导后就只需要讨论二次型函数即可.即证g(x)=1−x 2−(2−ae)x+1ae x⩾0,求导后分耇竕是可因式分解的二次函数,且两根易求,分别为x=1与x=3−ae.但对于x=3−ae是否在区间(0,+∞)内不能确定,因此需要进行讨论.解法1采用的是整理为xe x 型函数,解法2则是整理为exx型的函数,解法2采用的是直接讨论.对于解法4,观察到所证不等式中含有e x与ex,即可联想到e x⩾ex,为此将待证式整理成a(e x−ex)−(x−1)2⩾0,借助e x⩾ex,只需要证明e x−ex−(x−1)2⩾0即可.接下来的证明与前述含参讨论的情形大同小异,可直接讨论,也可采用指对处理对数放缩【例2】已知函数f(x)=x−1ln⁡x.(1)求函数f(x)的单调区间;(2)证明:在x>12且x≠1时,f(x)<x2+34恒成立.【解析】(1)f′(x)=ln⁡x−1+1 x(ln⁡x)2(x>0,且x≠1),令g(x)=ln⁡x−1+1x ,则g′(x)=1x−1x2=x−1x2,当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)单调递增;故g(x)>g(1)=0,即f′(x)>0恒成立,故f(x)在(0,1),(1,+∞)上单调递增.综上,f(x)的单调递增区间为(0,1),(1,+∞),无单调递减区间. (2)解法1:放缩法今ℎ(x)=x −1−ln⁡x(x >0),则ℎ′(x)=x−1x,当x ∈(0,1),ℎ′(x)<0,ℎ(x)单调递减;当x ∈(1,+∞),ℎ′(x)>0,ℎ(x)单调递增. 故ℎ(x)⩾ℎ(1)=0,即x −1⩾ln⁡x ,当且仅当x =1时等号成立. 因此,当x ∈(12,1),x −1>ln⁡x ,则x−1ln⁡x <1, 而此时x 2+34>1,所以x−1ln⁡x<x 2+34;另一方面,x ∈(1,+∞),由(1)可知ln⁡x >1−1x , 因此x−1ln⁡x<x−11−1x=x ,而x 2+34−x >0在(1,+∞)恒成立,故x 2+34>x >x−1ln⁡x成立.综上,不等式x−1ln⁡x<x 2+34在x >12,且x ≠1时恒成立.解法2:等价变形 当x ∈(12,1)时,即证x−1x 2+34>ln⁡x ;当x ∈(1,+∞),即证x−1x 2+34<ln⁡x ;令F(x)=x−1x 2+34−ln⁡x (x >12,且x ≠1),则F ′(x)=x 2+34−2x(x−1)(x 2+34)2−1x =−x 4+x 3−12x 2−34x+916x(x 2+34)2,令G(x)=x 4+x 3−12x 2−34x +916,则G ′(x)=4x 3+3x 2−x −34=4x 2(x +34)−(x +34)=(x +34)(4x 2−1)>0, 故G(x)单调递增,G(x)>G (12)=14>0,故F′(x)<0,所以F(x)单调递减,而F(1)=0,故当x∈(12,1)时,F(x)>0,即x−1x2+34>ln⁡x;当x∈(1,+∞)时,F(x)<0,即x−1x2+34<ln⁡x.综上,不等式x−1ln⁡x <x2+34在x>12且x≠1时成立.指对混合放缩【例3】已知函数f(x)=e x.(1)讨论函数g(x)=f(ax)−x−a的单调性;(2)证明:f(x)+ln⁡x+3x >√x.【解析】(1)g(x)=f(ax)−x−a=e ax−x−a,g′(x)=ae ax−1,(1)若a⩽0时,g′(x)<0,g(x)在R上单调递减;(2)若a>0时,当x<−1aln⁡a时,g′(x)<0,g(x)单调递减;当x>−1aln⁡a时,g′(x)>0,g(x)单调递增;综上若a⩽0时,g(x)在R上单调递减;若a>0时,g(x)在(−∞,−1a ln⁡a)上单调递减;在(−1aln⁡a,+∞)上单调递增;(2)证明:要证f(x)+ln⁡x+3x >√x,只需证x(ln⁡x+e x)−4√x+3>0,由(1)可知当a=1时,e x−x−1⩾0,即e x⩾x+1,当x+1>0时,上式两边取以e为底的对数,可得ln⁡(x+1)⩽x(x>−1),用x−1代替x可得ln⁡x⩽x−1(x>0),又可得ln⁡1x ⩽1x−1(x>0),所以ln⁡x⩾1−1x(x>0),所以x(ln⁡x+e x)−4√x+3>x(1−1x+x+1)−4√x+3=x2+2x+2−4√x=(x+1)2−4√x+1⩾(2√x)2−4√x+1=(2√x−1)2⩾0,从而不等式f(x)+ln⁡x+3x >√x成立.【例4】已知函数f(x)=e x−ax2,g(x)=xln⁡x−x2+(e−1)x+1,且曲线y=f(x)在x=1处的切线方程为y=bx+1.(1)求a,b的值;(2)求函数f(x)在[0,1]上的最小值;(3)证明:当x>0时,g(x)⩽f(x).【解析】(1)a=1,b=e−2.(2)f(x)min=1;(3)即证:e x+(1−e)x−xln⁡x−1⩾0,因为f(0)=1,且曲线y=f(x)在x=1处的切线方程为y=(e−2)x+1,故可猜测:当x>0且x≠1时,f(x)的图象恒在切线y=(e−2)x+1的上方.下面证明:当x>0时,f(x)⩾(e−2)x+1.解法1:设φ(x)=f(x)−(e−2)x−1(x>0),则φ′(x)=e x−2x−(e−2),今F(x)=φ′(x),F′(x)=e x−2,当x∈(0,ln⁡2)时,F′(x)<0,φ′(x)单调递减;当x∈(ln⁡2,+∞)时,F′(x)>0,φ′(x)单调递增.又φ′(0)=3−e>0,φ′(1)=0,0<ln⁡2<1,φ′(ln⁡2)<0所以,存在x0∈(0,1),使得φ′(x0)=0.当x∈(0,x0)∪(1,+∞)时,φ′(x)>0;当x∈(x0,1),φ′(x)<0;故φ(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,+∞)上单调递增.又φ(0)=φ(1)=0,所以φ(x)=e x−x2−(e−2)x−1⩾0,当且仅当x=1时取等号.故e x+(2−e)x−1x⩾x(x>0).由(2)知,e x⩾x+1,故x⩾ln⁡(x+1),所以x−1⩾ln⁡x,当且仅当x=1时取等号.所以e x+(2−e)x−1x⩾x⩾ln⁡x+1,即e x+(2−e)x−1x⩾ln⁡x+1.所以e x+(2−e)x−1⩾xln⁡x+x,即e x+(1−e)x−xln⁡x−1⩾0成立(当x=1时等号成立).故当x>0时,g(x)⩽f(x).解法2:要证xln⁡x−x2+(e−1)x+1⩽e x−x2,等价于证明xln⁡x+(e−1)x+1−e x⩽0,又x>0,可转化为证明ln⁡x+e−1+1x −e xx⩽0,令F(x)=ln⁡x+e−1+1x −e xx,则F′(x)=1x−1x2−e x(x−1)x2=(x−1)(1−e x)x2,因为x>0,所以当x∈(0,1)时,F′(x)>0,F(x)单调递增;当x∈(1,+∞)时,F′(x)<0,F(x)单调递减;所以F(x)有最大值F(1)=0,故F(x)⩽0恒成立,即当x>0时,g(x)⩽f(x).三角放缩【例5】设a>0,且a≠1,函数f(x)=sin⁡ax−asin⁡x.(1)若f(x)在区间(0,2π)上有唯一极值点x0,证明:f(x0)<min{2aπ,(1−a)π};(2)若f(x)在区间(0,2π)没有零点,求a的取值范围.【解析】(1)f′(x)=acos⁡ax−acos⁡x=a(cos⁡ax−cos⁡x)=−2asin⁡a+12xsin⁡a−12x,若a>1,则f′(x)在区间(0,2π)至多有x1=2πa+1,x2=4πa+1两个变号零点,故0<a<1,令f′(x)=0,得x m=2mπa+1,x n=2nπa+1,其中m,n∈Z,仅当m=1时,x1=2πa+1∈(0,2π),且在x1的左右两侧,导函数的值由正变负,故当0<a<1时,f(x)在区间(0,2π)有唯一极值点x0=2πa+1,此时f(x0)= sin⁡ax0−asin⁡x0.解法1:将x 0=2πa+1代入得f (x 0)=sin⁡2aπa+1−asin⁡2πa+1=sin⁡2aπa+1+asin⁡(2π−2πa+1)=(1+a)sin⁡2aπa+1, (1)当2aa+1⩽12,即0<a ⩽13时,2aπ⩽(1−a)π,由不等式x >0,sin⁡x <x 知:(1+a)sin⁡2aπa+1<(1+a)2aπa+1=2aπ;(2)当2a a+1>12,即当13<a <1时,(1−a)π<2aπ,(1+a)sin⁡2aπa+1=(1+a)sin⁡(π−2aπa+1)=(1+a)sin⁡(1−a)πa+1,由不等式x >0,sin⁡x <x 知:(1+a)sin⁡2aπa+1<(1+a)(1−a)πa+1=(1−a)π.由(1)(2)知f (x 0)<min{2aπ,(1−a)π}. 解法2:由x 0=2πa+1⇒ax 0=2π−x 0,a =2πx 0−1,代入得f (x 0)=sin⁡ax 0−asin⁡x 0=sin⁡(2π−x 0)−(2πx 0−1)sin⁡x 0,即f (x 0)=−2πxsin⁡x 0. 以下用分析法可证:f (x 0)<min{2aπ,(1−a)π}.(2)(1)当a >1时,f (πa )=sin⁡(a ⋅πa )−asin⁡πa =−asin⁡πa <0,f (3π2)=sin⁡(3aπ2)+a >0,所以f (πa )f (3π2)<0,由零点存在性定理知,f(x)在区间(πa ,3π2)至少有一个零点;(2)当12<a <1时,π<πa<2π,π2<aπ<π,π<2aπ<2π,f (πa )=−asin⁡πa >0,f(π)=sin⁡aπ>0,f(2π)=sin⁡2aπ<0, 由零点存在定理可知,f(x)在区间(π,2π)至少有一个零点; (3)当0<a ⩽12时,f ′(x)=acos⁡ax −acos⁡x =a(cos⁡ax −cos⁡x), 令g(x)=cos⁡ax −cos⁡x ,则g ′(x)=−asin⁡ax +sin⁡x , 在区间(0,π)上,cos⁡ax >cos⁡x,f ′(x)>0,f(x)是增函数;在区间(π,2π)上,g ′(x)<0,即g(x)递减,即f ′(x)递减,f ′(x)<f ′(2π)<0,故f(x)在(0,π)上递增,在(π,2π)上递减,又f(0)=0,f(π)=sin⁡aπ>0,f(2π)=sin⁡2aπ⩾0,即在(π,2π)上,f(x)>0.所以f(x)在区间(0,2π)上没有零点,满足题意.综上所述,若f(x)在区间(0,2π)没有零点,则正数a的取值范围是(0,12].含三角函数的指对放缩【例6】已知函数f(x)=e x−ax−cos⁡x,其中a∈R.(1)求证:当a⩽−1时,f(x)无极值点;(2)若函数g(x)=f(x)+ln⁡(x+1),是否存在a,使得g(x)在x=0处取得极小值?并说明理由.【解析】(1)证明:f′(x)=e x−a+sin⁡x,显然e x>0,−1⩽sin⁡x⩽1,当a⩽−1时,e x−a+sin⁡x>0−a−1⩾0,即f′(x)>0,所以函数f(x)在其定义域上为增函数,故f(x)无极值点;(2)g(x)=e x−ax−cos⁡x+ln⁡(x+1),g′(x)=e x−a+sin⁡x+1x+1,显然x=0是g(x)的极小值点的必要条件,为g′(0)=2−a=0,即a=2.此时g′(x)=e x+1x+1+sin⁡x−2,显然当x∈(0,π2)时,g′(x)=e x+1x+1+sin⁡x−2>1+x+1x+1+sin⁡x−2>sin⁡x>0,当x∈(−14,0)时,(1+x)(1−x+32x2)=1+x22(3x+1)>1,故11+x <1−x+32x2,令m(x)=(1+x+x 22)e−x,则m′(x)=−x22e−x⩽0,故m(x)是减函数,故当x<0时,m(x)>m(0)=1,即e x<1+x+x22,令ℎ(x)=sin⁡x−12x,则ℎ′(x)=cos⁡x−12,当−1<x<0时,ℎ′(x)>cos⁡1−12>0,故ℎ(x)在(−1,0)单调递增,故当−1<x<0时,ℎ(x)<ℎ(0)=0,即sin⁡x<12x,故当x∈(−14,0)时,g′(x)=e x+1x+1+sin⁡x−2⩽(1+x+x22)+(1−x+32x2)−2+x2=2x2+x2<0,因此,当a=2时,x=0是g(x)的极小值点,即充分性也成立.综上,存在a=2,使得g(x)在x=0处取得极小值.【点睛】本题第(2)问先由必要性探路可知a=2,再证明当a=2时,x=0是函数g(x)的极小值点,即证明其充分性,由此即可得出结论.【例7】已知函数f(x)=2ln⁡(x+1)+sin⁡x+1,函数g(x)=ax−1−ln⁡x(a∈R,且a≠0).(1)讨论函数g(x)的单调性;(2)证明:当x⩾0时,f(x)⩽3x+1;(3)证明:当x>−1时,f(x)<(x2+2x+2)e sin⁡x.【解析】(1)g(x)定义域为(0,+∞),g′(x)=a−1x =ax−1x.当a<0时,g′(x)<0,则g(x)在(0,+∞)上单调递减;当a>0时,令g′(x)>0,得x>1a ,即g(x)在(1a,+∞)上单调递增;令g′(x)<0,得0<x<1a ,得g(x)在(0,1a)上单调递减.综上所述,当a<0时,g(x)在(0,+∞)上单调递减;当a>0时,g(x)在(1a ,+∞)上单调递增,在(0,1a)上单调递减.(2)解法1:作差法+直接求导设函数ℎ(x)=f(x)−(3x+1),则ℎ′(x)=2x+1+cos⁡x−3.因为x⩾0,所以2x+1∈(0,2],cos⁡x∈[−1,1],则ℎ′(x)⩽0,从而ℎ(x)在[0,+∞)上单调递减,所以ℎ(x)=f(x)−(3x−1)⩽ℎ(0)=0,即f(x)⩽3x+1.解法2:常用不等式+兵分两路当a=1时,g(x)=x−1−ln⁡x,由(1)知g(x)min=g(1)=0,所以ln⁡x⩽x−1,所以2ln⁡(x+1)⩽2x.令φ(x)=x−sin⁡x,则φ′(x)=1−cos⁡x⩾0恒成立,又φ(0)=0,所以当x⩾0时,有φ(x)=x−sin⁡x⩾0,即sin⁡x⩽x.所以f(x)=2ln⁡(x+1)+sin⁡x+1⩽2x+x+1=3x+1.(3)证明:当a=1时,g(x)=x−1−ln⁡x,由(1)知g(x)min=g(1)=0,所以x⩾ln⁡x+1,当x>−1时,(x+1)2>0,(x+1)2e sin⁡x>0,所以(x+1)2e sin⁡x>ln⁡[(x+1)2e sin⁡x]+1=2ln⁡(x+1)+sin⁡x+1.从而(x2+2x+2)e sin⁡x>(x+1)2e sin⁡x>ln⁡[(x+1)2e sin⁡x]+1=2ln⁡(x+1)+sin⁡x+1=f(x),所以f(x)<(x2+2x+2)e sin⁡x.强化训练1.已知函数f(x)=x+ae x(a∈R)在x=0处取得极值.(1)求a,并求f(x)的单调区间;(2)证明:当0<m⩽e,x∈(1,+∞)时,xe x−2−m(x−1)ln⁡x>0.【解析】(1)f′(x)=1−x−ae x,由题意可得,f′(0)=1−a=0,故a=1,f(x)=1+xe x ,f′(x)=−xe x,由f′(x)>0可得x<0,故函数单调递增区间(−∞,0),由f′(x)<0可得x>0,故函数单调递减区间(0,+∞),(2)证明:由(1)可知f(x)在(−∞,0)上单调递增,在(0,+∞)单调递减,故f(x)⩽f(0)=1,即x+1e x⩽1,故e x⩾x+1,所以e x−2⩾x−1,当且仅当x=2时取等号,又因为x>0,所以xe x−2⩾x(x−1),所以xe x−2−m(x−1)ln⁡x⩾x(x−1)−m(x−1)ln⁡x=(x−1)(x−mln⁡x),因为x>1,所以ln⁡x>0,因为0<m⩽e,所以x−mln⁡x⩾x−elnx,令g(x)=x−eln⁡x,则g′(x)=1−ex,由g′(x)>0可得,x>e,故g(x)在(e,+∞)上单调递增,由g′(x)<0可得,x<e,故g(x)在(−∞,e)上单调递减,所以g(x)⩾g(e)=0,即x−elnx⩾0在x=e处取得等号,所以xe x−2−m(x−1)ln⁡x⩾(x−1)(x−mln⁡x)⩾(x−1)(x−eln⁡x)⩾0,由于取等条件不同,所以xe x−2−m(x−1)ln⁡x>0.2.已知函数f(x)=ln⁡x−xe.(1)若曲线y=f(x)存在一条切线与直线y=ax垂直,求a的取值范围.(2)证明:f(x)<x2−ln⁡x−34sin⁡x.【解析】(1)f′(x)=1x −1e.因为f(x)的定义域为(0,+∞),所以1x−1e>−1e.因为曲线y=f(x)存在一条切线与直线y=ax垂直,所以−1a >−1e,解得a<0或a>e,则a的取值范围为(−∞,0)∪(e,+∞).(2)f′(x)=1x −1e=e−xxe.当x∈(0,e)时,f′(x)>0;当x∈(e,+∞)时,f′(x)<0.所以f(x)max =f(e)=ln⁡e −e e =0.设函数g(x)=x 2−ln⁡x ,则g ′(x)=2x −1x =2x 2−1x .当x ∈(0,√22)时,g ′(x)<0;当x ∈(√22,+∞)时,g ′(x)>0.所以g(x)min =g (√22)=12−12ln⁡12=12+12ln⁡2. 因为ln⁡2>ln⁡√e =12,g(x)min >34. 因为34sin⁡x ∈[−34,34],所以x 2−ln⁡x −34sin⁡x >0.又f(x)⩽f(x)max =0,所以f(x)<x 2−ln⁡x −34sin⁡x .3.已知函数f(x)=xln⁡x +32x 2−(a +1)x +b . (1)当a =3时,求f(x)的单调区间;(2)e 为自然对数的底数,若a ∈(3e −1,3e +1)时,f(x)⩾0恒成立,证明:b −2a +6>0.【解析】(1)当a =3时,f(x)=xln⁡x +32x 2−4x +b , 则f ′(x)=ln⁡x +3x −3在(0,+∞)上单调递增,又f(1)=0, 故当x ∈(0,1)时,f ′(x)<0,f(x)单调递减;当x ∈(1,+∞)时,f ′(x)>0,f(x)单调递增.综上,当a =3时,f(x)的单调咸区间为(0,1),单调增区间为(1,+∞).(2)对f(x)求导,得f ′(x)=ln⁡x +3x −a ,知f ′(x)在(0,+∞)上单调递增. 因为a ∈(3e −1,3e +1),故f ′(1e )=3e −1−a <0,f ′(e)=3e +1−a >0, 故存在唯一x 0∈(1e ,e),使得f ′(x 0)=0,即ln⁡x 0+3x 0−a =0,所以a =ln⁡x 0+3x 0.当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,+∞)时,f′(x)>0,f(x)单调递增.又f(x)⩾0,故f(x)min=f(x0)=x0ln⁡x0+32x02−(a+1)x0+b⩾0,即x0ln⁡x0+32x02−(ln⁡x0+3x0+1)x0+b=−32x02−x0+b⩾0在x0∈(1e,e)上恒成立.令ℎ(x)=−32x2−x+b,则ℎ(x)在(1e,e)上单调递减,故只需ℎ(e)=−32e2−e+b⩾0,即b⩾32e2+e,故b−2a+6⩾32e2+e−6e−2+6=32e2−5e+4>0,从而得证.解法2:转化为关于x0的函数所以b⩾32x02+x0,则b−2a+6⩾32x02+x0−2(ln⁡x0+3x0)+6=32x02−5x0−2ln⁡x0+6,令ℎ(x)=32x2−5x−2ln⁡x+6(1e<x<e),则ℎ′(x)=3x−5−2x =3x2−5x−2x=(3x+1)(x−2)x,令ℎ′(x0)=0,得x=2.当x∈(1e,2),ℎ′(x)<0,ℎ(x)单调递减;当x∈(2,e)时,ℎ′(x)>0,ℎ(x)单调递增.故ℎ(x)min=ℎ(2)=32×4−10−2ln⁡2+6=2(1−ln⁡2)>0,即b−2a+6>0,从而不等式得证.。

新高考数学二轮复习等和线定理

新高考数学二轮复习等和线定理

知识拓展
(1)当等和线恰为直线AB时,k=1, (2)当等和线在O点和直线AB之间时,k∈(0,1); (3)当直线AB在O点和等和线之间时,k∈(1,+∞); (4)当等和线过O点时,k=0.
类型突破 类型一 利用等和线求系数和的值 类型二 利用等和线求系数和的最值(范围)
精准强化练
类型一 利用等和线求系数和的值
法二 设 P(x,y),则A→P=(x,y),A→B=(0,1),A→D=(2,0),
因为A→P=λA→B+μA→D,所以xy==λ2,μ, 从而 λ+μ=x2+y,令 t=2x+y,
问题等价于直线 x+2y-2t=0 与圆(x-2)2+(y-1)2=45有交点,
所以|2+21×2+1-22 2t|≤
法一 以 O 为坐标原点,O→A所在直线为 x 轴建立平面直角坐 标系,如图所示, 则 A(1,0),B-21, 23,
设∠AOC=αα∈0,23π,则 C(cos α,sin α),
由O→C=xO→A+yO→B,得cos sin
α=x-21y, α= 23y,
所以
x=cos
α+
3 3 sin
α,y=2
3.已知点 F 是抛物线 E:x2=4y 的焦点,C(0,-2),过点 F 且斜率为 1 的
直线交抛物线 E 于 A,B 两点,点 P 为抛物线 E 上任意一点,若C→P=
mC→A +nC→B,则 m+n 的最小值为
√1
A.3
1
2
3
B.2
C.3
D.4
法一 由题意可得,F(0,1),因此直线AB的方程为y=x+1, 设P(2t,t2),A(x1,x1+1),B(x2,x2+1), 则C→P=(2t,t2+2),C→A=(x1,x1+3),C→B=(x2,x2+3),

专题31 中考热点新定义问题专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题31 中考热点新定义问题专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题31 中考热点新定义问题专项训练(解析版)专题诠释:新定义题型是近几年来中考的热点问题。

它常集合数形结合思想,类比思想,转化思想,分类讨论思想,方程思想,函数思想于一体。

常以压轴题身份出现。

本专题精选新定义问题共20条,欢迎下载使用。

一.选择题1.(2021•河北模拟)对于实数x,y,我们定义符号max{x,y}的意义:当x≥y时,max{x,y}=x,当x<y时,max{x,y}=y.例如max{﹣1,﹣2}=﹣1,max{3,π}=π,则关于x的函数y=max{3x,x+2}的图象为( )A.B.C.D.思路引领:令3x=x+2,解得x=1,画出直线y=3x和直线y=x+2的图象即可判断.解:令3x=x+2,解得x=1,直线y=3x和直线y=x+2的图象如图所示,它们的交点坐标为(1,3),由图象可知,x<1时,x+2>3x;当x>1时,3x>x+2,故关于x的函数y=max{3x,x+2}的图象是选项C中的图象.故选:C.总结提升:本题主要考查了函数的图象,正确画出函数图象并得出交点坐标是解答本题的关键.二.填空题2.(2021•深圳模拟)用“●”“□”定义新运算:对于数a,b,都有a●b=a和a□b=b.例如3●2=3,3□2=2,则(2020□2021)●(2021□2020)= .思路引领:根据“●”“□”的运算法则进行计算即可得解.解:∵a●b=a,a□b=b,∴(2020□2021)●(2021□2020)=2021●2020=2021.故答案为:2021.总结提升:本题考查了有理数的混合运算,读懂题目信息,理清新定义的运算方法是解题的关键.3.(2021•碑林区校级模拟)(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF 的延长线与边DE的延长线交于点M,则∠M的大小为 .思路引领:根据正求出多边形的内角和公式∠DEF,根据等腰三角形的性质、三角形内角和定理求出∠BFE,计算即可.解:∵八边形ABCDEFGH是正八边形,∴∠DEF=(8﹣2)×180°÷8=135°,∴∠FEM=45°,∴∠DEF=∠EFG,∵BF平分∠EFG,∴∠EFB=∠BFG=12∠EFG=67.5°,∵∠BFE=∠FEM+∠M,∴∠M=∠BFE﹣∠FEM,∴∠M=22.5°.故答案为:22.5°.总结提升:本题考查的是正多边形和圆的有关计算,掌握正多边形的内角的求法是解题的关键.4.(2019•福田区三模)对于m,n(n≥m)我们定义运算A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣(m﹣1)),A73=7×6×5=210,请你计算A42= .思路引领:将n=4,m=2代入公式求解可得.解:A42=4×(4﹣1)=12,故答案为:12.总结提升:本题主要考查数字的变化规律,解题的关键是掌握新定义规定的运算法则.5.(2022春•塔城地区期末)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为 .思路引领:根据新定义规定的运算规则列出不等式,解不等式即可求得.解:不等式x⊕4>0化为:2x+12>0,2x>﹣12,x>﹣6,故答案为:x>﹣6.总结提升:本题主要考查解一元一次不等式,解题的关键是根据新定义列出关于x的不等式及解不等式的步骤.6.(2022秋•魏县期中)若x是不等于1的实数,我们把11―x称为x的差倒数,如2的差倒数是11―2=―1,﹣1的差倒数为11―(―1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2022的值为 .思路引领:根据差倒数的定义,通过计算发现每3次运算结果循环出现一次,由此可得x2022=x3=﹣2.解:∵x1=1 3,∴x2=11―13=32,x3=11―32=―2,x4=11―(―2)=13,……,∴每3次运算结果循环出现一次,∵2022÷3=674,∴x2022=x3=﹣2,∴x2022的值为﹣2,故答案为:﹣2.总结提升:本题考查数字的变化规律,通过计算探索出运算结果的循环规律是解题的关键.三.解答题7.(2021秋•汉阳区期中)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出两个“极数” , ;(2)猜想任意一个“极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33,则满足D(m)是完全平方数的所有m的值是 .思路引领:(1)根据“极数”的定义,任意写出两个“极数”即可;(2)由“极数”的定义可得出n=99(10a+b+1),进而可得出任意一个“极数”都是99的倍数;(3)由(2)可得出D(m)=3(10x+y+1),由D(m)为完全平方数,可得出10x+y+1=12,10x+y+1=27,10x+y+1=48,10x+y+1=75,解之可得出x,y的值,进而可得出m的值,即可得出结论.解:(1)由“极数”的定义得,1287,2376,故答案为1287,2376;(2)任意一个“极数”都是99的倍数,理由如下:设任意一个“极数”为ab(9―a)(9―b)(1≤a≤9,0≤b≤9,且a、b为整数),则ab(9―a)(9―b)=1000a+100b+10(9﹣a)+(9﹣b)=990a+99b+99=99(10a+b+1),∵1≤a≤9,0≤b≤9,且a、b为整数,∴10a+b+1是整数,∴任意一个“极数”都是99的倍数.(3)设四位数m为xy(9―x)(9―y)(1≤x≤9,0≤y≤9,且x、y为整数),∵四位数m为“极数”,D(m)=m 33,∴D(m)=99(10x+y+1)33=3(10x+y+1).∵D(m)是完全平方数,1≤x≤9,0≤y≤9,且x、y为整数,∴10x+y+1=3×4=12,10x+y+1=3×9=27,10x+y+1=3×16=48,10x+y+1=3×25=75,∴x=1y=1或x=2y=6或x=4y=7或x=7y=4,∴m可以为1188或2673或4752或7425.总结提升:本题考查了完全平方数以及倍数,解题的关键是:(1)根据“极数”的定义,任意写出两个“极数”;(2)根据“极数”的定义,找出n=99(10a+b+1);(3)根据D(m)是完全平方数,找出10x+y+1的值.8.(2022秋•胶州市期末)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2022是否是“纯数”?请说明理由;(2)请直接写出2023到2050之间的“纯数”;(3)不大于100的“纯数”的个数为 .思路引领:(1)根据“纯数”的定义判断;(2)根据“纯数”的定义求解;(3)根据“纯数”的定义写出数,再查个数.解:(1)∵计算2022+2023+2024时,各数位都不产生进位,∴2022是“纯数”;(2)2023到2050之间的“纯数”有:2030,2031,2032,;(3)不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,30,32,100共13个,故答案为:13.总结提升:本题考查了整式的加减,理解新定义是解题的关键.9.(2021•任城区二模)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称△ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF边半高三角形,GH是“EF边半高”.(1)在Rt△ABC中,∠ACB=90°,AB=10cm,若ABC是“BC边半高三角形”,则AC= cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为 .(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为“RS边半高三角形”.当点P介于点R与点S之间,且PQ取得最小值时,求点P的坐标.思路引领:(1)设AC=h,则BC=2AC=2h,由勾股定理即可求解;(2)分“半高”是底边上的高、“半高”是腰上的高两种情况,分别求解即可;(3)当点P介于点R与点S之间时,与RS平行且与抛物线只有一个交点P′时,PQ取得最小值,即可求解.解:(1)设AC=h,则BC=2AC=2h,由勾股定理得:h2+(2h)2=102,解得:h=25,故答案为25;(2)①当“半高”是底边上的高时,如图1,AD是“半高”,AB、AC为等腰三角形的腰,由题意得:AD =2,BC =4;②当“半高”是腰上的高时,如下图,底边为BC 、“半高”CD 为腰上的高,如图2,当△ABC 为锐角三角形时,CD =2,AB =AC =4,在Rt △ADC 中,AD =AC 2―CD 2=23,在Rt △BCD 中,BC =BD 2+CD 2=(4―23)2+22=26―22;如图3,当△ABC 为钝角三角形时,CD =2,AB =AC =4,同理可得:BC =26+22;故答案为:4或26+22或26―22;(3)将抛物线的表达式y =x 2与直线方程y =x +2联立并解得:x =﹣1或2,即:点R 、S 的坐标分别为(﹣1,1)、(2,4),则RS =32,则RS 边上的高为:12×32=322,则点Q 在于RS 平行的上下两条直线上,如下图,设直线RS 与y 轴交于点N ,故点N 作NQ ⊥TQ 于点Q ,则NQ =322,则QT =QH sin45°=3,点T (0,5),则点M (0,5),点M 于点T 重合,则点Q 的直线方程为:y =x +5,当该直线在直线RS 的下方时,y =x ﹣1,故点Q 所在的直线方程为:y =x +5或y =x ﹣1;如图4,当点P 介于点R 与点S 之间时,设与RS 平行且与抛物线只有一个交点P ′的直线方程为:y =x +d ,将该方程与抛物线方程联立并整理得:x 2﹣x ﹣d =0,△=1+4d =0,解得:d =―14,此时,x 2﹣x +14=0,解得:x =12,点P ′(12,14),此时,P (P ′)Q 取得最小值.总结提升:本题主要考查的是二次函数综合运用,涉及到一次函数、根的判别式、三角形有关计算等,此类新定义型题目,通常按题设顺序逐次求解.10.(2022春•梁平区期末)在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =a +c 3,y =b +d 3那么称点T 是点A ,B 的融合点.例如:A =(﹣1,8),B =(4,﹣2),当点T (x ,y )满足x =―1+43=1,y =8+(―2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l :y =2x +3上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H,当∠TDH为直角时,求直线ET的解析式.思路引领:(1)根据点T是点A,B的融合点的定义判断即可;(2)①根据融合点的定义,构建关系式,可得结论;②图中,当∠TDH=90°时,点T、D横坐标相同,再根据①中得到的横纵坐标关系即可求出点T坐标,再根据融合点定义求出点E坐标,求一次函数解析式即可.解:(1)∵A(﹣1,5),B(7,7),C(2,4),∴x=13×(﹣1+7)=2,y=13×(5+7)=4,∴点C是点A、B的融合点;(2)①∵点T(x,y)是点D,E的融合点,∴x=13(3+t),y=13(0+2t+3),∴y=2x﹣1;②如图,当∠TDH=90°时,∴点T、D横坐标相同,x T=x D=3,∴y T=2x﹣1=2×3﹣1=5,即T(3,5),∵点E(t,2t+3),点T(3,5),点D(3,0),且点T(x,y)是点D,E的融合点.∴3=13(3+t),∴t=6,∴点E(6,15),设直线ET的解析式为:y=kx+b,把E(6,15),T(3,5),代入得:6k+b=153k+b=5,解得:k=103b=―5,∴直线ET的解析式为:y=103x﹣5.总结提升:本题属于三角形综合题,考查了直角三角形的判定和性质,融合点的定义,一次函数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.11.(2019•浙江)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x ﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.思路引领:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题.(3)如图3中,∵抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时m的值,即可判断.解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),根据图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)由于0<m<2,取m=1开始,发现抛物线内有10个好点,不符合意思,所以抛物线向下并向左移动,可得如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,﹣(2﹣m)2+m+2=1,解得m=5―132或5+132(舍弃),当抛物线经过点F时,﹣(2﹣m)2+m+2=2,解得m=1或4(舍弃),∴当5―132≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.总结提升:本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题,属于中考压轴题.12.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.思路引领:(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)画出图形即可.(3)先由等腰三角形的“三线合一“性质可得BD=CD、DM=ME,再判定△DBQ∽△ECN,从而列出比例式,将已知线段的长代入即可得解.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=4BE,∴BD=CD=5BE,∴CE=CD+DE=9BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=59,∵QB=6,∴NC=54 5,∵AN=CN,∴AC=2CN=108 5,∴AB=AC=108 5.总结提升:本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质、相似三角形的判定与性质等知识点,读懂定义并明确相关性质及定理是解题的关键.13.(2021•南丰县模拟)如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.(1)如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;(2)如图2,△ABD是等边三角形,若BD为理想对角线,为使四边形ABCD为理想四边形,小明同学给出了他的设计图(见设计后的图),其中圆心角∠BOD=120°;请你解释他这样设计的合理性.(3)在(2)的条件下,①若△BCD为直角三角形,BC=3,求AC的长度;②如图3,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.思路引领:(1)证明△ACB∽△ADC,推出∠ADC=∠ACB=90°,再证明△CDE是等边三角形即可.(2)如设计后的图中,△ABD是等边三角形,当点C在BCD上时,∠DCB=12∠DOB=60°,满足条件.(3)①分两种情形:如图3中,当∠CDB=90°时,如图4中,当∠CBD=90°时,分别利用勾股定理求解即可.②以CD为边作等边△ECD,连接BE,作EF⊥BC交BC的延长线于F.利用全等三角形的性质以及勾股定理可得结论.解:(1)如图1,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=°﹣∠B=90°﹣30°=60°,∵E为BC中点,∴DE=CE,∴△CDE是等边三角形,∴四边形ADEC为理想四边形;(2)如设计后的图中,△ABD是等边三角形,OD=OB,∠BOD=120°,当点C 在BCD 上时,∠DCB =12∠DOB =60°,故四边形ABCD 为理想四边形.(3)①当∠CDB =90°时,如图3中,∵∠CDB =90°,∠BCD =60°,BC =3,∴BD =BC •sin60=332,∠CBD =30°,∵△ABD 是等边三角形,∴AB =BD =332,∠ABD =60°,∴∠ABC =90°,∴AC =AB 2+BC 2=(332)2+32=372;当∠CBD =90°时,如图4中,同法可得AC =AD 2+CD 2=(33)2+62=37;综上所述,AC 的值为372或37.②如图5中,结论:x 2+xy +y 2=z 2.理由如下:以CD 为边作等边△ECD ,连接BE ,作EF ⊥BC 交BC 的延长线于F .∵∠EDC =∠ADB =60°,∴∠EDB =∠CDA ,∵ED =CD ,BD =AD ,∴△EDB ≌△CDA (SAS ),∴AC =BE =z ,∵∠ECD =∠DCB =60°,CD =CE =x ,∴∠ECF =60°,∠CEF =30°,∴CF=12EC=12x.EF=3CF=32x.在Rt△EFB中,∵BE2=EF2+BF2,∴z2=(32x)2+(y+12x)2,整理得:x2+xy+y2=z2.总结提升:本题属于四边形综合题,考查了理想四边形的定义,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确理解并运用新定义“理想四边形”和“理想对角线”,学会用分类讨论的思想思考问题.14.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是 ;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是 .思路引领:(1)①根据线段AB关于射线OC的等腰点的定义可知OP=AB=2,由此即可解决问题.②如图2中,当OP=AB时,作PH⊥x轴于H.求出点P的横坐标,利用图象法即可解决问题.(2)如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.首先证明∠COH=30°,∵由射线OC上只存在一个线段AB关于射线OC的等腰点,推出射线OC与⊙A,⊙B只有一个交点,求出几种特殊位置t的值,利用数形结合的思想解决问题即可.解:(1)①如图1中,由题意A(0,0),B(2,0),C(0,1),∵点P是线段AB关于射线OC的等腰点,∴OP=AB=2,∴P(0,2).故答案为(0,2).②如图2中,当OP=AB时,作PH⊥x轴于H.在Rt△POH中,∵PH=OC=1,OP=AB=2∴OH=OP2―PH2=22―12=3,观察图象可知:若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1时,n<―3.(3)如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.由题意C(33,1),∴CH=33,OH=1,∴tan∠COH=CHOH=33,∴∠COH=30°,当⊙B经过原点时,B(﹣2,0),此时t=﹣4,∵射线OC上只存在一个线段AB关于射线OC的等腰点,∴射线OC与⊙A,⊙B只有一个交点,观察图象可知当﹣4<t≤﹣2时,满足条件,如图3﹣2中,当点A在原点时,∵∠POB=60°,此时两圆的交点P在射线OC上,满足条件,此时t=0,如图3﹣3中,当⊙B与OC相切于P时,连接BP.∴OC是⊙B的切线,∴OP⊥BP,∴∠OPB=90°,∵BP=2,∠POB=60°,∴OB=PBcos60°=433,此时t=433―2,如图3﹣4中,当⊙A与OC相切时,同法可得OA=433,此时t=433,此时符合题意.如图3﹣5中,当⊙A 经过原点时,A (2,0),此时t =2,观察图形可知,满足条件的t 的值为:433―2<t ≤2,综上所述,满足条件t 的值为﹣4<t ≤﹣2或t =0或433―2<t ≤2或t =433故答案为:﹣4<t ≤﹣2或t =0或433―2<t ≤2或t =433.总结提升:本题属于三角形综合题,考查了等腰三角形的判定和性质,线段AB 关于射线OC 的等腰点的定义,解直角三角形等知识,解题的关键是学会利用辅助圆解决问题,学会用转化的思想思考问题,属于中考压轴题.15.(2022•房山区模拟)对于平面直角坐标系xOy 中的图形W 1和图形W 2,给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N (点M ,N 可以重合)使得AM =2BN ,则称图形W 1和图形W 2满足限距关系.(1)如图1,点C (3,0),D (0,﹣1),E (0,1),点P 在线段CE 上运动(点P 可以与点C ,E 重合),连接OP ,DP .①线段OP 的最小值为 ,最大值为 ;线段DP 的取值范围是 ;②在点O ,点D 中,点 与线段DE 满足限距关系;(2)在(1)的条件下,如图2,⊙O 的半径为1,线段FG 与x 轴、y 轴正半轴分别交于点F ,G ,且FG ∥EC ,若线段FG 与⊙O 满足限距关系,求点F 横坐标的取值范围;(3)⊙O 的半径为r (r >0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,2为半径作圆得到⊙H 和⊙K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.思路引领:(1)①根据垂线段最短以及已知条件,确定OP ,DP 的最大值,最小值即可解决问题;②根据限距关系的定义判断即可;(2)根据两直线平行k 相等计算设FG 的解析式为:y =―33x +b ,得G (0,b ),F (3b ,0),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可;(3)如图3﹣1中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.解:(1)①如图1中,∵点C(3,0),E(0,1),∴OE=1,OC=3,∴EC=2,∠ECO=30°,当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是3,Rt△OPC中,OP=12OC=32,即OP的最小值是32;如图2,当DP⊥EC时,DP的值最小,Rt△DEP中,∠OEC=60°,∴∠EDP=30°,∵DE=2,∴cos30°=DP DE,∴DP2=32,∴DP=3,当P与E重合时,DP的值最大,DP的最大值是2,∴线段DP的取值范围是:3≤DP≤2;故答案为:32,3,3≤DP≤2;②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,故点O与线段DE满足限距关系;根据限距关系的定义可知,线段DE上存在两点M,N,满足DM=2DN,如图3,故点D与线段DE满足限距关系;故答案为:O和D;(2)∵点C(3,0),E(0,1),∴设直线CE的解析式为:y=kx+m,+m=01,解得:k=―33m=1,∴直线CE的解析式为:y=―33x+1,∵FG∥EC,∴设FG的解析式为:y=―33x+b,∴G(0,b),F(3b,0),∴OG=b,OF=3b,当0<3b<1时,如图5,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1―3b,最大距离为1+3b,∵线段FG与⊙O满足限距关系,∴1+3b≥2(1―3b),解得3b≥1 3,∴b的取值范围为13≤3b<1;当1≤3b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当3b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为3b﹣1,最大距离为3b+1,∵线段FG与⊙O满足限距关系,∴3b+1≥2(3b﹣1),而3b+1≥2(3b﹣1)总成立,∴3b>6时,线段FG与⊙O满足限距关系,综上所述,点F横坐标的取值范围是:3b≥1 3;(3)如图3﹣1中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r ﹣4,最大值为2r +4,∵⊙H 和⊙K 都满足限距关系,∴2r +4≥2(2r ﹣4),解得r ≤6,故r 的取值范围为0<r ≤6.总结提升:本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.16.(2022•西城区校级模拟)点P (x 1,y 1),Q (x 2,y 2)是平面直角坐标系中不同的两个点,且x 1≠x 2.若存在一个正数k ,使点P ,Q 的坐标满足|y 1﹣y 2|=k |x 1﹣x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q (3,12),有|0―12|=14|1﹣3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14.已知点A (1,0),B (2,0),C (2,﹣2),D (2,12).(1)在点A ,B ,C ,D 中,找出一对“限斜点”: ,它们的“限斜系数”为 ;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)⊙O 半径为3,点M 为⊙O 上一点,满足MT =1的所有点T ,都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的横坐标x M 的取值范围.思路引领:(1)根据定义通过计算求解即可;(2)设E (x ,y ),由题意可得|y |=|x ﹣1|,|y |=|x ﹣2|,求解方程即可求点E 的坐标;(3)由题意可知C 点在直线y =﹣x 上,T 点在以M 为圆心1为半径的圆上,M 点在以O 为圆心3为半径的圆上,则T 点在以O 为圆心2为半径的圆上或以O 为圆心4为半径的圆上,当T 点在直线y =﹣x 上时,k =1,再由k (T ,C )≥1,可知T 点在直线y =﹣x 的上方,T 点在直线y =﹣x 的上方,直线y =x ﹣4的上方,半径为2的圆和半径为4的圆构成的圆环内部.解:(1)A (1,0),C (2,﹣2),有|0+2|=2|1﹣2|,∴A 、C 为一对“限斜点”,且“限斜系数”为2;A (1,0),D (2,12),有|0―12|=12|1﹣2|,∴A 、D 为一对“限斜点”,且“限斜系数”为12;故答案为:A 、C 或A 、D ,2或12;(2)设E (x ,y ),∴|y |=|x ﹣1|,|y |=|x ﹣2|,∴|x ﹣1|=|x ﹣2|,解得x =32,∴y =±12,∴E (32,12)或(32,―12);(3)∵C (2,﹣2),∴C 点在直线y =﹣x 上,∵MT =1,∴T点在以M为圆心1为半径的圆上,∵M点在以O为圆心3为半径的圆上,∴T的轨迹是半径为2的圆和半径为4的圆构成的圆环,当T点在直线y=﹣x上时,设T(m,﹣m),∴|﹣m+2|=k|m﹣2|,∴k=1,∵k(T,C)≥1,∴T点在直线y=﹣x的上方,直线y=x﹣4的上方,半径为2的圆和半径为4的圆构成的圆环内部,如图所示,∴―322≤x M≤4.总结提升:本题考查圆的综合应用,弄清定义,熟练掌握圆与直线的关系,绝对值方程的解法,数形结合解题是关键.17.(2020•密云区一模)对于平面直角坐标系xOy中的任意一点P,给出如下定义:经过点P且平行于两坐标轴夹角平分线的直线,叫做点P的“特征线”.例如:点M(1,3)的特征线是y=x+2和y=﹣x+4;(1)若点D的其中一条特征线是y=x+1,则在D1(2,2)、D2(﹣1,0)、D3(﹣3,4)三个点中,可能是点D的点有 D2 ;(2)已知点P(﹣1,2)的平行于第二、四象限夹角平分线的特征线与x轴相交于点A,直线y=kx+b (k≠0)经过点P,且与x轴交于点B.若使△BPA的面积不小于6,求k的取值范围;(3)已知点C(2,0),T(t,0),且⊙T的半径为1.当⊙T与点C的特征线存在交点时,直接写出t 的取值范围.思路引领:(1)画出图形,根据点的特征线的定义解决问题即可.(2)过点P平行于第二四象限角平分线的特征线的解析式为y=﹣x+b,求出△PAB的面积为6时点B 的坐标,再利用待定系数法求直线PB的解析式,结合图形即可解决问题.(3)如图3中,由题意点C的特征线的解析式为y=x﹣2或y=﹣x+2,设当⊙T与直线y=﹣x+2相切于点M时,当⊙T′与直线y=x﹣2相切于点N时,分别求出OT,OT′结合图象即可解决问题.解:(1)如图1中,观察图象可知,点D2的特征线是y=x+1.故答案为D2.(2)如图2中,设过点P平行于第二四象限角平分线的特征线的解析式为y=﹣x+b,∴1+b=2,∴b=1,∴过点P平行于第二四象限角平分线的特征线的解析式为y=﹣x+1,∴A(1,0),当△BPA的面积=6时,12•AB•2=6,∴AB=6,∴B(﹣5,0)或(7,0),当y=kx+b′经过P(﹣1,2),B(﹣5,0)时,―k+b′=2―5k+b′=0解得k=1 2,当直线y=kx+b′经过P(﹣1,2),B(7,0)时,―k+b′=27k+b′=0,解得k=―1 4,观察图形可知满足条件的k的值为―14≤k≤12且k≠0.(3)如图3中,由题意点C的特征线的解析式为y=x﹣2或y=﹣x+2,当⊙T与直线y=﹣x+2相切于点M时,连接TM,在Rt△TCM中,∵∠TMC=90°,∠MCT=45°,∴MT=MC=1,∴TC=2TM=2,∴OT=2―2,此时t=2―2.当⊙T′与直线y=x﹣2相切于点N时,同理可得OT′=2+2,此时t=2+2,结合图象可知满足条件的t的值为:2―2≤t≤2+2.总结提升:本题属于圆综合题,考查了直线与圆的位置关系,一次函数的性质,三角形的面积,点P的“特征线”的定义,解直角三角形等知识,解题的关键是理解题意,学会利用特殊位置解决问题,属于中考压轴题.18.(2022秋•西城区校级期中)已知函数y=x2+bx+c(x≥2)的图象过点A(2,1),B(5,4).(1)直接写出y=x2+bx+c(x≥2)的解析式;(2)如图,请补全分段函数y=―x2+2x+1(x<2)x2+bx+c(x≥2)的图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质: ;②若此分段函数的图象与直线y=m有三个公共点,请结合函数图象直接写出实数m的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y=12x―1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.思路引领:(1)用待定系数法求函数解析式即可;(2)①根据函数图象写出性质即可;②由图象可求出m的取值范围;(3)根据图象求整点坐标即可.解:(1)把A(2,1),B(5,4)代入解析式得:4+2b+c=125+5b+c=4,解得b=―6 c=9,∴y=x2+bx+c(x≥2)的解析式为y=x2﹣6x+9;(2)如图所示:①性质:抛物线关于点(2,1)成中心对称,故答案为:抛物线关于点(2,1)成中心对称;②由图象可得:实数m的取值范围为0<m<2;(3)如图:由函数图象可得:“W区域“内所有整点的坐标为(0,0),(1,1).总结提升:本题考查了待定系数法求函数解析式,二次函数的性质,关键是对函数性质的掌握和运用.19.(2021春•丰台区校级月考)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(﹣3,0),B(﹣1,3),C(2,﹣1)中,⊙O的伴随点是 ;②点D在直线y=﹣x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为3,直线y=2x+3与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.思路引领:(1)①画出图形,求出切线长,根据⊙O的伴随点的定义判断即可.②如图2中,设点D的坐标为(d,﹣d+3),构建方程求出两种特殊位置时点D的坐标即可解决问。

2023年中考数学二轮复习《新定义运算》拓展练习

2023年中考数学二轮复习《新定义运算》拓展练习

2023年中考数学二轮复习《新定义运算》拓展练习一、选择题1.定义一种运算☆,其规则为a ☆b=1a +1b,根据这个规则计算2☆3的值是( ) A .56B .15C .5D .6 2.规定a ○b=b a b a -+, 则(6○4)○3等于( ) A .4 B .13 C .15 D .303.若※是新规定的运算符号,设a*b=ab+ab+b ,则在2*x=-16中,x 的值( )A .-8B .6C .8D .-64.在有理数范围内定义运算“*”,其规则为a*b=32b a +,则方程(2*3)(4*x)=49的解为( )A .-3B .55C .-56D .-555.对a ,b 定义运算“*”如下:已知x*3= - 1,则实数x 等于( ) A .1 B . - 2 C .1或 - 2 D .不确定6.规定一种新的运算“*”:对于任意有理数x,y 满足x*y =x ﹣y +xy.例如,3*2=3﹣2+3×2=7,则2*1=( )A .4B .3C .2D .17.如果规定☆为一种运算符号,且a ☆b=a b -b a ,那么4☆(3☆2)的值为( )A .3B .1C .-1D .28.因为sin30°=12,sin210°=-12,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=22,sin225°=-22,所以sin225°=sin(180°+45°)=﹣sin45°, 由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sin α. 由此可知:sin240°=( )A .-12B .-22C .-32D .- 39.在有理数范围内定义运算“*”,其规则为a*b=13(2a+b),则方程(2*3)(4*x)=49的解为( )A .-3B .55C .-56D .-5510.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,正确的为( ) ①a*2=2*a ;②(—2)*a=a*(—2); ③(2*a)*3=2*(a*3);④0*a=aA .①③B .①②③C .①②③④D .①②④11.我们根据指数运算,得出了一种新的运算.如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4;②log 525=5;③log 20.5=﹣1.其中正确的是( )A .①②B .①③C .②③D .①②③12.平面直角坐标系中,点P 的坐标为(m ,n),则向量OP →可以用点P 的坐标表示为OP→=(m ,n);已知OA 1→=(x 1,y 1),OA 2→=(x 2,y 2),若x 1·x 2+y 1·y 2=0,则OA 1→与OA 2→互相垂直.下列四组向量:①OB 1→=(3,-9),OB 2→=(1,-13); ②OC 1→=(2,π0),OC 2→=(12,-1); ③OD 1→=(cos 30°,tan 45°),OD 2→=(sin 30°,tan 45°); ④OE 1→=(5+2,2),OE 2→=(5-2,22). 其中互相垂直的组有( )A .1组B .2组C .3组D .4组二、填空题13.定义一种新运算:a ⊗b=b 2-ab ,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=____.14.对于有理数a ,b ,定义a*b =3a+2b ,则将[(x+y)*(x-y)]*3x 化简,得 .15.我们规定一种运算法则“※”,对任意两个有理数a 、b ,有a ※b=2a +6.若有理数x 满足(2x +1)※(-4)=5※(3-x),则x= .16.对于实数a ,b ,定义运算“◎”如下:a ◎b=(a+b)2﹣(a ﹣b)2.若(m+2)◎(m ﹣3)=24,则m= .17.李明同学开发了一种数值转换程序,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a ﹣1+|b|﹣π0,例如把(3,﹣1)放入其中,就会得到3﹣1+|﹣1|﹣π0=13.再将实数对(﹣1,3)放入其中,得到实数m ,再将实数对(m ,2)放入其中,得到实数是________.18.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,如果我们规定一个新数“i ”,使它满足i 2=﹣1(即x 2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数“i ”进行四则运算,且原有的运算律和运算法则仍然成立,于是有:i 1=i ,i 2=﹣1,i 3=i 2•i =(﹣1)•i =﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对任意正整数n ,由于i 4n =(i 4)n =1n =1,i 4n +1=i 4n •i =1•i =i ,同理可得i 4n +2=﹣1,i 4n +3=﹣i ,那么,i 9= ;i 2026= .三、解答题19.规定运算a&b=ab +1,求下列各式的值:(1)(-2)&3;(2)[(-1)&2]&(-3).20.如果规定符号*的意义是a*b=ab a +b-2a +b ,求[2*(-3)]*(-1)的值.21.规定新运算符号“☆”的运算规则为a☆b=ab+3b﹣ 3.例如:(﹣2)☆1=(﹣2)×1+31﹣ 3.(1)求27☆3的值;(2)求(12+3)☆12的值.22.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1在△ABC中,AB=AC,顶角A的正对记作sad A,这时sad A=底边腰=BCAB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=_________;(2)对于0°<A<180°,∠A的正对值sad A的取值范围是_____________;(3)如图2,已知sin A=35,其中∠A为锐角,试求sad A的值.答案1.A.2.A.3.D.4.B.5.A6.B7.A8.C9.B10.D11.B12.A13.答案为:-914.答案为:21x+3y.15.答案为:316.答案为:﹣3或4.17.答案为:2.18.答案为:i,﹣1.19.解:(1)-5 (2)420.解:2*(-3)=2×(-3)÷[2+(-3)]-2×2+(-3)=-1,(-1)*(-1)=(-1)×(-1)÷[(-1)+(-1)]-2×(-1)+(-1)=12 .所以[2*(-3)]*(-1)的值为1 2 .21.解:(1)∵a☆b=ab+3b﹣3,∴27☆3=3 3×3+33﹣3=9.(2)(12+3)☆12=(12+3)×12+312﹣ 3=12+6+32﹣ 3=18﹣3 2.22.解:(1)1;(2)0<sad A<2;(3)设AB=5a,BC=3a,则AC=4a.如图,在AC延长线上取点D使AD=AB=5a,连结BD.则CD=a.BD=CD2+BC2=a2+(3a)2=10a.∴sad A=BDAD=105.。

2020高考数学(理科)二轮总复习(新)层级1 12个基础考点 自查自检(207张)

2020高考数学(理科)二轮总复习(新)层级1 12个基础考点 自查自检(207张)

第5页
栏目导航
4.(2018·全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元素的个
数为( )
A.9
B.8
C.5
D.4
解析:选 A 将满足 x2+y2≤3 的整数 x,y 全部列举出来,即(-1,-1),(-1,0), (-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有 9 个.故选 A.
第6页
栏目导航
5.(2017·全国卷Ⅰ)已知集合 A={x|x<1},B={x|3x<1},则( )
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=∅
解析:选 A 集合 A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1}.故 选 A.
A.-1-i
B.-1+i
C.1-i
D.1+i
解析:选 D 由 z(1+i)=2i,得 z=12+i i=12+ii1-1-i i=2i12-i=i(1-i)=1+i.故选 D.
第19页
栏目导航
4.(2018·全国卷Ⅰ)设 z=11-+ii+2i,则|z|D. 2
解析:选 C ∵z=11- +ii+2i=1+1i-1i-2 i+2i=-22i+2i=i, ∴|z|=1.故选 C.
解析:由题意得O→C=(3,-4),O→A=(-1,2),O→B=(1,-1),由O→C=λO→A+μO→B, 得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),所以- 2λ-λ+μμ==-3, 4, 解得λμ==-2,1, 所以 λ+μ=1.

中考数学第二轮复习资料

中考数学第二轮复习资料

中考数学第二轮复习资料目录专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考考点精讲1.(莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.2.(自贡)如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是A.B.C.D.3.(鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是A.B.C.D.4.(巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是A.B.C.D.5.(宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是A.B.C.D.6.(菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.(邵阳)下列四个图形中,不是轴对称图形的是A.B.C.D.8.(南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是A.三角形B.线段C.矩形D.正方形9.(长沙)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是A.B.C.D.10.(达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③11.(陕西)如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A .B .C .D .12.(黑龙江)如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →弧AB →BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是A .B .C .D .13.(盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有A .4种B .5种C .6种D .7种14.(咸宁)如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为A .1732B .12C .1736D .173815.(雅安)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为A .12B .32C .22D .3316.(衢州)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .17.(柳州)如图,点P (a ,a )是反比例函数y =16x在第一象限内的图象上的一个点,以点P 为顶点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A .3B .4C .123− D .33824− 18.(莱芜)下列说法错误的是A .若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B .22C .若a >|b |,则a >bD .梯形的面积等于梯形的中位线与高的乘积的一半19.(无锡)已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为A .6、7B .7、8C .6、7、8D .6、8、920.(钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的中点,AH >HB ,判断三人行进路线长度的大小关系为A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙21.(邗江区一模)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示;(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示;(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示;(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=4π以上结论正确的有A.1个B.2个C.3个D.4个专题二 新定义型问题一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考考点精讲1.(湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin 30°=12,cos 30°sin 230°+cos 230°= ; ①sin 45°,cos 45°,则sin 245°+cos 245°= ;②sin 60°=2,cos 60°=12,则sin 260°+cos 260°= ; ③ …… 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .④(1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理对∠A 证明你的猜想; (2)已知:∠A 为锐角(cosA >0)且sinA =35,求cosA . 2.(河北)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在图所示的数轴上表示出来.3.(十堰)定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是 .(2)如果[12x+]=3,求满足条件的所有正整数x.4.(钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是A.2 B.3 C.4 D.55.(宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.6.(舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E =E⊕F=F⊕D,则C,D,E,F四点A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点7.(常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A.B.C.D.8.(上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .9.(宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是 .10.(淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.11.(乐山)对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n -12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若(12x -1)=4,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有(m +2013x )=m +(2013x );⑤(x +y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号).12.(莆田)定义:如图1,点C 在线段AB 上,若满足AC 2=BC •AB ,则称点C 为线段AB 的黄金分割点.如图2,△ABC 中,AB =AC =1,∠A =36°,BD 平分∠ABC 交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点;(2)求出线段AD 的长.13.(大庆)对于钝角α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α)(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1:1:4,A ,B 是这个三角形的两个顶点,sinA ,cosB 是方程4x 2-mx -1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.14.(安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证: AB BE DC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)15.(北京)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下的定义:若⊙C 上存在两个点A 、B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F 0).(1)当⊙O 的半径为1时,①在点D 、E 、F 中,⊙O 的关联点是 ;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.专题三开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等.三、中考考点精讲1.(盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系,使得另一边EF过原矩形的(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积(2)写出如图中的三对相似三角形,并选择其中一对进行证明.6.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.7.(徐州)请写出一个是中心对称图形的几何图形的名称:.8.(钦州)请写出一个图形经过一、三象限的正比例函数的解析式.9.(连云港)若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以10使△ABC≌△DEF.第11题第12题第13题12.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.13.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.(齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是____________(填一个即可)15.(邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.第14题第15题第16题第17题16.(吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可) 17.(昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)18.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已19.(盐城)市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)专题四探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法,当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法,即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲1.(襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.2.(新疆)如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.3.(牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD CD=,CB=.4.(河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E =30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.8.(陕西)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.9.(西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n=.10.(湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…是.11.(绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.12.(茂名)如图,在□ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.13.(白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.14.(无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)15.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.16.(凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).解:在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:112b c c −−+=⎧⎨=⎩,解得:02b c =⎧⎨=⎩.所以平移后的抛物线的解析式为:y =-x 2+2. 根据以上信息解答下列问题:将直线y =2x -3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.17.(湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .(3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P ′时,满足题中条件的点D 也随之在直线BC 上运动到点D ′,请直接写出CD ′与AP ′的数量关系.(不必写解答过程)18.(淄博)分别以□ABCD (∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF 与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.19.(张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.(衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.21.(宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?22.(南平)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.23.(德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.24.(泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0)作EF∥AB,交BO于F;25.(梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠P AB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.返回专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三.三、中考考点精讲1.(吉林)若a-2b=3,则2a-4b-5=.2.(福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.3.(东营)如图,圆柱形容器中,高为 1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).4.(宁德质检)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为.5.(山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?。

备考2021年中考数学二轮复习:数与式_代数式_定义新运算,综合题专训及答案

备考2021年中考数学二轮复习:数与式_代数式_定义新运算,综合题专训及答案
和;
(2) 如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C ,D. ①若∠CAB=90°,求m的值; ②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值 时,求m的值.
9、 (2018长沙.中考真卷) 我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.
对数的定义:一般地,若 =N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式24=16可以转化为 对数式4=log216,对数式2=log525,可以转化为指数式52=25.
我们根据对数的定义可得到对数的一个性质:
loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下: 设logaM=m,logaN=n,则M=am,N=an, ∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N)
(3) 如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(
点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△C
OD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;
又∵m+n=logaM+logaN
∴loga(M•N)=logaM+logaN
根据阅读材料,解决以下问题:
(1) 将指数式34=81转化为对数式; (2) 求证:loga =logaM-logaN(a>0,a≠1,M>0,N>0),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.新定义型
所谓“新定义”型试题是指给出一个考生从未接触过的新概念,要求考生现学现用,其目的是考查学生的阅读理解能力、迁移能力和创新能力,旨在培养学生自主学习、主动探究的学习方式。

解答这类题目的关键是读懂题意,确定探索方向,寻找合理的解题方法。

【例题与练习】
1.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+1。

例如7☆4=42+1=17,那么5☆3= ;当m为实数时,m☆(m☆2)= 。

2.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。

请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
3.我们给出如下定义:若一个四边形的两条对角线相等,则我们称这个四边形为等对角线四边形.请回答下列问题:(1)写出你所学过的特殊四边形中等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹的锐角为60°,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
8. 方案设计型
方案设计问题的基本类型:
(1)类型一:提供讨论材料,进行合理猜想.此类问题一般设置一段讨论的材料,让考生进行科学合理的判断、推理、证明.
(2)类型二:画图设计,动手操作。

此类问题一般给出图形和若干条信息,让考生按要求对图形进行分割或设计美观的图案
(3)类型三:设计方案,比较择优。

此类问题一般给出问题情景,提出要求,让考生寻找最佳的解题方案,设计出合理的方案。

一:【要点梳理】
方案设计问题的基本类型:
(1)类型一:提供讨论材料,进行合理猜想.此类问题一般设置一段讨论的材料,让考生进行科学合理的判断、推理、证明.
(2)类型二:画图设计,动手操作。

此类问题一般给出图形和若干条信息,让考生按要求对图形进行分割或设计美观的图案
(3)类型三:设计方案,比较择优。

此类问题一般给出问题情景,提出要求,让考生寻找最佳的解题方案,设计出合理的方案。

二:【例题与练习】
1.如图,小明想用皮尺测量池塘A 、A 间的距离,但现有皮尺无法直接测量,学习有关知识后,他想出了一个方法:先在地上取一个可以直接到达A 、B 两点的点O ,连接OA 、OB ,分别在OA 、OB 上取中点C 、D ,连接CD ,并测得CD=a ,由此他即知道A 、B 间的距离是( ) A.
12a
; B.2a ; C.a ; D.3a
2.如图,转盘被分成六个扇形区域,并在上面依次写上数字1,2,3,4,5,6,转盘指针的位置固定,转动转盘后任其自由停止请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率是2/3,并说明你的设计理由(设计方案可用土所示,也可以用文字表述)。

3.市"康智'牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年
共新增产品20件,这20件的总价值p(万元)满足:110<p<120已知有关数据如下表所示,那么该公司明年应怎样安排 新增产品的产量?
4.我市某乡A ,B 两村盛产柑橘,A 村有柑橘200吨,B 村 有柑橘300吨。

现在将这些柑橘运到C ,B 两个冷藏仓库。

已知C 仓库可储存240吨,D 仓库可储存260吨:从A 村运到C ,D 两处的费用分别为每吨20元至25元,从B 村运到C ,D 两处的费用分别为每吨15至18元。

设从A 村运到C 仓库的柑橘质量为x 吨,A ,B 两村运往两仓库的柑橘费用分别为y A 元和y B 元
(1)请填写下表并求出y A 和y B 与x 之间的函数关系式 (2) 试讨论A ,B 两个村中,那个村的运费少; (3) 考虑到B 村的经济承受能力,B 村的的柑
橘不超过4830元。

在这种情况下,请问怎样调运,才能使两村运费最小?求出最小值。

65
4
3
2
1
5.如图,在人民公园人工湖两侧的A ,B 两点欲建一座观赏桥,由于受条件限制,无法直接度量A ,B 间的距离,请你用学过的知识,在图中设计三种测量方案要求: (1)画出你设计的测量平面草图;
(2)在图形中标出测量的数据(长度用a,b,c ......角度用α,β,γ,…..表示)并写出测量的
依据及AB 的表达式。

6.如图,在Rt △ABC 中,∠ACB=900, ∠CAB=300,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形(保留作图痕迹,不要求写作法和证明)
7.如图,某市经济开发区建有B 、C 、D 三家食品加工厂,这三个工厂和开发区A 处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900m ,AD=BC=1700m 。

自来水公司已经修好一条自来水主管道AN ,B 、C 两厂之间的公路与自来水管道交于E 处,EC=500m 。

若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元。

(1)要使修建自来水管道的造价最低,这三个工厂的自
来水管道路线应怎样设计?并在图形中画出。

(2)求出各厂所建的自来水管道的最低的造价各是多少?
8.某工厂现有甲种原料226kg ,乙种原料250kg ,计划利用这两种原料生产A 、B 两种产品共40件,生产A 、B 两种产品用料情况如下表:设生产A 产品x 件,请解答下列问题: (1)求x 的值,并说明有哪几种符合题意的生产方案。

(2)若甲种原料50元/kg ,乙种原料40元/kg ,说明(1)中哪种方案较优?
A
9.课题研究:现有边长为120cm 的正方形铁皮,准备将它设计制作成一个开口的水槽,使水槽能通过的水的流量最大。

初三(1)班数学兴趣小组讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大。

为此他们对水槽的横截面进行了探索:
(1)方案一:把它折成横截面为直角三角形的水槽(如图①),若∠ACB=900,设AC=xcm ,该水槽的横截面面积为ycm 2,
请你写出y 关于x 的函数关系(不必写出x 的取值范围),并求出当x 取何值时,y 的值最大,最大值是多少?
方案二:把它折成横截面为等腰梯形的水槽(如图②),若∠ABC=1200
,请你求出该水槽的横截面面积的最大值,
并与方案一中的y 最大值比较
(2)假如你是该兴趣小组的成员,请你再提供两种方案,使你所设计的水槽横截面面积更大。

画出你设计的草图,
标上必要的数据(不要求写出解答过程)


C
A
10.正方形通过剪切可以拼成三角形,方法如图1:请你仿上用图示的方法,解答下列问题:操作设计: ⑴如图2,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形; ⑵如图3,对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形; ⑶如图4,对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形;
① ②
图1


图2。

相关文档
最新文档