大学物理5-3 电场强度

合集下载

大学物理学(上册)第5章 静电场

大学物理学(上册)第5章 静电场
q ne (n 1,2,3, )
e 1.6021019C 量子性
电荷量e的数值最早由美国 科学家密立根用实验测得.
量子性始终不变
强子理论研究中提出所谓夸克模型,以四味夸克为例
夸克 U quark (上)
带电量 2/3 |e|
D quark(下) S quark(奇) C quark(粲)
-1/3 |e| -1/3 |e|
电量为Q
电量为Q
+
v
X′
X
⑵ 库仑定律
库仑(1736~1806)
库仑扭秤
① 库仑定律的内容主要内容 在真空中处于静止状态的两个点电荷的相互作用力的大 小,与每个点电荷的电量成正比,与两个点电荷间距离的 平方成反比,作用力的方向沿着两个点电荷的连线. 当 两个点电荷带同号电荷时,它们之间是排斥力,带异号 电荷时,它们之间是吸引力.
例1 长为L的均匀带电直杆,电荷线密度为 ,求它在空
解 d间q一点dPx产生d的E电场4强1度0 (rd2Px点到杆的垂直dy距Ey离为dEa).
dEx dE cos dEy dE sin
P
dEx
由图上的几何关系
x a tan(θ ) acotθ 2
r
1
a
2
dq O
x
dx a csc2θ dθ
dq
讨论
E
qx
q
4 0 (x2 R2 )3/ 2
R
1)环心处:x=0 E=0 表明环心处的电场强度为零
o
xP
Ex
2)当 x >> R,则
(x2 R2 )3/2 x3
E
1
4 0
q x2
dq '

大学物理:2第二讲 电场强度计算续、高斯定理

大学物理:2第二讲 电场强度计算续、高斯定理

2
R
r
x
p dE// x
E
qx
4 0 r 3

dE dE
cos x / r
1
讨论:1. x 0 : Eo 0
E
qx
40 (R2
x2 )3/2

o
y
r
圆环中心电场为零
2.
x R :
Ep
q
40 x2

R
o
z
E
x px
p
R
x
●无论带电体形状如何,在离其足够远处均可视为
点电荷。 2
例4:半径为R的簿圆盘均匀带电,面电荷密度为。
求中心轴线上一点 p处的电场强度。
解:将圆盘分割成许多带 电细圆环,其电量
dq ds 2 rdr
细圆环电场
dr
l
r
Ep
o xpx
dE
dqx
40 (r2
x2 )3/2
2 rxdr rxdr 40 (r2 x2 )3/2 20 (r2 x2 )3/2
3
dE
rxdr 20 (r2 x2
二、电通量
●通过某一曲面的电力线数,叫做 通过该曲面的电通量。记为“e”.
电通量的计算
s
de E dS
e
E dS
S
通过闭合曲面的电通量
e S E dS
规定:曲面正法线由曲面指向外
E de dSn
ds E
ds
E
q
s
11
例:点电荷q位于球面内球心处,求通过该球面的
电通量。
解:球面上的电场强度
各点产生的电场。
解:由对称性可知,该球壳产生的

大学物理电场强度-PPT

大学物理电场强度-PPT

E Ei
i 1
三、电场强度得计算
1、 点电荷得电场
E
F q0
q q0
4π 0r2
r0
1 q0
q
4π 0r2
r0
E
E
q
r0
r
PF
q0
r
r
特点:(1)就是球对称得;
当 r 0 时,
(2)就是与 r 平方成反比 得非均匀场。
E ∞? 此时,点电荷模型已失效, 所以这个公式已不能用!
2、 点电荷系得电场
场强的计算
求均匀带电半圆环圆心处的 E,已知 R、
dq
电荷元dq产生得场 dE 4 0 R2 dq
Y
根据对称性 dE y 0
E
dEx
dE
sin
0
Rd 4 0 R2
sin
4 0R2
( cos )
0
2 0 R
d o
R
dE
X
例4、均匀带电圆盘轴线上一点得场强。
设圆盘带电量为q,半径为R。
d E cos
cos x r
dq
r a
y
p d E//
r (a2 x2 )1 2
x
x
z d E dE
E
1
4 0
q
2a
dl r2
cos
1
4 0
q r2
cos
2 a
1
4 0
(a 2
qx x2)3
2
E
4 0 (
xq x2
a2
3
)2
i
xq
E
4 0 (
x2
a2
3
)2

大学物理 习 题 5答案

大学物理 习 题 5答案

P习 题 55-2.如习题5-2图所示的直角三角形ABC 的A 点上有电荷q 1=1.8×10-9 C ,B点上有电荷q 2=-4.8×10-9 C ,试求C 点的电场强度(设BC=0.04m ,AC=0.03m )。

解:设CB 为x 轴,AC 为y 轴,则C N E x/107.204.04108.44209⨯=⨯⨯=-πε,C N E /108.103.04108.14209y ⨯=⨯⨯=-πε,C N E E E y x /102.3422⨯=+=,电场方向和CB 的夹角为︒==7.33arctanxy E E ϕ5-3.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处的电场强度。

[解] 将半圆环分成无穷多小段,取一小段dl ,带电量l RQ q d d π=dq 在O 点的电场强度20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x l R Q E E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l =θεπθd 4sin d 202x RQ E =2020202x x 2d 4sin d R QR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向5-4.如习题5-4图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。

[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为 ()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε故()iE d L d q+=04πε5-5.一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ。

大学物理电介质内的电场强度

大学物理电介质内的电场强度
大学物理电介质内的电场强度

CONTENCT

• 引言 • 电介质基础知识 • 电介质内的电场强度概念 • 电介质内的电场强度分布 • 电介质内的电场强度与物理现象 • 总结与展望
01
引言
主题简介
电场强度是描述电场中电场力作用强弱的物理量,其大小表示电 场中单位点电荷所受的静电力,方向与正电荷在该点所受的静电 力方向相同。
总结词
电场强度是电磁能量转换的重要参数, 影响电磁波的传播和吸收。
VS
详细描述
在电磁波传播过程中,电场强度是描述电 磁波能量的重要参数。不同频率和方向的 电磁波在介质中传播时,会与介质内的分 子相互作用,将电磁能转换为热能或其他 形式的能量。电场强度越大,电磁波的能 量越强,对介质的加热和吸收效果也越明 显。
03
电介质内的电场强度概念
电场强度的定义与计算
定义
电场强度是描述电场中电场力作用强 弱的物理量,用E表示。
计算
电场强度的大小等于单位电荷在该点所 受的电场力,计算公式为E=F/q,其中 F为点电荷所受的电场力,q为点电荷的 电量。
电场强度与电介质的关系
电介质对电场的影响
在电场中,电介质中的电场强度与真 空中的电场强度不同,因为电介质中 的电荷会受到束缚,使得电介质中的 电场分布和强度发生变化。
详细描述
在电力系统中,电介质起着绝缘作用,保证电气设备的 安全运行。在储能技术中,电介质用于储存电能,如电 解电容器的使用。此外,在电磁波传播方面,电介质如 玻璃、聚乙烯等是重要的传输媒介。在静电场和恒定磁 场中,电介质对场的影响可忽略不计,但在交变电磁场 中,特别是在高频电磁场中,电介质对场的影响不可忽 略,此时需要在原有电磁场方程中增加描述电场和磁场 能量与电介质有关的项,从而得到更精确的电磁场理论 。

大学物理 电场强度

大学物理 电场强度

E
1 4πε0
(x
q r0
2)2 i
E
E
E
4
q πε0
(
x
2
2 xr0 r02
4)
2
i
q
q
- O. +
r0 2 r0 2
x
. A
E E
x
第五章 静电场
10
物理学
第五版
5-3 电场强度
E
q 4πε0
(
x
2
2xr0 r02
4)2
i
x r0
E
1
4πε0
2r0q x3
i
1 4πε0
第五章 静电场
12
物理学
第五版
5-3 电场强度
例1:均匀带正电细棒:(已知L,a,电荷线密度λ),求延长线
上P点的场强。
L, dr
a
p
解:
dr dE 4 0r 2
r
E 由于各dE同向:
a L dr 1 1
E dE
( )
4 0 a r 2 4 0 a a L
若L a : E [1 (1 L)1] L
例2 有一半径为R,电荷均匀分布的薄圆
盘,其电荷面密度为 . 求通过盘心且垂直
盘面的轴线上任意一点处的电场强度.
R
o xPx
第五章 静电场
19
物理学
第五版
5-3 电场强度
解 σ q / πR2 dq 2 π rdr
dEx
4
xdq πε0 (x2
r 2 )3
2
2ε0
xrdr (x2 r2)3
4 0a
a

大学物理电场电场强度

大学物理电场电场强度

Q1
d
r
Байду номын сангаас观察点
.P
库仑定律: • 1785年,法国库仑(C.A.Coulomb) 库仑
库仑定律
真空中两个静止的点电荷之间的作用力(静电力), 与它们所带电量的乘积成正比,与它们之间的距离的平方 成反比,作用力沿着这两个点电荷的连线。
F21 ——电荷q1作用于电荷q2的力。
q1q2 F21 F12 k 2 r0 r 1 k 4 0
F31 1 40 q1q3 r2
F3
q3 0.3m j q2

F31
0.6m
9.0 109 140 N
6.5 10 8.6 10 N
5 5
0.62
i
0.52m
q1
x
力 F31 沿x轴和y轴的分量分别为
Fx F31 cos 30 120N
引力
q1q2 1 q1q2 注意:只适用两 r0 r 2 3 个点电荷之间 4 0 r 4 0 r
静电力的叠加原理 作用于某电荷上的总静电力等于其他点电荷单独 存在时作用于该电荷的静电力的矢量和。 数学表达式
离散状态
N F Fi i 1
r10
ri 0
dF
A q0 B
q0
A
FB
(1)点电荷的电场
3.电场强度的计算
(2)场强叠加原理和点电荷系的电场 (3)连续分布电荷的电场
(1)点电荷的电场
1 q0 q F r 3 4 0 r
E
F 1 q E r 3 q0 40 r
E
q 源点
q0
E
场点

大学物理-电场强度通量,高斯定理

大学物理-电场强度通量,高斯定理


2
i
0
q
i
E 4πr 0
E 4 πr
2
q
E 0
0
E
q 4 π 0 r 2
例2 计算均匀带电球体的场强分布,q , R 解: 通量

q 4 πR 3 3
qi 2 Φe E dS E 4πr S 0
r<R r>R 电量
电量
4 3 q π r i 3
S S

n
E
曲面闭合时
Φe E dS E cos dS
S S
S
dS

注: E为dS处的电场强度
n E
例 三棱柱体放置在如图所示的匀强电 场中. 求通过此三棱柱体的电场强度通量. 解
Φe Φei
i 1
5
y
N
S1
P
S2
Φe1 Φe 2
2、高斯 (Gauss) 定理 (1) 证明: 略.书P166-168 (2 )内容(书P168): 真空中 注:
1 Φe E dS
s
0
q
i 1
n
in i
①公式中S:高斯面(闭合曲面)
②穿过S面的电场强度通量e: 只由S面内的电荷决定
(如图中 q1、q2) ③ E : 面元 dS 处的场强 , 由所有电荷(面内、外电荷) 共同产生(如图中 q1、 q2 、 q3)

.
q 8 0
(3) 若将此电荷移到正方体的一 个顶点上,则通过整个 正方体表面的电场强度通量为
1 e E dS
s
0
q

大学物理——电场强度与电势

大学物理——电场强度与电势

例题
均匀带电细棒,长 L ,电荷线密度 , 求:中垂面上的场强 。 r dQ
y
dQ dy
解 : dE 4 r 3 0
r1
L0
dE dE x i dE y j E dE i dE x j 0 dE y
L L L
E r
2
3、场强叠加原理
(1)点电荷系的场强 Q2
点电荷的场强
点 电 Q1 荷
试验电荷 F2 Q
0
E
F F
1
Q 4 0 r
2
r0
由定义
F F3 F1 F2 E E1 E2 E3 Q0 Q0 Q0 Q0
L
E E //
x xQ dQ x dQ cos dE 2 L 3 L r 4 r 40 r 0 (1) x 0 xQ i
dE
E

L
dE 0


E0
4 0 x R
2

2

3
2
Q (2)R <<x E 2 4 0 x
dE
P
x
r
R
O
dr
9
讨论 (1) 当R >> x ,圆板可视为无限大薄板
E 2 0
(2)
E1
E1 E2
E1 E2
EI E1 E2 0 EII E1 E2 0 EIII E1 E2 0
E2
(3) 补偿法
10
例 已知圆环带电量为q ,杆的线密度为 ,长为L
qq 0 1 1 A r 4 0 1 r2

大学物理一复习 第五章 静电场和习题小结

大学物理一复习  第五章  静电场和习题小结
r
q 4 π
0


dr r
2
r
q
1 q ( ) 4 r r 4 r q
0 0
r
E
V
q 4 π 0r
q 0, V 0 q 0, V 0
三、电势叠加原理
点电荷系
Va
q1
q2

a
E dl
V1 V 2 V n
第 五 章 静电场
Nothing in life is to be feared. It is only to be understood. ----(Marie Curie)
本章参考作业:P190
5-1,5-2、5-9①、5-14、5-21、 5-23、5-26、5-27、5-30。
学 习 要 点
的大小处处相等,且有
cos 1
cos 0
(目的是把“ E ”从积分号里拿出来)
计算高斯面内的电荷,由高斯定理求 E。
高斯定理运用举例: ---计算有对称性分布的场强
掌握所有 例题
1、球对称——球体、球面、球壳等。 2、轴对称——无限长直线、圆柱体、圆柱面。 3、面对称——无限大均匀带电平面。
E
0
R
r
三、面对称——无限大均匀带电平面。
例6、求无限大均匀带电平面的场 分布。已知面电荷密度为
o
p
dE
dE
解:对称性分析: 垂直平面 E
选取闭合的柱形高斯面
左底 侧
右底
侧 0

左底
E S
S'
E S

右底
2 ES

大学物理答案

大学物理答案

《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 选择题1.关于电场强度定义式E = F/q0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q0的大小成反比; (B) 对场中某点,试探电荷受力F 与q0的比值不因q0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a, 0)处放置一点电荷+q ,在坐标(-a,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x, 0).当x >>a 时,该点场强的大小为:[ D ](A) x q 04πε. (B)204x qπε.(C)302x qa πε (D)30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化; f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E=23220)(21a y qy+πε ,场强最大值的位置在y=a22±.3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。

大学物理课件——第五章 静电场

大学物理课件——第五章 静电场

作业: 5.2
3.电场强度
3.1 电场的概念 电场间相互作用的场的观点:
电荷
电场
电荷
电场:电荷周围空间存在的一种场,叫电场。静 止电荷产生的电场,叫静电场。
电场的基本性质:对电荷产生作用力
3.2.电场强度
Q
E F q0
q0
F

E
为矢量:
大 方
小 向
: :
E F / q0 沿F 方向
德国数学家和物理学家。1777年4月30日生于德国布伦瑞克,幼时家境贫困, 聪敏异常,受一贵族资助才进学校受教育。1795~1789年在哥廷根大学学习, 1799年获博士学位。1870年任哥廷根大学数学教授和哥廷根天文台台长,一直 到逝世。1833年和物理学家W.E.韦伯共同建立地磁观测台,组织磁学学会以联 系全世界的地磁台站网。1855年2月23日在哥廷根逝世。
谢水奋 副教授 厦门大学物理系 sfxie@
1-16周 星期一 第3-4节 1号楼(学武楼)C206 1-16周 星期四 第5-6节 1号楼(学武楼)A206
教学内容:
电磁学篇(课本上册第5-8章) 振动与波动(课本上册第4章) 波动光学篇(课本下册第12章)
考核方式:
玻璃棒与丝绸摩擦后所带 的电荷为正电荷。
摩擦起电
物体所带电荷量,符号Q (q),单位库伦 C。
1.2 电荷的基本性质 a. 电荷间有力的相互作用,同性相斥,异性相吸。
b.电的中和;
1.3 物质的电结构 物体因得失电子而带电荷。得到电子带负电;
失去电子带正电。电荷是物质的一种基本属性, 就象质量是物质一种基本属性一样。
32
4
E
P
E- r

大学物理习题答案解析第五章

大学物理习题答案解析第五章

第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。

(完整版)大学物理电场和电场强度

(完整版)大学物理电场和电场强度

电荷与真空中的静电场
例: 半径为R 的均匀带电细圆环,带电量为q .
x
dE
求: 圆环轴线上任一点P 的电场强度.
dEx
P dE
解: dq dl
E dE
dE
1
4 0
dq r2
er
1 dq
40 r 2 er
rx
RO
dE dE sinθ
dEx dE cosθ
dq
圆环上电荷分布关于x 轴对称
θ
2
sin
θ
1)
Ey
dEy
θ2 sinθ dθ θ1 40a
40a
(cosθ 1
cosθ
2
)
讨论 (1) a >> L 杆可以看成点电荷
y
dE
dEy
Ex 0
Ey
λL
4 0 a 2
(2) 无限长带电直线
P
dEx
1 r a 2
θ1 0 θ2
Ex 0
Ey
λ 2ε
0a
dq O
x
2020/4/13
E0
(2) 当 x>>R 时,
E
1
40
q x2
可以把带电圆环视为一个点电荷.
RO dq
(3)x 2 R时, 2
E Emax
2020/4/13
电荷与真空中的静电场
例:求面密度为 的带电薄圆盘轴线上的电场强度.
解: dq 2rdr
x
dE
1
40
(r2
xdq x2 )3/ 2
2020/4/13
电荷与真空中的静电场
点电荷的电场是辐射状球对称分布电场.

第五版大学物理答案马文蔚

第五版大学物理答案马文蔚

第五版大学物理答案马文蔚集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B). 5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B). 5 -3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 证 (1) 延长线上一点P 的电场强度⎰'=L r πεqE 22d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ). 分析 根据点电荷电场的叠加求P 点的电场强度. 解 由点电荷电场公式,得 考虑到z >>d ,简化上式得通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为 k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2Sπ4d r E ⋅=⋅⎰S E根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) 球体外(r >R )解2 将带电球分割成球壳,球壳带电 由上述分析,球体内(0≤r ≤R ) 球体外(r >R )5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布. 解 作同轴圆柱面为高斯面,根据高斯定理 r <R 1 , 0=∑q在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑r >R 2, 0=∑q在带电面附近,电场强度大小不连续,电场强度有一跃变 这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多..5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为 在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 当R 1 ≤r ≤R 2 时,有 当r ≥R 2 时,有(2) 两个球面间的电势差解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则 若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则 若该点位于两个球面之外,即r ≥R 2 ,则(2) 两个球面间的电势差5 -30 两个很长的共轴圆柱面(R 1 =×10-2 m ,R 2 = m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷(2) r = m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为 根据电势差的定义有解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r = 处的电场强度第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。

高斯定理

高斯定理

p
s
命题得证。
电荷在电场中所受的力
一、点电荷在电场中所受的力
根据场强的定义:
F E q
F qE
放入电场中的一个点电荷 二、点电荷系在电场中所受的力
F q1 E1 q2 E2 qn En
i 1
qi E i
n
三、电荷连续分布的带电体在电场中所受的力
E 2 : 完整的带 “- ” 的小球在 p 处的场。 1 4 3 2 E1 4r1 r1 0 3 E1 r1 E1 r1 p 3 0 3 0 r1 r2 同理: E 2 3 r2 o1 a o2 0 r1 r2 E ( r1 r2 ) 3 0 3 0 3 0


R
举一反三: (1)两平行输电线的场强?
(2)无限长带电圆柱面的场?
r
r
E E E

l
r
rR
rR
E 0
E 20 r
E 2 0 r
同轴电缆(柱面)的场强分布?
a
b
ra
arb
E 0

E
r
rb
E 0
r
(3)无限长带电圆柱体的场?
p
E
1 s E ds qi 0
1 E cos ds 上下面 cos ds l E 侧面 0 1 0
l E 2 rl 0
E 2 0 r E 沿 r 方向


E r
l

E 2 0 r
q ds e E cos ds s 2 s 4 0 r q q q 2 ds 4r 2 s 2 40 r 40 r 0

大学物理-第1章 电场强度 高斯定理

大学物理-第1章 电场强度 高斯定理

+的场强 视为点电荷 dq
r r
P
Q
分解
dq
Q
r dE
设带电体的电荷体密度为, dq在 P 点产生的场强为 叠加
则 d q dV
r dE
r 1 r dV 3 4π 0 r
r r E dE
P点的场强为
r 1 E 4π 0

V
r r dV 3 r
穿出为正,穿进为负
向外法 线
31
S

E
选取面积元 dS dS en
1.3.3 高斯定理
1. 点电荷q 的电场中任意闭合曲面的电场强度通量 (1)点电荷在闭合曲面内 以q为中心、半径任意的球面S 的电场强度通量 由库仑定律得P 点场强 面积元dS的电场强度通量
v E 1 q r e 2 r 4π 0 r
大小 F12 k
12
v v F21 F12
q1q2
q1q2
r122 方向 沿 q1、 q 2 的连线,同性相斥,异性相吸
k 9 109 N m2 C2
比例系数 真空中的电容率
9
1 4π 0 r12 2
v F21
v r12
q1
v F12
q2
0 8.851012 C2 (N m2 )
15
点电荷的电场分布
q>0
q<0 (b)负电荷
(a)正电荷
16
1.2.3. 一定数量点电荷产生的电场强度
q0 受到的合力为
q1
r r r r F = F+F 1 2+L F n
P 点场强
r E r Fi
n i 1
r r1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
物理学
第五版
5-3 电场强度

电偶极子的电场强度
电偶极子的轴 r0
电偶极子 是一个理想的物理模型. 电偶极矩(电矩) p qr0
q q
r0
+
第五章 静电场
9
物理学
第五版
5-3 电场强度
(1)轴线延长线上一点的电场强度 1 q 1 q E i E i 2 2 4πε0 ( x r0 2) 4πε0 ( x r0 2)
x
o
P
x
x
第五章 静电场
15
物理学
第五版
5-3 电场强度
例2 有一半径为R,电荷均匀分布的薄圆 盘,其电荷面密度为 . 求通过盘心且垂直 盘面的轴线上任意一点处的电场强度.
R
o
x
P
x
第五章 静电场
16
物理学
第五版
5-3 电场强度

σ q / πR
2
dq 2 π rdr
xrdr xdq dEx 2 2 32 2 2 32 4 πε0 ( x r ) 2ε0 ( x r )
o
x
P
x
这是点电荷的电场
第五章 静电场
18
2 xr0 q E E E 2 2 2 i 4 πε0 ( x r0 4)
q -
r0
. 2
O
r0 2
q
+
x
E
A
.
E
x
10
第五章 静电场
物理学
第五版
5-3 电场强度
2 xr0 q E 2 2 2 i 4πε0 ( x r0 4)
2
12
第五章 静电场物理学第版5-3 电场强度例1 正电荷q均匀分布在半径为R的圆环 上. 计算通过环心点O并垂直圆环平面的轴 线上任一点P处的电场强度.
R
x
o
P
x
x
第五章 静电场
13
物理学
第五版
5-3 电场强度
1 dl 解 dq dl dE 2 4 πε0 r dl x E dEx dE cosθ 2 l l 4 πε 0 r r λx 2 π R dl dl 3 0 4πε0 r r R qx P dE x θ 2 2 32 x x 4πε0 ( x R ) x o
6
物理学
第五版
5-3 电场强度
连续分布电荷的电场 1 dq 1 er dE e E dE dq 2 r 2 4πε0 r 4πε0 r 电荷面密度
E 1 σer dS 2 S 4 πε 0 r
dq σdS
dq
+
r
P
dE
第五章 静电场
物理学
第五版
5-3 电场强度

静电场
电荷 电 场 场 实物 电荷
物 质
静电场: 静止电荷周围存在的电场
第五章 静电场
1
物理学
第五版
5-3 电场强度

电场强度
1 试验电荷
点电荷 电荷足够小 2 电场强度
F E q0
Q
为定量描述场对电荷的力的 性质,需引入一个物理量.
试验电荷
q0
F
第五章 静电场
5
物理学
第五版
5-3 电场强度
连续分布电荷的电场 1 dq 1 er dE e E dE dq 2 r 2 4πε0 r 4πε0 r 电荷体密度
E 1 ρer dV 2 4πε0 r
dq ρdV
dq
+
V
r
P
dE
第五章 静电场
E
E
.B
y
r q e -
O r0
.
q e
+
r
x
r0 2 r r r y ( ) 2 r0 2 r0 2 e e i i r r 1 p E E E 3 4πε0 r 1 p y r0 E 3 4πε0 y
q 2 πR
dE
dE
第五章 静电场
14
物理学
第五版
5-3 电场强度
讨论 (1) x R ( 2) x 0
E0 0
qx E E 2 32 22 4 πε ( x R ) R 0
2
q o E 2 2R 4 πε0 x 2
x
( 3) d E 0
dx
R
2 x R 2
场源电荷
第五章 静电场
2
物理学
第五版
5-3 电场强度
F E q0
定义: 单位正试验电荷所受的电场力 单位: N C , V m 和试验电荷无关
1 1
电荷q受电场力: F qE
Q
q0
试验电荷
F
场源电荷
第五章 静电场
3
物理学
第五版
5-3 电场强度

点电荷电场强度
F 1 Qq0 er 2 4 πε0 r
F 1 Q E e 2 r q0 4 πε0 r
1 Q E 2 4 πε0 r q0 r F E
Q0
E
+ -
P
第五章 静电场
4
物理学
第五版
5-3 电场强度

电场强度叠加原理
点电荷系的电场 Qi 1 E Ei e 2 i 1 q0Qi 4πε0 i ri i Fi e i 2 4πε0 ri Q1 e1 F Fi F3 r E 1 3 i P e2 r Q 2 2 F2 E 2 q F r 0 Fi 3 e 3 E Q3 F11 E q0 q i 0
7
物理学
第五版
5-3 电场强度
连续分布电荷的电场 1 dq 1 er dE e E dE dq 2 r 2 4 πε0 r 4 πε0 r 电荷线密度
1 λer E dl 2 l 4 πε 0 r
dq λdl
dl
r
P
dE
第五章 静电场
E dE x
( x 2 r 2 )1/ 2
x 1 1 ( ) 2ε0 x 2 x2 R2
o
dr
R
r
x
P
x
第五章 静电场
17
物理学
第五版
5-3 电场强度
讨论
x R
x 1 1 E ( ) 2ε0 x 2 x2 R2
E 2ε0
x R
R
q E 4 π ε0 x 2
x r0
1 2r0 q 1 2p E i 3 3 4πε0 x 4πε0 x
q -
r0
. 2
O
r0 2
q
+
A
.
x
第五章 静电场
E
x
11
物理学
第五版
5-3 电场强度
(2)轴线中垂线上一点的电场强度
y E
1 q 1 q e E e E 2 2 4πε0 r 4πε0 r
相关文档
最新文档