湘教版九上数学期中2

合集下载

【湘教版】九年级数学上期中试卷(带答案)

【湘教版】九年级数学上期中试卷(带答案)

一、选择题1.如图,已知在正方形ABCD 中,AD =4,E ,F 分别是CD ,BC 上的一点,且∠EAF =45°,EC =1,将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,连接EF ,则以下结论:①DE +BF =EF ,②BF =47,③AF =307,④S △AEF =507中正确的是( )A .①②③B .②③④C .①③④D .①②④2.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP=D .2ABCAEPF S S=四边形3.如图,在ABC ∆中,30,8,5BAC AB AC ∠===,将ABC ∆绕点A 顺时针旋转30得到ADE ∆连接CD ,则CD 的长是( )A .7B .8C .12D .134.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-1,3)B .(3,-1)C .(31-,)D .(-2,1)5.如图:在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC 绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )A .3B .2C .1D .26.下列图标中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .7.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个8.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2-B .()1,2C .()1,2-D .()2,19.抛物线2288y x x =-+-的对称轴是( ) A .2x =B .2x =-C .4x =D .4x =-10.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小11.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ).A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠12.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根13.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -= C .2(1)0x -=D .2(1)20x ++=14.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019二、填空题15.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)16.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23 y831-3则在实数范围内能使得成立的取值范围是_______.17.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________. 18.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 19.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______. 20.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.三、解答题21.(1)问题发现:如图1,ACB △和DCE 均为等边三角形,当DCE 旋转至点A ,D ,E 在同一直线上,连接BE .①填空:AEB ∠的度数为______.②线段AD 、BE 之间的数量关系是_______. (2)拓展研究:如图2,ACB △和DCE 均为等腰三角形,且90ACB DCE ∠∠==,点A 、D 、E 在同一直线上,若15AE =,7DE =,求AB 的长度. (3)探究发现:图1中的ACB △和DCE ,在DCE 旋转过程中当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索AOE ∠的度数,直接写出结果,并说明理由.22.如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.23.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?24.某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.x3- 52- 2- 1- 0 1 252 3y3541- 0 1- 0543请画出该函数图象的另一部分;(2)观察函数图象,写出2条函数的性质__________________; (3)进一步探究函数图象发现:①方程22||0x x -=的实数根为____________; ②方程22||2x x -=有____________个实数根.③关于x 的方程22||x x a -=有4个实数根时,a 的取值范围____________. 25.用配方法解方程:22510x x -+= 26.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用全等三角形的性质及勾股定理求出BF 的长,再利用勾股定理求出AF 的长,从而求得GF,即可求解出△AEF的面积,最终即可判断出所有选项.【详解】∵将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,∴AG=AE,∠DAE=∠BAG,DE=BG,∵∠EAF=45°,∴∠DAE+∠BAF=45°=∠GAB+∠BAF=∠GAF=45°,∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=47,∴BF=47,AF7,故②正确,③错误,∴GF=3+47=257,∴S△AEF=S△AGF=12AB×GF=507,故④正确,故选:D.【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.2.C解析:C【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,AP⊥BC,∠C=∠B=∠BAP=∠CAP=45°,∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ), ∴AE=CF ,EP=PF ,S △AEP =S △CPF , ∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确,∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误; 故选:C . 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.3.A解析:A 【分析】过点D 作DF AC ⊥与F ,由旋转的性质可得AD=AB=8,30BAC DAB ∠=∠=︒,由直角三角形的性质可得AF=4,DF=3AF=43,由勾股定理可求解. 【详解】解:过点D 作DF AC ⊥与F ,将ABC ∆绕点A 顺时针旋转30得到ADE ∆,830AD AB BAC DAB ∴==∠=∠=︒,, 60CAD ∴∠=︒,且DF AC ⊥,AD=84343AF DF AF ∴===,,1CF ∴=,224817CD DF CF ∴=+=+=故选A ..【点睛】本题考查了旋转的性质、勾股定理,添加合适的辅助线构造直角三角形是解题的关键.4.C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴2222--AO OE213==∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,3∴A′(31),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.A解析:A【解析】试题分析:由题意可知:∠A=60°,AC=EC,所以△ACE是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF,所以△CBF是等边三角形,所以∠CBF=60°,∠FBE=60°+30°=90°,△BEF是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,21-=A.213考点:1.旋转性质;2.直角三角形性质.6.D解析:D 【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知: A 既不是轴对称图形,也不是中心对称图形,故不正确; B 不是轴对称图形,但是中心对称图形,故不正确; C 是轴对称图形,但不是中心对称图形,故不正确; D 即是轴对称图形,也是中心对称图形,故正确. 故选D.考点:轴对称图形和中心对称图形识别7.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.8.B解析:B 【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标. 【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2). 故选:B .【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.9.A解析:A 【分析】利用抛物线对称轴公式求解即可. 【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-, 故选:A . 【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.10.C解析:C 【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案. 【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大, ∴A 、B 、D 都不正确,C 正确, 故选:C . 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).11.B解析:B 【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论. 【详解】 解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5. 故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.12.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.13.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.14.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 二、填空题15.①③④⑤【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下∴a <0∴对称轴∴故①正确;∵抛物 解析:①③④⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下,∴a <0,∴对称轴123b x a =-=-, ∴32a b =,故①正确; ∵抛物线与x 轴有两个交点,∴24b ac ->0,故②错误;∵对称轴123b x a =-=-,a <0, ∴32a b =<0, ∴ab >0,故③正确;当1x =时,y >0,即,y <0,∴a b c ++<0,故④正确;当1x =-时,y >0,即,a b c -+>0,∴222a b c -+>0, ∵32a b =, ∴322b b c -+>0,∴2b c +>0,故⑤正确;故答案是①③④⑤.【点睛】 本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.16.或【分析】根据表格中的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3> 解析:1x <-或3x >【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围.【详解】解:由表格可知, 该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3,故答案为:x <-1或x >3.【点睛】 本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.17.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.18.;【分析】根据根与系数的关系可得出m+n=-1mn=-2将其代入中即可求出结论【详解】解:∵方程x2+x ﹣2=0的两个根分别为mn ∴m+n =﹣1mn =﹣2故答案为:【点睛】本题考查了根与系数的关系牢 解析:12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n ,∴m +n =﹣1,mn =﹣2, 111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12 . 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a是解题的关键. 19.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解题 解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k -+=有两个相等的实数根,∴()224440b ac k ∆=-=--=, 解得:4k =;故答案为4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.20.1<a≤2【分析】画出图象找到该抛物线在MN 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界利用与y 交点位置可得a 的取值范围【详解】解:抛物线y =ax2+2ax +a−2(a >0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界,利用与y交点位置可得a的取值范围.【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点式为y=a(x+1)2−2,∴函数的对称轴:x=−1,顶点坐标为(−1,−2),∴M和N两点关于x=−1对称,根据题意,抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0),如图所示:∵当x=0时,y=a−2,∴−1<a−2≤0,当x=1时,y=4a−2>0,即:120 420aa--≤-⎧⎨⎩<>,解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y轴交点位置是本题的关键.三、解答题21.(1)①60°;②AD BE=;(2)AB的长度为17;(3)60°或120°,证明见解析.【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根据三角形的内角和定理可知∠AOE=60°.【详解】(1)①如图1,∵ACB △和DCE 均为等边三角形,∴CA CB =,CD CE =,60ACB BCE ∠=∠=,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()?ACD BCE SAS ≌, ∴ADC BEC ∠∠=, ∵DCE 为等边三角形,∴60CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴120ADC ∠=,∴120BEC ∠=,∴60AEB BEC CED ∠=∠-∠=.故答案为:60°.②∵≌ACD BCE ,∴AD BE =,故答案为:AD BE =.(2)∵ACB △和DCE 均为等腰直角三角形, ∴CA CB =,CD CE =,90ACB DCE ∠∠==,∴ACD BCE ∠=∠,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ACD BCE SAS △≌△,∴8AD BE AE DE ==-=,ADC BEC ∠∠=,∵DCE 为等腰直角三角形,∴45CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴135ADC ∠=,∴135BEC ∠=,∴90AEB BEC CED ∠=∠-∠=, ∴2217AB AE BE =+=.(3)如图3,由(1)知≌ACD BCE ,∴CAD CBE ∠=∠,∵60CAB CBA ∠=∠=,∴120OAB OBA ∠+∠=,∴18012060AOE ∠=-=,如图4,同理求得60AOB ∠=,∴120AOE ∠=,∵AOE ∠的度数是60°或120°.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,得出△ACD ≌△BCE (SAS )是解本题的关键.22.(1)详见解析(2)详见解析【分析】(1)分别作A 、B 、C 三点关于点O 对称点A B C '''、、,再顺次连接即可;(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点即为所求点.【详解】(1)如图,分别作A 、B 、C 三点关于点O 对称点A B C '''、、,连接A B B C A C ''''''、、,则所得A B C '''为所求三角形;(2)如图,连接C C '''、A A '''相交于点O '、则点O '即为所求点.【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,解题的关键是看图. 23.(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x 346760 当x 34=时,W 有最大值6760元因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元. (2)由(1)可知210346760W x∴函数图像开口向下,对称轴为34x =,∵最高销售单价不得超过30元,∴当x =30时,w 取得最大值,此时210303467606600W, 因此,当销售单价定为30元时,才能获得最大利润是6600元. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 24.(1)见解析;(2)①函数图象是轴对称图形,关于y 轴对称;②当1x >时,y 随x 的增大而增大;(3)①12x =-,20x =,32x =;②2;③10a -<<【分析】(1)描点、连线即可得到函数的图象;(2)根据函数图象得到函数y=x 2-2|x|的图象关于y 轴对称;当x >1时,y 随x 的增大而增大;(3)①根据函数图象与x 轴的交点位置,即可得到结论;②如图,根据y=x 2-2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a 的取值范围是-1<a <0.【详解】解:(1)如图所示;(2)由函数图象知:①函数y=x 2-2|x|的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大;故答案为:①函数y=x 2-2|x|的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大; (3)①由函数图象知:函数图象与x 轴的交点所对应的数为-2,0,2,所以方程x 2-2|x|=0的实数根为12x =-,20x =,32x =;②如图,∵y=x 2-2|x|的图象与直线y=2有两个交点,∴x 2-2|x|=2有2个不相等的实数根;③由函数图象知:∵关于x 的方程x 2-2|x|=a 有4个不相等的实数根,∴a 的取值范围是-1<a <0,故答案为:12x =-,20x =,32x =;2;-1<a <0.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了观察函数图象的能力. 25.151744x =+,251744x =- 【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=, 配方得:2255251()024162x x -+--+=, 即:2517()416x -=,两边同时开平方得:544x -=±,即1544x =+,2544x =-. 【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.26.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.。

湘教版九年级数学上册期中试卷及答案【全面】

湘教版九年级数学上册期中试卷及答案【全面】

湘教版九年级数学上册期中试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )AB C D 2.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2BC .2D .43.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交AB 于点D,以OC为半径的CE交OA于点E,则图中阴影部分的面积是()A.12π+183B.12π+363C.6π+183D.6π+363 10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.分解因式:x 2-9=______.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、C6、B7、A8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)12、(x +3)(x -3)3、7或-14、5、406、245三、解答题(本大题共6小题,共72分)1、x=12、3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 412-). 4、(1)略(2)5 ,2455、()117、20;()22次、2次;()372;()4120人.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。

湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数中,y 是x 的反比例函数的是()A .xy 3=B .5y x=C .21y x =D .1y 2x=+2.下列各点中,在反比例函数8y x=图象上的是A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若2a =3b ,则下列等式正确的是()A .23a b =B .32a b =C .32b a =D .32b a =4.一元二次方程2210x x -+=的根的情况是()A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知△ABC ∽△DEF ,若∠A =30°,∠B =80°,则∠F 的度数为()A .30°B .80°C .70°D .60°6.在同一直角坐标系中,反比例函数y =abx与一次函数y =ax+b 的图象可能是()A .B .C .D .7.如图,在△ABC 中,EF//BC ,13AE AB =,则AFAC =()A .12B .23C .13D .328.如图,正比例函数y =ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >-29.如图,点P 是△ABC 边AB 上一点(AB>AC ),下列条件不一定能使△ACP ∽△ABC 的是()A .AC APAB AC=B .PC ACBC AB=C .∠ACP=∠B D .∠APC=∠ACB10.如图, ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为()A .3B .4C .5D .611.已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是()A .34B .30C .30或34D .30或3612.如图,两个反比例函数1y=x 和2y=x-的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为()A .3B .4C .92D .5二、填空题13.两个相似三角形的相似比为1:3,则它们周长的比为_____.14.若方程2340x x --=的两个根分别为1x 和2x ,则1211x x +=_________.15.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.16.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.有一人患流感,经过两轮传染后,共有49人患了流感,如果不及时控制(三轮传染速度相同),第三轮被传染的人数为________.18.如图,△ABC 中,AB =AC ,∠A =90°,BC =6,直线MN ∥BC ,且分别交边AB ,AC 于点M ,N ,已知直线MN 将△ABC 分为面积相等的两部分.如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD =________.三、解答题19.解方程:(1)x 2-4x-1=0(配方法)(2)3x(x-1)=2-2x20.已知反比例函数k 1y x-=(k 为常数,k≠1).(1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围.21.已知关于x 的一元二次方程x 2+2x +a =0,(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a 的取值范围.22.如图,已知AB AD ⊥,BD DC ⊥,且2BD AB BC =⋅,求证:ABD DBC ∠=∠.23.一次函数y=x+b和反比例函数2yx(k≠0)交于点A(a,1)和点B.(1)求一次函数的解析式;(2)求△AOB的面积;24.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.25.已知:如图,△ABC∽△ADE,∠A=45°,∠C=40°.求:∠ADE的度数.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.参考答案1.B【分析】根据反比例函数的定义判断即可.【详解】A、不符合反比例函数的定义,选项不符合题意;B、符合反比例函数的定义,选项符合题意;C、不符合反比例函数的定义,选项不符合题意;D、不符合反比例函数的定义,选项不符合题意.故选:B.【点睛】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式kyx=(0k≠).2.D 【分析】由于反比例函数y=kx中,k=xy,即将各选项横、纵坐标分别相乘,其积为8者即为正确答案.【详解】解:A、∵-1×8=-8≠8,∴该点不在函数图象上,故本选项错误;B、∵-2×4=-8≠8,∴该点不在函数图象上,故本选项错误;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项错误;D、2×4=8,∴该点在函数图象上,故本选项正确.故选D.【点睛】考核知识点:反比例函数定义.3.B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A、由23ab=得:3 2a b=,故本选项错误;B、由32ab=得:2 3a b=,故本选项正确;C、由32ba=得:3 2a b=,故本选项错误;D、由32b a=得:3 2a b=,故本选项错误;故选:B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.B【分析】求出其根的判别式,然后根据根的判别式的正负情况即可作出判断.【详解】∵1a =,2b =-,1c =,∴()2242411440b ac =-=--⨯⨯=-=△,∴方程有两个相等的实数根.故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠)的根的判别式24b ac =-△:当 >0,方程有两个不相等的实数根;当 =0,方程有两个相等的实数根;当 <0,方程没有实数根.5.C 【分析】根据△ABC ∽△DEF ,从而推出对应角相等求解.【详解】∵△ABC ∽△DEF ,∴3080A D B E C F ∠=∠=∠=∠=∠=∠ ,,,∵180D E F ∠+∠+∠= ,∴70.F ∠=故选:C.【点睛】考查相似三角形的性质,掌握相似三角形的对应角相等是解题的关键.6.D 【分析】先根据一次函数图象经过的象限得出a 、b 的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a <0,b >0,∴ab <0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.C【分析】直接根据平行线分线段成比例定理即可求解.【详解】∵EF//BC,13 AEAB=,∴13 AF AEAC AB==,故选:C.【点睛】本题考查了平行线分线段成比例定理,正确的识别图形是解题的关键.8.B【分析】先根据反比例函数与正比例函数的性质求出B点横坐标,再由函数图象即可得出结论.【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2,∵k ax x<,∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方,∴2x <-或02x <<,故选:B .【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.9.B 【分析】A .利用对应边成比例,且夹角相等来判断即可;B .对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等;C .利用两角对应相等,两三角形全等,进行判定即可;D .利用两角对应相等,两三角形全等,进行判定即可.【详解】解:A .∵AC APAB AC =,∠A=∠A .∴ ACP ∽ ABC .B .PC ACBC AB=对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等.C .∵∠ACP=∠B,∠A=∠A .∴ ACP ∽ ABC .D .∵∠APC=∠ACB,∠A=∠A .∴ ACP ∽ ABC .故选:B .【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.注意:两边对应成比例必须夹角相等.10.D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3 x,故BO=x+3 x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键.11.A【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b时;结合韦达定理即可求解;【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412b ∴+=,8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根,1222a b ∴==,6a b ∴==,236m ∴+=,34m ∴=;故选A .【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.12.C【解析】设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,,推出A 的坐标和B 的坐标,求出PA 、PB 的值,根据三角形的面积公式求出即可:∵点P 在1y=x 上,∴设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,.∵PA ⊥x 轴,∴A 的横坐标是p .∵A 在2y=x -上,∴A 的坐标是2p p ⎛⎫- ⎪⎝⎭,.∵PB ⊥y 轴,∴B 的纵坐标是1p .∵B 在2y=x-上,∴12=p x -,解得:x=﹣2p .∴B 的坐标是(﹣2p ,1p).∴()123PA = PB p 2p =3p p p p⎛⎫=--=-- ⎪⎝⎭,.∵PA ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴PA ⊥PB .∴△PAB 的面积是:1139PA PB 3p=22p 2⨯⨯=⨯⨯.故选C .13.1:3.【分析】由两个相似三角形的相似比为1:3,根据相似三角形周长的比等于相似比,即可求得答案.【详解】∵两个相似三角形的相似比为1:3,∴它们的周长比为:1:3.故答案为1:3.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.14.34-【分析】利用分式加减法,计算原式,应用一元二次方程根与系数关系,求出12x x +和12x x ,代入求值即可.【详解】解:12121211x x x x x x ++=⋅由已知12x x +=3,12x x =-4代入,得1212121134x x x x x x =+⋅+=-故答案为:3 4-【点睛】本题考查一元二次方程根的分布与系数的关系和分数加减法,解答关键是根据相关法则进行计算即可.15.y=2 x【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=k x,把A(﹣1,﹣2)代入得:k=2,则过点A的反比例函数解析式为y=2 x,故答案为:y=2 x.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4yx=,设C点的坐标为(x,4x),根据AC=BC得出方程,求出x即可.【详解】由图象可知:点A的坐标为(-1,-4),代入kyx=得:4k xy==,所以这个反比例函数的解析式是4y x =,设C 点的坐标为(x ,4x),∵A (-1,-4),B (-4,-1),AC=BC ,即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭,解得:2x =±,当2x =时,422y ==,当2x =-时,422y ==--,所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.294.【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有49人患了流感,可求出x ,进而求出第三轮过后,又被感染的人数.【详解】解:设每轮传染中平均每人传染了x 人,1+x +x (x +1)=49x =6或x =−8(舍去).∴每轮传染中平均一个人传染了6个人,第三轮被传染的人数为:49×6=294(人).故答案为:294.【点睛】本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.18.3【分析】依据直线MN ∥BC ,可得△AMN ∽△ABC ,再根据直线MN 将△ABC 分为面积相等的两部分,即可得到S △AMN :S △ABC =1:2,进而得出12 ,22AM AB ==解得AM=3,过A 作AD ⊥BC 于D ,则132AD BC ==,故将线段AM 绕着点A 逆时针旋转45°,可以使点M 落在边BC 上的点D 处,此时132BD BC ==.【详解】∵△ABC 中,,906AB AC A BC ,,=∠==∴cos4532AB BC =⨯= ,∵直线MN ∥BC ,∴△AMN ∽△ABC ,∵直线MN 将△ABC 分为面积相等的两部分,∴S △AMN :S △ABC =1:2,∴12 ,22AM AB ==即2 ,232=解得AM =3,如图,过A 作AD ⊥BC 于D ,则132AD BC ==,∴将线段AM 绕着点A 逆时针旋转45 ,可以使点M 落在边BC 上的点D 处,此时,132BD BC ==.故答案为3.【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.19.(1)x 15x 25;(2)x 1=1,x 2=-23(1)根据配方法的运算步骤依次计算可得;(2)先移项,再提取公因式(x-1),得到两个一元一次方程,解出即可.【详解】(1)∵x 2-4x-1=0∴x 2-4x=1∴x 2-4x+4=1+4,即(x-2)2=5则x-2=∴x 1x 2(2)3x(x-1)=2-2x3x(x-1)+2(x-1)=0(x-1)(3x+2)=0∴x 1=1,x 2=-23【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=,在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy k =.也考查了反比例函数的性质.21.(1)a =−3,x 1=−3,;(2)a <1.【解析】试题分析:()1将1x =代入方程220x x a ++=得到a 的值,再根据根与系数的关系求出另一根;()2根的判别式0.∆>求出a 的取值范围即可.试题解析:()1将1x =代入方程220.x x a ++=得,1210a +⨯+=,解得: 3.a =-方程为2230.x x +-=设另一根为1,x 则113,x ⋅=-1 3.x =-()244a ∆=-,∵方程有两个不等的实根,0,∴∆>即440a >-,1.a ∴<22.见解析.【分析】由2BD AB BC =⋅可得AB BD =BD BC,可判定Rt △ABD ∽Rt △DBC ,然后由相似三角形对应角相等可得∠ABD=∠DBC.【详解】证明:∵2BD AB BC=⋅∴AB BD =BD BC∴Rt △ABD ∽Rt △DBC∴∠ABD=∠DBC【点睛】本题考查相似三角形的判定,熟练掌握直角三角形的斜边直角边对应成比例即可判定相似是解决本题的关键.23.(1)1y x =-;(2)32.【分析】(1)分别把A 的坐标代入反比例函数解析式求出a 的值,把A 的坐标代入一次函数解析式得出b 的值,即可求解;(2)先求得点B 的坐标,再求出一次函数与y 轴的交点D 的坐标,根据三角形的面积公式求出△AOD 和△BOD 的面积即可.【详解】(1)∵点A (a ,1)是反比例函数2y x=图象上的点,∴2y 1a ==,∴2a =,∴A (2,1),又∵点A 是一次函数y x b =+的图象上的点,∴12b =+,解得,b 1=-,故一次函数解析式为:1y x =-;(2)联立方程组:y x 12y x =-⎧⎪⎨=⎪⎩,解得:1212x 2x 1y 1y 2==-⎧⎧⎨⎨==-⎩⎩,,则()B 12--,,因为直线1y x =-与y 轴交点D 01)-(,,则1OD =,∴1131211222AOB AOD DOB S S S ∆∆∆=+=⨯⨯+⨯⨯=.【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式,函数的图象等知识点,熟练掌握待定系数法求函数解析式是解题的关键.24.(1)(180﹣3x )件;(2)①该商品的售价为30元/件;②李晨每天通过销售该工艺品捐款的数额为45元.【分析】(1)售价设为x 元,那么降低的价格就是40x -元,那么增加的销量是()340x -件,再加上原来的60件就得到表达式;(2)①根据利润=销量⨯(售价-成本)列方程求出售价;②根据①中算出的售价求出销量,从而算出捐款的数额.【详解】解:(1)∵该商品的售价为x 元/件(20≤x ≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x )=(180﹣3x )件;(2)①依题意,得:(x ﹣20)(180﹣3x )=900,整理,得:x 2﹣80x +1500=0,解得:x 1=30,x 2=50(不合题意,舍去),答:该商品的售价为30元/件;②0.5×(180﹣3×30)=45(元),答:李晨每天通过销售该工艺品捐款的数额为45元.【点睛】本题考查一元二次方程的应用题,解题的关键是根据题意找到等量关系,根据利润=销量⨯(售价-成本)列方程求解.25.∠ADE=95°【分析】由△ABC ∽△ADE ,∠C=40°,根据相似三角形的对应角相等,即可求得∠AED 的度数,又由三角形的内角和等于180°,即可求得∠ADE 的度数.【详解】∵△ABC ∽△ADE ,∠C=40°,∴∠AED=∠C=40°.在△ADE中,∵∠AED+∠ADE+∠A=180°,∠A=45°即40°+∠ADE+45°=180°,∴∠ADE=95°.【点睛】此题考查了相似三角形的性质与三角形内角定理.题目比较简单,注意相似三角形的对应角相等.26.(1)①BD=,BP=(2)4 5.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x.在Rt△BDC中,可得x2=(4﹣x)2+22,推出x的值,从而得出DN的长.由△BDN∽△BAM,可得DN BDAM AB=,由此求出AM.由△ADM∽△APE,可得AM ADAE AP=,由此求出AE的长,可得EC的长,由此即可解决问题.【详解】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB=∵AD=CD=2,∴BD=由翻折可知:BP=BA=②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD =AD =BC =2,∴四边形BCPD 是平行四边形.(2)如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD =AD =x ,则CD =4﹣x .在Rt △BDC 中,∵BD 2=CD 2+BC 2,∴x 2=(4﹣x )2+22,∴x =52.∵DB =DA ,DN ⊥AB ,∴BN =AN 在Rt △BDN 中,DN =2.由△BDN ∽△BAM ,可得DN BDAM AB =,∴522AM =,∴AM =2,∴AP =2AM =4.由△ADM∽△APE,可得AM AD AE AP=,∴5 224 AE=,∴AE=16 5,∴EC=AC﹣AE=4﹣165=45.易证四边形PECH是矩形,∴PH=EC=4 5.。

【湘教版】九年级数学上期中试卷(带答案)

【湘教版】九年级数学上期中试卷(带答案)

一、选择题1.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为( ) A .13B .14C .15D .162.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( ) A .14B .12C .35D .343.下列命题正确的是( )Ax 取值范围是1x >. B .一组数据的方差越大,这组数据波动性越大. C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为384.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是( ) A .16B .13C .12D .235.一元二次方程x 2+4x=3配方后化为( ) A .(x+2)2=3 B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-16.一元二次方程20x x +=的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根7.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根8.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( ) A .两个正根B .两个负根C .一个正根一个负根D .无实数根9.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE的值为( )A .512B .725C .718D .52410.如图,四边形ABCD 沿直线l 对折后重合,如果//AD BC ,则结论①AB //CD ;②AB =CD ;③AB BC ⊥;④AO OC =中正确的是( )A .1个B .2个C .3个D .4个11.如图,公路,AC BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为4.8km ,则,M C 两点间的距离为( )A .1.2kmB .2.4kmC .3.6kmD .4.8km12.如图,菱形ABCD 的边长是5,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为( )A .221B .421C .12D .24二、填空题13.在四张完全相同的卡片上分别写上12-,0,1,2四个数字,然后放入一个不透明的袋中摇匀.现从中随机抽取第一张卡片记下数字a ,放回摇匀,然后再随机抽取第二张卡片,记下数字b ,且a b m +=,则m 的值使关于x 的一元二次方程232102m x x ⎛⎫-++= ⎪⎝⎭有实数解的概率为________.14.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.15.某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到150吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为_________________. 16.若a ,b 是一元二次方程2202020210x x --=的两根,则22021a a b --=__________.17.已知m ,n 是一元二次方程2410x x -=+的两实数根,则11m n+=_________. 18.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,AC =6,BD =8,则线段OH 的长为_____.19.如图,AC 是菱形ABCD 的对角线,P 是AC 上的一个动点,过点P 分别作AB 和BC 的垂线,垂足分别是点F 和E ,若菱形的周长是12cm ,面积是6cm 2,则PE +PF 的值是_____cm .20.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.三、解答题21.2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”,如图,现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有冰墩墩图案的卡片分别记为A 1、A 2,正面印有雪容融图案的卡片记为B ,将三张卡片正面向下洗匀,小明同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小明同学抽出的两张卡片都是冰墩墩卡片的概率.22.在一个不透明的盒子中只装2枚白色棋子和2枚黑色棋子,它们除颜色外其余均相同.从这个盒子中随机地摸出1枚棋子,记下颜色后放回,搅匀后再随机地摸出1枚棋子记下颜色.()1请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率.()2若小明、小亮做游戏,游戏规则是:两次摸出的棋子颜色不同则小明获胜,否则小亮获胜.你认为这个游戏公平吗?请说明理由. 23.解方程: (1)解分式方程:11222x x x-+=--; (2)解方程:235(21)0x x ++=.24.文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适? (2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支? 25.如图,把一张矩形纸片ABCD 沿对角线BD 向上折叠,点C 的对应点为C ',请利用尺规作图作出折叠后的DBC '.(保留作图痕迹,不写作法)26.已知:如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、AB 上的点,且CE BF =,连接DE 、CF ,两线相交于点P ,过点E 作EG DE ⊥,且EG DE =,连接FG .(1)若5DE =,求FG 的长.(2)若点E 、F 分别是BC 、AB 延长线上的点,其它条件不变,试判断FG 与CE 的关系,并予以证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先画树状图得出所有等可能结果,然后从中找到符合条件的结果数,再根据概率公式求解可得. 【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中恰为“天”、“空”的有2种结果,∴恰为“天”、“空”的概率为21126=, 故选:D . 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2.B解析:B 【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率. 【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7; 其中能构成三角形的有2、6、7;4、6、7这两种情况, 所以能构成三角形的概率是2142=, 故选:B . 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.构成三角形的基本要求为两小边之和大于最大边.3.B解析:B 【分析】分别分析各选项的题设是否能推出结论,即可得到答案. 【详解】解:1x -x 取值范围是1x ≥,故选项A 命题错误; B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确; C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D命题错误;故答案为B.【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.4.B解析:B【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是21 63 =,故选B.【点睛】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.5.B解析:B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.6.D解析:D【分析】确定a、b、c计算根的判别式,利用根的判别式直接得出结论;【详解】∵20x x+=,∴ △=1-0=1>0,∴ 原方程有两个不相等的实数根; 故选:D . 【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.7.A解析:A 【分析】根据新定义运算法则以及利用△>0可判断方程根的情况. 【详解】解:由题意可知:1☆x=x 2-x-1=0, ∴△=1-4×1×(-1)=5>0, ∴有两个不相等的实数根 故选:A . 【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.C解析:C 【分析】先将方程整理为一般形式,计算0∆>,得到方程有两个不相等的实数根,再根据两根之积为负数即可求解. 【详解】解:整理关于x 的方程()()223x x a -+=得2260x x a +--=,∴()22214162540aa ∆=-⨯⨯--=+>,∴方程有两个不相等的实数根,∴212601a x x --=<,∴方程了两个根一正一负. 故选:C 【点睛】本题考查了一元二次方程根的判别式和根与系数的关系,熟知两个知识点是解题关键,注意在讨论一元二次方程根与系数的关系时首先要注意确保方程有实根.9.C解析:C 【分析】利用菱形的性质即可计算得出BC 的长,再根据面积法即可得到AE 的长,最后根据勾股定理进行计算,即可得到BE的长,进而得出结论.【详解】解:∵四边形ABCD是菱形,∴CO=12AC=3,BO=12BD=4,AO⊥BO,∴BC=22CO BO+=2234+=5,∵S菱形ABCD=12AC•BD=BC×AE,∴AE=16825⨯⨯=245.在Rt△ABE中,BE=22AB AE-=22245()5-=75,∴CE=BC﹣BE=5﹣75=185,∴775==18185BECE的值为718,故选:C.【点睛】本题主要考查了菱形的性质以及勾股定理的运用,关键是掌握菱形性质:四条边都相等、对角线互相垂直平分.10.C解析:C【分析】分析已知条件,根据轴对称图形的性质结合图形对题中小问题的条件进行分析,选出正确答案,其中③是无法证明是正确的.【详解】解:如图所示:∵直线l是四边形ABCD的对称轴,∴AB=AD,BC=DC,∠1=∠2,∠3=∠4,又∵AD∥BC,∴∠2=∠3, ∴∠1=∠4,∴AB ∥CD ,故①正确; ∴四边形ABCD 是菱形; ∴AB=CD ,故②正确; ∵四边形ABCD 是菱形; ∴AO=OC ,故④正确.∵当四边形ABCD 是菱形时,直线l 是四边形ABCD 的对称轴,但是AB 与BC 不一定垂直,故③错误; 故选:C . 【点睛】主要考查了轴对称的性质及菱形的性质与判定;证明四边形是菱形是正确解答本题的关键.11.B解析:B 【分析】根据直角三角形斜边上的中线性质得出CM =12AB ,代入求出即可. 【详解】 ∵AC ⊥BC , ∴∠ACB =90°, ∵M 为AB 的中点, ∴CM =12AB , ∵AB =4.8km , ∴CM =2.4km , 故选:B . 【点睛】本考考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM =12AB 是解此题的关键. 12.A解析:A 【分析】连接AC 、BD ,由菱形的性质得出5AB =,122OB OD BD ===,OA OC =,AC BD ⊥,由勾股定理求出OA ,得出AC =性质判断出阴影部分的面积等于菱形的面积的一半解答. 【详解】解:连接AC 、BD ,如图所示:菱形ABCD 的边长是5,O 是两条对角线的交点,4BD =,5AB ∴=,122OB OD BD ===,OA OC =,AC BD ⊥,22225221OA AB OB ∴=--2221AC OA ∴== ∴菱形ABCD 的面积11221442122AC BD =⨯=⨯= O 是菱形两条对角线的交点,∴阴影部分的面积12=菱形ABCD 的面积221;故选:A .【点睛】本题考查了菱形的性质,中心对称,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键. 二、填空题13.【分析】先根据一元二次方程有实数解得出m 的取值范围在根据抽取原则得出的所有可能得数再用概率公式求解即可【详解】解:若一元二次方程实数解则即当时有b 四种情况012那么当时有b 四种情况012那么当时有b解析:1116【分析】先根据一元二次方程有实数解得出m 的取值范围,在根据抽取原则得出+a b 的所有可能得数,再用概率公式求解即可.【详解】解:若一元二次方程232102m x x ⎛⎫-++= ⎪⎝⎭实数解, 则3002m ⎛⎫-≠∆≥ ⎪⎝⎭,, 即3522m m ≠≤,, 当12a =-时,有b 四种情况12-,0,1,2,那么1131222a b a b a b a b +=-+=-+=+=,,,, 当0a = 时,有b 四种情况12-,0,1,2, 那么10122a b a b a b a b +=-+=+=+=,,,,当1a = 时,有b 四种情况12-,0,1,2, 那么11232a b a b a b a b +=+=+=+=,,,, 当2a = 时,有b 四种情况12-,0,1,2, 那么32342a b a b a b a b +=+=+=+=,,,, ∵a b m +=, 满足3522m m ≠≤,条件的只有11个, 所有情况共有16种, 故一元二次方程有实数解的概率为1116. 故答案为:1116. 【点睛】 本题主要考查一元二次方程根的判别式、概率的计算等.注意概率的求法:概率=所求情况数与总情况数之比.14.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几 解析:15【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=, ∴它停在黑色区域的概率是15.故答案为:15. 【点睛】 本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.15.【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2设平均每次增长的百分率为x 根据从100吨增加到150吨即可得出方程【详解】解:设蔬菜产量的年平均增长率为x 则可列方程为100(1+x )2=解析:()21001150x +=【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2,设平均每次增长的百分率为x ,根据“从100吨增加到150吨”,即可得出方程.【详解】解:设蔬菜产量的年平均增长率为x ,则可列方程为100(1+x )2=150,故答案为:()21001150x +=.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于熟知两次增长后的产量=增长前的产量×(1+增长率)2,根据条件列出方程. 16.【分析】根据a 与b 为方程的两根把x =a 代入方程并利用根与系数的关系求出所求即可【详解】解:∵ab 为一元二次方程的两根∴即a+b =2020则原式=(a2-2020a )﹣(a+b )=2021﹣2020=解析:1【分析】根据a 与b 为方程的两根,把x =a 代入方程,并利用根与系数的关系求出所求即可.【详解】解:∵a ,b 为一元二次方程2202020210x x --=的两根,∴2202020210a a --=,即220202021a a -=,a +b =2020,则原式=(a 2-2020a )﹣(a +b )=2021﹣2020=1.故答案为:1.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.17.4【分析】先由根与系数的关系求出m•n 及m +n 的值再把化为的形式代入进行计算即可【详解】是一元二次方程的两实数根故答案为:4【点睛】本题考查的是根与系数的关系将根与系数的关系与代数式变形相结合解题是 解析:4【分析】先由根与系数的关系求出m•n 及m +n 的值,再把化为11m n m n mn++=的形式代入进行计算即可.【详解】 m ,n 是一元二次方程2410x x -=+的两实数根,4,1m nm n , 11441m nm n mn. 故答案为:4【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系为:x 1+x 2=−b a ,x 1•x 2=c a. 18.5【分析】先根据菱形的性质得到AC ⊥BDOB =OD =BD =4OC =OA =AC =3再利用勾股定理计算出BC 然后根据直角三角形斜边上的中线性质得到OH 的长【详解】∵四边形ABCD 为菱形AC =6BD =8∴解析:5【分析】先根据菱形的性质得到AC ⊥BD ,OB =OD =12BD =4,OC =OA =12AC =3,再利用勾股定理计算出BC ,然后根据直角三角形斜边上的中线性质得到OH 的长.【详解】∵四边形ABCD 为菱形,AC =6,BD =8,∴AC ⊥BD ,OB =OD =12BD =4,OC =OA =12AC =3,在Rt △BOC 中,BC 5,∵H 为BC 中点,∴OH =12BC =2.5. 故答案为:2.5.【点睛】本题考查菱形的性质、勾股定理及直角三角形斜边中线的性质,菱形的对角线互相垂直且平分;直角三角形斜边的中线等于斜边的一半;熟练掌握相关性质是解题关键. 19.2【分析】连接BP 根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =S △ABP +S △BPC =AB•PE +BC•PE 把相应的值代入即可【详解】解:连接BP ∵四边形ABCD 是菱形解析:2【分析】连接BP ,根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =12ABCD S 菱形,S △ABP +S △BPC =12AB•PE +12BC•PE 把相应的值代入即可. 【详解】解:连接BP ,∵ 四边形ABCD 是菱形,且周长是12cm ,面积是6cm 2∴AB =BC =14×12=3(cm ), ∵AC 是菱形ABCD 的对角线, ∴ S △ABC =S △ABP +S △BPC =12ABCD S 菱形=3(cm 2), ∴S △ABP +S △BPC =12AB•PE +12BC•PE =3(cm 2), ∴12×3×PE +12×3×PF =3, ∴PE +PF =3×23=2(cm ), 故答案为:2.【点睛】 此题考查菱形的性质,S △ABP +S △BPC =S △ABC =12ABCD S 菱形是解题的关键.注意掌握辅助线的作法和数形结合思想的应用. 20.【分析】过点作轴于过点作轴过点作交CE 的延长线于先证明得到根据点的坐标定义即可求解【详解】解:如图过点作轴于过点作轴过点作交CE 的延长线于四边形是正方形易求又∴点的坐标为点到轴的距离为点的坐标为故答 解析:()3,1-【分析】过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .先证明AOD COE BCF ∆∆∆≌≌,得到1AD CE BF ===,2OD OE CF ===,根据点的坐标定义即可求解.【详解】解:如图,过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .()2,1C --,2OE ∴=,1CE =.四边形OABC 是正方形,OA OC BC ∴==.易求AOD COE BCF ∠=∠=∠.又90ODA OEC F ∠=∠=∠=︒∴AOD COE BCF ∆∆∆≌≌,1AD CE BF ∴===,2OD OE CF ===,∴点A 的坐标为()1,2-,211EF =-=,点B 到y 轴的距离为123+=,∴点B 的坐标为()3,1-.故答案为:()3,1-【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.三、解答题21.49. 【分析】 画出树状图得出所有等可能的情况数,再找出甲乙两人选择同款套餐的情况数,然后根据概率公式求解即可.【详解】解:根据题意画图如下:所有等可能的情况有9种,小明同学抽出的两张卡片都是冰墩墩的有4种,小明同学抽出的两张卡片都是冰墩墩卡片的概率为:4 9【点睛】本题考查概率问题,掌握概率的意义,树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式求出事件A的概率.22.()112;()2公平,理由见解析【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色相不同的情况数,再利用概率公式即可求得答案;(2)求出两次摸出的棋子颜色相同的概率,通过比较即可.【详解】解:(1)根据题意画图如下:∵共有16种等可能的结果,其中两次摸出的棋子颜色相同有8种情况,两次摸出的棋子颜色不同的有8种情况,∴两次摸出的棋子颜色不同的概率为:81162=,(2)由(1)可知,两次摸出的棋子颜色不相同的概率是81 162=,∴这个游戏对双方是公平的.【点睛】本题考查了概率及游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.利用列举法求出概率是解题关键.23.(1)无解;(2)153x -=,253x -=. 【分析】 (1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程整理后,求出24b ac -的值,再代入公式进行计算,即可求出方程的解.【详解】解:(1)11222x x x-+=-- 去分母,得12(2)1x x -+-=-, 去括号,得1241x x -+-=-,解得:2x =,经检验:2x =是增根,所以原分式方程无解.(2)235(21)0x x ++=,整理得:231050x x ++=,∵3a =,10b =,5c =,∴241006040b ac -=-=>0,∴10563x -±-±==,则原方程的解为153x -+=,253x -=. 【点睛】此题考查了解分式方程与一元二次方程,熟练掌握分式方程的解法与公式法解一元二次方程是解答本题的关键.24.(1)0.3元;(2)2600支【分析】(1)首先求出原利润,再由现在利润=销量×(销售单价-批发价),进而得出等式方程即可解答.(2)利用(1)中所求得出单价,进而求出销量,即可得出总销量.【详解】解:(1)设铅笔的单价降了x 元,则()()0.40.2400200.40.240075%0.01x x ⎛⎫--+⨯=-⨯⨯ ⎪⎝⎭ 解之,得:1110x =,2110x =-(舍去), ∴定价:0.40.10.3-=(元);(2)0.14002400203800180026000.01⎛⎫⨯++⨯⨯=+= ⎪⎝⎭(支). 答:这批铅笔有2600支.【点睛】此题主要考查了一元二次方程的应用,利用利润=销量×(销售单价-批发价)得出是解题关键.25.见解析.【分析】作∠C′BD=∠CBD ,且截取BC′=BC ,连结DC′即可得.【详解】解:如图,作∠C′BD=∠CBD ,且截取BC′=BC ,连结DC′,【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形性质.26.(1)FG=3;(2)GF EC =,//GF EC ,理由见解析【分析】(1)首先证明四边形GECF 是平行四边形得FG=CE ,再依据勾股定理求出CE 的长即可得到结论;(2)证明四边形GECF 是平行四边形即可得到结论.【详解】(1)解:四边形ABCD 是正方形BC CD ∴=90B BCD ∠=∠=︒BF CE =BCF CDE ∴∆≅∆DE CF ∴=,BCF CDE ∠=∠90BCF DCP ∠+∠=︒90CDF DCP ∴∠+∠=︒90CPD ︒∴∠=即DE CF ⊥DE EG ⊥//CF EG ∴EG DECF EG ∴=∴四边形GECF 是平行四边形 FG EC ∴=5DE =4CD =90DCE ∠=︒3CE ∴=3FG ∴=(2)GF EC =,//GF EC 理由:延长FC 交DE 于点M .四边形ABCD 是正方形 BC CD ∴=90ABC DCB ∠=∠=︒ 90CBF DCE ∴∠=∠=︒ BF CE =BCF CDE ∴∆≅∆ CF DE ∴=BCF CDE ∠=∠90BCF DCM ∠+∠=︒ 90CDE DCM ∴∠+∠=︒ CM DE ∴⊥DE EG ⊥EG DE =//CF EG ∴CF BG =∴四边形EGFC 是平行四边形∴=GF ECGF EC//【点睛】本题主要考查了全等三角形的判定与性质,平行四边形的判定与性质.解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

湘教版九年级数学上册期中考试【参考答案】

湘教版九年级数学上册期中考试【参考答案】

湘教版九年级数学上册期中考试【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )A B C D 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.下列计算正确的是( )A .a 2+a 3=a 5B .1=C .(x 2)3=x 5D .m 5÷m 3=m 2 4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.因式分解:3222x x y xy +=﹣__________. 3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=_________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,点C 为△ABD 外接圆上的一动点(点C 不在BD 上,且不与点B ,D 重合),∠ACB=∠ABD=45°.(1)求证:BD 是该外接圆的直径;(2)连结CD ,求证:AC=BC+CD ;(3)若△ABC 关于直线AB 的对称图形为△ABM ,连接DM ,试探究222DM AM BM ,,,三者之间满足的等量关系,并证明你的结论.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、B7、C8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、()2x x y -3、增大.4、55、x ≤1.6、10三、解答题(本大题共6小题,共72分)1、原方程无解.2、11m m +-,原式=.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-. 4、(1)详略;(2)详略;(3)DM 2=BM 2+2MA 2,理由详略.5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

湘教版九年级(上)期中数学试卷(含解析)

湘教版九年级(上)期中数学试卷(含解析)

九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.下列多边形一定相似的是()A.两个矩形B.两个五边形C.两个正方形D.两个等腰三角形2.若x是a,b的比例中项,则下列式子错误的是()A.x2=ab B.C.D.ab=3.已知,则下列等式中不成立的是()A.B.C.D.4.对抛物线:y=x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向下C.顶点坐标是(1,﹣2)D.与y轴的交点是(0,3)5.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个6.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃B.28℃C.30℃D.37℃7.在下列抛物线中,开口最小的是()A.y=﹣x2B.y=﹣x2C.y=x2D.y=x28.若方程ax2+bx+c=0(a>0)的两个根是﹣3和1,则对于二次函数y=ax2+bx+c,当y>0时,x的取值范围是()A.﹣3<x<1B.x<﹣3或x>1C.x>﹣3D.x<19.已知点A(x1,4),B(x2,8)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x110.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.11.把抛物线y=﹣2x2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣2)2+7B.y=﹣2(x﹣2)2+1C.y=﹣2(x+2)2+7D.y=﹣2(x+2)2+112.抛物线y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①b2<4ac;②abc<0:③4a+b=0;④a+b+c>0⑤当y=2时,x只能等于0.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分,请将答案填在指定的空格内)13.已知函数y=(2﹣k)x2+kx+1是二次函数,则k满足.14.已知:x:y=2:5,那么(x+y):y=.15.反比例函数,当x>0时,y随x增大而减小,k的取值范围.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),则a2﹣a+2020=.17.一名男生参加抛实心球测试,已知球的高度y(m)与水平距离x(m)之间的关系是,则这名男生抛实心球的成绩是m.18.过反比例函数y=(k≠0)图象上一点A,分别作x轴和y轴的垂线段,垂足分别为B、C,如果△ABC的面积是6,则k的值为.三、解答题(本大题共8小题,共66分,解答题应写出文字说明、证明过程或演算步骤)19.(6分)已知a:b:c=3:2:1,且2a﹣3b+c=10,求a+2b﹣3c的值.20.(6分)如图,在△ABC中,DE∥BC,AB=15,AE:EC=3:2,求DB的长.21.(6分)已知抛物线的对称轴是直线x=1,函数的最小值是﹣1,且图象经过点(3,1),求此抛物线的函数关系式.22.(8分)已知y与x+1成反比例,且当x=1时,y=2,求当x=0时,y的值.23.(8分)已知:在△ABC中,CD为∠C的平分线.求证:.24.(10分)已知反比例函数y1=与一次函数y2=k2x的图象如图所示.(1)求点B的坐标;(2)请直接写出y1>y2时,x的取值范围.25.(10分)某水果商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查显示,若每箱以50元的价格销售,平均每天可销售90箱,价格每提高1元,则平均每天少销售3箱.(1)求平均每天销售利润w(元)与销售价x(元箱)之间的函数关系式,并直接写出自变量x的取值范围.(2)当每箱的售价为多少元时,可以获得最大利润?最大是多少元?26.(12分)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交F点A(4,0).(1)求抛物线的解析式;(2)若点P为抛物线上任意一点,是否存在点P使得△AOP的面积为4?若存在,求出点P的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

湘教版九年级数学上册期中考试及答案【完整版】

湘教版九年级数学上册期中考试及答案【完整版】

湘教版九年级数学上册期中考试及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52是一个很奇妙的数,大量应用于艺术、建筑和统计决策等1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或97.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.15B.16C.17D.188.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是____________.2.分解因式:x 3﹣4xy 2=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.计算:()011342604sin π-----+().3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、B5、A6、A7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、42、x (x+2y )(x ﹣2y )3、-124、30°5、6、.三、解答题(本大题共6小题,共72分)1、x =52、33、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)略;(2)45°;(3)略.5、(1)200、81°;(2)补图见解析;(3)136、(1)y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)当x=80时,y 最大值=4500;(3)70≤x ≤90.。

湘教版九年级上册数学期中考试试卷附答案解析

湘教版九年级上册数学期中考试试卷附答案解析

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.线段a 、b 、c 、d 是成比例线段,a=4、b=2、c=2,则d 的长为( )A .1B .2C .3D .42.下列说法正确的是( )A .方程ax 2+bx +c =0是关于x 的一元二次方程B .方程3x 2=4的常数项是4C .若一元二次方程的常数项为0,则0必是它的一个根D .用配方法解一元二次方程y 2﹣2y ﹣2019=0,可化为(y ﹣1)2=20183.已知m 是方程220x x --=的一个根,则代数式()23m m -+=A .2-B .1C .0D .5 4.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0 B .b <a <0 C .a <0<b D .b <0<a 5.如图,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,已知AB =5,BC =10,DE =4,则DF 的长为( )A .12.5B .12C .8D .46.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x)=182D .50+50(1+x)+550(1+x )²=182 7.已知A 、B 两地的实际距离AB=5km ,画在图上的距离=2cm ,则该地图的比例尺为( ) A .2:5 B .1:2500 C .1:250000 D .250000:1 8.两地的距离是500米,地图上的距离为10厘米,则这张地图的比例尺为( )A.1:50 B.1:500 C.1:5000 D.1:500009.若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣21kx+的图象上,则下列判断中正确的是()A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y110.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035二、填空题11.方程x2=9x的解是______.12.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.13.如图,点P是反比例函数图象上的一点,过点P向x轴作垂线,垂足为M,连结PO,若阴影部分面积为6,则这个反比例函数的关系式是________.14.若反比例函数()251my m x-=+的图象在第二、四象限,则m=________.15.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),AB=点A在y轴上,反比例函数经过点B,求反比例函数解析式______.16.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)三、解答题17.用适当的方法解方程:(1)22350x x +-= (2)()()22312x x +=-18.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a .根据该材料解题: 已知x 1、x 2是方程2x 2+6x +3=0的两实数根.(1)求:2212x x + (2)2112x x x x +19.蓄电池的电压为定值,使用此电源时,电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R =10Ω时,求电流I (A ).20.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE BC ∥,EF AB ∥,且AD :DB =3:5,求CF CB.21.若234x y z ==,且x +2y +z =36,分别求x 、y 、z 的值.22.如图,直线y 1=3x ﹣5与反比例函数y 2=1k x-的图象相交A (2,m ),B (n ,﹣6)两点,连接OA ,OB .(1)求k 和n 的值;(2)求△AOB 的面积;(3)直接写出y 1> y 2时自变量x 的取值范围.23.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?24.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0(1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.25.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=kx的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=kx的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.参考答案1.A【解析】试题分析:根据成比例线段的概念,得a:b=c:d,再根据比例的基本性质,可求得d的值.解:∵a、b、c、d是成比例线段,∴a:b=c:d,即4:2=2:d,∴d=1;故选A.考点:比例线段.2.C【分析】根据一元二次方程的概念,方程的解的概念以及配方法解一元二次方程的一般步骤对选项进行判断即可.【详解】解:A、当a=0时,此方程不是一元二次方程,故此选项错误;B、化为一般形式为3x2-4=0,所以常数项是-4,故此选项错误;C、一元二次方程常数项为0时,方程为ax2+bx=0(a≠0),当x=0时,左边=右边,所以0必是此方程的一个根,故此选项正确;D、y2﹣2y﹣2019=0,配方得(y﹣1)2=2020,故此选项错误.故选C.【点睛】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.D【详解】∵m是方程220x x--=的一个根,∴220m m--=,即22m m-=,∴23235m m-+=+=.故选D.4.A【详解】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A .5.B【分析】根据平行线分线段成比例定理得到比例式,代入已知数据计算即可.【详解】解:∵AD ∥BE ∥CF , ∴AB DE BC EF =, 即5410EF=, 解得EF =8,∴DF =DE +EF=4+8=12.故选:B .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、列出比例式是解题的关键. 6.B【分析】先根据平均每月的增长率求出该厂五.六月份生产的零件数量,再根据“第二季度共生产零件182万个”列出方程即可.【详解】由题意得:该厂五、六月份生产的零件数量分别为50(1)x +万个、250(1)x +万个 则25050(1)50(1)182x x ++++=故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意,正确求出该厂五、六月份生产的零件数量是解题关键.7.C【解析】∵5千米=500000厘米,∴比例尺=2:500000=1:250000;故选C.8.C【解析】【分析】根据“比例尺=图上距离:实际距离”求解即可.【详解】500米=50000厘米;10:50000=1:5000,故选C .【点睛】本题考查了比例的知识,解题的关键是了解比例尺的求法,难度不大.9.B【分析】先根据反比例函数中,k 2+1>0,可知-( k 2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数的,-( k 2+1)<0,∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y 随x 的增大而增大. ∵-2<-1<0,∴点()12,y -、()21,y -位于第二象限,且在第二象限内y 随x 的增大而增大,∴y 2>y 1>0,又∵1>0,∴点()31,y 位于第四象限,∴y 3<0,∴y 3<y 1<y 2.故选择B.【点睛】本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.10.C【解析】∵全班有x 名同学,∴每名同学要送出(x ﹣1)张;又∵是互送照片,∴总共送的张数应该是x (x ﹣1)=1035.故选:C .11.10x =,29x =【分析】方程x 2=9x 移项,得x 2-9x =0,再运用因式分解法求出方程的解即可.【详解】解:移项,得x 2-9x =0,x (x -9)=0,所以x =0或x -9=0,所以x 1=0,x 2=9.故答案为x 1=0,x 2=9.【点睛】本题考查了一元二次方程的解法—因式分解法,将方程转化为一般形式是解决此题的关键.12.k <2且k≠1【详解】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.13.12y x=-【解析】【分析】根据反比例函数y=kx(k≠0)系数k的几何意义得到12|k|=6,然后去绝对值去掉满足条件的k的值,从而得到反比例函数解析式.【详解】∵过点P向x轴作垂线,垂足为M,∴S△OPM=12|k|,∴12|k|=6,而k<0,∴k=﹣12,∴反比例函数解析式为y=﹣12x.故答案为y=﹣12x.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14.2-【解析】【分析】根据反比例函数的定义先求出m的值,再根据反比例函数的性质即可求解.【详解】由题意可知:m2﹣5=﹣1,m+1≠0,∴m=±2.∵该函数的图象在第二、四象限内,∴m+1<0,∴m=﹣2.故答案为﹣2.【点睛】本题考查了反比例函数的性质和定义的知识点,首先将反比例函数解析式的一般式k yx =(k≠0),转化为y=kx﹣1(k≠0)的形式,根据反比例函数的定义条件可以求出m的值.特别注意不要忽略k≠0这个条件.并且反比例函数图象所在的象限,是由反比例系数k的符号确定.15.y【分析】过点B 作BD ⊥x 轴于点D ,在Rt △ABC 中利用勾股定理求出AC 的长,在Rt △OAC 中利用勾股定理求出OA 的长,然后证明△OAC ≌DCB ,可得BD ,CD 的长,即可得点B 的坐标,最后利用待定系数法即可求出反比例函数的解析式.【详解】解:过点B 作BD ⊥x 轴于点D ,在Rt △ABC 中,AC =BC ,AB=由勾股定理可得AC =BC =2,∵点C 的坐标为(1,0),∴OC =1,在Rt △OAC 中,OA∵∠OCA +∠DCB =90°,∠OCA +∠OAC =90°,∴∠OAC =∠DCB ,在△OAC 和△DCB 中,90OAC DCBAOC CDB AC CB∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△OAC ≌△DCB ,∴CD =OABD =OC =1,∴OD =CD +OC,即点B,1).设反比例函数的解析式为y =kx ,则,解得k ,所以反比例函数的解析式为y故答案为:y 【点睛】本题综合考查了勾股定理,全等三角形和待定系数法求反比例函数的解析式,根据勾股定理和全等三角形得出点B 的坐标是解决此题的关键.16.∠B=∠1或AE AD AC AB = 【分析】此题答案不唯一,注意此题的已知条件是:∠A =∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC =. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC =,∠A =∠A , ∴△ADE ∽△ABC ;故答案为∠B =∠1或AD AE AB AC= 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.17.(1)11x =;252x =-;(2)1x =23-,2x =4. 【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a =2,b =3,c =-5,△=32-4×2×(-5)=49>0,所以x1=1,x152-;(2)()()22312x x+=-()()223120x x+--=[(x+3)+(1-2x)] [(x+3)-(1-2x)]=0(-x+4)(3x+2)=0所以3x+2=0或-x+4=0,解得x1=23-,x2=4.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.18.(1)22126x x+=;(2)2112x xx x+=4【分析】根据根与系数的关系求得两根之和与两根之差,然后把所求式子转化成用两根之和与两根之差表示,最后代入求值即可.【详解】(1)解:因为x1、x2是方程2x2+6x+3=0的两实数根,所以x1+x2=-62=-3,x1·x2=32,所以2212x x+=( x1+x2)2-2 x1·x2=( -3)2-2×32=6;(2)2112x xx x+=221212x xx x⋅+=632=4.【点睛】本题考查了一元二次方程根与系数的关系,难度中等,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.19.(1)36I R =;(2)3.6A . 【分析】(1)利用待定系数法即可得出答案;(2)把R=10代入函数解析式即可求出电流I 的值.【详解】解:(1)由电流I (A )是电阻R (Ω)的反比例函数,设k I R =(k ≠0), 把(4,9)代入得:k =4×9=36, ∴36I R=. (2) 当R =10Ω时,3610I ==3.6A . 【点睛】本题主要考查了用待定系数法求反比例函数的解析式,设出函数解析式,然后代入点的坐标是解决此题的关键.20.58CF CB = 【分析】根据平行线分线段成比例定理,由DE ∥BC 得到AE :EC =AD :DB =3:5,则利用比例性质得到CE :CA =5:8,然后利用EF ∥AB 可得到CF :CB =5:8.【详解】解:∵DE ∥BC ,∴AE :EC =AD :DB =3:5,∴CE :CA =5:8,∵EF ∥AB ,∴CF :CB =CE :CA =5:8. 即58CF CB =. 【点睛】本题考查了平行线分线段成比例:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.21.x =6,y =9,z =12【分析】 设234xy z ===k ,可得x =2k ,y =3k ,z =4k ,然后代入x +2y +z =36中求出k 的值,即可得出答案. 【详解】 解:设234xy z ===k , ∴x =2k ,y =3k ,z =4k ,代入x +2y +z =36得:2k +6k +4k =36,解得:k =3,所以x =6,y =9,z =12.【点睛】设连等式等于一个常数,然后得到x ,y ,z 与这个常数的关系式是解答本题的关键.22.(1)k =3,n =;(2)13-;(3)103x -<< 或 x >2. 【分析】(1)把A ,B 的坐标代入直线的解析式求出m ,n 的值,再把B 点坐标代入反比例函数解析式求出k 的值;(2)先求出直线与x 轴、y 轴的交点坐标,再求出即可.(3)由图象可知取一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:(1)∵点B (n ,﹣6)在直线y =3x ﹣5上.∴-6=3n -5,解得:n =13-. ∴B (13-,-6); ∵反比例函数k 1y x -=的图象也经过点B (13-,-6), ∴k -1=-6×(13-)=2,解得:k =3; (2)设直线y =3x ﹣5分别与x 轴,y 轴相交于点C ,点D ,当y =0时,即3x ﹣5=0,x =53,∴OC =53, 当x =0时,y =3×0-5=-5, ∴OD =5,∵点A (2,m )在直线y =3x ﹣5上,∴m =3×2-5=1,即A (2,1). 155135(155)23336AOB AOC COD BOD S S S S ∴=++=⨯⨯+⨯+⨯=. (3)由图象可知y 1> y 2时自变量x 的取值范围为:103x -<< 或 x >2.【点睛】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.23.应该降价20元.【解析】【分析】设每件童装应降价x 元,那么就多卖出2x 件,根据每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解.【详解】设每件童装应降价x 元,由题意得:()()402021200x x -+=,解得:10x =或20x =.因为减少库存,所以应该降价20元.【点睛】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.24.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.25.(1)证明见解析;(2)反比例函数的解析式为20yx;(3)M点的坐标为8(0,)3.【详解】试题分析:(1)由A(0,4),B(-3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD 为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N 的横坐标,代入反比例函数解析式,即可求得点N 的坐标,继而求得M 点的坐标.试题解析:(1)∵A (O ,4),B (-3,0),C (2,0),∴OA =4,OB =3 ,OC =2,∴5AB ==,BC =5,∴AB =BC .∵D 为B 点关于AC 的对称点,∴AB=AD ,CB=CD ,∴AB=AD=CD=CB .∴四边形ABCD 为菱形.(2)∵四边形ABCD 为菱形,∴D 点的坐标为(5,4),反比例函数ky x =的图象经过D 点, ∴45k=,∴k =20,∴反比例函数的解析式为20y x =.(3)∵四边形ABMN 是平行四边形,∴AN ∥BM ,AN=BM ,∴AN 是BM 经过平移得到的.∴首先BM 向右平移了3个单位长度,∴N 点的横坐标为3,代入20y x =,得203y =,∴M 点的纵坐标为208-433=,∴M 点的坐标为80,3⎛⎫⎪⎝⎭.。

湘教版九年级数学上册期中试卷(参考答案)精选全文完整版

湘教版九年级数学上册期中试卷(参考答案)精选全文完整版

可编辑修改精选全文完整版湘教版九年级数学上册期中试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣6的倒数是()A.﹣16B.16C.﹣6 D.62.已知x+1x=6,则x2+21x=()A.38 B.36 C.34 D.323.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.16.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A .B .C .D .8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.分解因式:3x -x=__________.3.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________. 4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,在ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若ECF △的面积为1,则四边形ABCE 的面积为________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、A6、B7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、x(x+1)(x-1)3、74、425、36、(,6)三、解答题(本大题共6小题,共72分)1、4x=2.3、(1)略;(2)略.4、(1)略;(2)AC5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)超市B型画笔单价为5元;(2)4.5,120410,20x xyx x⎧=⎨+>⎩,其中x是正整数;(3)小刚能购买65支B型画笔.。

湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数:①y =2x ,②y =15x ,③y =x ﹣1,④y =11x +.其中,是反比例函数的有() A .0个 B .1个 C .2个 D .3个 2.如图,点C 是线段AB 的黄金分割点,则下列各式正确的是( )A .AC AB BC AC = B .BC AC AB BC= C .AC AB AB BC = D .BC AC AB AB = 3.若250y x -=,则x y :等于( )A .2:5B .4:25C .5:2D .25:4 4.若反比例函数y=1k x -的图象位于第二、四象限,则k 的取值可以是( ) A .0B .1C .2D .以上都不是5.已知sin =αα是锐角,则α∠的度数是( ) A .30° B .45° C .60° D .90°6.关于反比例函数y =2x的图象,下列说法正确的是( ) A .图象经过点(1,1) B .当x <0时,y 随x 的增大而减小 C .图象的两个分支关于x 轴成轴对称 D .图象的两个分支分布在第二、四象限 7.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP AB AB AC =D .AB AC BP CB= 8.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)9.如图,双曲线y=kx与直线y=﹣12x交于A、B两点,且A(﹣2,m),则点B的坐标是A.(2,﹣1)B.(1,﹣2)C.(12,﹣1)D.(﹣1,12)10.关于x的函数y=k(x+1)和y=kx(k≠0)在同一坐标系中的图象大致是()A.B.C.D.11.反比例函数y=6x与y=3x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.32B.2 C.3 D.112.若函数y=(m﹣1)x|m|﹣2是反比例函数,则m的值是()A.m=﹣1 B.m=1 C.m=﹣1或m=1 D.m=﹣2或m=2二、填空题13.若反比例函数y =k x的图象经过点(-1,2),则k 的值是________. 14.(1)在△ABC 中,∠C =90°,sin A =12,则cos B =_____;(2)已知α为锐角,且cos (90°﹣α)=12,则a =_____;(3(α+10°)=1,则锐角a =_____. 15.在△ABC中,若2sin cos 0A B ⎫=⎪⎪⎝⎭,∠A 、∠B 都是锐角,则∠C 的度数为_______.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为___米.17.如果点A (﹣2,y 1),B (﹣1,y 2),C (2,y 3)都在反比例函数y= k x(k >0)的图象上,那么y 1 , y 2 , y 3的大小关系是________(请用“<”表示出来)18.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为1:2,把△EFO 缩小,则点E 的对应点E ′的坐标是______.三、解答题19.计算(1)0112()2-+ (2)cos 45sin 301cos 60tan 452︒︒︒︒-+.20.如图,O 是CD 的中点.以O 为位似中心,用直尺和圆规作四边形ABCD的一个位似图形,使四边形ABCD的边长放大到原来的2倍.(保留作图痕迹,不必写出作法)21.以点O为位似中心,作出四边形ABCD的位似图形,使得所作图形与原图形的位似比为2:1.22.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c(1)已知a=6,b=(2)已知∠B=45°,a+b=6,解这个直角三角形,c=6,解这个直角三角形.(3)已知sin A=1223.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)请你根据位似的特征并结合点B的坐标变化回答下列问题:①若点A(52,3),则A′的坐标为______;②△ABC与△A′B′C′的相似比为______;(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)24.如图,四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=12,CD=AD 的长.25.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与周长.26.如图,已知反比例函数y1=kx的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求反比例函数和一次函数的表达式;(2)求△OAB 的面积;(3)直接写出y 2>y 1时自变量x 的取值范围.27.如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 是安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪AB 的高为1.5米,求拉线CE ,结果精确到0.1米)28.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.参考答案1.C【解析】 此题应根据反比例函数的定义,解析式符合()0k y k x =≠的形式为反比例函数. 【详解】解:①是正比例函数,故A 选项错误;②是反比例函数,故B 选项正确;③是反比例函数,故C 选项正确;④y 是x+1的反比例函数,故D 选项错误.故选:C .【点睛】 本题考查了反比例函数的定义,重点是将一般()0k y k x=≠转化为y=kx -1(k≠0)的形式. 2.B【分析】根据黄金分割性质即可解题.【详解】∵点C 是线段AB 的黄金分割点,由图可知,AC 为较短边, ∴BC AC AB BC =【点睛】本题考查了黄金分割的性质,属于简答题,熟悉黄金分割的性质是解题关键.3.A【详解】∵250y x -=,∴25y x =,∴:2:5=x y .故选A .4.A【详解】∵反比例函数y=1k x -的图象位于第二、四象限, ∴k ﹣1<0,即k <1.故选A .5.C【分析】根据60° 【详解】解:∵sin αα是锐角, ∴α=60°,故选C .【点睛】本题考查了特殊角的三角函数值,是需要熟记的知识点.6.B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k 可得A 错误;根据反比例函数y=kx (k≠0)的图象是双曲线,当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小可得B 正确、D 错误;根据反比例函数图象关于原点成中心对称可得C 错误.解:A、1×1=1≠2,因此反比例函数y=2x的图象不过(1,1),故此选项错误;B、∵k=2>0,∴在图象每一支上,y随x的增大而减小,∴当x<0时,y随x的增大而减小,故此选项正确;C、图象的两个分支关于原点对称,故此选项错误;D、图象的两个分支分布在第一、三象限,故此选项错误;故选:B.【点睛】此题主要考查了反比例函数的性质,关键是掌握(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.7.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.8.A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.9.A【分析】利用待定系数法求出点A的坐标,再连立方程组求出点B的坐标即可判断.【详解】解:当x=﹣2时,y=1(2)2-⨯-=1,即A(﹣2,1),将A点坐标代入kyx =,得k=﹣2×1=﹣2,反比例函数的解析式为2yx-=,联立双曲线、直线,得212yxy x-⎧=⎪⎪⎨⎪=-⎪⎩,解得:112 1x y =-⎧⎨=⎩,2221xy=⎧⎨=-⎩,B(2,﹣1).故选A.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D【详解】试题分析:当k>0时,函数y=kx的图像在一三象限,函数y=k(x+1)=kx+k的图像经过一二三象限,所以选项A、C错误;当k<0时,函数y=kx的图像在二四象限,函数y=k(x+1)=kx+k的图像经过二三四象限,所以选项B错误,选项D正确,故选D.考点:1.一次函数图像;2.反比例函数的图像.11.A【分析】分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=32,再利用面积相减的关系求出答案.【详解】分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC =6,S△AOE=3,S△BOC=32,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣32=32.故选:A.【点睛】此题考查反比例函数的系数k的几何意义,根据函数图象作出对应的三角形或矩形,利用系数k求出对应图象的面积是解题的关键.12.A【分析】令x的指数为-1,系数不为0列式求值即可.【详解】解:由题意得:2110mm⎧-=-⎨-≠⎩,解得m=-1,故选:A.【点睛】本题考查反比例函数的定义;反比例函数解析式的一般形式y =k x(k≠0),也可转化为y=kx -1(k≠0)的形式;注意不要忽略k≠0.13.-2【分析】 由反比例函数k y x=可得=k xy ,将坐标(-1,2)代入即可得出答案. 【详解】∵反比例函数y =k x 的图象经过点(-1,2) ∴=12=2=-⨯-k xy故答案为:2-.【点睛】本题考查求反比例函数系数,熟练掌握反比例函数上的点横纵坐标之积即为k 是关键. 14.12 30° 20°【分析】(1)根据特殊角的三角函数值求出∠A 的度数,根据三角形的内角和定理求出即可;(2)根据特殊角的三角函数值求出90°-α的度数,即可求出答案;(3)求出tan (α+10°)α+10°=30°,即可得出答案. 【详解】解:(1)∵sinA=12,∴∠A=30°,∵∠C=90°,∴∠B=60°,∴cosB=12. 故答案为:12;(2)∵cos (90°-α)=12, ∴90°-α=60°,∴α=30°.故答案为:30°;(3)(α+10°)=1,∴tan (α+10°) ∴α+10°=30°,∴α=20°.故答案为:20°.【点睛】本题考查了三角形内角和定理,特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解此题的关键.15.105°【分析】已知2sin cos 0A B ⎫=⎪⎪⎝⎭,根据非负数的性质可得sin 0A =cos 0B =,即可得sin A =cos B =.根据特殊角的三角函数值求得∠A 、∠B 的度数,再利用三角形的内角和定理求∠C 得度数即可.【详解】∵ 2sin cos 0A B ⎫=⎪⎪⎝⎭,∴ sin 0A =cos 0B =即sin A =cos B . 又∵ ∠A 、∠B 均为锐角,∴ ∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴ ∠C =105°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出sin A =cos B ,解决问题时还要熟知特殊角的三角函数值. 16.5【详解】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知AB AMOC OA AM=+,即1.6AM820AM=+,解得AM=5.∴小明的影长为5米.17.y2<y1<y3【分析】利用反比例函数的增减性可比较y1、y2,再利用函数值的正负可得出y3为正数,可求得答案.【详解】∵y=kx(k>0),∴函数图象在每个象限内y随x的增大而减小,∵A(-2,y1),B(-1,y2),∴y2<y1<0,∵C(2,y3),∴y3>0,∴y2<y1<y3,故答案为y2<y1<y3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的增减性是解题的关键,即在y=kx中,当k>0时,在每个象限内y随x的增大而减小,当k<0时,在每个象限内y随x的增大而增大.18.(-2,1)或(2,-1).【分析】根据已知得出位似图形对应坐标与位似图形比的关系进而得出答案.【详解】解:∵顶点E的坐标是(-4,2),以原点O为位似中心相似比为1:2将△EFO缩小得到它的位似图形△E′F′O,∴点E′的坐标是:(12×(-4),12×2),[-12×(-4),-12×2],即(-2,1)或(2,-1).故答案为(-2,1)或(2,-1).【点睛】本题考查位似图形的性质,根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得出是解题的关键.19.(1)(212【分析】(1)先进行幂的计算,然后按照实数的混合运算顺序计算即可.(2)将特殊角的三角函数值代入,然后按照实数的混合运算顺序计算即可.【详解】解:(1)原式(2)原式=1 2211 22 +12【点睛】本题考查实数的运算能力.关键是熟记特殊角的三角函数值,并注意细心运算.20.见解析【分析】根据题意位似中心已知为O,则延长OD,OA,0B,OC,根据相似比,确定所作的位似图形的关键点D',A',B',C',再顺次连接所作各点,即可得到放大一倍的图形四边形A'B'C'D'.【详解】解:如图所示.【点睛】本题主要考查了位似图的画法,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.21.见解析【分析】根据画位似图形的一般步骤,画出图形即可.【详解】解:如图,连接DO 延长DO 到D′,使得OD′=2OD ,连接AO ,延长AO 到A′,使得OA′=2OA ,连接BO ,延长BO 到B′,使得OB′=2OB ,连接CO ,延长CO 到C′,使得OC′=2OC , 则四边形A′B′C′D′就是所1求作的四边形.【点睛】本题考查作图-位似图形,解题的关键是记住画位似图形的一般步骤,利用相似三角形的性质解决问题2倍关系,属于中考常考题型.22.(1)c =(2)3a b ==,c =(3)3a =,b =【分析】(1)直角三角形中知两边,求第三边,运用勾股定理即可(2)45B ∠=︒,即a b =,6a b +=,即可知3a b ==.再运用勾股定理即可(3)1sin 2a A c ==,其中6c =,即可求解. 【详解】解:依题意(1)在Rt ABC 中,90C ∠=︒,6a =,b =∴根据勾股定理222+=a b c 得,cc ∴=(2)45B ∠=︒,Rt ABC ∴为等腰直角三角形,6a b +=,3a b ∴==,∴根据勾股定理得,c ∴c =∴此三角形的三边分别为:a =b =6c =;(3)在ABC 中,90C ∠=︒,1sin 2a A c ∴==, 6c =,132a c ∴==, 根据勾股定理得.b =∴此三角形的三边分别为:3a =,b =6c =.【点睛】此题主要考查直角三角形勾股定理的运用,要掌握三角形“知二求三”的技巧,熟练运用勾股定理.23.(1)①(5,6),②1:2;(2)4m【分析】(1)①观察点B点和B′点的坐标得到位似比为2,然后根据此规律确定A′的坐标(5,6);②利用对应点坐标的变化即可得出相似比;(2)利用位似图形面积比等于相似比的平方进而得出答案.【详解】解:(1)①∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,∵点B(3,1),B′(6,2),∴位似比为2,∴若点A(52,3),则A′的坐标(5,6);②△ABC与△A′B′C′的相似比为1:2;故答案为(5,6),1:2;(2)∵△ABC与△A'B'C'的相似比为1:2∴ABC1A'B'C'4SS,而△ABC的面积为m,∴△A′B′C′的面积=4m.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.24.6【分析】延长DA交CB的延长线于E,根据已知条件得到∠ABE=90°,根据邻补角的定义得到∠EAB=60°,得到∠E=30°,根据直角三角形的性质即可得到结论.【详解】解:延长DA交CB的延长线于E,∵∠ABC=90°,∴∠ABE=90°,∵∠DAB=120°,∴∠EAB=60°,∴∠E=30°,∴AE=2AB=24,∵∠D=90°,∴∠C=60°,∴CD=30,∴AD=DE-AE=6.【点睛】本题考查了含30°角的直角三角形,正确的作出辅助线是解题的关键.25.(1)见解析;(2)边长为1207cm ,周长为4807cm 【分析】(1)根据四边形EFGH 是正方形,得到//EH BC ,进而得出AEH B ∠=∠,AHE C ∠=∠,即可判定AEH ABC ∽△△;(2)设正方形EFGH 的边长为x ,则DM x =,30AM x =-,根据AEH ABC ∽△△,得出D EH BC AM A =,即304030x x -=,进而解得1207x =,即可得出正方形的边长与周长. 【详解】解:(1)四边形EFGH 是正方形,//EH BC ∴,AEH B ∠∠∴=,AHE C ∠=∠,AEH ABC ∴∽;(2)如图,设AD 与EH 交于点M ,90EFD FEM FDM ∠=∠=∠=︒,∴四边形EFDM 是矩形,EF DM ∴=,设正方形EFGH 的边长为x ,则DM x =,30AM x =-,AEH ABC ∽, ∴D EH BC AM A =,即304030x x -=, 解得1207x =, ∴正方形EFGH 的边长为1207cm ,周长为4807cm .【点睛】本题主要考查了相似三角形的判定与性质,正方形、矩形的性质的综合应用,解决问题的关键是运用相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比列方程求解.26.(1)反比例函数解析式为y 1=4x,一次函数得到解析式为y 2=x +3;(2)7.5;(3)当﹣4<x <0或x >1时,y 2>y 1【分析】(1)由题意把点A 坐标代入反比例函数求出m 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出n 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)根据题意先求出直线与x 轴的交点坐标,从而x 轴把△AOB 分成两个三角形,结合点A 、B 的纵坐标分别求出两个三角形的面积,进而相加即可;(3)根据函数的图象结合函数图象的性质进行分析求得即可.【详解】解:(1)点A (1,4)在反比例函数y 1=k x的图象上, ∴k =1×4=4,∴反比例函数的表达式为y 1=4x , ∵点B (﹣4,n )也在反比例函数y 1=4x的图象上,∴n =44-=﹣1,即B (﹣4,﹣1), 把点A (1,4),点B (﹣4,﹣1)代入一次函数y 2=kx+b 中,可得441k b k b +=⎧⎨-+=-⎩,解得13k b =⎧⎨=⎩, ∴一次函数的表达式为y 2=x+3;故反比例函数解析式为y 1=4x,一次函数得到解析式为y 2=x+3; (2)设直线与x 轴的交点为C ,在y 2=x+3中,当y =0时,得x =﹣3,∴直线y 2=x+3与x 轴的交点为C (﹣3,0),∵线段OC 将△AOB 分成△AOC 和△BOC ,∴S △AOB =S △AOC +S △BOC =12×3×4+12×3×1=7.5;(3)从图象看,当﹣4<x <0或x >1时,y 2>y 1.【点睛】本题考查反比例函数与一次函数图象的交点问题,待定系数法求函数解析式,注意掌握此类题目的求解一般都是先把已知点的坐标代入反比例函数表达式求出反比例函数解析式,然后再求一次函数解析式.27.5.7米【分析】由题意可先过点A 作AH CD ⊥于H .在Rt ACH ∆中,可求出CH ,进而CD CH HD CH AB =+=+,再在Rt CED ∆中,求出CE 的长. 【详解】解:过点A 作AH CD ⊥,垂足为H ,由题意可知四边形ABDH 为矩形,30CAH ∠=︒,1.5AB DH ∴==,6BD AH ==,在Rt ACH ∆中,tan CH CAH AH ∠=, tan CH AH CAH ∴=∠,·tan 6tan 306CH AH CAH ∴=∠=︒==), 1.5DH =,1.5CD ∴=,在Rt CDE ∆中,60CED ∠=︒,sin CD CED CE∠=,4 5.7sin60CD CE ∴==︒(米), 答:拉线CE 的长约为5.7米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.28.(1)152y x =+;(2)1或9. 【详解】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩, 所以一次函数的表达式为y =12x +5.(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=12x+5-m.由8152yxy x m⎧=-⎪⎪⎨⎪=+-⎪⎩得,12x2+(5-m)x+8=0.Δ=(5-m)2-4×12×8=0,解得m=1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.。

九年级数学上学期期中测试卷新版湘教版

九年级数学上学期期中测试卷新版湘教版

第一学期期中测试卷一、选择题(每题3分,共24分)1.如图,反比例函数y =k x的图象经过点A (2,1), 该反比例函数的表达式为( )A .y =12xB .y =-12xC .y =2xD .y =-2x(第1题) (第7题)2.把一元二次方程(1-x )(2-x )=3-x 2化成一般形式ax 2+bx +c =0(a ≠0),其中a ,b ,c分别为( ) A .2,3,-1 B .2,-3,-1 C .2,-3,1 D .2,3,13.若反比例函数y =m -2x的图象在每个象限内y 随x 的增大而增大,则m 的取值范围是( ) A .m >-2B .m <-2C .m >2D .m <24.若a b =53,则a -b a的值为( )A.23B.25C.35D .-235.点P 1(x 1,y 1),P 2(x 2,y 2)在双曲线y =-1x上,若x 1<0<x 2,则下列结论正确的是( )A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 26.某型号手机原来销售单价是4 000元,经过两次降价促销,现在的销售单价是2 560元,若两次降价的百分率相同,则每次降价的百分率为( ) A .10%B .15%C .20%D .25%7.如图,点D 在△ABC 的边AC 上,添加下列条件后不能判定△ADB 与△ABC 相似的是( )A .∠ABD =∠CB .∠ADB =∠ABC C.AB BD =CB CD D.AD AB =AB AC8.若y =k -1x +1是关于x 的一次函数,则一元二次方程kx 2+2x +1=0的根的情况为( )A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根二、填空题(每题4分,共32分)9.已知m 是关于x 的方程x 2+4x -5=0的一个根,则2(m 2+4m )=________. 10.已知关于x 的方程x 2+4x +n =0可以配方成(x +m )2=3,则(m -n )2 020=________.11.关于x 的一元二次方程x 2+kx -2=0的一个根为x =-2,则方程的另一个根为________.12.如图,已知反比例函数y =a x和一次函数y =kx +b 的图象相交于A (-1,y 1)、B (4,y 2)两点,则不等式a x≤kx +b 的解集为______________.(第12题) (第14题) (第16题)13.若两个相似三角形的面积的比为1∶4,则这两个三角形的对应边的中线之比为________.14.如图所示的小孔成像问题中,光线穿过小孔,在竖直的屏幕上形成倒立的实像.若像的长度CD =2 cm,点O 到AB 的距离是12 cm,到CD 的距离是3 cm,则蜡烛的高度AB 为________cm.15.设A ,B ,C ,D 是反比例函数y =k x图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形. 其中正确的是________.(写出所有正确结论的序号)16.如图,点P 1,P 2,P 3,P 4均在坐标轴上,且P 1P 2⊥P 2P 3,P 2P 3⊥P 3P 4,若点P 1,P 2的坐标分别为(0,-1),(-2,0),则点P 4的坐标为________.三、解答题(17,18题每题6分,19,20题每题8分,21~24题每题9分,共64分) 17.解方程:(1)x 2=3(x +1); (2)x 2-24=2x .18.已知反比例函数y =kx的图象经过点(-2,-1). (1)求k 的值;(2)完成下面的解答过程. 解不等式组:⎩⎪⎨⎪⎧2-x >1,①k x>1.②解:解不等式①,得____________________.根据函数y =k x的图象和性质,易得不等式②的解集为____________________. 把不等式①和②的解集在如图所示的数轴上表示出来.(第18题)所以原不等式组的解集为________________.19.如图,直线y =kx +b (k ≠0)和双曲线y =m x(m ≠0)的交点分别为A (-1,6),B (a ,-2). (1)求反比例函数与一次函数的表达式; (2)求△AOB 的面积.(第19题)20.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克) …50 60 70 80 …销售量y(千克) …100 90 80 70 …(1)求y与x的函数表达式;(2)该批发商若想获得4 000元的利润,应将售价定为多少?21.如图,每个小方格都是边长为1的正方形,△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A1B1C1的位似比;(3)将△ABC向右平移4个单位长度,再向上平移6个单位长度,得到△A2B2C2,请在图中作出△A2B2C2.(第21题)22.已知关于x 的方程x 2-(2k +1)x +4⎝ ⎛⎭⎪⎫k -12=0.(1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a =4,另两边的长b ,c 恰好是这个方程的两个根,求△ABC 的周长.23.如图,已知EC ∥AB ,∠EDA =∠ABF . (1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE ·OF .(第23题)24.如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设CEEB=λ(λ>0).(第24题)(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF.①求证:点G为CD边的中点;②求λ的值.答案一、1.C 2.B 3.D4.B 【点拨】∵a b =53,∴设a =5x (x ≠0),b =3x ,把a =5x ,b =3x 代入a -b a ,得5x -3x 5x =25.5.D6.C 【点拨】设每次降价的百分率为x ,由题意得4 000(1-x )2=2 560,∴1-x =±0.8,∴x 1=1.8(舍去),x 2=0.2=20%. 7.C8.A 【点拨】∵y =k -1x +1是关于x 的一次函数,∴k -1>0,∴k -1>0,解得k >1.又∵一元二次方程kx 2+2x +1=0的判别式Δ=4-4k ,∴Δ<0,∴一元二次方程kx 2+2x +1=0无实数根. 二、9.1010.1 【点拨】由(x +m )2=3得x 2+2mx +m 2-3=0,∴2m =4,m 2-3=n ,∴m =2,n =1,∴(m-n )2 020=1.11.x =1 【点拨】设方程的另一个根为x 1,根据根与系数的关系得(-2)·x 1=-2,∴x 1=1.12.x ≤-1或0<x ≤4 13.1∶2 14.8 【点拨】根据题意得AB CD =123,∵CD =2 cm,∴AB =8 cm. 15.①④16.(8,0) 【点拨】由题意,易得Rt △P 1OP 2∽Rt △P 2OP 3∽Rt △P 3OP 4,∵点P 1,P 2的坐标分别为(0,-1),(-2,0),∴OP 1=1,OP 2=2. ∵Rt △P 1OP 2∽Rt △P 2OP 3, ∴OP 1OP 2=OP 2OP 3,即12=2OP 3, 解得OP 3=4.∵Rt △P 2OP 3∽Rt △P 3OP 4, ∴OP 2OP 3=OP 3OP 4,即24=4OP 4, 解得OP 4=8,则点P 4的坐标为(8,0). 三、17.解:(1)整理,得x 2-3x -3=0,∵b 2-4ac =(-3)2-4×1×(-3)=21, ∴ x =3±212,∴x 1=3+212,x 2=3-212.(2)整理,得x 2-2x =24,∴x 2-2x +1=24+1,即(x -1)2=25,开方,得x -1=±5, ∴x 1=6,x 2=-4.18.解:(1)因为点(-2,-1)在反比例函数y =k x的图象上,所以-1=k-2,解得k =2. (2)x <1;0<x <2在数轴上表示出来略.0<x <119.解:(1)把点A 的坐标(-1,6)代入y =m x(m ≠0),得m =-1×6=-6,∴反比例函数的表达式为y =-6x .将点B 的坐标(a ,-2)代入y =-6x ,得-2=-6a,∴a =3,∴B (3,-2),将(-1,6),(3,-2)代入y =kx +b ,得⎩⎪⎨⎪⎧-k +b =6,3k +b =-2,∴⎩⎪⎨⎪⎧k =-2,b =4,∴一次函数的表达式为y =-2x +4.(2)设直线y =-2x +4与x 轴交于点C ,则点C 坐标为(2,0),即OC =2, ∴△AOB 的面积=△AOC 的面积+△COB 的面积=12×2×6+12×2×2=8.20.解:(1)设y 与x 的函数表达式为y =kx +b (k ≠0),根据题意得⎩⎪⎨⎪⎧50k +b =100,60k +b =90,解得⎩⎪⎨⎪⎧k =-1.b =150. 故y 与x 的函数表达式为y =-x +150(20≤x ≤90).(2)根据题意得(-x +150)(x -20)=4 000,解得x 1=70,x 2=100(不合题意,舍去). 答:该批发商若想获得4 000元的利润,应将售价定为70元/千克. 21.解:(1)如图,点O 即为所求.(2)△ABC 与△A 1B 1C 1的位似比=OA ∶OA 1=6∶12=1∶2.(3)如图,△A 2B 2C 2即为所求.(第21题)22.(1)证明:Δ=(2k +1)2-4×4⎝ ⎛⎭⎪⎫k -12=4k 2+4k +1-16k +8=4k 2-12k +9=(2k -3)2,∵(2k -3)2≥0,即Δ≥0,∴无论k 取何值,这个方程总有实数根. (2)解:当b =c 时,Δ=(2k -3)2=0,解得k =32,方程化为x 2-4x +4=0,解得b =c =2,而2+2=4,故舍去;当a =b =4或a =c =4时,把x =4代入方程得16-4(2k +1)+4⎝ ⎛⎭⎪⎫k -12=0,解得k =52, 方程化为x 2-6x +8=0,解得x 1=4,x 2=2,即a =b =4,c =2或a =c =4,b =2, ∴△ABC 的周长=4+4+2=10. 23.证明:(1) ∵EC ∥AB ,∴∠EDA =∠DAB .∵∠EDA =∠ABF ,∴∠DAB =∠ABF , ∴AD ∥BC ,∴四边形ABCD 是平行四边形. (2)∵EC ∥AB ,∴△OAB ∽△OED , ∴OA OE =OBOD. ∵AD ∥BC , ∴△OBF ∽△ODA , ∴OB OD =OF OA ,∴OA OE =OF OA, ∴OA 2=OE ·OF .24.(1)解:∵在正方形ABCD 中,AD ∥BC ,∴∠DAG =∠F . ∵AG 平分∠DAE , ∴∠DAG =∠EAG . ∴∠EAG =∠F .∴EA =EF .∵BC =AB =2,CE EB=1, ∴BE =EC =1. ∵AB =2,∠B =90°, ∴AE =AB 2+BE 2= 5. ∴EF = 5.∴CF =EF -EC =5-1. (2)①证明:∵EA =EF ,EG ⊥AF , ∴AG =FG .又∵∠DAG =∠F ,∠AGD =∠FGC , ∴△ADG ≌△FCG . ∴DG =CG ,即点G 为CD 边的中点. ②解:设CD =2a ,则CG =a . ∵△ADG ≌△FCG , ∴CF =DA =CD =2a . ∵EG ⊥AF ,∠GCE =90°, ∴∠EGC +∠CGF =90°, ∠F +∠CGF =90°, ∠ECG =∠GCF =90°. ∴∠EGC =∠F , ∴△EGC ∽△GFC . ∴CE CG =CG CF. ∵CG =a ,CF =2a , ∴CG CF =12. ∴CE CG =12. ∴CE =12a .11 ∴EB =BC -CE =2a -12a =32a . ∴λ=CE EB =12a 32a =13.。

湘教版九年级数学上册期中考试题及答案【完整】

湘教版九年级数学上册期中考试题及答案【完整】

湘教版九年级数学上册期中考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<2.下列说法中正确的是 ( )A .若0a <0B .x 是实数,且2x a =,则0a >C 有意义时,0x ≤D .0.1的平方根是0.01± 3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8 D .2,3,44.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)116 __________.2.分解因式:29a-=__________.3.函数132y xx=--+中自变量x的取值范围是__________.4.如图,直线AB ,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是_________.6.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、A5、A6、B7、A8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、()()33a a +-3、23x -<≤4、140°5、k =7或5.6、3三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、(1)k >﹣3;(2)取k=﹣2, x 1=0,x 2=2.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1),P 2352,2),P 3),P 4). 4、(2)略;(2)四边形EBFD 是矩形.理由略.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数中,是反比例函数的为( )A .y=15xB .y=22x C .y=2x+1 D .2y=x 2.关于反比例函数3y x =的图象,下列说法正确的是( ).A .必经过点(2,1)B .两个分支分布在第二、四象限C .两个分支关于y 轴成轴对称D .两个分支关于原点成中心对称 3.下列方程中,是一元二次方程的是( )A .x 2+2=yx 2B .x 2+5x=(x+3)(x-3)C .(x-1)2=5D .2111x x+= 4.已知正五边形ABCDE 与正五边形'''''A B C D E 的面积比为1:2,则它们的相似比为( )A .1:2B .2:1C .D 5.若方程22(2)210m m x x --+-=是关于x 的一元二次方程,则m 的值是( )A .2B .-2C .2±D .3 6.若23a b =,则32a b a b -+的值是( ) A .75 B .23 C .125 D .07.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为A .2B .3C .4D .88.如图,AB ∥CD ,AC 、BD 、EF 相交于点O ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 9.如图所示,不能判定△ABC ∽△DAC 的条件是( )A .∠B =∠DACB .∠BAC =∠ADC C .AC 2=DC ·BCD .AD 2=BD ·BC 10.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交B .它的图象绕原点旋转180°能和本身重合C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点二、填空题 11.如果四条线段m ,n ,x ,y 成比例,若m=2 , n=8 , y=4.则线段x 的长是__________. 12.小颖测得2m 高的标杆在太阳下的影长为1.2m ,同时又测得一棵树的影长为2.4m , 请你帮助小颖计算出这棵树的高度为___________m .13.如果关于x 的方程x 2-2x+a-1=0有两个相等的实数根,那么a 的值等于________. 14.已知A(-1,y 1),B(2,y 2)两点在双曲线k y x=上,且k >0,则y 1______y 2(填>或<). 15.如图,一次函数y =kx +b 的图象与反比例函数m x y =的图象交于A (﹣2,1)、B (1,﹣2)两点.一次函数的值大于反比例函数的值时x 的取值范围是_____.16.方程(3)3x x x -=-的解是_______.17.若反比例函数,k y x=的图象过点(-2,1)则一次函数y=kx-k 的图象经过第________________象限.18.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为_______.三、解答题19020142sin 604cos30+-︒-︒20.如图所示,在锐角△ABC 中,AD ,BE 分别是边BC ,AC 上的高, 求证:ADACBE BC = .21.如图,直线y=2x-6与反比例函数ky x =的图象交于点A (4,2),与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)求△OAB 的面积.22.如图,利用一面墙(墙的长度不超过45m),用80m 长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m 2?(2)能否使所围矩形场地的面积为810m 2 ,为什么?23.已知,如图所示的双曲线是函数3m y x -=(m 为常数,x >0)图象的一支.(1)求常数m的取值范围;(2)若该函数的图象与一次函数y=x+1的图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的表达式.24.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.25.在矩形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿AB向终点B以1 cm/s 的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s的速度移动,如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动,设运动时间为t秒.(1)填空:BQ=________,PB=________(用含t的代数式表示);(2)当t为何值时,PQ的长度等于(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t的值;若不存在,请说明理由.26.(2013年四川绵阳12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线kyx(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.参考答案1.A【分析】根据反比例函数的定义判断即可.【详解】根据反比例函数的定义,A是反比例函数,BCD均不是反比例函数.故选:A.2.D【分析】把(1,1)代入得到左边≠右边;k=4>0,图象在第一、三象限;根据轴对称的定义沿y轴对折不重合;根据中心对称的定义得到两曲线关于原点对称;根据以上结论判断即可.【详解】解:A 、把点(2,1)代入反比例函数3y x=得3≠1不成立,故A 选项错误;B 、由k=3>0知,它的图象在第一、三象限,故B 选项错误;C 、图象的两个分支关于y=x 对称,关于y 轴不成轴对称,故C 选项错误;D 、两曲线关于原点对称,故D 选项正确;故选:D .【点睛】本题主要考查对反比例函数的性质,轴对称图形,中心对称图形等知识点的理解和掌握,能根据反比例函数的性质进行判断是解此题的关键.3.C【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程.【详解】A . x 2+2=yx 2含有2个未知数,故不是一元二次方程;B . x 2+5x=(x+3)(x-3)化简后为5x+9=0,故不是一元二次方程;C . (x-1)2=5是一元二次方程;D . 2111x x +=的分母含未知数,故不是一元二次方程; 故选C .【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.4.C【分析】根据相似多边形面积的比等于相似比的平方求解即可.【详解】∵五边形ABCDE 与五边形'''''A B C D E 是正五边形,∴正五边形ABCDE 与正五边形'''''A B C D E 相似,∵面积比为1:2,∴相似比为1.故选:C .【点睛】本题考查相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.5.B【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【详解】由22(2)210m m x x --+-=是关于x 的一元二次方程,得222m -=,且20m -≠. 解得:2m =-,故选:B .【点睛】本题考查了一元二次方程的定义.要特别注意二次项系数0a ≠这一条件.6.D【分析】 设23a b k ==,则a=2k ,b=3k ,代入式子化简即可. 【详解】 解:设23a b k ==, ∴a=2k ,b=3k , ∴32a b a b-+=322323k k k k ⨯-⨯+=0, 故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型. 7.C【详解】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=4.考点:根与系数的关系.8.C【分析】根据平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似解答即可.【详解】解:∵AB ∥CD ,∴△AEO ∽△CFO ,△BEO ∽△DFO ,△ABO ∽△CDO ,共有3对.故选C .【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.9.D【分析】已知有公共角∠C ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】已知△ABC 和△DCA 中,∠ACD =∠BCA ;如果△ABC ∽△DAC ,需满足的条件有: ①B DAC ∠∠=或BAC ADC ∠∠=; ②AC BC DC AC=即2AC DC BC ;=⋅ 故选D.【点睛】考查相似三角形的判定定理,熟练掌握相似三角形的几种判定方法是解题的关键. 10.D【分析】当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A .∵反比例函数4y x =中,4>0,∴此函数图象在一、三象限,故本选项正确; B .∵反比例函数4y x=的图象双曲线关于原点对称,故本选项正确; C .反比例函数的图象可知,图象关于直线y x =±对称,故本选项正确;D .∵反比例函数4y x=的图象位于第一、三象限,直线y x =-经过第二、四象限,所以直线y x =-与双曲线4y x =无交点,故本选项错误;故选D .【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.1【分析】因为四条线段成比例,可根据前两条线段,确定其比例,进而求出x 的值.【详解】解:∵m :n=2:8=1:4,∴x :y=1:4,∵y=4,∴x=1.故答案为1.【点睛】本题考查了成立比例的线段,在四条线段中,如果其中的两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.12.4【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:如图,DE 表示标杆,BC 表示树,根据题意可得:△ADE ∽△ABC ,即=AE DE AC BC,设这棵树的高为x , 则2 1.2=2.4x , 解得x=4m .故答案为:4.【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.13.2【分析】根据根的判别式得出△=0,列出关于a 的方程,求出方程的解即可.【详解】解:∵关于x 的方程x 2-2x+a-1=0有两个相等的实数根,∴△=(-2)2-4×1×(a-1)=0,解得:a=2,故答案为:2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.14.<【分析】先判断出反比例函数的图象所在的象限,即可得出结论.【详解】解:∵双曲线k y x=中k >0, ∴双曲线在一、三象限,∴A(-1,y 1)在第三象限,B(2,y 2)在第一象限,∴y 1<y 2.故答案为:<.【点睛】 本题考查了反比例函数的图象与性质,反比例函数k y x=(k 是常数,k ≠0)的图象是双曲线,当k >0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 k <0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.15.x <﹣2或0<x <1【分析】根据图象即可求得.【详解】∵A (﹣2,1),B (1,﹣2),由图象可知:一次函数的值大于反比例函数的值时x 的取值范围是x <﹣2或0<x <1. 故答案为:x <﹣2或0<x <1.【点睛】本题考查了反比例函数与一次函数的交点问题,解题时注意数形结合思想的运用. 16.1x =1,2x =3【分析】直接用因式分解法解解一元二次方程可得答案.【详解】解:()33x x x -=-x(x-3)-(x-3)=0(x-3)(x-1)=0∴1x =1或2x =3.故答案为: 1x =1,2x =3.【点睛】本题考查的是用因式分解法解一元二次方程,把方程分解成两个一次因式的积,然后求出方程的根.17.一、二、四【分析】先根据反比例函数图象上点的坐标特征得到k=-2,则一次函数为y=-2x+2,然后根据一次函数图象与系数的关系求解.【详解】解:把(-2,1)代入k y x=得k=-2×1=-2, ∴一次函数为y=-2x+2,∴一次函数经过第一、二、四象限,不经过第三象限.故答案为:一、二、四.【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数图象与系数的关系:一次函数y=kx+b (k 、b 为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b).18【解析】试题分析:不妨设原矩形长为x ,宽为y ,因为对折后与原矩形相似,则必定是沿着长的垂直平分线对折,且对折后矩形的两边长为2x 和y .根据相似三角形性质,有::2x x y y =,所以222x y =,则x y=. 考点:1.相似三角形的性质;2.求两个量之比.19.1+【分析】先逐项化简,再算加减即可.【详解】原式=124+-=1=1【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值、实数的运算法则是解答本题的关键.20.证明见解析【分析】根据两角相等的两个三角形相似证明△ADC∽△BEC即可.【详解】证明:AD,BE分别是边BC,AC上的高∴∠ADC=∠BEC =900 ,又∠C=∠C,∴△ADC∽△BEC ,AD ACBE BC=.【点睛】本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的关键.①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.21.(1)k=8,B(3,0);(2)3【分析】(1)利用待定系数法即可求出k的值,把y=0代入y=2x-6即可求出点B的坐标;(2)根据三角形的面积公式计算即可.【详解】解:(1)把A(4,2)代入kyx=,得2=4k,解得k=8,在y=2x-6中,当y=0时,2x-6=0,解得x=3,∴点B 的坐标为(3,0);(2)连接OA ,∵点B(3,0),∴OB=3,∵A(4,2),∴△OAB=12×3×2=3.【点睛】本题考查了待定系数法求反比例函数解析式,一次函数与x 轴的交点问题,以及三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.⑴围成矩形长为30m ,宽为25 m 时,能使矩形面积为750㎡.⑵不能.【详解】试题分析:(1)设所围矩形ABCD 的长AB 为x 米,则宽AD 为()180x 2- 米,根据矩形面积的计算方法列出方程求解;(2)假使矩形面积为810米,则方程无实数根,所以不能围成矩形场地.试题解析:(1)设所围矩形ABCD 的长AB 为x 米,则宽AD 为()180x 2-米. 依题意,得()1x 80x 7502⋅-=,即2x 80x 15000-+=. 解此方程,得x 1=30,x 2=50.∵墙的长度不超过45m ,∴x 2=50不合题意,应舍去.当x=30时,()()1180x 80302522-=⨯-=. 答:当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2.(2)不能.理由如下: 由()1x 80x 8102⋅-=得2x 80x 16200-+=.∵()22b 4ac 80411620800∆=-=--⨯⨯=-<,∴方程2x 80x 16200-+=没有实数根.∴不能使所围矩形场地的面积为810m 2.考点:1.一元二次方程的应用(几何问题);2. 矩形的性质;3.一元二次方程根的判别式. 23.(1)m >3;(2)A (2,3),y=6x 【分析】(1)由反比例函数图象位于第一象限得到m-3大于0,即可求出m 的范围;(2)将A 坐标代入一次函数解析式中求出n 的值,确定出A 坐标,代入反比例解析式中即可确定出反比例解析式.【详解】解:(1)根据图象得m-3>0,解得m >3;(2)∵点A (2,n )在一次函数y=x+1的图象上,∴n=2+1=3,则A 点的坐标为(2,3).又∵点A 在反比例函数(m 为常数,x >0)的图象上,∴m-3=2×3=6,∴反比例函数的表达式为y=6x. 【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象与性质,待定系数法求反比例解析式,熟练掌握待定系数法是解本题的关键.24.(1)证明见解析;(2)相似;理由见解析.【解析】(1)根据等边三角形各边长相等和各内角为60°的性质可以求证△ABD ≌△BCE ;(2)根据全等三角形对应角相等性质可得∠BAD =∠CBE ,进而可以求得∠EAF =∠EBA ,即可求证△EAF ∽△EBA ,即可解题.(1)证明:∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BCE =60°,又∵BD =CE ,∴△ABD ≌△BCE ;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.点睛:本题考查相似三角形的判定,全等三角形的判定与性质.熟练应用三角形全等及相似的判定方法是解题的关键.25.(1)2t cm;(5-t)cm;(2)当t=3秒时,PQ的长度等于;(3)存在,当t=1秒时,五边形APQCD的面积等于26 cm2,理由见解析.【分析】(1)根据P、Q两点的运动速度可得BQ、PB的长度;(2)根据勾股定理可得PB2+BQ2=QP2,代入相应数据解方程即可;(3)根据题意可得△PBQ的面积为长方形ABCD的面积减去五边形APQCD的面积,再根据三角形的面积公式代入相应线段的长即可得到方程,再解方程即可.【详解】解:(1) ∵P从点A开始沿边AB向终点B以1cm/s的速度移动,∴AP=tcm.∵AB=5cm,∴PB=(5﹣t)cm.∵点Q从点B开始沿边BC向终点C以2cm/s的速度移动,∴BQ=2tcm,故答案为:2t cm ,(5-t)cm ;(2)由题意得:(5-t)2+(2t)2=(2,解得t1=-1(不合题意,舍去),t2=3.当t=3秒时,PQ的长度等于.(3)存在.理由如下:长方形ABCD的面积是:5×6=30(cm2),使得五边形APQCD的面积等于26 cm2,则△PBQ的面积为30-26=4(cm2),∴(5-t) ×2t×12=4,解得t1=4(不合题意,舍去),t2=1.即当t=1秒时,使得五边形APQCD的面积等于26 cm2.【点睛】本题考查了一元二次方程的应用,以及勾股定理的应用,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.26.(1)(4,1);(2)证明见详解;k=3.【详解】解:(1)四边形OABC为矩形,AB=OC=4,E是A的中点,∴AE=2.∵OA=2,点E坐标为(2,2).∵点E在双曲线y=kx上,∴k=2×2=4.∵点F在直线BC及双曲线y=4x上,∴设点F的坐标为(4,f),则f=44=1,∴点F的坐标为(4,1).(2)①证明:∵△DEF是由△BEF沿EF对折得到的. ∴∠EDF=∠EBF=90°.∵点D在直线OC上,∴∠GDE+∠CDF=180°-∠EDF=180°-90°=90°∵∠DGE=∠FCD=90°∴∠GDE+∠GED=90°∴∠CDF=∠GED∴△EGD△DCF②设点E的坐标为(a,2),点F的坐标为(4,b),∵点E,F在双曲线y=kx上,∴k=2a=4b,a=2b;∴有点E(2b,2),∴AE=2b,AB=4,ED=FB=4-2b,EG=OA=CB=2,CF=b,DF=BF=CB-CF=2-b,∵△EGD△DCF,∴点F(4,34),∴k=4×34=3.。

湘教版九年级数学上册期中试卷带答案

湘教版九年级数学上册期中试卷带答案

湘教版九年级数学上册期中试卷带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .155.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D . 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.下列图形中,是中心对称图形的是( )A .B .C .D .9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.计算22111m m m ---的结果是__________. 2.分解因式:2x 2﹣8=_______.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:2111x x x +=--2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、B6、B7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、11m -2、2(x+2)(x ﹣2)3、增大.4、40°.5、12π+. 6、3三、解答题(本大题共6小题,共72分)1、32x =2、(1)证明见解析(2)1或23、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)理由见详解;(2)2BD =1,理由见详解.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)120件;(2)150元.。

九年级数学上册期中试卷含解析(湘教版)

九年级数学上册期中试卷含解析(湘教版)

九年级数学上册期中试卷、选择题(共10小题;共30分)21.对于反比例函数下列说法正确的是()A. 图象经过点矗 IB. 图象位于第二、四象限C. 当,1时,&随|:』的增大而减小D •当,「时,随|:』的增大而增大2•点卩(id )在反比例函数y 二貳北0)的图象上,则k 的值是()I 1 A. 3 B. 3 C. "3 D. 1-33.某闭合电路中,电源的电压为定值时,电流 C )与电阻■( J 成反比例•如图所示是该电路中电流-与电阻丿之间的函数关系的图象,则用电阻忸表示电流日的函数表达式为5. 一元二次方程2x 2 -3x+1 = 0根的情况是A.有两个不相等的实数根 8•如图,,为—忙的边•,‘上的点,::,若」,肚则 的长是1 5 6 /一二 [—— C. 出 D. 出 兀二次方程,则 () C. u = 1 D. U 2 ° 6.若勺,X 』是一兀二次方程A. -2|B. X 2-3X +2 = Q 的两根,贝y 2C. 3儿+孔的值是() D. 1 二次方程 x^ + |ax-? = O 7 字土 Jt =— 2 旦辛千 X 一■的一个根,则u 的值为( 7.若儿 *1是天于严的元—A. - L 或孔B. -1或一也C. 1或-巾D. 1或AC.只有一个实数根D.没有实数根 () B.有两个相等的实数根10 6 C A D )C 则 )C AB D11+ 2x + 2k 12 是H是, 14 a NB.若• 、填空题(共 6小题;共24 分) '在DEF :'占A&P 等于 ( 网,若 DE:EC=2\3 D.变短 | ▼,且•、-交于点 若反比例函数 的图象经过点贝U 的值为 有两个不相等的实数根,则;的取值范围 13.在平面直角坐标系中,点 卜左玄打,护£-.门,以原点IT 为位似中心,位似比为二窪谓 缩小,则点囲的对应点•的坐标是 _________________________ . L :日,把9.如图,路灯距地面时,人影长度 ( 米,身高1丨米的小明从点 '■处沿」所在的直线行走 I 1到点: A.变长 '110.如图,在平行四边形皿饴|中,「为」上一点,连 ■、 已知关于的一元二次方程 变短 | B.变长 的值是1元二次方程: 的两个根,则15.如图,点 在函数 的图象上,且 sy 过点剧作轴于点,则 =-U > o)16. 关系是关系疋X- Ny J , B (-血},灾旳},则儿,旳,旳的大小 三、解答题(共8小题;共66 分)17. ( 8分)解方程.(1) *1厂訂一「 (2) ,-5工-36=0.(3) - 口 _ ::(3y-l)2-6 = (x Z- 5x - 36 = 0 18. ( 7分)一定质量的氧气,它的密度7 = 10 m 3 时,卩=1出 k^/m \I 求•与忖的函数表达式;n 求当x 二片/时氧气的密度.P (3祐是它的体积以代的反比例函数,当 19. (7分)如图,函数 的图象与函数 '的图象交于piQ..p ,;亢心:.i 两I求•',■, 的值;n利用图象写出当时,卜.|和冈的大小关系.20. (8分)如图为了估算河的宽度,我们可以在河对岸选定一个目标点为,再在河的这一边选点’和,使卜兰匚;:-1,然而再选点,使’•,确定与的交点为,测得:號一⑵i 总:一门叮,「二一;:门,你能求出两岸之间:的大致距离吗?21. (8分)如图,在平面直角坐标系中,正比例函数-=:-的图象与反比例函数直线n将直线*阂向上平移忖个单位长度后与忖轴相交于点■,与反比例函数的图象在第四象限内的交点为,连接丽,:,求点口的坐标及.匕乳覺;的面积.22. (8分)如图,在边长为个单位长度的小正方形网格中:I画出先向上平移个单位长度,再向右平移同个单位长度后的’’;n以日为位似中心,将△朋4放大为原来的2倍,得到A A2B2C2,请在网格中画出△ A2B2C2.川求△兌G的面积.23. (10分)某汽车租赁公司拥有’辆汽车.据统计,当每辆车的日租金为|汀試|元时,可全部租出;当每辆车的日租金每增加卜元,未租出的车将增加''I辆;公司平均每日的各项支出共忙』;;|元.设公司每日租出工辆车时,日收益为H元•(日收益日租金收入平均每日各项支出)I公司每日租出•辆车时,每辆车的日租金为 _________________________ 元(用含'的代数式表示);n当每日租出多少辆时,租赁公司日收益最大?最大是多少元?川当每日租出多少辆时,租赁公司的日收益不盈也不亏?24. (10分)如图,在等边' 中,川,, 分别为边:,卜亂上的点,且满足BEn若-:且'•’,求的值18.( 1)设 P = 当 # =时,戸 = pV = 14 J ,(2)当 F = "时,P = ~i~= 3^75 k^/m 第一部分1. C2. B3. 4. B 5. A 6. C 7. C 8. 9. C 10. A第二部分11.12.13.14. 15.11 哪+ 416.第三部分17. 方程两边同时加 ,变为 (眇-1)3 = 6.两边同时开方,得3y - 1 =+ J 区:、答案(2)方程边形为(X - 9)(x + 4)= 0.19. ( 1) 把卜:壮门代入 ,I I 得:1 一- S “ 艮卩 •=.$k巴4(玄1 [,把)代入、—丄得:盘=?.把 ■- 代入一次函数解析式得:I,二-〔小二> .(2) |'::』〔汽卫, ,冈根据图象得:时,」;工二或k :尤|时,. 20. |「= zkDC?, "BQ = ZECD =, 沁ARD-△ ECD. A8 ODEC EC = CDAB — BD x 丽 ? ’ 50 解得=12°X bO = 100 (米).答:两岸间的大致距离为 米.I m21.(1)丨…丨正比例函数 •:的图象与反比例函数直线 的图象都经过点 ,时=2卩=-ij|解得:1咒 y =-工,”(2)直线 用4由直线 向上平移 个单位所得5(0,3),心匸=g=-1.设直线:的表达式为—一 m ;f ―上由J 衍二斗,lx 2 =- Ljy. =_ ], y f = 4”解得宀 2冈点 在第四象限, 网点恃的坐标为H -丄」解法一:如图1,过,作’ 轴于•,过 作自二岬轴于1.如图所示.(2) △心比5如图所示.I__l_ J_ J _ 1_(3)如图所示,连接兌』,&向.12 X X 5 22. (1)△的面积等于2 X 3 X 6 = 9.23. (1) 上n(2)根据题意得出:y =x( - SOx + 1400) - 4800二-50, + 1400x-4800=-50(x -14)2+ 5000.当妄:时,在范围内,有最大值卜冈当日租出二I辆时,租赁公司日收益最大,最大值为元.(3)要使租赁公司日收益不盈也不亏,即:“二" 即:)50仗■诃+ 5000 = 0),解得心二纠乞*,丁卞二"不合题意,舍去.冈当日租出I辆时,租赁公司日收益不盈也不亏.24. (1)丨…丨等边•,• • £丘=証=GO °.v fDEF=60"?v是• UWE的外角,:.^DEC= 221? + JL BDE.即「丘7「U,:八•:—-^DiiF =站?:.= ^CEl'.-3 = AC?:4 HDE - △ CEF.8D _砒“跖CE = B» 纠.(2)「;n 一 nDE _ 即',。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版数学九年级上册期中试题
一、填空题(每小题3分,共30分) 1、方程2
2x x =的解是 。

2、“互补的两个角一定是一个锐角和一个钝角”是 命题(填“真”或“假”),我们可举出反例: 。

3、两个相似多边形的面积的和等于1562
cm ,且相似比等于2:3,则较大多边形的面积是 2
cm 。

4、若方程240x x m -+=有两个实数根,则m 的取值范围是 。

5、当x = 时,代数式2
24x x -与代数式2
28x x -+的值相等。

6、如图5,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD , A B ∥CD,AB=2米,CD=5米,点P 到CD 的距离是3米,则P 到AB 的 距离是 米。

7、已知等腰三角形的一边为3,另两边是方程2
40x x m -+=的两个实根,则m 的值为 。

8、若1x ,2x 为一元二次方程2
3790x x +-=的两根,则12(1)(1)x x --= 9、如图,ABC ∆为等边三角形,D 为ABC ∆内一点,ABD ∆逆时针旋转后到达ACP ∆位置,则∠APD=
10、在等腰直角三角形ABC 中,∠C=900
,AC=4㎝,如果以AC 中点O 为旋转中心,将这个图形旋转1800
,点B 落在B '处,那么B '与B 的距离为 ㎝
二、选择题(每小题3分,共33分。


1、一元二次方程2
350x x --=中的一次项系数和常数项分别是( )
A 、1,-5
B 、1,5
C 、-3.-5
D 、-3,5
2、将方程2
650x x --=左边配成一个完全平方式后,所得方程是( )
A 、2
(6)41x -=
B 、2(3)4x -=
C 、()2
314x -= D 、2
(6)36x -=
3、下列命题中,逆命题正确的是( )
A 、全等三角形的面积相等
B 、全等三角形的对应角相等
C 、等边三角形是锐角三角形
D 、直角三角形的两个锐角互余 4、如图2,A B ∥CD,A
E ∥FD ,AE 、FD 分别交BC 于点G ,H ,
则图中与△ABG 相似的三角形共有( ) A 、4 个 B 、3个 C 、2个 D 、1个 5、某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分
率为x ,根据题意得方程( )
A 、2
5000(1)5000(1)7200x x +++= B 、2
5000(1)7200x += C 、25000(1)7200x +=
D 、250005000(1)7200x ++=
6、下列图形既是轴对称图形又是中心对称图形的是( ) A 、平行四边形 B 、等边三角形 C 、正六边形
D 、等腰梯形
7、下列方程没有实数根的是( ) A 、2
30x mx --=(m 为已知数) B 、2
102x x --
= C 、21
04
x x -+= D 、22330x x -+= 8、在平面直角坐标系中,A (1,2),过A 作AB ⊥x 轴于B ,把OAB ∆绕点O 逆时针旋转900

OA B ''∆,则A '点坐标为( ) A 、(-1,2) B 、(-2,1) C 、(2,-1) D 、(1,-2)
D
C
图2
D
C
图5
9、把一个正方形的一边增加2㎝,另一边增加1㎝,得到矩形面积的2倍比正方形面积多11cm 2
,则原正方形边长为( ) A 、1㎝
B 、2㎝
C 、5㎝
D 、7㎝
10、关于x 一元二次方程2
20x x m --=有两个实数根,则实数m 取值范围是( ) A 、m <0
B 、m ≥-1
C 、m >-1
D 、m ≥0
11、边长为1的正方形绕点A 逆时针旋转300
得正方形AB C D ''',则图中阴影部分面积为( ) A
、1- B
C
D
、1
三、解答下列各题(共37分) 1、解方程(每小题5分,共15分)
①2
410x x +-= ②2(1)35(2)t t t t +-=+ ③2
12350x x -+=
2、(满分10分)有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,
可以延长存活时间,但每天也会有一定数量的螃蟹死去,假设放养期间内螃蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活螃蟹1000kg 放养在塘内,此时,市场价为30元/kg ,据测算此后每千克活蟹的市场价每天可上升1元,但是,放养一天各种费用支出400元,且平均每天还有10kg 的蟹死去,假定死蟹均于当天全部售出,售价都是20元/ kg ,如果经销商将这批蟹出售后能获利6250元,那么他应放养多少天后再一次性售出?
3、(满分12分)如图,直线l上摆放着两块大小相同的直角三角板,它们中较短直角边的长为6㎝,较小锐角的度数为300。

(1)将△ECD沿直线AC翻折到图(2)的位置,ED'与AB相交于点F,请证明:AF=FD';(2)将△ECD沿直线l向左平移到图(3)的位置,使E点落在AB上,你可以求出平移的距离吗?试试看;
(3)将△ECD绕点C逆时针方向旋转到(4)的位置,使E点落在AB上,请求出旋转角的度数。

相关文档
最新文档