湖南四大名校内部资料2018-2019-2麓山八下期末考试-数学试卷

合集下载

湖南四大名校内部资料2018-2019-2南雅八下期末考试-数学试卷

湖南四大名校内部资料2018-2019-2南雅八下期末考试-数学试卷

2019年上学期南雅教育共同体期末联考试卷初二数学科目命题人:胡雪艳 审题人:张建英考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟. 一、选择题(本题共计12小题,每题3分,共计36分). 1.下列函数是二次函数的是( ) A. 34y x =- B. 2y ax bx c =++ C. ()215y x =+-D. 21y x =2.若函数()12y k x b =-++是正比例函数,则( ) A. 1k ≠-,2b =-B. 1k ≠,2b =-C. 1k =,2b =-D. 1k ≠,2b =3.若矩形的长和宽是方程27120x x -+=的两根,则矩形的对角线长度为( ) A.5 B.7 C.8 D.104.正比例函数()0y kx k =≠图象在第二、四象限,则一次函数y x k =+的图象大致是( )A.B.C.D.5.下列命题中为假命题的是( )A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形6.“龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后,决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,1y 表示乌龟所行的路程,2y 表示兔子所行的路程),下列说法中正确的有( )个 ①“龟兔再次赛跑”的路程为1000米; ②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子比乌龟早10分钟到达目的地.A.4B.3C.2D.17.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为( ) A. ()12550x x +=B. ()125502x x -=⨯C. ()212550x x +=D. ()12550x x -=8.为参加学校举办的“诗意校园·致远方”朗读艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8,下列说法正确的是( ) A. 小明的成绩比小强稳定 B. 小明、小强两人成绩一样稳定 C. 小强的成绩比小明稳定 D. 无法确定小明、小强的成绩谁更稳定 9.已知直线3y kx =+经过点()1,2A 且与x 轴交于点B ,点B 的坐标是( ) A. ()3,0-B. ()0,3C. ()3,0D. ()0,3-10.要由抛物线22y x =得到抛物线()2213y x =+-,则抛物线22y x =必须( ) A. 向左平移1个单位,再向下平移3个单位 B. 向右平移1个单位,再向上平移3个单位 C. 向右平移1个单位,再向下平移3个单位 D. 向左平移1个单位,再向上平移3个单位11.已知二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论: (1)0a b c ++>(2)方程20ax bx c ++=两根之和大于零 (3)y 随x 的增大而增大(4)一次函数y x bc =+的图象一定不过第二象限,其中正确的个数是( ) A.4个 B.3个 C.2个 D.1个12.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB x 轴,直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为( )A. B.4C. D.8第11题图 第12题图二、填空题(本题共计6小题,每小题3分,共计18分).13.在平行四边形ABCD 中,6AB =,对角线AC 与BD 相交于点O ,P 是BC 边上一点,且OP AB ,则OP 的长为________.14.函数112y x =-+的图象不经过第________象限.15.菱形ABCD 中,且对角线6AC =,8BD =,则ABCD S =菱形________.16.若关于x 的方程270x mx ++=有一个根为1,则该方程的另一根为________.17.如图,直线y x m =+和抛物线2y x b x c =++都经过点()1,0A 和()3,2B ,不等式2x m x bc c +>++的解集为________.第17题图 第18题图18.如图,以ABC ∆的三边为边分别作等边ACD ∆、ABE ∆、BCF ∆,则下列结论:①EBF DFC ∆∆≌;②四边形四边形;③当AB AC =;120BAC ∠=︒时,四边形AEFD 是正方形,其中正确的结论是________(请写出正确结论的序号) 三、解答题(本题共计8小题,共计66分).19.(6分)已知抛物线243y x x =-+. (1)求该抛物线与y 轴的交点坐标;(2)求该抛物线与x 轴的交点坐标. 20.(6分)已知:如图,在四边形ABCD 中,AB CD ,E ,F 为对角线AC 上两点,且AE CF =,AFB DFC ∠=∠.求证:四边形ABCD 为平行四边形.21.(8分)已知:二次函数()20y ax bx c a =++≠中的x 和y 满足下表:(1)求的值;(2)求出这个二次函数的解析式(请化为一般形式); (3)当03x <<时,请直接写出y 的取值范围.22.(8分)若一元二次方程()200ax bx c a ++=≠的两实数根为1x 、2x ,则两根与方程系数之间有如下关系:12b x x a +=-,12cx x a=.该结论称为一元二次方程根与系数的关系,这个关系经常用来求一些代数式的值,请完成下列各题:(1)已知:1x 、2x 是方程2420x x -+=的两个实数根,求()()1211x x --值;(2)若m 、n 是方程220160x x --=的两个实数根,求代数式223m m n ++的值.23.(9分)南雅中学学生会向全校2000名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为________人,图1中m =________,图2中捐款15元的学生人数为________;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.(9分)校园商店原来平均每天可销售来种水果19的千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.(1)设每千克水果降价x 元,平均每天盈利y 元,试写出y 关于x 的函数表达式(请化为一般形式):(2)若要平均每天盈利400元,则每千克应降价多少元?(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?25(10分)如图,已知直线334y x =-+与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰Rt ABC ∆,90BAC ∠=︒. (1)求点A 和点B 的坐标; (2)求点C 坐标;(3)点P 是x 轴上的一个动点,设(),0P x ,是否存在这样的点P ,使得PC PB -的值最大?如果不存在,请说明理由;如果存在,请求出点P 的坐标.26.(10分)如图,抛物线2y ax bx c =++与x 轴交于点A 和点B ,与y 轴交于点,且()1,0-,()3,0B ,()0,3C ;(1)求该抛物线的函数解析式;(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD ,OD 交BC 于点F ,当:3:2COF CDF S S ∆∆=时,求点D 的坐标;(3)如图2,点E 的坐标为30,2⎛⎫- ⎪⎝⎭,点P 是抛物线上的点,连接EB ,PB ,PE 形成的PBE∆中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.备用图图 2图 1。

湖南四大名校内部资料八年级数学2018—2019—2长郡集团初二期末数学试卷

湖南四大名校内部资料八年级数学2018—2019—2长郡集团初二期末数学试卷

长郡教育集团初中课程中心20182019-学年度初二第二学期期末考试数学命题人:彭展考试时间:2019年7月10日14:1016:10-注意事项:1. 答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2. 必须在答题卡上答题,在草稿纸、试题卷上答题无效;3. 答题时,请考生注意各大题题号后面的答题提示;4. 请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5. 答题卡上不得使用涂改液、涂改胶和贴纸;6. 本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(本大题共12个小题,每小题3分,共36分) 1. 以下调查中,适宜全面调查的是( ) A. 调查某批汽车的抗撞击能力 B. 调查某班学生的身高情况 C. 调查春节联欢晚会的收视率 D. 调查某市居民日平均用水量 2. 若点P 在一次函数4y x =-+的图象上,则点P 一定不在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 平行四边形、矩形、菱形、正方形都具有的是( ) A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等D. 对角线互相垂直且相等4. 关于x 的一元二次方程22350x x +-=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5. 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组鞋长与“鞋码”换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码),设鞋长为x ,“鞋码”为y ,试判断点(),x y 在下列哪个函数的图象上( )A. 210y x =+B. 210y x =-C. 210y x =-+D. 210y x =--6. 已知菱形的两条对角线分别为6和8,则菱形的面积为( ) A. 48 B. 25 C. 24 D. 127. 在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛,如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A. 平均数 B. 中位数 C. 众数 D. 方差 8. 若某个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A. 4 B. 6 C. 8 D. 10 9. 将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A. ()246y x =--B. ()213y x =--C. ()222y x =--D. ()242y x =--10. 关于x 的一元二次方程240x x m -+=的两实数根分别为1x 、2x ,且1235x x +=,则m 的值为( )A.74B.75C.76D. 011. 若顺次连接对角线互相垂直的四边形ABCD 的四边的中点,得到的图形一定是( ) A. 平行四边形 B. 矩形 C. 菱形 D. 正方形12. 小明研究二次函数2221y x mx m =-+-+(m 为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x 轴的直线上;②该二次函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③当12x -<<时,y 随x 的增大而增大,则m 的取值范围为2m ≥;④点()11,A x y 与点()22,B x y 在函数图象上,若12x x <,122x x m +>,则12y y >.其中正确结论的个数是( ) A. 1B. 2C. 3D. 4二、填空题(本大题共6个小题,每小题3分,共18分) 13. 因式分解:3x x -= .14. 在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一个球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程,以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是 (结果保留小数点后一位)15. 已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 .16. 如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB 、AD 于点M 、N ;②分别以M 、N 为圆心,以大于12MN 为半径作弧,两弧交于点P ;③作AP 射线,交边CD 于点Q ,若2DQ QC =,3BC =,则平行四边形ABCD 的周长为 .第16题图第17题图第18题图17. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为 . 18. 已知四边形ABCD 为菱形,60BAD ∠=︒,6AB =cm ,P 为AC 上任意一点,则12PD PA +的最小值是cm .三、解答题(第19题8分,第20题6分,第21题6分,第22题8分,第23、24每题各9分,第25、26每题各10分,共66分)19. 用指定方法解下列方程:(1)用配方法解方程:2640x x ++=;(2)用公式法解方程:2531x x x -=+20. “扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“很了解”部分所对应扇形的圆心角度数为 ; (2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.21. 关于x 的二次函数2y ax bx c =++的图象与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点()0,3C .(1)求二次函数的解析式;(2)求二次函数的对称轴和顶点坐标.22. 如图,矩形ABCD 中,点E 在边CD 上,将BCE ∆沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作//FG CD 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若6AB =,10AD =,求四边形CEFG 的面积.23. 长沙市马王堆蔬菜批发市场某批发商计划以每千克10元的单价对外批发销售某种蔬菜,为了加快销售,该批发商对价格进行了两次下调后,售价降为每千克6.4元. (1)求平均每次下调的百分率;(2)某大型超市准备到该批发商处购买2吨该蔬菜,因数量多,该批发商决定再给予两种优惠方案以供选择,方案一:打八折销售;方案二:不打折,每吨优惠现金1000元,试问超市采购员选择哪种方案更优惠?请说明理由.24. 如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA 、OC 分别在x 轴、y 轴的正半轴上,把正方形OABC 的内部及边上横、纵坐标均为整数的点称为好点,点P 为抛物线()22y x m m =--++的顶点. (1)当0m =时,求该抛物线下方(包括边界)的好点个数; (2)当3m =时,求该抛物线上的好点坐标;(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.25. 某公司生产某环保产品的成本为每件40元,经过市场调研发现:这件产品在未来两个月(60天)的日销量m (件)与时间t (天)的关系图象如图所示(第一个月,第二个月销量与时间满足一次关系),未来两个月(60天)该商品每天的价格y (元/件)与时间t (天)的函数关系式为:()()180130,41903160,3t t t y t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩为整数为整数,根据以上信息,解决以下问题:(1)请分别确定130t ≤≤和3160t ≤≤时该产品的日销量m (件)与时间t (天)之间的函数关系式; (2)请预测未来第一个月日销售利润1W (元)的最小值是多少?第二个月日销售利润2W (元)的最大值是多少? (3)为创建“两型社会”,政府决定大力扶持该环保产品的生产和销售,从第二个月开始每销售一件该产品就补贴a 元,有了政府补贴以后,第二个月内该产品日销售利润3W (元)随时间t (天)的增大而增大,求a 的取值范围.26. 如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线23+4y ax x c =+经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当BEC ∆的面积最大时,请求出点E 的坐标和BEC ∆的面积的最大值?(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标,如果不存在,请说明理由.备用图。

2018-2019学年湘教版八年级(下)期末考试数学考试试题

2018-2019学年湘教版八年级(下)期末考试数学考试试题

八年级数学试卷 第 1 页 共 7 页2018-2019学年湘教版八年级(下)期末考试数学考试试题(满分:120分,考试时间:120分钟)温馨提示:1.本试题卷共三个大题26个小题,注意不漏页,不漏题。

2.答题时,切记答案要填在答题卷上,答在试题卷上的答案无效一、选择题(本题共10小题,每小题有且只有一个正确答案,每小题3分,共30分) 1.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a b c ,,,且满足∠A :∠B :∠C =1:2:3,则△ABC 一定是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定2.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.如点(,2)A a a --在第三象限,那么a 的值有可能是A. 0B. 1C. 2D. 34.已知四边形ABCD 是平行四边形,下列结论中不正确...的是 A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形5.函数xy =的自变量x 的取值范围是 A .x ≠2B .x ≥0C .x ≥0且x≠2D .x >26.已知正比例函数3y x =的图象经过点(1,m ),则m 的值为A .B .3C .﹣D .﹣37.某校为了解学生参加社团活动的情况,抽查了100名同学,统计他们参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是A .4﹣6小时B .6﹣8小时C .8﹣10小时D .不能确定八年级数学试卷 第 2 页 共 7 页8.如图,在△ABC 中,∠C =90°,AC =4,BC =3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为A .B .2C .3D .2第7题图 第8题图9.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是A. 这是一次1500m 赛跑B. 甲、乙同时起跑C. 甲、乙两人中先到达终点的是乙D. 甲在这次赛跑中的速度为5m/s10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AC =4cm ,∠AOD =120°,则BC 的长为A .4cm B .4cmC .2cmD .2cm第9题图 第10题图二、填空题(本题共8个小题,每小题3分,共24分)11.若正多边形的一个内角等于140°,则这个正多边形的边数是.12.在平面直角坐标系中,点P (﹣3,4)关于x 轴的对称点的坐标是 . 13.一次函数112y x =-+的图像不经过第 象限. 14.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.15.根据如图的程序,计算当输入3x =时,输出的结果y = .第14题图第15题图16.某班有52名同学,在一次数学竞赛中,81﹣90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的人数有人.17.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.18.一名学生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了分钟.第17题图第18题图三、解答题(本大题共8个小题,满分66分,需要写出必要的解题与推理过程............)19.(满分6分)计算:3132(1)223⎛⎫⎛⎫-+---⨯-⎪ ⎪⎝⎭⎝⎭20.(满分6分)如图,在△ABC中,已知AC=10,AD=6,CD=8,BC=17,求DB的长.输入5(1)y x x=-+>5(1)y x x=+≤输出八年级数学试卷第 3 页共 7 页八年级数学试卷 第 4 页 共 7 页21.(满分8分)为了提高学生书写汉字的能力,增强保护汉字的意识,我区某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50≤x <100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)直接写出表中a =,b = ; (2)本次决赛共有 名学生参加;(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .22.(满分8分)如图所示,一次函数y x m =-+的图象和y 轴交于点B ,与正比例函数y x =图象交于点P (2,n ).(1)求m 和n 的值;(2)求△POB 的面积.八年级数学试卷 第 5 页 共 7 页23.(满分8分)如图,AC 是平行四边形ABCD 的对角线,∠BAC =∠DAC . (1)求证:AB =BC ; (2)若AB =2,AC =2,求平行四边形ABCD 的面积.24.(满分8分)在平面直角坐标系xOy 中,已知点(02)B ,,点A 在x 轴正半轴上且30BAO ∠=︒.将OAB △沿直线AB 折叠得CAB △.(1)试求AC 的长度; (2)求点C 的坐标.25. (满分10分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.八年级数学试卷第 6 页共 7 页26.(满分12分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,试求∠DPE的度数.八年级数学试卷第 7 页共 7 页。

湘教版2018-2019学年八年级(下)期末考试数学试题含答案

湘教版2018-2019学年八年级(下)期末考试数学试题含答案

湘教版2018-2019学年八年级(下)期末考试数学试题(时间:90分钟满分:120分)一、选择题(每小题3分,共24分)1.直角三角形的两个锐角平分线与斜边的所夹的锐角之和是( )A.30°B.60°C.45°D.15°和75°2.下列图形中,是轴对称图形又是中心对称图形的是( )3.将直线y=kx-1向上平移2个单位长度,可得直线的解析式为( )A.y=kx+1B.y=kx-3C.y=kx+3D.y=kx-14.已知点M(3a-9,1-a)在第三象限,且它的坐标是整数,则a等于( )A.1B.2C.3D.05.下列命题中正确的是( )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.一次函数y=(k-3)x+2,若y随x的增大而增大,则k的值可以是( )A.1B.2C.3D.47.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( )A.0.1B.0.2C.0.3D.0.78.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元,设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为( )二、填空题(每小题3分,共24分)9.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为__________米.10.若一个多边形内角和等于1 260°,则该多边形边数是__________.11.写出一个图象经过点(-1,2)的函数解析式___________________.12.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE∥DF,若∠EBF=45°,则∠EDF的度数是__________.13.抽取某校学生的一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图所示,则在样本中,学生身高位于160 cm至175 cm之间学生的学生人数占总人数的__________.14.若点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第__________象限.15.若一条直线经过点(-1,1)和点(1,5),则这条直线与x轴的交点坐标为__________.16.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为__________.三、解答题(共72分)17.(6分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.18.(6分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=D C.19.(6分)若点M(a-3,a+1)到x轴的距离是3,且它位于第三象限,求点M的坐标.20.(8分)已知一次函数y=kx+2k+4,当x=-1时的函数值为1.(1)求一次函数的解析式;(2)这个函数的图象不经过第几象限?(3)求这个一次函数的图象与y轴的交点坐标.21.(8分)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB,AC交于点G,F.(1)求证:GE=GF;(2)若BD=1,求DF的长.22.(8分)如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.23.(9分)某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.请根据图表所提供的信息回答下列问题:(1)统计表中的m=_________,n=_________;(2)补全频数分布直方图;(3)若该校有2 000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?24.(9分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是_________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?25.(12分)如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.C 2.D 3.A 4.B 5.B 6.D7.B8.D9.100 10.9 11.答案不唯一,如y=-2x12.45°13.80% 14.三15.(-32,0) 16.5或617.在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=90°-∠A=90°-70°=20°,∠ECA=90°-∠A=90°-70°=20°,又∵∠BCE=30°,∴∠ACB=∠BCE+∠ECA=50°.∴在Rt△BCF中,∠FBC=90°-∠ACB=40°.∴∠EBF=20°,∠FBC=40°.18.证明:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AE B.又∵AD=AE,∴△ADF≌△EAB(AAS).∴DF=A B.∴DF=D C.19.由题意知:|a+1|=3.∵点M位于第三象限,∴a+1=-3.∴a=-4.当a=-4时,a-3=-7,∴M的坐标为(-7,-3).20.(1)由已知可知,函数过点(-1,1),代入解析式得1=k·(-1)+2k+4.∴k=-3.故一次函数的解析式为:y=-3x-2;(2)因为x=0时y=-2,y=0时x=-23,故这个函数的图象不经过第一象限;(3)令x=0,代入函数解析式y=-3x-2.得y=-2.故一次函数的图象与y轴的交点坐标为(0,-2).21.(1)证明:∵DF∥BC,∠ACB=90°,∴∠CFD=90°.∵CD⊥AB,∴∠AEC=90°.∴∠AEC=∠CFD=90°.又∵∠ACE=∠DCF,DC=AC,∴Rt△AEC≌Rt△DFC(AAS).∴CE=CF.∴DE=AF.而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DEG.∴GF=GE.(2)∵CD⊥AB,∠A=30°,∴CE=12AC=12C D.∴CE=E D.∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=12BC=12BD=12.∵在Rt△ABC中,∠A=30°,∴AB=2BC=2.∴AE=AB-BE=3 2 .∵Rt△AEC≌Rt△DFC,∴DF=AE=3 2 .22.(1)证明:在□ABCD中,AD∥BC,AD=B C.∵F 是AD 的中点,∴DF =12A D. 又∵CE =12BC ,∴DF =CE ,DF ∥CE .∴四边形CEDF 是平行四边形. (2)过点D 作DH ⊥BE 于点H .∵在□ABCD 中,∠B =60°, ∴∠DCE =60°. ∵AB =4, ∴CD =AB =4.∴CH =2,DH 在□CEDF 中,CE =DF =12AD =3, ∴EH =1.∴在Rt △DHE 中,根据勾股定理得DE 23.(1)5 10 (2)图略 (3)2 000×3050=1 200(人). 24.(1)108 (2)180<x ≤450 (3)0.6(4)设直线BC 的解析式为y =kx +b ,由图象,得364.5540,283.5450.k b k b =+=+⎧⎨⎩解得0.9,121.5.k b ==-⎧⎨⎩ ∴y =0.9x -121.5.当y =328.5时,0.9x -121.5=328.5.解得x =500. 答:这个月他家用电500千瓦时.25.(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,∵AE=2t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.∵AE=DF,∴四边形AEFD为平行四边形,AE=AD=AC-DC=60-4t=2t.解得t=10,∴当t=10秒时四边形AEFD为菱形.(3)①当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=60°,∴AD=12AE=t.又AD=60-4t,即60-4t=t.解得t=12.②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中,∠A=60°,则∠ADE=30°,∴AD=2AE,即60-4t=4t,解得t=15 2.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在,所以当t=152秒或12秒时,△DEF为直角三角形.。

湘教版2018-2019学年八年级(下)期末考试数学试题含答案

湘教版2018-2019学年八年级(下)期末考试数学试题含答案

- 1 - 湘教版2018-2019学年八年级(下)期末考试数学试题(时间:90分钟 满分:120分)一、选择题(每小题3分,共24分)1.直角三角形的两个锐角平分线与斜边的所夹的锐角之和是( )A.30°B.60°C.45°D.15°和75°2.下列图形中,是轴对称图形又是中心对称图形的是()3.将直线y =kx -1向上平移2个单位长度,可得直线的解析式为( )A.y =kx +1B.y =kx -3C.y =kx +3D.y =kx -14.已知点M (3a -9,1-a )在第三象限,且它的坐标是整数,则a 等于( )A.1B.2C.3D.05.下列命题中正确的是( )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.一次函数y =(k -3)x +2,若y 随x 的增大而增大,则k 的值可以是( )A.1B.2C.3D.47.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( )A.0.1B.0.2C.0.3D.0.78.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元,设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系用图象表示为( )。

湘教版2018--2019学年度第二学期八年级期末复习数学试卷

湘教版2018--2019学年度第二学期八年级期末复习数学试卷

绝密★启用前 湘教版2018--2019学年度第二学期八年级期末复习 数学试卷 注意事项: 1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做一、单选题(计30分) 1.(本题3分)由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A +∠B =∠C B .∠A :∠B :∠C =1:3:2 C .a =2,b =3,c =4 D .(b +c )(b ﹣c )=a 2 2.(本题3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是( ) A .2 B .4 C .23 D .43 3.(本题3分)如图,在矩形ABCD 中,AB 与BC 的长度比为3:4,若该矩形的周长为28,则BD 的长为( ) A .5 B .6 C .8 D .10 4.(本题3分)将个边长都为1cm 的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D . 5.(本题3分)如图的围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(5,2),白棋④的坐标为(6,﹣2)那么黑棋①的坐标应该是( ) A .( 9,3 ) B .(﹣1,﹣1) C .(﹣1,3) D .( 9,﹣1) 6.(本题3分)已知P 1(﹣3,y 1),P 2(2,y 2)是一次函数的图象上的两个点,则y 1,y 2的大小关系是( ) A .y 1=y 2 B .y 1<y 2 C .y 1>y 2 D .不能确定7.(本题3分)直线和直线与x 轴围成的三角形的面积是( ) A .32 B .64 C .16 D .88.(本题3分)如图,点E 、F 是正方形ABCD 的边BC 上的两点(不与B 、C 两点重合),过点B 作BG ⊥AE 于点G ,连接FG 、DF ,若AB =2,则DF +GF 的最小值为( )A .13 ﹣1B .3226 C .3 D .49.(本题3分)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲港出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港.设船行驶后,与乙港的距离为,与的函数关系如图所示,则下列说法正确的是( )A .甲港与丙港的距离是B .船在中途休息了0.5小时C .船的行驶速度是D .船从乙港到达丙港共花了1.5小时10.(本题3分)已知数据10,9,8,7,6,6,9,10,7,9,6,7,10,9,6,8,9,10,6,9那么频率为0.5的范围是( ) A .5.5~7.5 B .6.5~8.5 C .7.5~9.5 D .8.5~10.5 二、填空题(计32分) 11.(本题4分)一个三角形的三边分别是2、1、3,这个三角形的面积是_____. 12.(本题4分)点(-1,-2)关于原点O 对称的点的坐标是______. 13.(本题4分)如图,正五边形中,,的度数为_____. 14.(本题4分)若直角坐标系中的一条直线经过点,且与直线交于点,则该直线的表达式为___. 15.(本题4分)地面温度为15 ºC ,如果高度每升高1千米,气温下降6 ºC ,则高度h(千米)与气温t(ºC)之间的关系式为___________ 16.(本题4分)在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________. 17.(本题4分)如图,在中,,,,将折叠,使点恰好落在边上,与点重合,为折痕,则_________. 18.(本题4分)如图,在菱形中,,,且,连接交对角线于点,则_______.三、解答题(计58分)19.(本题8分)已知直线y=2x+1.(1)求已知直线与y轴交点A的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k与b的值.20.(本题8分)如图,一架梯子长2.5米,斜靠在一面墙上,梯子底端离墙0.7米,如果梯子的顶端下滑0.4米,那么梯子的底部在水平方向上滑动了多少米?21.(本题8分)如图,在▱ABCD 中,AB =10,AD =6,AC ⊥BC .求BD 的长度.22.(本题8分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度与所挂物体的质量的几组对应值:(1)上述表格反映了两个变量之间的关系,哪个是自变量?哪个是因变量? (2)写出弹簧长度与所挂物体质量的关系式; (3)若弹簧的长度为30cm 时,此进所挂重物的质量是多少?(在弹簧的允许范围内) 23.(本题8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题:(1)若A 组的频数比B 组小24,求频数分布直方图中 a = ,b = ;(2)扇形统计图中n = ,并补全频数分布直方图; (3)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?24.(本题9分)一船在灯塔的正东方向海里的处,以20海里/时的速度沿北偏西方向航行。

2018-2019学年度湖南省长沙市麓山国际中学八年级下学期数学试卷

2018-2019学年度湖南省长沙市麓山国际中学八年级下学期数学试卷

2018-2019-2 麓山国际期中考试八年级数学试卷时量:120 分钟满分:120 分一、选择题(本题共12 小题,每题3 分,共36 分)1.在下列四个函数中,是一次函数的是( )A. y =kx +bB. y =x2 +1C. y = 2xD. y =1x+ 62.已知一组数据2 、3 、4 、x 、1、4 、3 有唯一的众数4 ,则这组数据的中位数是( )A. 2B. 3C. 4D. 53.已知一组数据x1 、x2 、x3 的平均数为7 ,则x1 + 3,x2 + 2 ,x3 + 4 的平均数为( )A. 7B. 8C. 9D. 104.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:8 、10、9 、7 、7 、9 、8 、9 ,下列说法不正确的是( )A. 众数是9B. 中位数是8.5C. 极差是3D. 平均数是8.45.已知点(-1, y1 )、(-0.5, y2 )、(1.5, y3 )是直线y =-2 x+1上的三个点,则y1 、y2 、y3 的大小关系是( )A. y3 >y2 >y1B. y1 >y2 >y3C. y1 >y3 >y2D. y3 >y1 >y26.下列说法中正确的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是正方形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分7.一次函数y =mx +n 与y =mnx(m n ≠0)在同一平面直角坐标系的图象可能是( )A. B. C. D.8.矩形ABCD AC 、BD 交于点O ,若∠AOB = 60︒,BD = 8 ,则AB 的长为( )A. 4B. 3 D. 59.一只蜡烛长20 cm ,若点燃后每小时燃烧5 cm ,则燃烧剩余的长度y ( cm )与燃烧时间x (时)之间的函数关系的图像大致为( )A. B. C. D.10.如图,菱形ABCD 的两条对角线AC 、BD 相交于点O ,E 是AB 的中点,若AC = 6 ,BD = 8 ,则OE 的长为( )A. 3B. 5C. 2.5D. 411.如图,在矩形ABCD 中,AB = 8 ,BC = 4 ,将矩形沿AC 折叠,则重叠部分∆AFC 的面积为( )A. 12B. 10C. 8D. 6第10 题图第11 题图第12 题图12.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD ,下列结论:①EG ⊥FH ;②四边形EFGH 是菱形;③HF 平分∠EHG ;④EG =12(B C -AD ).其中正确的个数是( )A. 1个B. 2 个C. 3 个D. 4 个二、填空题(本大题共6 个小题,每小题3 分,共18 分)13.谭老师对李阳、王博两名同学本学期5 次数学检测成绩进行了统计,得出两人5 次检验成绩的平均分均为90分,李阳成绩的方差是S2 = 6 ,王博成绩的方差是S2 =27 ,则他们两人中数学成绩更稳定的是李阳.(选填“李阳”或“王博”)14.已知函数y =(m -1)x +m2 -1是正比例函数,则m =.15.如图,平行四边形ABCD 的周长为18 cm ,AE 平分∠BAD ,若CE = 1 cm ,则 AB 的长度为cm .16.已知点 P 是正方形 ABCD 内部一点,且 ∆PAB 是正三角形,则 ∠CPD =度;17.如图,已知直线 l : y = kx + b 与 x 轴的交点坐标是 ( -3, 0) ,则不等式 kx + b ≥ 0 的解集是 .18.如图,已知 a 、 b 、 c 分别是 Rt ∆ABC 的三条边长, ∠C = 90︒ 我们把关于 x 的形如 y =a c x + b c的一次函数称为“勾股一次函数”,若点 P 在“勾股一次函数”的图象上,且 Rt ∆ABC 的面积是 5 ,则 c 的值是.第 17 题图第 18 题图三、解答题(本大题共 9 个小题,共 66 分)19.( 6 分)020192( 3.14)(1)π--+-20.( 6 分)已知直线 y = (1 - 3k ) x + 2k -1.(1) k 为何值时, y 随 x 的增大而减小;(2) k 为何值时,直线 y = (1 - 3k ) x + 2k -1 与直线 y = -3x + 5 平行.21.( 6 分)如图,直线y =23x + 4 与x 轴相交于点A ,与y 轴相交于点B .(1)求∆AOB 的面积;(2)过B 作直线BC 与x 轴相交于点C ,若∆ABC 的面积是16 ,求点C 的坐标.22.( 8 分)为提高节水意识,王敏随机统计了自己家7 天的用水量,并分析了第3 天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图(单位:升)(1)求这7 天内王敏家每天用水量的平均数和中位数;(2)求第3 天王敏家洗衣服的水占这一天总用水量的百分比;(3)若规定居民生活用水收费标准为2.80 元/立方米,请你估计王敏家一个月(按30天计算)的水费是多少元?(1立方米=1000 升)23.( 6 分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG ,H 为FG 的中点,连接DH .(1)求证:四边形AFHD 为平行四边形;(2)若CB =CE ,∠EBC = 75︒,∠DCE =10︒,求∠DAB 的度数.24.( 8 分)如图,四边形ABCD 中,AD / /B C ,∠A = 90︒,BD =BC ,点E 为CD 的中点,射线BE 交AD 的延长线于点F ,连接CF .(1)求证:四边形BCFD 是菱形;(2)若AD =1 ,BC = 2 ,求BF 的长.25.( 8 分)某电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y (元)与用电量x (度)的函数图象是一条折线(如图),根据图象解答下列问题:(1)求出y 与x 之间的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电60 度,则应缴费多少元?若该用户某月缴费105 元,则该用户该月用了多少度电?26.( 8 分) A 城有某种农机30台,B 城有该农机40 台,现要将这些农机全部运往C 、D 两乡,调运任务承包给某运输公司,已知C 乡需要农机34台,D 乡需要农机36台,从A 城往C 、D 两乡运送农机的费用分别为210 元/台和200 元/台,从B 城往C 、D 两乡运送农机的费用分别为150 元/台和240 元/台.(1)设A 成运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)现该运输公司决定对A 城运往C 乡的农机,从运输中每台减免a 元( a ≤ 200 )作为优惠,其它费用不变,如何调运,使总费用最少?27.(10分)在平面直角坐标系中,如果点A 、点C 为某个菱形的一组对角的顶点,且点A 、C 在直线y =x 上,那么称该菱形为点A 、C 的“极好菱形”,如图为点A 、点C 的“极好菱形”的一个示意图,已知点M 的坐标为(2,2),点P 的坐标为(4,4).(1)点E (2,4)、F (3,2)、G(6,0)中,能够成为点M 、P 的“极好菱形”的顶点的是;(2)若点M 、P 的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标;(3)如果四边形MNPQ 是点M 、P 的“极好菱形”.①当点N 的坐标为(5,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为12 ,且与直线y =x +b 有公共点时,请求出b 的取值范围.。

2018-2019学年湘教版八年级第二学期期末考试数学试题含答案

2018-2019学年湘教版八年级第二学期期末考试数学试题含答案

2018-2019学年湘教版八年级第二学期期末考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,不是中心对称图形的是()A.B.C.D.2.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)3.要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数4.对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限5.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,26.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形; B.有一个角是直角的四边形是矩形;C.对角线互相垂直平分的四边形是正方形; D.有一组邻边相等的平行四边形是菱形7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)9.若n边形的每个内角都是150°,则n=.10.已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为cm.11.已知点A(a,b),B(4,3)关于y轴对称,则a+b=.12.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为.13.如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.15.矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=°.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是cm.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.19.已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?23.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD ﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.25.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.26.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3) B.(﹣2,﹣3) C.(﹣3,2)D.(3,﹣2)【考点】点的坐标.【分析】根据平面直角坐标系中各个象限内点的坐标的符号即可解答.【解答】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C在第二象限;∵点距离x轴2个单位长度,距离y轴3个单位长度,所以点的横坐标是﹣3,纵坐标是2,故点C的坐标为(﹣3,2).故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数 C.中位数D.频数【考点】统计量的选择.【分析】平均数、中位数是表示样本的平均水平,众数则表示哪一个身高的学生最多,只有频率分步直方图可以清晰地揭示各个身高的学生所占的比例.【解答】解:频数分布直方图是用来显示样本在某一范围所占的比例大小,故选D.【点评】此题主要考查统计的有关知识,注:频率分布能清楚的了解每一个范围内的情况.4.对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限【考点】正比例函数的性质.【分析】根据正比例函数的性质进行解答即可.【解答】解:A、∵函数y=﹣2x是正比例函数,∴此函数的图象是一条直线,故本选项正确;B、∵当x=﹣1时,y=2,∴过点(﹣1,2),故本选项正确;C、∵k=﹣2<0,∴y随着x增大而减小,故本选项错误;D、∵k=﹣2<0,∴函数图象经过二四象限,故本选项正确.故选C.【点评】本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.5.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【考点】勾股定理的逆定理.【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.6.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【考点】命题与定理.【分析】根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】平行四边形的判定;三角形中位线定理.【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=B D.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.8.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD 会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5【考点】矩形的性质.【分析】根据矩形的性质、正方形的判定方法逐项分析即可.【解答】解:∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,∴S△ABO=S△ADO,故②正确;当∠ABD=45°时,则∠AOD=90°,∴AC⊥BD,∴矩形ABCD变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等,∴正确结论的个数是4个.故选C.【点评】本题考查了矩形的性质、等腰三角形的判定以及正方形的判定,解题的根据是熟记各种特殊几何图形的判定方法和性质.二、填空题(本大题共8小题,每小题3分,共24分)9.若n边形的每个内角都是150°,则n=12.【考点】多边形内角与外角.【分析】由题可得,该多边形的内角和为(n﹣2)×180°,根据n边形的每个内角都是150°,可得该正多边形的内角和为n×150°,再列方程求解.【解答】解:依题意得,(n﹣2)×180°=n×150°,解得n=12故答案为:12【点评】本题主要考查了多边形内角和定理,多边形内角和=(n﹣2)•180 (n≥3且n为整数).10.已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为12cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵直角三角形斜边上的中线长为6cm,∴这个直角三角形的斜边长为12cm.【点评】此题比较简单,考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.11.已知点A(a,b),B(4,3)关于y轴对称,则a+b=﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点A(a,b),B(4,3)关于y轴对称,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故答案为:﹣1.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为y=3x﹣4.【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则求解即可.【解答】解:将正比例函数y=3x的图象向下平移4个单位长度,所得的函数解析式为y=3x﹣4.故答案为y=3x﹣4.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.13.如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=3.【考点】平行四边形的判定与性质.【分析】利用角平分线的性质和平行线,平行四边形的判定即可计算.【解答】解:∵AC平分∠BAD∴∠1=∠BAC∴AB∥DC又∵AB=DC∴四边形ABCD是平行四边形∴BC=AD又∵∠1=∠2∴AD=DC=3∴BC=3.【点评】此题考查角平分线的定义,平行线的判定,平行四边形的判定等知识点.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12米.【考点】含30度角的直角三角形.【专题】应用题;销售问题.【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.【点评】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.15.矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=120°.【考点】矩形的性质;含30度角的直角三角形.【分析】先由矩形的性质得出OA=OB,再证明AOB是等边三角形,得出∠AOB=60°,由邻补角关系即可求出结果.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵AC=2AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=180°﹣60°=120°;故答案为:120°.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是10cm.【考点】角平分线的性质.【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE=CD,AC=AE,加上BC=AC,三角形的周长为BE+BD+DE=BE+CB=AE+BE,于是周长可得.【解答】解:CD=DE∵AC=BC∴∠B=45°∴DE=BE∵△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填10.【点评】本题主要考查角平分线上的点到角的两边距离相等的性质和线段的和差关系求值.利用线段相等,进行线段的转移是解决本题的关键.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).【考点】勾股定理的应用.【分析】根据题意得出∠ABC=90°,由勾股定理求出AB即可.【解答】解:根据题意得:∠ABC=90°,则AB===450(米),即该河的宽度为450米.【点评】本题考查了勾股定理的运用;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.18.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.【考点】作图-旋转变换;平行四边形的判定.【专题】几何变换.【分析】(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.19.已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.【考点】待定系数法求一次函数解析式;一次函数的图象.【分析】将(﹣1,2)代入一次函数y=kx+4,求出k;结合两点确定一条直线作出图形.【解答】解:依题意可以设该一次函数解析式为y=kx+4(k≠0).把(﹣1,2)代入得到:2=﹣k+4,解得k=2,所以该函数解析式为:y=2x+4.其函数图象如图所示:.【点评】本题考查了一次函数图象和待定系数法求一次函数解析式.此题属于基础题,代入求值即可求得系数的值.20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质先得出∠BEC=∠DFA,然后再证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出AE=CF.【解答】证明:∵平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CA D.∵BE、DF分别是∠ABC、∠ADC的平分线,∴∠BEC=∠ABE+∠BAE=∠FDC+∠FCD=∠DFA,在△BEC与△DFA中,∵∴△BEC≌△DFA(AAS),∴AF=CE,∴AE=CF.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.21.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【考点】直角三角形全等的判定;全等三角形的性质.【分析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.【解答】解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC(HL);(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.【点评】考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.22.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=35;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?【考点】条形统计图;频数(率)分布表;中位数.【分析】(1)用总人数100减去A、B、D、E四个类别的人数,求得a的值;(2)根据a的值,在条形统计图中进行画图;(3)根据总人数为100,判断中位数的位置,求得小王每天进行体育锻炼的时间所在的范围;(4)用锻炼达标的学生数除以被抽查学生总数,求得被抽查学生的达标率.【解答】解:(1)a=100﹣5﹣20﹣30﹣10=35,故答案为:35;(2)条形统计图如下:(3)∵100÷2=50,25<50<60,∴第50个和51个数据都落在C类别1<t≤1.5的范围内,即小王每天进行体育锻炼的时间在1<t≤1.5范围内;(4)被抽查学生的达标率=×100%=75%.【点评】本题主要考查了条形统计图和频数分布表.解题时注意,将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.23.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD ﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【考点】一次函数的应用.【分析】(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论【解答】解:(1)设线段DE所在直线对应的函数关系式为y=kx+b.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5;(2)由题意,得甲队每小时清理路面的长为100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.【点评】本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.24.某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.【考点】一次函数的应用.【分析】(1)依题意可列出y关于x的函数关系式;(2)根据总利润=每个的利润×数量就可以表示出w与x之间的关系式;(3)由题意得55x+36(50﹣x)≤2000,解得x的值,然后可求y值,再由一次函数的解析式据可以求出进货方案及最大利润.【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(63﹣55)x+(42﹣36)(50﹣x)=2x+300;(3)由题意,得55x+36(50﹣x)≤2000,解得x≤10,∵w=2x+300,y随x的增大而增大,=2×10+300=320元,此时购进B品牌的饮料50﹣10=40箱,∴当x=10时,y最大值∴该商场购进A、B两种品牌的饮料分别为10箱、40箱时,能获得最大利润320元.【点评】本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.25.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质;矩形的性质.【分析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;②先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.【解答】证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC==4,∴OA=AC=2,在Rt△AOE中,AE=5,OE==,∴EF=2OE=2.【点评】此题是折叠问题,主要考查了折叠的性质,全等三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形AECF为菱形和求出菱形的边长是解本题的关键.26.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.【分析】(1)根据三角形的面积公式即可直接求解;(2)把S=9代入,解方程即可求解;(3)点O关于l的对称点B,AB与直线x+y=8的交点就是所求.【解答】解:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,由8k+b=8,6k+b=0,解得k=4,b=﹣24,故直线AB的解析式为y=4x﹣24,由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,点M的坐标为(6.4,1.6).【点评】本题考查了轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.。

湖南四大名校内部资料2018-2019-2广益八下期末考试-数学试卷(已勘误)

湖南四大名校内部资料2018-2019-2广益八下期末考试-数学试卷(已勘误)

湖南广益实验中学2018-2019学年度第二学期期末考试卷八年级数学命题人:易波 审题人:李朝文 总分:120分 时量:120分钟一.选择题(本大题共12小题,共36分) 1.下列运算正确的是( )A.()2229910011001=-=- B.325a b ab +=3± D.752x x x ÷=2.下列图形中既是轴对称,图形又是中心对称图形的是( )A. B.C.D.3.方程()20x x -=的根为()A.0x =B.2x =C.10x =,22x =D. 10x =,22x =- 4.在湖南广益实验中学一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示: 则这些运动员成绩的中位数,众数分别是( ) A.4.65,4.70 B. 4.65,4.75 C. 4.70,4.75 D. 4.70,4.70 5.如图,A 、B 、C 、D 四点都在⊙O 上,若OC AB ⊥,70AOC ∠=︒,则圆周角D ∠的度数等于( ) A.70︒ B.50︒C.35︒D.20︒6.长沙市开展关于精准扶贫的决策部署以来,某贫困户2017年人均纯收入为2620元,经过帮扶预计划到2019年人均纯收入为3850元,设该贫困户每年人均纯收入的平均增长率为,则下面列出的方程中正确的是( ) A.()2262013850x -= B. ()262013850x -= C. ()26201+23850x = D. ()2262013850x +=7.如果一个正多边形的中心角是60︒,那么这个正多边形的边数是()A.4B.5C.6D.78.点()13,M y -,()22,N y -是抛物线()213y x =-++上的两点,则下列大小关系正确的是。

A.123y y <<B. 123y y <<C. 213y y <<D. 213y y <<9.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,135B ∠=︒,则»AC 的长( ) A.4π B.2πC.πD.32π 10.关于圆的性质有以下四个判断,①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,这四个判断中,正确的是( )A.①③B.②③C.①④D.②④11.如图,△ABC 为直角三角形,90C ∠=︒,6AC =,8BD =,以点C 为中心,以CA 为半径作⊙C 。

湖南四大名校内部资料八年级数学下期末长郡教育集团2018-2019学年度初二第二学期期末考试数学试卷

湖南四大名校内部资料八年级数学下期末长郡教育集团2018-2019学年度初二第二学期期末考试数学试卷

分别交 AB, AD 于点 M , N ;②分别以 M , N 为圆心,以大于 1 MN 的长为半径作弧,两弧 2
相交于点 P ;③做 AP 射线,交边 CD 于点 Q ,若 DQ 2QC , BC 3 ,则平行四边形
ABCD 的周长为
.
(第 16 题图)
(第 17 题图)
(第 18 题图)
④点 A(x1, y1) 与点 B(x2, y2 ) 在函数图象上,若 x1 x2 , x1 x2 2m ,则 y1 y2 .
其中正确结论的个数为 ( )
A.1
B.2
C.3
D.4
二、填空题(每小题 3 分,共 18 分)
13. 分解因式: x3 x
.
14. 在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一
的值为( )
7
7
7
A.
B.
C.
D. 0
4
5
6
11.若顺次连接对角线互相垂直的四边形 ABCD 四边的中点,得到的图形一定是( )
A.平行四边形
B.矩形
C.菱形
D.正方形
12.小明研究二次函数 y x2 2mx m2 1 ( m 为常数)性质时有如下结论:
①该二次函数图象的顶点始终在平行于 x 轴的直线上; ②该二次函数图象的顶点与 x 轴的两个交点构成等腰直角三角形; ③当 1 x 2 时, y 随 x 的增大而增大,则 m 的取值范围为 m 2 ;
4. 关于 x 的一元二次方程 2x2 +3x 5 0 的根的情况为( )
A.有两个相等的实数根 C.只有一个实数根
B.有两个不相等的实数根 D.没有实数根

湘教版2018-2019学年八年级下学期期末考试数学试题(含答案)

湘教版2018-2019学年八年级下学期期末考试数学试题(含答案)

湘教版2018-2019学年八年级下学期期末考试数学试题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共24分)1.在平面直角坐标系中,O为坐标原点,点A的坐标为13(,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4B.5C.6D.82.有下列四个命题:(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是菱形;(3)两条对角线互相垂直的四边形是正方形;(4)两条对角线相等且互相垂直的四边形是正方形.其中正确的个数为( )A.4B.3C.2D.13.如图,矩形的对角线,,则图中五个小矩形的周长之和为()A.10B.8C.18D.284.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.157B.125C.207D.2155.在下列各图象中,表示函数)0(<-=kkxy的图象的是( )6.函数的图象过第一、二、四象限,那么的取值范围是( ) A.34m< B.314m-<< C.1m<- D.1m>-7.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.24第7题图8.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6 min到7 min表示大于或等于6 min而小于7 min,其他类同).这个时间段内顾客等待时间不少于4 min的人数为()A. 8B.16C.19D.32OAOBODOCCDAB第3题图二、填空题(每小题3分,共24分) 9.已知一次函数,函数的值随值的增大而增大,则的取值范围是_______.10.已知直线2(3)y x a =+-与x 轴的交点在A (2,0),B (3,0)之间(包括A ,B 两点),则a 的取值范围是 . 11.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的31,那么点A 的对应点A '的坐标是_______.第11题图12.如图,在Rt △中,,平分,交于点,且,,则点到的距离是________. 13.已知两条线段的长分别为,当第三条线段长为________时,这三条线段可以组成一个直角三角形. 14.已知菱形的周长为,一条对角线长为,则这个菱形的面积为_________.15.已知有个数据分别落在5个小组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为______.16.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是 .AD第12题图第17题图A BCED第16题图三、解答题(共72分) 17.(6分)已知:如图,,,.求证:.18.(6分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m 处,已知旗杆原长16 m ,你能求出旗杆在离底部多少米的位置断裂吗?19.(6分)已知:如图,在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE .求证:四边形ABCD 为平行四边形.第19题图20.(6分)如图,为一个平行四边形的三个顶点,且三点的坐标分别为(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.21.(9分)1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).上升时间/min10 30 (x)1号探测气球所在位置的海拔/m15 …2号探测气球所在位置的海拔/m30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在的位置的海拔最多相差多少米?22.(9分)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲、乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7 500元,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(10分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据分为四个组,整理后画出频数直方图,已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?24.(10分)如图,在矩形中,,,平分∠交于点,平分∠交于点.(1)说明四边形为平行四边形;(2)求四边形的面积.25.(10分)如图,在菱形中,点是的中点,且⊥,.求:(1)∠的度数;(2)对角线的长;(3)菱形的面积.期末检测题参考答案1.C 解析:连接OA ,因为点A 的坐标为13(,),O 为原点,所以OA =2.以O 为等腰三角形的顶角的端点时,以点O 为圆心,2为半径画圆,则⊙O 与坐标轴共有4个交点;以A 为等腰三角形的顶角的端点时,以点A 为圆心,2为半径画圆,则⊙A 只与x 轴正半轴、y 轴正半轴相交,有2个交点,其中与x 轴正半轴的交点与以O 为圆心,2为半径的圆与x 轴的正半轴的交点重合;以M 为等腰三角形的顶角的端点时,则作OA 的垂直平分线交y 轴正半轴于一点,交x 轴正半轴于一点,其中与x 轴正半轴的交点与上述重合.综上可知,满足条件的点M 的个数为6.2.D 解析:只有(1)正确,(2)(3)(4)都错误.3.D 解析:由勾股定理,得 ,又,,所以所以五个小矩形的周长之和为4.A 解析:∵ ∠BAC =90°,AB =3,AC =4, ∴ 2222 34 5BC AB AC =+=+=, ∴ BC 边上的高=123455⨯÷=. ∵ AD 平分∠BAC ,∴ 点D 到AB ,AC 的距离相等,设为h ,则111123452225ABC S h h ∆=⨯+⨯=⨯⨯,解得127h =,1121123 2725ABD S BD ∆=⨯⨯=⨯,解得157BD =.故选A . 5.C 解析:因为,所以,所以函数的值随自变量的增大而增大,且函数为正比例函数,故选C . 6.C 解析:由函数的图象过第一、二、四象限,可得解得7.D 解析:∵ BC =4,EB =3,∠CBD =90°,∴ 在Rt △CBE 中EC ===5.又∵ AC =10,∴ AE =EC =5. 又∵ BE =ED =3,∴ 四边形ABCD 为平行四边形(对角线互相平分的四边形是平行四边形), ∴ S 四边形ABCD =BC ×BD =4×6=24.8.D 解析:由频数直方图可以看出:顾客等待时间不少于4 min 的人数,即最后四组的人数,为.故选D .9.解析:由函数的值随值的增大而增大,知,所以10.79a ≤≤ 解析:根据题意,当y =0时,2(3)0x a +-=,∴ 32a x -=. ∵ 直线2(3)y x a =+-与x 轴的交点在A (2,0),B (3,0)之间(包括A ,B 两点), ∴ 3232a -≤≤,∴ 79a ≤≤. 11.(2,3) 解析:点A 的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的31,得到它的对应点A '的坐标是16,33⎛⎫⨯ ⎪⎝⎭即A '(2,3). 12.3 解析:如图,过点作于.因为,,,所以.因为平分,,所以点到的距离.13.或解析:根据勾股定理,当12为直角边长时,第三条线段长为;当12为斜边长时,第三条线段长为.14.96 解析:因为菱形的周长是40,所以边长是10. 如图,,. 根据菱形的性质,有⊥,,所以,. 所以.15.0.4 解析:16.92% 解析:观察频数直方图可知,不低于23分的有50-4=46人,所以百分比为×100%=92%. 17.证明:因为,所以AD第12题答图所以△和△均为直角三角形. 在Rt △和Rt △中,因为,所以Rt △≌Rt △.所以. 又因为在Rt △中,,所以18.解:设旗杆未折断部分的长为,则折断部分的长为m,根据勾股定理,得,解得,即旗杆在离底部6 m处断裂.19.证明:∵ AB ∥CD ,∴ ∠BAE =∠DCF . ∵ BE ∥DF ,∴ ∠BEF =∠DFE . ∴ ∠AEB =∠CFD .在△AEB 和△CFD 中,,.BAE DCF AE CF AEB CFD ?ìïïïÐ=Ðïíïïïïî=?, ∴ △AEB ≌△CFD .∴ AB =CD .∵ AB ∥=CD ,∴ 四边形ABCD 是平行四边形. 20.解:(1)当为对角线时,第四个顶点的坐标为(7,7);当为对角线时,第四个顶点的坐标为(5,1); 当为对角线时,第四个顶点的坐标为(1,5).(2)图中△面积为()13313132242⨯-⨯+⨯+⨯=,所以平行四边形的面积=2×△的面积=8.21.解:(1)35,x +5;20,0.5x +15(2)两个气球能位于同一高度.根据题意,x +5=0.5x +15,解得x =20. 有x +5=25.答:此时,气球上升了20 min ,都位于海拔25 m 的高度. (3)当30≤x ≤50时,由题意,可知1号气球所在位置的海拔始终高于2号气球, 设两个气球在同一时刻所在位置的海拔相差y m , 即y =(x +5)-(0.5x +15)=0.5x -10. ∵ 0.5>0,∴ y 随x 的增大而增大.∴ 当x =50时,y 取得最大值15.答:两个气球所在位置的海拔最多相差15 m .22.解:(1)设购进甲种服装x件,由题意可知,80x+60(100-x)≤7 500,解得x≤75.答:甲种服装最多购进75件.(2)设总利润为W元.因为甲种服装不少于65件,所以65≤x≤75,W=(40-a)x+30(100-x)=(10-a)x+3 000.方案1:当0<a<10时,10-a>0,W随x的增大而增大,所以当x=75时,W有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,W随x的增大而减小,所以当x=65时,W有最大值,则购进甲种服装65件,乙种服装35件.23.解:(1)由题意,知前三个小组的频率分别是则第四小组的频率为又由第一小组的频数为,其频率为,所以参加这次测试的学生人数为(2)由可得,参加测试的人数为,则第二小组的频数为第三小组的频数为第四小组的频数为即第一,第二,第三,第四小组的频数分别为易知将数据从小到大排列,第个数据在第三小组内,所以学生跳绳次数的中位数落在第三小组内.24.解:(1)因为四边形是矩形,所以∥,∥,所以因为平分,平分,所以.所以∥.又AF∥CE,所以四边形为平行四边形.(2)如图,过点E作⊥于点.因为平分∠,所以.又,所以,.在Rt△中,设,则,那么,解得.所以平行四边形的面积等于.第 11 页 共 11 页25.解:(1)如图,连接. 因为点是的中点,且⊥,所以. 又因为,所以△是等边三角形, 所以.所以. (2)设与相交于点,则2a . 在Rt △BOC 中,∠BOC =90°,根据勾股定理, 得a 23, 所以2OC =a 3. (3)AC ·BD =21×a 3×223a .。

2018-2019学年湘教版八年级下册期末数学试题含答案解析

2018-2019学年湘教版八年级下册期末数学试题含答案解析

2018-2019学年八年级下学期期末考试数学试题一、选择题(每小题3分,共30分)1.下列各组数中,属于勾股数的是()A.1,,2 B.1.5,2,2.5 C.6,8,10 D.5,6,72.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30°B.AD=BDC.∠ACB=90°D.△ABC是直角三角形3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上4.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°5.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理6.已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则()A.y1>y2B.y1=y2C.y1<y2D.无法比较7.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)8.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100 B.40 C.20 D.49.已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是()A.2 B.3 C.4 D.510.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m≥﹣1 D.m≤﹣1二、填空题(每小题3分,共30分)11.已知正方形的对角线为4,则它的边长为.12.点P(﹣3,4)到x轴和y轴的距离分别是.13.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是.14.请你写出一个一次函数,使它经过二、三、四象限.15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是.16.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=.17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=.18.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是.19.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是.20.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题(本题有6道题,共60分)21.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED =60°,∠EAB=30°,AE=2,求CB的长.22.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD =8,求菱形的周长和面积.23.(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN 上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为;(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.24.(10分)邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.25.(12分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.26.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.参考答案一、选择题1.下列各组数中,属于勾股数的是()A.1,,2 B.1.5,2,2.5 C.6,8,10 D.5,6,7【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此判断即可.解:A、1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;B、1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;C、因为62+82=102,故是勾股数.故此选项正确;D、因为52+62≠72,故不是勾股数,故此选项错误;故选:C.【点评】此题主要考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合勾股定理的逆定理.2.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30°B.AD=BDC.∠ACB=90°D.△ABC是直角三角形【分析】根据CD是△ABC的边AB上的中线,且CD=AB,即可得到等腰三角形,进而得出正确结论.解:∵CD是△ABC的边AB上的中线,∴AD=BD,故B选项正确;又∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,∴∠ACB=180°×=90°,故C选项正确;∴△ABC是直角三角形,故D选项正确;故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质的应用,直角三角形斜边上的中线等于斜边的一半.3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上【分析】根据角平分线的判定定理解答.解:如图所示DE为点D到AB的距离,∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上,故选:B.【点评】本题考查的是角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.4.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°【分析】直接利用多边形的内角和与外角和定义分析得出答案.解:八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.故选:C.【点评】此题主要考查了多边形的内角和与外角和,正确把握相关定义是解题关键.5.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理【分析】根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形既是中心对称图形,不是轴对称图形;对角线相等的四边形是矩形,等腰梯形的对角线也相等;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.解:A、顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B、平行四边形既是中心对称图形,又是轴对称图形,说法错误;C、对角线相等的四边形是矩形,说法错误;D、只要是证明两个直角三角形全等,都可以用“HL”定理,说法错误;故选:A.【点评】此题主要考查了中心对称图形、直角三角形的判定、矩形的性质、中点四边形,关键是熟练掌握各知识点.6.已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则()A.y1>y2B.y1=y2C.y1<y2D.无法比较【分析】利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论(利用一次函数的性质解决问题亦可).解:∵点A(﹣2,y1)、点B(﹣4,y2)在直线y=﹣2x+3上,∴y1=7,y2=11.∵7<11,∴y1<y2.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)【分析】直接利用关于x,y轴对称点的性质分别得出答案.解:∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).故选:D.【点评】此题主要考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题关键.8.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100 B.40 C.20 D.4【分析】根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.解:∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=40.故选:B.【点评】本题考查频率、频数与数据总数的关系:频数=频率×数据总数.9.已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是()A.2 B.3 C.4 D.5【分析】先根据坐标轴的坐标特征分别求出直线y=2x﹣4与两坐标轴的交点坐标,然后根据三角形的面积公式计算.解:令y=0,则2x﹣4=0,解得x=2,所以直线y=2x﹣4与x轴的交点坐标为(2,0);令x=0,则y=2x﹣4=0,所以直线y=2x﹣4与y轴的交点坐标为(0,﹣4),所以此直线与两坐标轴围成的三角形面积=×2×|﹣4|=4.故选:C.【点评】本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了坐标轴上点的坐标特征以及三角形面积公式.10.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m≥﹣1 D.m≤﹣1【分析】由一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则2m+1<0,并且﹣m﹣1≥0,解两个不等式即可得到m的取值范围.解:∵一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,∴2m+1<0,并且﹣m﹣1≥0,由2m+1<0,得m<﹣;由﹣m﹣1≥0,得m≤﹣1.所以m的取值范围是m≤﹣1.故选:D.【点评】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k <0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.二、填空题(本大题10个小题,每小题3分,共30分)11.已知正方形的对角线为4,则它的边长为2.【分析】根据正方形的性质和勾股定理求边长即可.解:已知如图,∵四边形ABCD是正方形,∴AO =DO =AC =×4=2,AO ⊥DO ,∴△AOD 是直角三角形,∴AD ===2.故答案为:2.【点评】本题考查了勾股定理及正方形性质,属于基础题,比较简单.12.点P (﹣3,4)到x 轴和y 轴的距离分别是 4;3 .【分析】首先画出坐标系,确定P 点位置,根据坐标系可得答案.解:点P (﹣3,4)到x 轴的距离为4,到y 轴的距离是3,故答案为:4;3.【点评】此题主要考查了点的坐标,关键是正确确定P 点位置.13.点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是 8 .【分析】据D 、E 、F 分别是AB 、AC 、BC 的中点,可以判断DF 、FE 、DE 为三角形中位线,利用中位线定理求出DF 、FE 、DE 与AB 、BC 、CA 的长度关系即可解答.解:如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF=BC,FE=AB,DE=AC;∴DF+FE+DE=BC+AB+AC=(AB+BC+CA)=×16=8,故答案为:8.【点评】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14.请你写出一个一次函数,使它经过二、三、四象限答案不唯一:如y=﹣x﹣1 .【分析】根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.解:∵图象经过第二、三、四象限,∴如图所示:设此一次函数的解析式为:y=kx+b,∴k<0,b<0.∴此题答案不唯一:如y=﹣x﹣1.故答案为:答案不唯一:如y=﹣x﹣1【点评】此题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是18 .【分析】根据“频数:组距=6且组距为3”可得答案.解:根据题意知,该小组的频数为6×3=18,故答案为:18.【点评】本题主要考查频数分布直方图,解题的关键是根据题意得出频数:组距=6.16.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD= 4.8 .【分析】直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵CD⊥AB,∴DC×AB=AC×BC,∴DC===4.8.故答案为:4.8.【点评】此题主要考查了勾股定理,正确利用直角三角形面积求法是解题关键.17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=16.【分析】如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题;解:如图,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16,故答案为16.【点评】本题考查平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是y =2x2﹣2 .【分析】利用正比例函数的定义,设y=k(x2﹣1),然后把x=2,y=6代入求出k即可得到y与x的函数关系式.解:设y=k(x2﹣1),把x=2,y=6代入得k×(22﹣1)=6,解得k=2,所以y=2(x2﹣1),即y=2x2﹣2.故答案为y=2x2﹣2.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是x=﹣3 .【分析】直接根据函数图象与x轴的交点进行解答即可.解:∵一次函数y=mx+n与x轴的交点为(﹣3,0),∴当mx+n=0时,x=﹣3.故答案为:x=﹣3.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.20.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【分析】由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF是正方形推出.解:设AC=BC,即△ABC为等腰直角三角形,∵∠C=90°,DE垂直平分AC,DF⊥BC,∴∠C=∠CED=∠EDF=∠DFC=90°,DF=AC=CE,DE=BC=CF,∴DF=CE=DE=CF,∴四边形DECF是正方形,故答案为:AC=BC.【点评】此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、解答题(本题有6道题,共60分)21.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED =60°,∠EAB=30°,AE=2,求CB的长.【分析】直接利用直角三角形的性质结合勾股定理得出DC的长,进而得出BC的长.解:过E点作EF⊥AB,垂足为F,∵∠EAB=30°,AE=2,∴EF=BD=1,又∵∠CED=60°,∴∠ECD=30°,而AB=CB,∴∠EAC=∠ECA=15°,∴AE=CE=2,在Rt△CDE中,∠ECD=30°,∴ED=1,CD==,∴CB=CD+BD=1+.【点评】此题主要考查了勾股定理以及直角三角形的性质,正确作出辅助线是解题关键.22.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD =8,求菱形的周长和面积.【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长,由菱形面积公式即可求得面积.解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.23.(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN 上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为(﹣2,0);(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.【分析】(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,从而得出点M的坐标;(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;(3)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.解:(1)∵N(0,6),ON=3OM,∴OM=2,∴M(﹣2,0);故答案为(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式解得k=3 b=6∴直线MN的函数解析式为:y=3x+6(1)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3即点A(﹣1,3),所以点C(0,3)∴由平移后两直线的K相同可得,平移后的直线为y=3x+3【点评】此题考查待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.24.(10分)邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.【分析】(1)用C科目人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)总人数乘以样本中C科目人数所占比例,根据图表得出正确的信息即可.解:(1)这次调查的总人数为6÷(36÷360)=60(人);(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中人数最多的科目.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.25.(12分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【分析】(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积;(3)当点p在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积=4,解得:AP =4.所以点P的坐标为(0,5)或(0,﹣3).解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BC D的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP =8,所点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP =4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).【点评】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积是解题的关键.26.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30 元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.【分析】(1)根据单价=,即可解决问题.(2)y1函数表达式=60+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为:30.(2)由题意y1=30×0.6x+60=18x+60,由图可得,当0≤x≤10时,y2=30x;当x>10时,设y2=kx+b,将(10,300)和(20,450)代入y2=kx+b,解得y2=15x+150,所以y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5<x<30.【点评】本题考查分段函数、一次函数,单价、数量、总价之间的关系,解题的关键是熟练掌握待定系数法,学会利用图象确定自变量取值范围,属于中考常考题型.。

2018-2019学年湘教版八年级数学下册期末考试试题(附答案)

2018-2019学年湘教版八年级数学下册期末考试试题(附答案)

2018-2019学年八年级数学下册期末考试试题一、选择题(每小题3分,共30分)1.下列各组数中,属于勾股数的是()A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,72.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30°B.AD=BDC.∠ACB=90°D.△ABC是直角三角形3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上4.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°5.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理6.已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则()A.y1>y2B.y1=y2C.y1<y2D.无法比较7.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)8.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.49.已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是()A.2B.3C.4D.510.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1B.m<﹣1C.m≥﹣1D.m≤﹣1二、填空题(每小题3分,共30分)11.已知正方形的对角线为4,则它的边长为.12.点P(﹣3,4)到x轴和y轴的距离分别是.13.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是.14.请你写出一个一次函数,使它经过二、三、四象限.15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是.16.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=.17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=.18.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是.19.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是.20.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题(本题有6道题,共60分)21.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.22.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.23.(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为;(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.24.(10分)邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:频数频率A a0.5B12bC6cD d0.2(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.25.(12分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.26.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.参考答案一、选择题1.下列各组数中,属于勾股数的是()A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此判断即可.解:A、1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;B、1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;C、因为62+82=102,故是勾股数.故此选项正确;D、因为52+62≠72,故不是勾股数,故此选项错误;故选:C.【点评】此题主要考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合勾股定理的逆定理.2.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30°B.AD=BDC.∠ACB=90°D.△ABC是直角三角形【分析】根据CD是△ABC的边AB上的中线,且CD=AB,即可得到等腰三角形,进而得出正确结论.解:∵CD是△ABC的边AB上的中线,∴AD=BD,故B选项正确;又∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,∴∠ACB=180°×=90°,故C选项正确;∴△ABC是直角三角形,故D选项正确;故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质的应用,直角三角形斜边上的中线等于斜边的一半.3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上【分析】根据角平分线的判定定理解答.解:如图所示DE为点D到AB的距离,∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上,故选:B.【点评】本题考查的是角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.4.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°【分析】直接利用多边形的内角和与外角和定义分析得出答案.解:八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.故选:C.【点评】此题主要考查了多边形的内角和与外角和,正确把握相关定义是解题关键.5.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理【分析】根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形既是中心对称图形,不是轴对称图形;对角线相等的四边形是矩形,等腰梯形的对角线也相等;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.解:A、顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B、平行四边形既是中心对称图形,又是轴对称图形,说法错误;C、对角线相等的四边形是矩形,说法错误;D、只要是证明两个直角三角形全等,都可以用“HL”定理,说法错误;故选:A.【点评】此题主要考查了中心对称图形、直角三角形的判定、矩形的性质、中点四边形,关键是熟练掌握各知识点.6.已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则()A.y1>y2B.y1=y2C.y1<y2D.无法比较【分析】利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论(利用一次函数的性质解决问题亦可).解:∵点A(﹣2,y1)、点B(﹣4,y2)在直线y=﹣2x+3上,∴y1=7,y2=11.∵7<11,∴y1<y2.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)【分析】直接利用关于x,y轴对称点的性质分别得出答案.解:∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).故选:D.【点评】此题主要考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题关键.8.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.4【分析】根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.解:∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=40.故选:B.【点评】本题考查频率、频数与数据总数的关系:频数=频率×数据总数.9.已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是()A.2B.3C.4D.5【分析】先根据坐标轴的坐标特征分别求出直线y=2x﹣4与两坐标轴的交点坐标,然后根据三角形的面积公式计算.解:令y=0,则2x﹣4=0,解得x=2,所以直线y=2x﹣4与x轴的交点坐标为(2,0);令x=0,则y=2x﹣4=0,所以直线y=2x﹣4与y轴的交点坐标为(0,﹣4),所以此直线与两坐标轴围成的三角形面积=×2×|﹣4|=4.故选:C.【点评】本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了坐标轴上点的坐标特征以及三角形面积公式.10.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1B.m<﹣1C.m≥﹣1D.m≤﹣1【分析】由一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则2m+1<0,并且﹣m﹣1≥0,解两个不等式即可得到m的取值范围.解:∵一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,∴2m+1<0,并且﹣m﹣1≥0,由2m+1<0,得m<﹣;由﹣m﹣1≥0,得m≤﹣1.所以m的取值范围是m≤﹣1.故选:D.【点评】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.二、填空题(本大题10个小题,每小题3分,共30分)11.已知正方形的对角线为4,则它的边长为2.【分析】根据正方形的性质和勾股定理求边长即可.解:已知如图,∵四边形ABCD是正方形,∴AO=DO=AC=×4=2,AO⊥DO,∴△AOD是直角三角形,∴AD===2.故答案为:2.【点评】本题考查了勾股定理及正方形性质,属于基础题,比较简单.12.点P(﹣3,4)到x轴和y轴的距离分别是4;3.【分析】首先画出坐标系,确定P点位置,根据坐标系可得答案.解:点P(﹣3,4)到x轴的距离为4,到y轴的距离是3,故答案为:4;3.【点评】此题主要考查了点的坐标,关键是正确确定P点位置.13.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是8.【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF=BC,FE=AB,DE=AC;∴DF+FE+DE=BC+AB+AC=(AB+BC+CA)=×16=8,故答案为:8.【点评】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14.请你写出一个一次函数,使它经过二、三、四象限答案不唯一:如y=﹣x﹣1.【分析】根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.解:∵图象经过第二、三、四象限,∴如图所示:设此一次函数的解析式为:y=kx+b,∴k<0,b<0.∴此题答案不唯一:如y=﹣x﹣1.故答案为:答案不唯一:如y=﹣x﹣1【点评】此题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是18.【分析】根据“频数:组距=6且组距为3”可得答案.解:根据题意知,该小组的频数为6×3=18,故答案为:18.【点评】本题主要考查频数分布直方图,解题的关键是根据题意得出频数:组距=6.16.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD= 4.8.【分析】直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵CD⊥AB,∴DC×AB=AC×BC,∴DC===4.8.故答案为:4.8.【点评】此题主要考查了勾股定理,正确利用直角三角形面积求法是解题关键.17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=16.【分析】如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题;解:如图,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16,故答案为16.【点评】本题考查平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是y=2x2﹣2.【分析】利用正比例函数的定义,设y=k(x2﹣1),然后把x=2,y=6代入求出k即可得到y与x的函数关系式.解:设y=k(x2﹣1),把x=2,y=6代入得k×(22﹣1)=6,解得k=2,所以y=2(x2﹣1),即y=2x2﹣2.故答案为y=2x2﹣2.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是x=﹣3.【分析】直接根据函数图象与x轴的交点进行解答即可.解:∵一次函数y=mx+n与x轴的交点为(﹣3,0),∴当mx+n=0时,x=﹣3.故答案为:x=﹣3.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.20.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【分析】由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF是正方形推出.解:设AC=BC,即△ABC为等腰直角三角形,∵∠C=90°,DE垂直平分AC,DF⊥BC,∴∠C=∠CED=∠EDF=∠DFC=90°,DF=AC=CE,DE=BC=CF,∴DF=CE=DE=CF,∴四边形DECF是正方形,故答案为:AC=BC.【点评】此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、解答题(本题有6道题,共60分)21.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.【分析】直接利用直角三角形的性质结合勾股定理得出DC的长,进而得出BC的长.解:过E点作EF⊥AB,垂足为F,∵∠EAB=30°,AE=2,∴EF=BD=1,又∵∠CED=60°,∴∠ECD=30°,而AB=CB,∴∠EAC=∠ECA=15°,∴AE=CE=2,在Rt△CDE中,∠ECD=30°,∴ED=1,CD==,∴CB=CD+BD=1+.【点评】此题主要考查了勾股定理以及直角三角形的性质,正确作出辅助线是解题关键.22.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长,由菱形面积公式即可求得面积.解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.23.(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为(﹣2,0);(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.【分析】(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,从而得出点M 的坐标;(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;(3)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.解:(1)∵N(0,6),ON=3OM,∴OM=2,∴M(﹣2,0);故答案为(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式解得k =3 b=6∴直线MN的函数解析式为:y=3x+6(1)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3即点A(﹣1,3),所以点C(0,3)∴由平移后两直线的K相同可得,平移后的直线为y=3x+3【点评】此题考查待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.24.(10分)邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:频数频率A a0.5B12bC6cD d0.2(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.【分析】(1)用C科目人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)总人数乘以样本中C科目人数所占比例,根据图表得出正确的信息即可.解:(1)这次调查的总人数为6÷(36÷360)=60(人);(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中人数最多的科目.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.25.(12分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【分析】(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积;(3)当点p在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积=4,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BC D的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,所点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).【点评】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积是解题的关键.26.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.【分析】(1)根据单价=,即可解决问题.(2)y1函数表达式=60+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为:30.(2)由题意y1=30×0.6x+60=18x+60,由图可得,当0≤x≤10时,y2=30x;当x>10时,设y2=kx+b,将(10,300)和(20,450)代入y2=kx+b,解得y2=15x+150,所以y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5<x<30.【点评】本题考查分段函数、一次函数,单价、数量、总价之间的关系,解题的关键是熟练掌握待定系数法,学会利用图象确定自变量取值范围,属于中考常考题型.。

湘教版2018-2019学年八年级下学期期末考试数学测试题(含答案)

湘教版2018-2019学年八年级下学期期末考试数学测试题(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D. 2.以下列各组数为边长能构成直角三角形的是()A. 1,1,B. 2,3,4C. 4,5,6D. 6,8,113.在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是2,且在第二象限,则点M的坐标是()A. B. C. D. 4.已知直线y=2x+4与x轴交于点A,与y轴交于点B,则△AOB面积为()A. 8B. 6C. 4D. 25.一次函数y=kx+k的图象可能是()A. B. C. D. 6.一组数据的最大值与最小值的差为80,若确定组距为9,则分成的组数为()A. 7B. 8C. 9D. 127.汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A. B. C. D. 8.如图,在△ABC中,∠C=90°,∠A=30°,BC=4cm,点D为AB的中点,则CD=()A. 3cmB. 4cmC. 5cmD. 6cm9.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A. 2B. 3C. 4D. 510.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积中= 型号进价(元/只)售价(元/只)A型1012B型1523图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<356第3组35≤x<4014第4组40≤x<45a第5组45≤x<501040(=×于=8,(= -本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.11.【答案】x≥-2且x≠1【解析】解:由题意得,x+2≥0且x-1≠0,解得x≥-2且x≠1.故答案为:x≥-2且x≠1.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【答案】(-1,1)【解析】解:根据题意,知点Q的坐标是(-3+2,4-3),即(-1,1),故答案为:(-1,1).根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.13.【答案】y=2x-1【解析】解:设所求的一次函数解析式为y=kx+b,∵直线y=kx+b与y=2x+3平行,∴k=2,∵点P(0,-1)在直线y=2x+b上,∴-0+b=-1,解得b=-1,∴所求的一次函数解析式为y=2x-1.故答案为y=2x-1.设所求直线解析式为y=kx+b,根据两条直线平行问题得到k=2,然后把点P cmBD==8BD==cm× 12÷9=9=km =CD=×,= 时=AC,为 或本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.。

2018-2019学年湘教版八年级数学下学期期末考试试题及答案

2018-2019学年湘教版八年级数学下学期期末考试试题及答案

2018-2019学年湘教版八年级数学下学期期末试卷
时量90分钟
满分100分学校
班级姓名
一、选择题(每小题3分,共24分)1.如图,以数轴的单位长为边长作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在
数轴正半轴的点A 处,则点A 表示的数是() A .1
12B .1.4 C .3D .2
2.如图,在?ABCD 中,AD=8,点E ,F 分别是BD ,CD 的中点,
则EF 等于(
)A .2 B
.3 C .4 D .53.如图,菱形OABC 在平面直角坐标系中的位置如图所示,
若OA =2,∠AOC =60°,则B 点的坐标是
()A .(3,
3) B .(1,3)C .(-1,3) D .(-3,3)
4.正方形ABCD 中,点P 从点C 出发沿着正方形的边依次经过点D ,A 向终点B 运动,运动的路程
为x (cm ),△PBC 的面积为y (2
cm ),y 随x 变化的图象可能是(
)B C
A D P
5.直线12x y 一定经过点().
A .(1,0)
B .(1,2)
C .(0,2) D
.(0,-1)6.适合下列条件的△
AB C 中,直角三角形的个数为()①a=1
3,b=1
4,c=1
5;②∠A :∠B :∠C=1:2:3 ;③∠A=36°,∠C=54°;④a=1,b=2
2,c=3 A.1个 B. 2
个 C. 3个 D. 4个7.在平面直角坐标系中,
P 点关于原点的对称点为P 1(﹣3,﹣38),P 点关于x 轴的对称点为P 2(a 、b ),则=()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

麓山国际实验学校2018-2019初二年级期末考试
数学模拟试卷1(问卷)
命题人:刘军 审题人:谭放军 总分:120分 时量:120分钟
一、选择题(每小题3分,共36分)
1.如图,点D ,E 分别是ABC ∆边BA,BC 的中点,3AC =,则DE 的长为( ) A.2
B.
43
C.3
D.
32
2.一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图像经过( ) A.一、二、三
B. 一、二、四
C.二、三、四
D.一、三、四
3.均匀的向一个容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系如图所示,则该容器是下列四个中的( )
A. B. C. D.
4.如图直线y ax b =+与x 轴交于点(1,0)-,则关于x 的不等式0ax b +>的解集是( ) A.1x >
B.1x >-
C.1x <-
D.1x <
5.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差2
s (单位:千克2)如表所示:
甲 乙 丙 丁 x
24 24 23 20 2s
2.1
1.9
2
1.9
今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A.甲
B.乙
C.丙
D.丁
6.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,8,6,AC BD OE BC ==⊥,垂足为点E ,则OE =( ) A.
24
5
B.5
C.
125
D.4
(第1题图) (第4题图) (第6题图) 7.已知a 是方程2
230x x --=的一个根,则代数式2
241a a --的值为( ) A. 3
B. 4-
C. 3或4-
D. 5
8.已知一组数据,66,66,62,67,63,这组数据的众数和中位数分别是( ) A.66,62
B.66,66
C.67,62
D.67,66
9.二次函数2
y ax bx c =++图象的对称轴是直线1x =,与x 轴一个交点(3,0)A ,则与x 轴的另一个交点是( ) A.1
(0,)2
-
B.1(,0)2
-
C. (0,1)-
D.(1,0)-
10.将抛物线2
65y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A.2
(4)6y x =--
B. 2
(1)3y x =--
C. 2
(2)2y x =--
D. 2
(4)2y x =--
11.关于x 的方程2
(1)210k x x +-+=有实数根,则k 的取值范围是( ) A.0k ≥
B.0k ≤
C.0k <且1k ≠-
D. 0k ≤且1k ≠-
12.二次函数2
y ax bx c =++的部分图象如图所示,有以下结论:①30a b -=;②
240b ac ->;③520a b c -+>;④430b c +>。

其中正确结论的个数是( )
A.1
B.2
C.3
D.4
二、填空题(每小题3分,共18分) 13. 若23
(2)2k y k x
-=-+是一次函数,则k =__________
14. 如图所示平面直角坐标系中,四边形ABCD 是边长为1的正方形,以A 为圆心,AC 为半径画圆交x 轴负半轴于点P ,则点P 的坐标为___________
15. 某高中自主招生考试只考数学和物理,数学与物理成绩按7:3计入综合成绩.已知小明数
O
E D
C
B
A
学成绩为95分,综合成绩为92分,那么小明的物理成绩为_________分.
16. 已知二次函数2
(0)y ax bx c a =++≠的图象如图所示,当0y <时,x 的取值范围是_________
17如果直线 2y kx =-与两坐标轴所围成的三角形面积是4,则k 的值为___________ 18. 设关于x 的方程2
210x x m --+=的两个实数根分别为,αβ,若6αβ+=, 那么实数
m 的值是__________
(第12题)
(第14题)
(第16题)
麓山国际实验学校2018-2019-2初二年级期末考试
数学模拟试卷1(答卷)
一、选择题(每小题3分,共36分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
二、填空题(每小题3分,共18分) 13. __________; 14. __________; 15. __________; 16. __________;
17. __________;
18. __________.
三、解答题(共66分)
19.(8分)解方程(1)2
470x x --=
(2)()2
2136x x -=-
20.(6分)为了调查A 、B 两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分)
A 区抽样学生体育测试成绩的平均分、中位数、众数如下:
平均分 中位数 众数 37
36
37
B 区抽样学生体育测试成绩的分布如下:
成绩 2831x ≤<
3134x ≤<
3437x ≤<
3740x ≤<
40(满分) 人数
60
80
140
m
220
请根据以上信息回答下列问题: (1) m =_______;
(2)在两区抽样的学生中,体育测试成绩为37分的学生,在____ (填“ A ”或“B ”)区被抽样学生中排名更靠前;
(3)如果B 区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.
21.(6分)在平面直角坐标系中,抛物线2
3y ax bx =++经过点(3,0)A 和点(4,3)B . (1)求这条抛物线所对应的二次函数的表达式. (2)求该抛物线的对称轴和顶点坐标.
22、(8分)如图,在菱形ABCD 中,对角对AC 、BD 交于点O ,过点A 作AE BC ⊥于点E ,延长BC 至F ,使CF BE =,连接DF .
(1)求证:四边形AEFD 是矩形; (2)若8,4BF DF ==,求CD 的长.
23. (9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次. (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率; (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
23. (9分) 已知关于x 的一元二次方程2
(21)20mx m x -++=. (1)当m 取何值时,此方程有两个不相等的实数根
(2)当抛物线2
(21)2y mx m x =-++与轴两个交点的横坐标均为整数,且m 为负整数时,求此抛物线的解析式;
(3)在(2)的条件下,当02x <<时,求y 的取值范围.
25.(10分)国家支持大学生创新办实业,提供小额无息贷款,学生王亮享受国家政策贷款36000元用于代理某品牌服装销售,已知该店代理的品牌服装的进价为每件40元,该品牌服装销售量y (件)与销售价x (元/件)之间的关系可用图中的一条线段来表示. (1)求日销售量y 与销售价x 之间的函数关系式,并写出x 的取值范围;
(2)该品牌服装售价x 为多少元时,每天的销售利润W 最大,且最大销售利润W 为多少? (3)若该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含贷款).现该店只有2名员工,则该店至少需要多少天才能还清所有贷款?
26. (10分)如图,抛物线2
y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线:l y kx n =+与y 轴交于点C,与抛物线2
y x bx c =-++的另一个交点为D ,已知(1,0),(5,6)A D --,P 点为抛物线2
y x bx c =-++上一动点(不与A 、D 重合).
(1)求抛物线和直线l 的解析式;
(2)当点P 在直线l 上方的抛物线上时,过P 点作PE //x 轴交直线l 于点E ,作PF //y 轴交直线l 于点F ,求PE PF +的最大值;
(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C 、M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标; 若不存在,请说明理由.。

相关文档
最新文档