MATLAB实验报告——运用MATLAB求解和分析线性时不变系统DOC

合集下载

MATLAB语言及其应用实验报告.doc

MATLAB语言及其应用实验报告.doc

MATLAB语言及其应用实验报告.doc一、实验目的1、熟悉MATLAB语言及其基本操作;2、掌握利用MATLAB进行数据分析和可视化的方法;3、掌握MATLAB应用于科学计算的基本方法。

二、实验环境MATLAB R2018a三、实验内容及方法3.1 实验内容1、打开MATLAB环境;2、读入数据文件,并对数据进行分析和处理;3、通过MATLAB绘制图表,对数据进行可视化。

四、实验细节及流程4.1 读入数据文件本实验使用的数据文件为sales.xlsx,其中包括2018年各个季度的销售数据。

首先,通过以下命令导入数据:data=xlsread('sales.xlsx');4.2 数据分析和处理1、计算各季度销售总额通过以下代码计算每个季度的销售额并求和,得到每年的销售总额:Q1=data(:,2);TotalSales=sum([Q1 Q2 Q3 Q4],2);2、计算增长率根据每年的销售总额,计算出每年的增长率。

具体代码如下:GrowthRate(1)=0;for i=2:length(TotalSales)GrowthRate(i)=((TotalSales(i)-TotalSales(i-1))/TotalSales(i-1))*100; endSalesGrowth=[TotalSales GrowthRate];3、计算每个季度的均值和标准差meanQ1=mean(Q1);stdQ1=std(Q1);4、计算出每年第一个季度的销售额所占比例首先,我们将第一个季度的销售额单独提出来,具体代码如下:4.3 数据可视化1、柱形图对于销售总额,使用柱形图进行可视化,具体代码如下:结果如下图所示:图1 销售总额2、线性图3、箱形图boxplot([Q1 Q2 Q3 Q4],{'Q1','Q2','Q3','Q4'});图3 每个季度的销售额4、饼图pie(FirstQSalesRatio(:,1));五、结论本实验通过对销售数据的分析和可视化,得出以下结论:1、2018年销售总额呈逐年上升趋势,其中2017年到2018年的增长率最高;2、每年第一个季度的销售额所占比例在40%至45%之间,与其他季度相比,显著高于其他季度;3、2018年第二季度的销售额经过调整后,表现出了相对较高的波动。

基于matlab的实验报告

基于matlab的实验报告

基于matlab的实验报告实验报告:基于MATLAB 的实验一、实验目的通过使用MATLAB 软件,掌握如何进行数据分析、图像处理、算法实现等一系列实验操作,提高实验者的实践能力和动手能力。

二、实验原理MATLAB 是一种在科学计算和技术开发领域广泛应用的计算机软件。

它能进行矩阵计算、绘制函数和数据图像、实现算法以及进行数据分析等。

通过掌握MATLAB 的使用,能够快速、高效地解决各种科学和工程问题。

三、实验内容1. 数据分析:使用MATLAB 的数据分析工具进行数据的导入、处理和分析。

2. 图像处理:利用MATLAB 的图像处理工具包对图像进行滤波、增强、分割等操作。

3. 算法实现:使用MATLAB 实现常用的算法,如排序、搜索、图像压缩等。

四、实验步骤1. 数据分析:(1)使用MATLAB 的读取数据函数将数据导入MATLAB 环境中。

(2)利用MATLAB 的数据处理函数进行数据清洗和预处理。

(3)使用MATLAB 的统计工具进行数据分析,如求平均值、标准差等。

(4)利用MATLAB 的绘图函数将分析结果可视化。

2. 图像处理:(1)使用MATLAB 的读取图像函数将图像导入MATLAB 环境中。

(2)利用MATLAB 的图像处理工具包进行滤波操作,如均值滤波、中值滤波等。

(3)使用MATLAB 的图像增强函数对图像进行锐化、变换等操作。

(4)利用MATLAB 的图像分割算法对图像进行分割。

3. 算法实现:(1)使用MATLAB 编写排序算法,如冒泡排序、快速排序等。

(2)使用MATLAB 编写搜索算法,如二分查找、线性搜索等。

(3)使用MATLAB 实现图像压缩算法,如离散余弦变换(DCT)。

五、实验结果实验中,我们使用MATLAB 完成了数据分析、图像处理和算法实现的一系列实验操作。

通过数据分析,我们成功导入了数据并对其进行了清洗和预处理,最后得到了数据的统计结果。

在图像处理方面,我们对图像进行了滤波、增强和分割等操作,最终得到了处理后的图像。

MATLAB实验报告(1-4)

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。

2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。

4.学会运用MATLAB进行连续信号时移、反折和尺度变换。

5.学会运用MATLAB进行连续时间微分、积分运算。

6.学会运用MATLAB进行连续信号相加、相乘运算。

7.学会运用MATLAB进行连续信号的奇偶分解。

二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。

三、实验内容1.MATLAB软件基本运算入门。

1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。

2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。

矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。

2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。

3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。

举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。

matlab实验报告总结精选

matlab实验报告总结精选

matlab实验报告总结电气工程学院自动化102班 2012年12月21日实验一 MATLAB环境的熟悉与基本运算一、实验目的1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识1.熟悉MATLAB环境MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。

2.掌握MATLAB常用命令变量与运算符变量命名规则如下:变量名可以由英语字母、数字和下划线组成变量名应以英文字母开头长度不大于31个区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。

MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2 MATLAB算术运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符表5 MATLAB特殊运算的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式的基本运算表7 两种运算指令形式和实质内涵的异同表的常用函数表8 标准数组生成函数表9 数组操作函数三、实验内容1、新建一个文件夹2、启动,将该文件夹添加到MATLAB路径管理器中。

3、保存,关闭对话框4、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye5、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。

6、初步程序的编写练习,新建M-file,保存,学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。

注意:每一次M-file的修改后,都要存盘。

练习A:help rand,然后随机生成一个2×6的数组,观察command window、command history和workspace等窗口的变化结果。

学习使用clc、clear,了解其功能和作用。

答:clc是清除命令窗体内容 clear是清除工作区间输入C=1:2:20,则C表示什么?其中i=1,2,3,?,10。

MATLAB实验报告(1-4)

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。

2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。

4.学会运用MATLAB进行连续信号时移、反折和尺度变换。

5.学会运用MATLAB进行连续时间微分、积分运算。

6.学会运用MATLAB进行连续信号相加、相乘运算。

7.学会运用MATLAB进行连续信号的奇偶分解。

二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。

三、实验内容1.MATLAB软件基本运算入门。

1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。

2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn为结束值。

矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。

2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。

3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。

举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。

MATLAB实验之线性规划问题求解

MATLAB实验之线性规划问题求解

封面作者:PanHongliang仅供个人学习桂林电子科技大学数学与计算科学学院实验报告实验室:实验日期:年月日x附录Ⅱ综合性、设计性实验报告格式桂林电子科技大学数学与计算科学学院综合性、设计性实验报告版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。

版权为潘宏亮个人所有This article includes some parts, including text, pictures, and design. Copyright is Pan Hongliang's personal ownership.用户可将本文的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本网站及相关权利人的合法权利。

除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人的书面许可,并支付报酬。

Users may use the contents or services of thisarticle for personal study, research or appreciation, andother non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目的的合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任。

matlab simulink仿真实验报告

matlab simulink仿真实验报告

matlab simulink仿真实验报告[Abstract]本篇报告介绍了一项利用Matlab和Simulink进行仿真实验的过程和结果。

实验主要涉及对加速度计数据的滤波和降噪处理,以及利用观测器估计一个非线性系统的状态变量。

本文介绍了实验设计的思路和步骤,详细讲解了实验中所使用到的算法和模型,并对实验结果进行了分析和总结。

[Keywords][Introduction]在自动化控制、机器人技术、航天航空、汽车电子等领域中,传感器和估计器是广泛应用的两类算法。

传感器可以测量物理量,如位置、速度、加速度等,并将其转化为电信号输出。

估计器则通过对物理模型的建模和输出信号的处理,来推测和估计系统的状态变量。

加速度计可以测量物体在三个轴向上的加速度,同时可以进行数据滤波和降噪。

估计器可以用于非线性系统的状态估计,具有广泛的应用前景。

[Simulation Process]1. 数据采集处理加速度计可以用于测量物体在三个轴向上的加速度。

由于传感器的噪声和误差,采集的数据往往不够准确和稳定,需要通过滤波和降噪等算法进行处理。

本实验中采用了常用的Butterworth低通滤波器和移动平均滤波器来对加速度计数据进行处理。

Butterworth低通滤波器是一种线性相位滤波器,可以将高频信号滤去,降低信号噪声。

在Matlab中,可以通过函数[b,a] = butter(n,Wn,'low')生成Butterworth低通滤波器。

其中,n为滤波器的阶数,Wn为截止频率。

移动平均滤波器是一种简单有效的滤波方法,可以对信号进行平均处理,消除信号的高频成分和噪声。

在Matlab中,可以通过函数smooth(x,n)生成移动平均滤波器。

其中,x为待处理的信号,n为滤波器窗口大小。

2. 状态估计模型状态估计模型是一种建立在数学模型基础上的估计方法,常常用于非线性系统的状态估计。

本实验中,给定了以下非线性系统的模型:$$\begin{cases}x_{1}' = x_{2} \cos(x_{1}) \\x_{2}'= u\end{cases}$$其中,x1和x2为系统状态变量,u为系统的控制输入。

matlab 实验报告

matlab 实验报告

matlab 实验报告Matlab 实验报告引言:Matlab(Matrix Laboratory)是一种强大的科学计算软件,它为科学家、工程师和研究人员提供了一个强大的计算环境。

本实验报告旨在介绍我对Matlab的实验结果和使用体验,以及对其优点和局限性的思考。

一、Matlab的基本功能和特点Matlab是一种高级编程语言和开发环境,它具有广泛的数学和工程计算功能。

通过Matlab,我可以进行矩阵运算、数值计算、数据可视化、算法开发等一系列操作。

Matlab的语法简洁易懂,可以快速实现复杂的计算任务。

此外,Matlab还提供了大量的工具箱,如信号处理、控制系统、图像处理等,使得各种领域的科学研究和工程应用变得更加便捷。

二、实验结果与应用案例在本次实验中,我选择了一个经典的数值计算问题——求解非线性方程。

通过Matlab的数值计算能力,我可以使用不同的迭代方法来求解方程的根。

在实验中,我使用了牛顿迭代法、二分法和割线法来求解方程。

通过对比这些方法的收敛速度和精度,我得出了不同方法的优缺点。

在实际应用中,Matlab可以广泛应用于信号处理、图像处理、数据分析等领域。

例如,在信号处理中,我可以使用Matlab的信号处理工具箱来进行滤波、频谱分析等操作。

在图像处理中,我可以利用Matlab的图像处理工具箱进行图像增强、边缘检测等操作。

这些应用案例充分展示了Matlab在科学计算和工程应用中的重要性和灵活性。

三、Matlab的优点1. 强大的计算功能:Matlab提供了丰富的数学和工程计算函数,可以高效地进行复杂的计算任务。

2. 简洁的语法:Matlab的语法简洁易懂,使得编程变得更加高效和便捷。

3. 丰富的工具箱:Matlab提供了大量的工具箱,覆盖了各种领域的科学计算和工程应用需求。

4. 可视化能力强:Matlab提供了丰富的绘图函数,可以直观地展示数据和计算结果。

四、Matlab的局限性1. 高昂的价格:Matlab是一款商业软件,其价格较高,对于个人用户而言可能不太容易承受。

数学建模 matlab求解线性规划实验报告

数学建模 matlab求解线性规划实验报告

实验三 线性规划程序: linprogc=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)Exam5:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2实验目的2、掌握用数学软件包求解线性规划问题。

1、了解线性规划的基本内容。

例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x jx0=[1;1];A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[];[x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB)书 求下列非线性规划2221232212322123212223123min 8020..2023,,0x x x x x x x x x s t x x x x x x x +++⎧-+≥⎪++≤⎪⎪--+=⎨⎪+=⎪⎪≥⎩在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数function f=fun1(x); f=sum(x.^2)+8;(ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下:options=optimset('largescale','off');[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options)就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。

(完整word)Matlab实验报告

(完整word)Matlab实验报告

实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境.2.学习使用图形函数计算器命令funtool及其环境。

二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。

求下列函数的符号导数(1)y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1—x^2);(4)y=(x1)/(x+1)/(x+2)求反函数(1)y=(x-1)/(2*x+3); (2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x—4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x—3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。

从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2)y2=(x+2)^2(3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6) y6=x^2/2 3.两个函数之间的操作求和(1)sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5乘积(1)exp(—x)*sin(x) (2) sin(x)*x商(1)sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x—1)/(x—2); 求复合函数(1)y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x实验二:MATLAB基本操作与用法一、实验目的1.掌握用MATLAB命令窗口进行简单数学运算。

计算方法matlab实验报告

计算方法matlab实验报告

计算方法matlab实验报告计算方法MATLAB实验报告引言:计算方法是一门研究如何用计算机来解决数学问题的学科。

在计算方法的学习过程中,MATLAB作为一种强大的数值计算软件,被广泛应用于科学计算、工程计算、数据分析等领域。

本实验报告将介绍在计算方法课程中使用MATLAB 进行的实验内容和实验结果。

一、二分法求方程根在数值计算中,求解非线性方程是一个常见的问题。

二分法是一种简单而有效的求解非线性方程根的方法。

在MATLAB中,可以通过编写函数和使用循环结构来实现二分法求解方程根。

实验步骤:1. 编写函数f(x),表示待求解的非线性方程。

2. 设定初始区间[a, b],满足f(a) * f(b) < 0。

3. 利用二分法迭代求解方程根,直到满足精度要求或迭代次数达到预设值。

实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个非线性方程的根。

例如,对于方程f(x) = x^3 - 2x - 5,我们通过二分法迭代了5次,得到了方程的一个根x ≈ 2.0946。

二、高斯消元法解线性方程组线性方程组的求解是计算方法中的重要内容之一。

高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵变换将线性方程组化为上三角矩阵,从而简化求解过程。

在MATLAB中,可以利用矩阵运算和循环结构来实现高斯消元法。

实验步骤:1. 构建线性方程组的系数矩阵A和常数向量b。

2. 利用高斯消元法将系数矩阵A化为上三角矩阵U,并相应地对常数向量b进行变换。

3. 利用回代法求解上三角矩阵U,得到线性方程组的解向量x。

实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个线性方程组。

例如,对于线性方程组:2x + 3y - z = 13x - 2y + 2z = -3-x + y + 3z = 7经过高斯消元法的计算,我们得到了方程组的解x = 1,y = -2,z = 3。

三、数值积分方法数值积分是计算方法中的重要内容之一,它用于计算函数在给定区间上的定积分。

matlab系统的时域分析实验报告

matlab系统的时域分析实验报告

matlab系统的时域分析实验报告Matlab系统的时域分析实验报告引言:时域分析是信号处理中的重要内容,它可以帮助我们理解信号的时序特性以及信号在时间上的变化规律。

Matlab作为一款强大的数学软件,提供了丰富的工具和函数,可以方便地进行时域分析实验。

本实验报告将介绍利用Matlab进行时域分析的方法和实验结果。

实验目的:1. 了解时域分析的基本概念和方法;2. 掌握Matlab中时域分析的相关函数和工具;3. 进行实际信号的时域分析实验,并分析实验结果。

实验步骤:1. 信号生成:利用Matlab生成一个正弦信号,设置合适的频率和振幅。

2. 信号采样:将生成的信号进行采样,得到离散的信号序列。

3. 时域分析:利用Matlab中的fft函数对离散信号进行傅里叶变换,得到信号的频谱。

4. 信号重构:利用Matlab中的ifft函数对频谱进行逆傅里叶变换,将信号重构回时域。

5. 分析实验结果:比较原始信号和重构信号的差异,分析由于采样引起的信号失真。

实验结果:经过实验,我们得到了以下结果:1. 通过Matlab生成的正弦信号具有一定的频率和振幅,可以在时域上观察到信号的周期性变化。

2. 通过采样得到的离散信号序列可以用于进行时域分析。

3. 利用Matlab中的fft函数对离散信号进行傅里叶变换,得到信号的频谱图。

频谱图可以展示信号在不同频率上的能量分布情况。

4. 利用Matlab中的ifft函数对频谱进行逆傅里叶变换,将信号重构回时域。

重构的信号与原始信号在时域上基本一致,但可能存在细微的差异。

5. 由于采样引起的信号失真,重构的信号可能会与原始信号存在一定的差异。

差异的大小与采样频率有关,采样频率越高,失真越小。

讨论与结论:本实验通过Matlab进行时域分析,得到了信号的频谱图并进行了信号的重构。

实验结果表明,Matlab提供的时域分析工具和函数能够方便地进行信号分析和处理。

通过时域分析,我们可以更好地理解信号的时序特性,并对信号进行处理和优化。

MATLAB方程组求解实验报告

MATLAB方程组求解实验报告

MATLAB方程组求解实验报告实验报告:MATLAB方程组求解一、引言在工程和科学领域的研究中,常常需要求解一系列的线性或非线性方程组。

MATLAB是一种强大的数学软件,可以用于解决方程组求解的问题。

本实验旨在通过实例介绍MATLAB求解方程组的方法和应用。

二、方程组的定义与求解方法方程组是一组包含多个未知数的方程的集合。

求解方程组即求解方程组中的未知数,使得方程组中的每个方程都成立。

对于线性方程组,可以使用矩阵表示。

例如:Ax=b其中A是一个已知的mxn的矩阵,x是待求解的向量,b是已知的向量。

MATLAB提供了多种求解线性方程组的方法,如高斯消元法、LU分解法和迭代法等。

对于非线性方程组,一般使用数值方法求解。

常见的数值方法有牛顿法、割线法和迭代法等。

MATLAB中的fzero函数可以用于求解非线性方程组。

三、MATLAB求解线性方程组的实例1.高斯消元法考虑以下线性方程组:3x+2y-z=12x-2y+4z=-2-x+0.5y-z=0可以通过高斯消元法求解该方程组。

在MATLAB中,可以使用linsolve函数进行求解。

2.LU分解法LU分解是一种常用的求解线性方程组的方法。

通过将系数矩阵分解为上三角矩阵U和下三角矩阵L的乘积来求解方程组。

在MATLAB中,可以使用lu函数进行LU分解。

四、MATLAB求解非线性方程组的实例1.牛顿法考虑以下非线性方程组:x^2+y^2=1(x-1)^2+y^2=1可以通过牛顿法求解该方程组。

在MATLAB中,可以使用fsolve函数进行求解。

2.迭代法考虑以下非线性方程组:x^2+y^2=2x+y=1可以通过迭代法求解该方程组。

在MATLAB中,设置初始值,并使用循环迭代的方法逐步逼近方程的解。

五、实验步骤和结果1.线性方程组求解构建线性方程组Ax = b,并使用linsolve函数进行求解。

2.非线性方程组求解构建非线性方程组,并使用fsolve函数进行求解。

(完整版)利用MATLAB进行时域分析

(完整版)利用MATLAB进行时域分析

自动控制原理与系统课程实验报告实验题目:利用MATLAB进行时域分析班级:机电1131班姓名:刘润学号:38号一、实验目的及内容时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

在此实验中,主要介绍时域法进行系统分析,包括一阶系统、二阶系统以及高阶系统,以及系统的性能指标。

通过实验,能够快速掌握、并利用MATLAB及控制系统箱对各种复杂控制系统进行时域分析。

二、实验设备三、实验原理典型的二阶系统在不同的阻尼比的情况下,它们的阶跃响应输出特性的差异是很大的。

若阻尼比过小,则系统的振荡加剧,超调量大幅度增加;若阻尼比过大,则系统的响应过慢,又大大增加了调整时间,下面通过此实验课题分析输出响应变化规律:已知二阶振荡环节的传递函数为:G(s)=ωn*ωn/(s*s+2*ζ*ωn*s+ωn*ωn),其中ωn=0.4,ζ从0变化到2,求此系统的单位阶跃响应曲线,并分析当ζ发生变化时,二阶系统的响应有什么样的变化规律。

四、实验步骤编出程序如下图:五、实验结果画出图表如下图:六、结果分析(1)当ξ=0(无阻尼)(零阻尼)时:无阻尼时的阶跃响应为等幅振荡曲线。

如图ξ=0曲线。

(2)当0<ξ<1(欠阻尼)时:对应不同的ξ,可画出一系列阻尼振荡曲线,且ξ越小,振荡的最大振幅愈大。

如图ξ=0.4曲线。

(3)当ξ=1(临界阻尼)时:临界阻尼时的阶跃响应为单调上升曲线。

如图ξ=1曲线。

(4)当ξ>1(过阻尼)时:过阻尼时的阶跃响应也为单调上升曲线。

不过其上升的斜率较临界阻尼更慢。

如图ξ=1.6曲线七、教师评语。

matlab实验报告

matlab实验报告

matlab实验报告实验名称:MATLAB数值分析实验报告摘要:本实验通过使用MATLAB软件,实现了一些数值分析中重要的算法,包括线性方程组求解、非线性方程求根、数值积分与微分以及常微分方程求解。

在算法实现的过程中,通过观察输出结果验证了算法的正确性和可靠性,并探讨了一些算法实现中需要注意的问题。

1.线性方程组求解线性方程组求解是数值分析中的重要算法之一,是很多数学问题的基础。

本实验中使用了三种求解线性方程组的算法:高斯消元法、LU分解法和共轭梯度法。

在实验中,我们需要注意选取矩阵的条件数,使用一些特殊矩阵,如对角矩阵、三对角矩阵和希尔伯特矩阵等来验证算法的正确性。

2.非线性方程求根非线性方程求根是MATLAB中一个非常实用的函数,能够快速解决大量的非线性方程。

本实验中,我们更深入地探讨了二分法、牛顿法和割线法等算法,通过实现代码,实现了对非线性方程的求解。

同时,对不同的算法进行比较,从而选择合适的算法。

3.数值积分与微分数值积分与微分是宏观物理中需要用到的重要数学问题之一。

本实验中,我们使用了梯形法、辛普森法和龙贝格法等多种数值积分算法实现了函数的数值积分。

同时,也对数值微分的误差和稳定性进行了研究和探讨。

4.常微分方程求解常微分方程求解是MATLAB中最常用的功能之一。

本实验中,我们实现了欧拉法、龙格-库塔法等常微分方程求解算法。

并不断尝试对算法进行改进,提高其效率和精度。

实验结果表明,使用MATLAB实现数值分析算法是非常可靠和高效的。

同时,也需要注意在算法实现中注意问题和选择合适的算法。

MATLAB线性系统时域响应分析实验

MATLAB线性系统时域响应分析实验

MATLAB线性系统时域响应分析实验线性系统时域响应分析是信号与系统课程中非常重要的一部分,通过掌握该实验可以深入了解线性系统的特性和性能。

本实验将介绍如何利用MATLAB软件进行线性系统时域响应分析。

一、实验目的1.掌握线性时不变系统的时域响应分析方法;2.学会利用MATLAB软件进行线性系统的时域响应分析;二、实验原理线性系统时域响应分析是指对于给定的线性时不变系统,通过输入信号和系统的冲激响应,求解系统的输出信号。

其基本原理可以用以下公式表示:y(t) = Σ[h(t)*x(t-tk)]其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应,tk表示冲激响应的时刻。

在MATLAB中,我们可以利用conv函数来计算线性系统的时域响应。

具体步骤如下:步骤一:定义输入信号x(t)和系统的冲激响应h(t);步骤二:利用conv函数计算系统的时域响应y(t);步骤三:绘制输入信号、冲激响应和输出信号的图像;步骤四:分析系统的特性和性能。

三、实验内容1.定义输入信号x(t)和系统的冲激响应h(t);2. 利用conv函数计算系统的时域响应y(t);3.绘制输入信号、冲激响应和输出信号的图像;4.分析系统的特性和性能,包括时域特性、频域特性、稳定性等。

四、实验步骤1.打开MATLAB软件并新建一个脚本文件;2.定义输入信号x(t)和系统的冲激响应h(t);3. 利用conv函数计算系统的时域响应y(t);4.绘制输入信号、冲激响应和输出信号的图像;5.分析系统的特性和性能,包括时域特性、频域特性、稳定性等;6.运行脚本文件,并观察输出图像和分析结果;7.根据实验结果和分析结果,进行总结和讨论。

五、实验总结通过本次实验,我们掌握了利用MATLAB软件进行线性系统时域响应分析的方法。

实验中,我们定义了输入信号和系统的冲激响应,并利用conv函数计算了系统的时域响应。

然后,我们绘制了输入信号、冲激响应和输出信号的图像,并分析了系统的特性和性能。

matlab实验报告

matlab实验报告

《MATLAB 编程及系统仿真》课程实验一、实验目的1.熟悉matlab 软件工作界面结构和基本操作;2.掌握数组和矩阵的基本运算,M 文件的建立、保存和运行;3.掌握控制与循环语句、逻辑运算,以及符号运算的运用;4.掌握普通二维图形的绘制及修饰控制方法;5.应用simulink 建立线性系统仿真模型,并掌握系统描述方法、线性系统的时间相应分析和频响分析。

二、实验要求1.对实验内容写出相应指令,上机运行,记录运行结果(数据或图形曲线),对相关内容进行分析。

2.写出实验报告。

三、实验内容1.求解方程组Ax=b ,其中3508018212,0593170456A b -⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦解:A=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5];b=[0;2;-1;6];x=inv(a)*b 结果:x=-0.6386 -0.4210 -0.3529 0.0237 2.分别用solve 和fsolve 函数求方程组的解:222221010x y x x y ⎧--=⎪⎨--=⎪⎩ 解:①:solve 法: [x,y]=solve('(x^2)*(y^2)-2*x-1=0','x^2-y^2-1=0','x','y')结果:x =-1/2+1/2*i*3^(1/2)-1/2+1/2*i*3^(1/2)-1/2-1/2*i*3^(1/2) -1/2-1/2*i*3^(1/2) 1/2+1/2*5^(1/2) 1/2+1/2*5^(1/2) 1/2-1/2*5^(1/2) 1/2-1/2*5^(1/2)y =1/2*(-6-2*i*3^(1/2))^(1/2)-1/2*(-6-2*i*3^(1/2))^(1/2)1/2*(-6+2*i*3^(1/2))^(1/2)-1/2*(-6+2*i*3^(1/2))^(1/2)1/2*(2+2*5^(1/2))^(1/2)-1/2*(2+2*5^(1/2))^(1/2)1/2*(2-2*5^(1/2))^(1/2)-1/2*(2-2*5^(1/2))^(1/2○2:fsolve法:%建立函数ex1_2(x)function y=ex1_2(x)y(1)=(x(1)^2)*(x(2)^2)-2*x(1)-1; y(2)=x(1)^2-x(2)^2-1;%matlab中输入[x,y]=fsolve('ex1_2',[0 0])运行结果:x =-0.6823 -0.0000y = 0.3647 -0.53443. 用MATLAB计算20sin xdxπ⎰。

信号与系统matlab实验线性时不变系统的时域分析(最新整理)

信号与系统matlab实验线性时不变系统的时域分析(最新整理)

答案
1. x n hn u n u n 4 ;
nx=0:9;x=ones(1,length(nx)); nh=0:4;h=ones(1,length(nh)); y=conv(x,h); % 下限=下限1+下限2 ny_min=min(nx)+min(nh); % 上限=上限1+上限2 ny_max=max(nx)+max(nh); ny=ny_min:ny_max; subplot(3,1,1);stem(nx,x); xlabel('n');ylabel('x(n)');axis([ny_min ny_max 0 max(x)]); subplot(3,1,2);stem(nh,h); xlabel('n');ylabel('h(n)');axis([ny_min ny_max 0 max(h)]); subplot(3,1,3);stem(ny,y); xlabel('n');ylabel('x(n)*h(n)');axis([ny_min ny_max 0 max(y)]);
到连续卷积的数值近似,具体算法如下:
y=conv(x,h)*dt
% dt 为近似矩形脉冲的宽度即抽样间隔
例 2-2:采用不同的抽样间隔 值,用分段常数函数近似 x t u t u t 1 与
h t sin t u t u t π 的 卷 积 , 并 与 卷 积 的 解 析 表 达 式
x(t)
h(t)
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB实验报告
实践内容:
d 札 7d 2r
(t)
(1)用MATLAB 在时域中求解
dt
d
*
解。

输入响应。

dr
(t)+r(t) =e(t)
3、...
用户MATLA 在时域中求解dt ,e(t )= (1e )u(t)的零响
入相应。

4.例 12.4-5
用MATLAB^解方程零状态响应分量,已知系统差分方程为
y(n 2) -0.7y(n - 1) 0.1y(n) =7x(n - 2) -2x(n 1)系统的激励序列 x(n) =u(n)
1.
例 12.4-1 )16?(t)
12(t)=et)
dt 的齐次 (2)啤+2
dr(t
) dt 2
吐®⑴制)起始条件为5小2
,求系统的零
实验内容 和步骤
2. 例 12.4-2
求连续时间系统dt
2
"吧口心讐®),当心2时的特解。

3. 例 12.4-3
1.例1
2.4-1
常呼嘅12叫齐次
(1)用MATLAB在时域中求解
程序截图:
数据记录
及分析
(2)
运行图像截图:
2.例12.4-2
求连续时间系统d2r(t)
dt2
2-dr(t) 3r(t)
e(t
)
dt dt
2
当e(t) = t时的特解
运行图像截图:
la- Edi I YiiLnsArt Tools DAsktap ViEtdwi Hdlp
D 3
E ◎口闻:1 O
900
300
700
3.例12.4-3
用户MATLA在时域中求解dr(t
)
dt
r(t)
=e(t)
,e(t) = (1+e )u(t)的零响
入相应
解法一: 程序截图:
解法二:
用MATLAB勺dsolve函数直接获得零状态响应的表达式程序截图:
3 Edit DE一C:\DocuaBnts and. Sett inRaXAdaijiistr 面tUnm lM£dL脇吐缸(L ・•]帥运行图像截图:
匚闫X Fi gia r r
1
解法三:
程序截图:
运行图像截图:
4.例12.4-5
用MATLA求解方程零状态响应分量,已知系统差分方程为
y(n 2) -0.7y(n - 1) 0.1y( n) =7x( n - 2) -2x(n 1)系统的激励序列x( n)= u( n)
程序截图:
运行图像截图:
13回冈
igure 2
tile Edit Yi“
Insert lools fiesktop findov Help
D Q
口目 | ■口
tile Edit Yi" Insert tools fiesktop lindov Help DQGI 寻k 題Q
的◎近□ 0 "a □ 25 20
15 § apn_c6e 乏1°0 0 1 02 0 3 04 0 5 0 6 0 7 0 8 0 9 1
(Sa 更
p ) igure 1
实验心得。

相关文档
最新文档