梁的平面弯曲[1]
梁的平面弯曲的概念和计算简图
图4-3
1.3梁的计算简图
在进行梁的工程分析和计算时,不必把梁的复杂的工程图原原本 本地画出来,而是以能够代表梁的结构、荷载情况的,按照一定 的规律简化出来的图形代替,这种简化后的图形称为梁的计算简 图。一般应对梁作以下三方面的简化:
1 梁本身的简化 梁本身可用其轴线来代表,但要在图上注明梁的结构尺寸数据, 必要时也要把梁的截面尺寸用简单的图形表示出来。
梁是工程结构中应用得非常广泛的一种构件。例如图4-1[(a)、 (b)、(c)]所示的混凝土公路桥梁、房屋建筑的阳台挑梁,以 及水利工程的水闸立柱等。
图4-1
1.2梁的平面弯曲的概念
梁的轴线方向称为纵向,垂直于轴线的方向称为横向。梁的横 截面是指梁的垂直于轴线的截面,一般都存在着对称轴,常见的 有圆形、矩形、工字形和T形等。梁的纵向平面是指过梁的轴线 的平面,有无穷多个,但通常所说的纵向平面是指梁横截面的纵 向对称轴与梁的轴线所构成的平面,称为梁的纵向对称面。
图4-4
1.4静定梁的基本形式
1.4静定梁的基本形式 1 静定梁与超静定梁的概念 梁可以分为静定梁和超静定梁。如果梁的支座反力的数目等于梁 的静力平衡方程的数目,就可以由静力平衡方程来完全确定支座 反力,这样的梁称为静定梁,如图4-5(a)所示。
反之,如果梁的支座反力的数目多于梁的静力平衡方程的数目, 就不能由静力平衡方程来完全确定支座反力,这样的梁称为超静 定梁,如图4-5(b)所示。
2 静定梁的三种形式 静定梁有三种形式:简支梁、悬臂梁和外伸梁,其计算简图如图 4-6[(a)、(b)、(c)]所示。
图4-5
图4-6
材料力学
图。其中,公路桥梁本身用直线AB代表,左端的支承简化成固 定铰支座,有两个约束反力FAx和FAy,右端的支承简化成活动铰 支座,有一个约束反力FBy,正在行驶中的汽车简化成集中力F, 桥梁本身的自重简化成均布荷载q。
平面弯曲
y a
变形几何关系: 变形几何关系: 取微段梁dx 取微段梁 1
b
2
a'
1
b'
2
dx
HOHAI UNIVERSITY
ab的线应变: ab的线应变: 的线应变
dθ
a′b′ − ab ε= ab
(ρ + y)dθ − ρdθ = ρdθ y = ——应变分布 ——应变分布
y
(ρ + y)dθ − dx = dx
q=20kN/m
q=20kN/m A 4m B 2m C
220 60 180
A
z 280
D
4m
B
2m
C
c
60 y
FQ(kN) 30 +
-
40 + 50 40
x
解:1.作FQ、M图 1.作 图 B、D截面为危险截面 、 截面为危险截面 MB=-40kN·m MD=22.5kN·m
1.5m
-
x
+ 22.5 M(kN·m)
220 60
c yC=180
60
z
280 D截面 截面
y
HOHAI UNIVERSITY
§4-3 梁横截面上的切应力
切应力与横截面的形状有关 一、矩形截面梁 两个假设 1.切应力与横截面的侧边平行, 1.切应力与横截面的侧边平行, 切应力与横截面的侧边平行 与剪力方向一致; 与剪力方向一致; 2.切应力沿截面宽度均匀分布。 2.切应力沿截面宽度均匀分布。 切应力沿截面宽度均匀分布
解: 1. 求最大弯矩 max 求最大弯矩M
Mmax
1 1 = Fl = × 20kN×6m = 30kN⋅ m 4 4
梁的弯曲
MB 0
MA 0
FAy= - M / l FBy= M / l
(2)列剪力方程和弯矩方程
弯曲内力
A
FAy= - M / l
a
x1 l
b B
C x2
FBy= M / l
AC段:距A端为x1的任意截面1-1以左研究
V x1=FAy M / l 0 x1 a M x1=FAyx1 Mx1 / l 0 x1 a
剪力和弯矩一般是随横截面的位置而变化的。横截面 沿梁轴线的位置用横坐标x表示,则梁内各横截面上的剪 力和弯矩就都可以表示为坐标x的函数,即
V=V(x)和 M=M(x) 以上两函数分别称为梁的剪力方程和弯矩方程。
弯曲内力
二、剪力图和弯矩图
为了形象地表明沿梁轴线各横截面上剪力和弯矩的变 化情况,通常将剪力和弯矩在全梁范围内变化的规律用图 形来表示,这种图形称为剪力图和弯矩图。
FBy
弯曲内力
总结与提示
截面法是求内力的基本方法。 (1) 用截面法求梁的内力时,可取截面任一侧研究,但 为了简化计算,通常取外力比较少的一侧来研究。 (2) 作所取隔离体的受力图时,在切开的截面上,未知 的剪力和弯矩通常均按正方向假定。 (3) 在列梁段的静力平衡方程时,要把剪力、弯矩当作 隔离体上的外力来看待,因此,平衡方程中剪力、弯矩的 正负号应按静力计算的习惯而定,不要与剪力、弯矩本身 的正、负号相混淆。
弯曲内力
q>0
弯曲内力
FQ=0截面
弯曲内力
三、应用规律绘制梁的剪力图和弯矩图
用规律作剪力图和弯矩图的步骤 (1) 求支座反力。 对于悬臂梁由于其一端为自由端,所以可以不求支 座反力。 (2) 将梁进行分段 梁的端截面、集中力、集中力偶的作用截面、分布 荷载的起止截面都是梁分段时的界线截面。 (3) 由各梁段上的荷载情况,根据规律确定其对应的 剪力图和弯矩图的形状。 (4) 确定控制截面,求控制截面的剪力值、弯矩值, 并作图。
第1节 平面弯曲的概念和实例
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
二、静定梁的基本形式 梁的支座形式:工程中常见的梁的支座有以下三 种形式。 1)固定铰支座:如图a所示,固定铰支座限制梁在 支承处任何方向的线位移,其支座反力可用两个正 交分量表示,即沿梁轴线方向的 FAx 和垂直于梁轴 线方向的FAy。
第七章 直梁弯曲时的内力和应力
第一节
平面弯曲的概念和实例
一、平面弯曲 弯曲变形:当杆件受到垂直于轴线的外力作用或 受到作用面平行于轴线的外力偶作用时,杆件的 轴线会由直线变为曲线,这种变形称弯曲变形。 梁:以弯曲变形为主的杆件称作梁。 直梁:工程中常见的轴线是直线的梁。 平面弯曲:若梁的外力及支 座反力都作用在纵向对称面 内,则梁弯曲时轴线将变成 此平面内的一条平面曲线, 该弯曲变形称为平面弯曲。
或
第七章 直梁弯曲时的内力和应力 2)活动铰支座:如图b所示,活动铰支座只能限制 梁在支承处垂直于支承面的线位移,支座反力可用 一个分量FRA表示。 3)固定端支座:如图c所示,固定端支座限制梁在 支承处的任何方向线位移和角位移,其支座反力有 两个正交力FAx、FAy和一个力偶分量MA。
或
MA
第七章 直梁弯曲时的内力和应力 静定梁的形式:根据梁的支座情况,工程中常见 的静定梁可以简化成以下三种形式。 1)简支梁:梁的支座一端是 固定铰支座,另一端是活 动铰支座。 2)外伸梁:梁的支座与简支 梁相同,只是梁的一端或 两端伸出在支座之外。 3)悬臂梁:梁的一端自由, 另一端是固定支座。
第七章 直梁弯曲时的Biblioteka 力和应力三、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力F。单位 为牛顿(N)或千牛顿(kN)。 2)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶M。单位为牛 顿· 米(N· m)或千牛顿· 米(KN· m)。 3)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载 荷q。其大小用载荷集度表 示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
第九章梁的弯曲变形
a xl
在 x l / 2处
y 0.5l
Fb
(3l 2 4b 2 ) 48 EI
yqx(l32lx2x3) 2E 4 I
A
B
ql3 24EI
x
l 2
ymax
5ql4 384EI
梁的简图
第九章 梁的弯曲变形
挠曲线方程
y6M EI(xllx)2(lx)
yC1
aB
qa4 2EI
yC2
qa4 8EI
3)叠加 y C y C 1 y C 2 2 q E 4a 8 I q E 4a I 5 8 q E 4( a I)
第九章 梁的弯曲变形
例9-5 悬臂梁跨度为 l =2m,截面为矩形,宽b = 100mm,高h =120mm,材料的弹性模量E=210GPa, 梁上载荷如图所示,求自由端A的挠度。
挠曲线方程 y f (x)
第九章 梁的弯曲变形
二、挠度和转角
挠度:截面形心线位 移的垂直分量称为该 截面的挠度,用 y 表 示,一般用 ymax 表示 全梁的最大挠度。
转角:横截面绕中性轴转动产生了角位移,此角
位移称转角,用 表示。小变形时,转角 很小,
则有以下关系:
tanydy
1
(x)
M(x) EI
曲线 y f(x)的曲率
1
(x)
(1yy2)3/2
二阶小量
y (1y2)3/2
M(x) EI
挠曲轴线 近似微分方程
y M(x) EI
第九章 梁的弯曲变形
挠曲轴线 近似微分方程
y
梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)
6kN
1
2
q 2kN m
3
4
5
B
1 2 3 4 5
2m
A
3m
C
3m
FA 13kN
FB 5kN
例题
4.5
为使在锯开处两端面的开裂最小,应使锯口处的 弯矩为零,木料放在两只锯木架上,一只锯木架 放置在木料的一端,试问另一只锯木架放置何处 才能使木料锯口处的弯矩为零。
q
B
A
C
D
MD 0
MD 0
※
剪力和弯矩的计算规则
梁任意横截面上的剪力,等于作用在该截面左边 (或右边)梁上所有横向外力的代数和。截面左 边向上的外力(右边向下的外力)使截面产生正的 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上的弯矩,等于作用在该截面左 边(或右边)所有外力(包括外力偶)对该截面 形心之矩的代数和。截面左边(或右边)向上的 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
2m
FB 2kN 1m
7
kN
3 3
x 1.56
2 2
kNm
2.44
2
例题
4.12
4kN m
6kN
2kN m
4.5
4.5
1m
1m
2m
5.5
kN 1.5
5.5
4
8.5 7
kNm
例题
4.13
80 kN m
A
160 kN
D E
40kN m
B
40 kN
F
C
310 kN 2m
120
30
190
D
FD
MA
第四章梁的弯曲详解
FQ
F yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
第4章 梁的弯曲 第二节 梁的内力计算
(2)横截面上的弯矩M,在数值上等于截面一 侧(左侧或右侧)梁上所有外力对该截面形心 的力矩的代数和。即:
例题4 简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。
解:1.求约束反力由对称关系,可得:
FAy
FBy
1 2
ql
第4章 梁的弯曲 第二节 梁的内力计算
2.列剪力方程和弯矩方程
FQ (x)
FAy
qx
1 2
ql
qx
M (x)
FAy x
1 9x2 2
第4章 梁的弯曲 第二节 梁的内力计算
三、剪力方程和弯矩方程 在一般情况下,则各横截面上的剪力和弯矩都可 以表示为坐标x的函数
梁的剪力方程 FQ=FQ (x) 梁的弯矩方程 M=M(x)
第4章 梁的弯曲 第二节 梁的内力计算
四、剪力图和弯矩图
以梁横截面沿梁轴线的位置为横坐标,以垂直于 梁轴线方向的剪力或弯矩为纵坐标,分别绘制表 示FQ (x)和M(x)的图线。这种图线分别称为剪力 图和弯矩图,简称FQ图和M图。绘图时一般规定 正号的剪力画在x轴的上侧,负号的剪力画在x轴 的下侧;正弯矩画在x轴下侧,负弯矩画在x轴上 侧,即把弯矩画在梁受拉的一侧。
第4章 梁的弯曲 第二节 梁的内力计算
例题3 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图
解: 1.列剪力方程和弯矩方程
FQ (x) F (0 ≤ x ≤ l )
M (x) Fx (0≤x ≤ l)
梁的平面弯曲的简介
梁的平面弯曲的简介
在平面弯曲中,荷载与支反力构成一个平面平衡力系。对 于上述三种类型的梁,支反力未知数都只有三个,由静力学可 知,平面一般力系有三个独立的平衡方程,因此这些梁的支反 力可以用静力平衡条件确定,这种梁称为静定梁。
但在实际工作中,有时需要多加支座约束,以改善梁的强 度和刚度,提高承载能力,这时支反力未知数超过三个,单凭 静力平衡条件不能完全确定其支反力,这种梁称为超静定梁或 静不定梁。解超静定梁需要考虑梁的变形、列出补充方程,与 静力平衡条件联立求解, 静定梁的分类
梁在发生平面弯曲时,外力或外力的 合力都作用在通过梁轴线的纵向平面内, 为使梁在此平面内不致发生随意的移动和 转动,必须有足够的支座约束。按支撑的 情况,常见的梁有下述三种类型。
梁的平面弯曲的简介
(1)悬臂梁:梁的一端固定,另一端自由,如图8-4(a)所示。 (2)简支梁:梁的一端为固定铰链,另一端为活动铰链支座,如 图8-4(b)所示。 (3)外伸梁:梁的支撑情况同简支梁,但梁的一端或两端伸出支 座之外,如图8-4(c)所示。
工程力学
梁的平面弯曲的简介
1.1 梁的弯曲变形
工程实际中将以弯曲为主要 变形的构件称为梁。梁的弯曲变 形是工程实际中的一种基本变形, 如桥式起重机的横梁、列车车厢 的轮轴、建筑结构中的横梁、钢 架的横梁和立柱等。本章主要讨 论的是平面弯曲。平面弯曲的受 力特点是:在过轴线的纵向对称 面内,受到垂直于轴线的荷载作 用。如图8-1所示。
工程力学
图8-1
梁的平面弯曲的简介
梁的平面弯曲变形特点 是:杆的轴线在纵向对称面 内由直线变成一光滑连续曲 线。例如图8-2所示的火车 轮轴,其因在轴的两端分别 受到垂直轴线的集中力作用 而发生平面弯曲;
平面弯曲概念梁的类型
平面弯曲概念梁的类型平面弯曲是指在空间中只发生一维变形,即沿一条直线方向发生变形,而其他方向保持不变。
这种变形特点主要体现在梁的横向方向上,梁在横向方向的变形可以分为简支梁、悬臂梁和连续梁。
1. 简支梁:简支梁是指两个支点之间的梁,支点是指在梁两端支撑的点。
在简支梁中,当梁受到集中力作用时,沿梁的长度方向发生弯曲。
在弯曲的过程中,梁上任意一点的变形可以由梁的弯曲方程来描述。
一般情况下,简支梁在两个支点之间的部分是线性变形的,即沿着支点之间的区域变形相对均匀。
而支点周围的区域受到局部的力的作用,产生非线性变形。
2. 悬臂梁:悬臂梁是指一个端部固定在支点上,另一个端部自由悬挂的梁。
在悬臂梁中,只有一个支点,梁在支点处固定,而另一端自由悬挂。
当梁受到集中力作用时,悬臂梁会在支点处产生弯曲。
与简支梁不同的是,悬臂梁的悬臂区与支点之间的变形是非线性的,变形幅度较大。
3. 连续梁:连续梁是指由两个或多个简支梁或悬臂梁相连接组成的梁。
在连续梁中,两个相邻的梁通过节点连接在一起。
当梁受到集中力作用时,整个连续梁系统会发生弯曲。
在连续梁中,节点附近的区域变形相对较大,而两个节点之间的梁段产生线性变形。
总结起来,平面弯曲梁的类型主要包括简支梁、悬臂梁和连续梁。
这些梁在受到集中力作用时,会发生弯曲变形。
在简支梁和悬臂梁中,梁的变形是非线性的,而在连续梁中,梁的变形是线性的。
这些梁的变形特点对于工程设计和结构分析非常重要,需要考虑到梁的形状、材料、力的大小和作用位置等因素,来确定合适的梁的尺寸和支撑结构,以保证梁的强度和稳定性。
梁的弯曲(工程力学课件)
02 弯曲的内力—弯矩与剪力
3-3截面
M 3 q 2a a 2qa 2
4-4截面
qa 2
5qa 2
2
M 4 FB 2a M C
3qa
2
2
5-5截面
qa 2
M 5 FB 2a
2
02 弯曲的内力—弯矩与剪力
由以上计算结果可以看出:
(1)集中力作用处的两侧临近截面的弯矩相同,剪力不同,说明剪力在
后逐段画出梁的剪力图和弯矩图。
04 弯矩、剪力与载荷集度之间的关系
例8 悬臂梁AB只在自由端受集中力F作用,如图(a)所示,
试作梁的剪力图和弯矩图。
解:
1-1截面: Q1=-F M1=0
2-2截面: Q1=-F M1=-Fl
04 弯矩、剪力与载荷集度之间的关系
例9 简支梁AB在C点处受集中力F作用,如图(a)所示,作此梁的剪力
(2)建立剪力方程和弯矩方程;
(3)应用函数作图法画出剪力Q(x),弯矩M(x)的图线,即为剪力
图和弯矩图
03 弯矩图和剪力图
例9.3 悬臂梁AB在自由端B处受集中载荷F作用,如图(a)所示,试作
其剪力图和弯矩图。
解 :(1)建立剪力方程和弯矩方程
() = ( < < )
() = −( − ) ( ≤ ≤ )
方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支反力
(2)建立剪力方程和弯矩方程
03 弯矩图和剪力图
(3)绘制剪力图、弯矩图
计算下列5个截面的弯矩值:
03 弯矩图和剪力图
二、用简便方法画剪力图、弯矩图 (从梁的左端做起)
1.无载荷作用的梁段上 剪力图为水平线。 弯矩图为斜直线(两点式画图)。
梁的弯曲
第九章梁的弯曲第一节平面弯曲一、平面弯曲的概念当杆件受到垂直于杆轴的外力作用或在纵向平面内受到力偶作用时(图9-1),杆轴由直线弯成曲线,这种变形称为弯曲。
以弯曲变形为主的杆件称为梁。
图9-1 受弯杆件的受力形式弯曲变形是工程中最常见的一种基本变形。
例如房屋建筑中的楼面梁,受到楼面荷载和梁自重的作用,将发生弯曲变形(9-2a、b),阳台挑梁(9-2 c、d)等,都是以弯曲变形为主的构件。
工程中常见的梁,其横截面往往有一根对称轴,如图9-3所示,这根对称轴与梁轴所组成的平面,称为纵向对称平面(图9-4)。
如果作用在梁上的外力(包括荷载和支座反力)和外力偶都位于纵向对称平面内,梁变形后,轴线将在此纵向对称平面内弯曲。
这种梁的弯曲平面与外力作用平面相重合的弯曲,称为平面弯曲。
平面弯曲是一种最简单,也是最常见的弯曲变形,本章将主要讨论等截面直梁的平面弯曲问题。
图9-2 工程中常见的受弯构件图9-3 梁常见的截面形状图9-4平面弯曲的特征二、单跨静定梁的几种形式工程中对于单跨静定梁按其支座情况分为下列三种形式:1.悬臂梁: 梁的一端为固定端,另一端为自由端(图9-5a )。
2.简支梁: 梁的一端为固定铰支座,另一端为可动铰支座(图9-5b )。
3.外伸梁: 梁的一端或两端伸出支座的简支梁(图9-5c )。
(a ) (b ) (c )图9-5 三种静定梁第二节 梁的弯曲内力——剪力和弯矩为了计算梁的强度和刚度问题,在求得梁的支座反力后,就必须计算梁的内力。
下面将着重讨论梁的内力的计算方法。
一、截面法求内力1、剪力和弯矩图9-6 用截面法求梁的内力图9-6a 所示为一简支梁,荷截F 和支座反力R A 、R B 是作用在梁的纵向对称平面内的平衡力系。
现用截面法分析任一截面m-m 上的内力。
假想将梁沿m-m 截面分为两段,现取左段为研究对象,从图9-6b 可见,因有座支反力R A 作用,为使左段满足Σ Y =0,截面m-m 上必然有与R A 等值、平行且反向的内力Q 存在,这个内力Q ,称为剪力;同时,因R A 对截面m-m 的形心O 点有一个力矩R A · a 的作用,为满足Σ M o =0,截面m-m 上也必然有一个与力矩R A · a 大小相等且转向相反的内力偶矩M存在,这个内力偶矩M 称为弯矩。
平面弯曲1(内力及内力图)
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
梁的平面弯曲及微分方程公式
第九章 梁的平面弯曲与杆的拉压、轴的扭转一样,弯曲是又一种形式的基本变形。
承受弯曲作用的杆,称之为梁。
本章研究梁的应力和变形。
工程中最常见的梁,可以分为三类,即简支梁、外伸梁和悬臂梁。
由一端为固定铰,另一端为滚动铰链支承的梁,称为简支梁;若固定铰、滚动铰支承位置不在梁的端点,则称为外伸梁(可以是一端外伸,也可以是二端外伸);一端为固定端,另一端自由的梁,则称为悬臂梁。
分别如图9.1(a )、(b)、(c)所示。
在平面力系的作用下,上述简支梁、外伸梁或悬臂梁的约束力均为三个,故约束力可以由静力平衡方程完全确定,均为静定梁。
工程中常见的梁,其横截面一般至少有一个对称轴,如图10.2(a )所示。
此对称轴与梁的轴线共同确定了梁的一个纵向对称平面,如图10.2(b)。
如果梁上的载荷全部作用于此纵向对称面内,则称平面弯曲梁。
平面弯曲梁变形后,梁的轴线将(a ) 简支梁(b) 外伸梁(c) 悬臂梁图9.1 梁的分类在此纵向对称面平面内弯曲成一条曲线,此曲线称为平面弯曲梁的挠曲线。
这种梁的弯曲平面(即由梁弯曲前的轴线与弯曲后的挠曲线所确定的平面)与载荷平面(即梁上载荷所在的平面)重合的弯曲,称为平面弯曲。
平面弯曲是最基本的弯曲问题,本章仅限于讨论平面弯曲。
与前面研究拉压、扭转问题一样,先研究梁的内力,再由平衡条件、变形几何关系及力与变形间的物理关系研究梁横截面上的应力,进而研究梁的变形,最后讨论梁的强度与刚度。
§9.1 用截面法作梁的内力图如第四章所述,用截面法求构件各截面内力的一般步骤是:先求出约束力,再用截面法将构件截开,取其一部分作为研究对象,画出该研究对象的受力图;截面上的内力按正向假设,由平衡方程求解。
在第四章中不仅已经讨论了用截面法求构件内力的一般方法,还给出了构件横截面上内力的符号规定。
下面将通过若干例题,进一步讨论如何利用截面法确定平面弯曲梁横截面上的内力。
例9.1 悬臂梁受力如图9.3(a )所示,求各截面内力并作内力图。
第九章 梁的平面弯曲
x
左顺右逆,M为正
M
FQ
M
内力 右截面正向 左截面正向 FQ M
微段变形(正)
顺时针错动 向上凹
内力图
剪力图—以杆件轴线为基线,Q为纵坐标,作出的反映Q沿
杆件轴线的变化规律的曲线
弯矩图—以杆件轴线为基线,M为纵坐标,作出的反映M 沿杆件轴线的变化规律的曲线
内力图作法:
以坐标x表示横截面的位置,通过平衡方程求出内力与x 的关系,称为内力方程,根据内力方程作图
FAy q M0 M3
0 x3 B C c FQ3
Fy=FAy-4q-FQ2=0 FQ2=13kN
Mc(F )=M2+4q(x2-2)-FAyx2=0 M2=13x2+72(kN•m)
CD段: 6mx3<8m FQ3=13kN; M3=13x3+24(kN•m)
FAy q M0 F M4 DE段: 8mx4<12m
内力与外力的相依关系
某一截面上的内力与作用在该截 面一侧局部杆件上的外力相平衡;
在载荷无突变的一段杆的各截 面上内力按相同的规律变化;
控制截面的概念: 外力规律发生变化的截面—集中力、集中力偶作用点、分 布载荷的起点和终点处的横截面,支座
。
截面法,确定各段Q、M 分布规律,以此列出各 段的内力方程(剪力方程、弯矩方程)。以此 作出剪力图和弯矩图。
q
A
FA
FQ qa
2a
B
2L
FB
qa
q(L-a) q(L-a)
M
qLa-qL2/2
q(L-a)2/2
根据给定的剪力图和弯矩图能否确定梁的受
力,能否确定梁的支承性质与支承位置?由给
第九章梁的弯曲变形-PPT精品文档
第一节
工程中的弯曲变形
梁在外载荷作用下将产生变形,梁不但要满足强 度条件,还要满足刚度条件,即要求梁在工作时的变 形不能超过一定范围,否则就会影响梁的正常工作。 一、挠曲线 挠曲线:图所示悬臂梁在纵向对称面内的外力F的 作用下,将产生平面弯 曲,变形后梁的轴线将变 为一条光滑的平面曲线, 称梁的挠曲线。 挠曲线方程
挠曲轴线 近似微分方程
M ( x) y EI
对梁的挠曲轴线近似微分方程式积分:
积分一次得转角方程:
M ( x ) y x C EI d
积分二次得挠度方程:
M ( x ) y d x d x Cx D EI
第九章 梁的弯曲变形 转角方程 挠度方程
M ( x ) y x C EI d M ( x ) y d x d x Cx D EI
式中积分常数C、D由边界条件(梁中已知的截面 位移)确定:
0 , y 0 简支梁: y A B
悬臂梁: 0 , A
y 0 A
由边界条件、变形连续条件可确定积分常数,通 过上面两个公式可计算梁任一截面的转角与挠度, 这方法称积分法。
第九章 梁的弯曲变形
例9-1 如图所示简支梁,跨度为l,受均布载荷 q作用,梁的抗弯曲刚度EI已知,求跨中截面C的挠 度及截面A处的转角。 解:梁的弯矩方程为:
第九章 梁的弯曲变形 挠曲轴线 近似微分方程 结论 两种情况下弯矩与曲线的二阶导数均同号,微分 方程式应取正号,即: 挠曲轴线 近似微分方程
M(x) y EI
M ( x) y EI
梁的挠曲轴线近似微分方程的适用条件:梁的变 形是线弹性的小变形。
ห้องสมุดไป่ตู้
平面弯曲梁的变形计算公式
平面弯曲梁的变形计算公式梁是工程结构中常见的构件,用于承担横向载荷和弯矩。
在实际工程中,梁的变形是一个重要的问题,因为变形会影响结构的稳定性和使用性能。
平面弯曲梁是一种常见的梁结构,其变形计算公式是工程设计和分析中的重要内容。
本文将介绍平面弯曲梁的变形计算公式及其应用。
平面弯曲梁的变形是由横向载荷和弯矩引起的。
在计算平面弯曲梁的变形时,需要考虑梁的截面形状、材料性质和受力情况。
根据梁的几何形状和材料性质,可以得到平面弯曲梁的变形计算公式。
下面将介绍平面弯曲梁的变形计算公式及其推导过程。
首先,考虑一根长度为L的平面弯曲梁,在横向载荷和弯矩的作用下发生弯曲变形。
假设梁的截面形状为矩形,材料为弹性材料,横向载荷为P,弯矩为M。
根据弹性力学理论,可以得到平面弯曲梁的变形计算公式如下:1. 梁的挠度计算公式。
梁的挠度是描述梁在弯曲变形下的位移情况的参数。
挠度计算公式可以通过梁的受力分析和材料力学理论推导得到。
对于矩形截面的平面弯曲梁,其挠度计算公式为:δ = (PL^3)/(3EI) + (ML^2)/(2EI)。
其中,δ为梁的挠度,P为横向载荷,L为梁的长度,E为弹性模量,I为梁的惯性矩,M为弯矩。
2. 梁的曲率计算公式。
梁的曲率是描述梁在弯曲变形下曲线形状的参数。
曲率计算公式可以通过挠度计算公式求导得到。
对于矩形截面的平面弯曲梁,其曲率计算公式为:κ = d²δ/dx² = M/(EI)。
其中,κ为梁的曲率,δ为梁的挠度,x为横向坐标,M为弯矩,E为弹性模量,I为梁的惯性矩。
3. 梁的最大挠度计算公式。
梁的最大挠度是描述梁在弯曲变形下最大位移情况的参数。
最大挠度计算公式可以通过挠度计算公式和曲率计算公式求解得到。
对于矩形截面的平面弯曲梁,其最大挠度计算公式为:δmax = (5PL^4)/(384EI) + (3ML^3)/(64EI)。
其中,δmax为梁的最大挠度,P为横向载荷,L为梁的长度,E为弹性模量,I为梁的惯性矩,M为弯矩。
材料力学梁的弯曲问题
F2 M
F1
A
B
●工程实例
建筑工程中的各类梁、火车轴、水压作用下的水 槽壁等。
火车轴
厂房吊车梁
●对称(平面)弯曲 (Planar bending)
对称平面 F2
F1
(b)
F2
F1
(a)
A
B
(c)
平面弯曲:梁的轴线在变形后仍保持在同一平面( 荷载作用面)内,即梁的轴线成为一条平面曲线。
梁的荷载和支座反力
1.5m
FRB
3m
15.3 内力图──剪力图和弯矩图
为了形象地看到内力的变化规律,通常将剪力、弯 矩沿梁长的变化情况用图形表示出来,这种表示剪力 和弯矩变化规律的图形分别称为剪力图和弯矩图。
具体作法是:
剪力方程: FQFQx 函数图形 弯矩方程: MMx
例4 求作图示受均布荷载作用的简支梁的剪力图和
FQ2FRAF1F2
FQ2 FRB
M O
0
M 2 F R A 2 F 1 1 . 5 F 2 0 . 5 0 M 2 7 k N m
M 2 F R A 2 F 1 1 .5 F 2 0 .5
FQ2FRAF1F2
FQ
F1
M 2 F R A 2 F 1 1 .5 F 2 0 .5
当变形为微小时,可采用变
形前尺寸进行计算。
MB
1、叠加原理:当梁在各项
A
荷载作用下某一横截面上
的弯矩等于各荷载单独作
用下同一横截面上的弯矩
的代数和。
2、区段叠加法作弯矩图:
设简支梁同时承受跨间荷
MB
载q与端部力矩MA、MB的作用 。其弯矩图可由简支梁受端部
力矩作用下的直线弯矩图与跨
梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)
X2
40 kN m
A
35kN
B
FS x1 20kN
M x1 20 x1
0 x1 1 0 x1 1
1m
15
4m
2.5
25kN
FS x2 25 10 x2
25
2 x2 M x2 25 x2 10 2
20
20
kN
0 x2 4
F=8kN
2、计算1-1
截面的内力 F A
3、计算2-2
FS1
q=12kN/m
M 1 F F F 7kN S1 A M1 FA 2 F (2 1.5) 26kN m
FS2 q 1.5 FB 11kN
FB
截面的内力
M2
FS2
M 2 FB 1.5 q 1.5
M >0
M<0
剪力:使脱离体有顺时针转动趋势的剪力为正,反之为负; 弯矩:使脱离体产生向下凸变形的弯矩为正,反之为负。
6.2
例 题
试确定截面C及截面D上的剪力和弯矩
2 Fl
F
A
l
FCs
C
l
D
B
截面法求解
2 Fl
D
FCs F
C截面
F
B
M C Fl
FDs F
MC C
FDs
MD
D
l
F
B
D截面
2q1 x FA 2 x
x
l 2m a 0 .6 m
2 l a M C FA l a q
2
0
2q1 x 1.4 2 1.4 q 0 2 x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例10.3 空心矩形截面梁的横截面尺寸H=120mm, B=60mm,h=80mm,b=30mm,若[s]=120MPa, 试校核梁的强度。 q=20kN/m 解:1)作Q、M图。 z h H O 固定端弯矩最大, A L=1.2m M max=qL 2/2=14.4 kN.m b
pd
4
d
o
23
64
分析结果汇总:
变形几何关系: e=-y/r 物理关系: s=Ee=-y/r 静力平衡条件: A ydA=0 中性轴z过截面形心
1/r=M/EIz 梁的曲率
M
y
smax压
x
smax拉
Iz--截面对z轴的惯性矩。
EI--截面抗弯刚度。
s =s max 。
24
结论: s=-My/Iz
M Z=0, - ysdA - M = 0;即: E A y 2dA = M r
A
令: I z = y 2 dA 则有:1/r=M/EIz Iz 为截面对z 轴的惯性矩,取决于截面几何。
A
22
= y 2 dA 截面对z 轴的惯性矩 I z的计算: I z
A
矩形截面: 取微面积如图 dA=bdy
49 + 13 32 128 + D E x
13
x
M/kNm
124
150 102
A
B
C
例10.2 作图示外伸梁的 FQ、M图。
解:1.求支座反力 SMA=2q+630-60-4FB=0 FB=35 kN SFy=2q+FA+FB-30=0 FA=-25 kN 2)画FQ、M图 从左起,计算控制点的 FQ、M值。 由微分关系判断线形。
2) 抗弯截面模量W z 查表9-1有: Wz =H2[B-b(h/H)3]/6 =1.227 10 -4 m 3 3)强度校核:
B
x FQ图 qL x M图 qL2/2
Mmax 14.4 10 3 s max = = - 4 = 117MPa<[s]=120Mpa 强度足够。 27 Wz 1.22710
第十章
梁的平面弯曲
10.1 基本概念 10.2 利用平衡微分方程作梁的内力图 10.3 平面弯曲梁的正应力 10.4 梁的变形
1
回顾
承受弯曲作用的杆,称为梁。
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压
扭
转
弯 曲
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。 扭转 —内力为扭矩。如各种传动轴等。 (轴) 弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
10.3.2 材料的物理关系
基于: 问题:
y
r =?
smax压
中性轴
• 纵向纤维受单向拉压; 中心轴位置 ? • 材料拉压弹性常数相等。则
x
线弹性应力-应变关系: s=Ee=-Ey/r Hook 定理
M
z
smax拉
横截面上各点的正应力s 的大小与该点到中性 轴的距离y成正比。
中性轴以上,y>0, s为负,是压应力,纤维缩短。 中性轴以下,y<0, s为正,是拉应力,纤维伸长。 到中性轴距离相同各处,y=const. ,应力相等。 中性轴上,s=0,截面上、下缘, s =s max 。 21
问题: 平面纯弯曲梁横截面上的正应力?
思路: 仍延研究变形体力学问题的主线。
变形的几何协调 (几何分析) 力与变形之关系 (物理关系) 力的平衡 (已熟悉)
17
10.3.1 弯曲变形几何分析
M
讨论矩形截面纯弯曲梁。 1. 弯曲变形实验现象
AA、BB仍保持直线,但相对 地转过一角度d。 aa 缩短,bb伸长,变为弧形, 但仍与AA、BB线正交。
9
dFQ d 2M =q 2 = dx dx 若梁段AB只有q作用的,则
FQB - FQA = A q(x)dx
B
平衡微 分方程
FAy
A
q
B 4m
M0
F
FE
x
C D E 2m 2m 4m
FQ/kN
49 + 13 -
MB - MA=AFQ (x)dx
B
x
结论三、 二截面间剪力 的增量等于该段梁上分布 载荷图形的面积。
M
A
B
M
a
b A
a
b B
d
A a b A B a b B
M
2. 弯曲的基本假设—平面假设
变形后
梁的横截面在弯曲变形后仍保持为平面,且仍与 梁的轴线垂直。
18
2. 弯曲的基本假设—平面假设 梁的横截面在弯曲变形后仍保持 为平面,且仍与梁的轴线垂直。
M
A
B
M
a
b A
a
b B
3. 推论:
有中性层存在
M
M/kNm
124
32 150 + 128
A
B
C
D
E x
结论四、 二截面间的弯矩增量等于 该段梁上剪力图的面积。
MA FQA
q(x)
MB
c
10 FQB
由此,可给出梁剪力、弯矩图的简捷画法。
q FQ图 q=0 q=const.>0 q=const.<0 FQ>0 FQ<0 FQ等于分布载荷 左边图形面积 +向上的集中力
FQ>0 FQ<0 FQ>0 FQ<0
M图 集中力(偶) FQ图 M图 突变 转折 无变化 突变
M等于FQ图左边 面积+顺时针集 中力偶 11
FQ、M图的简捷:
例1 已知q=9kN/m,F=45kN,M0=48kNm, 求梁的内力。
FAy q M0
B 4m
F
FAx=0 A
C D 2m 2m
解:1)求约束反力: x E SFx=FAx=0 4m FE SFy=FAy+FE-F-4q=0 MA(F )=12FE+M0-8F-2×4q=0 FAy=49kN;FE=32kN
例10.4 矩形截面木梁的横截面高宽比h/b=3/2,已知 F=15kN,a=0.8m,[s]=10MPa。设计截面尺寸。 解:1. 求支反力: F A =FB=3F 2. 作FQ、M图。 M max =Fa=12 kN.m
a a a a a F 2F 2F F
FA 2F
F Fa Fa
a FB
F
最大弯曲正应力:
y=ymax 时,s=s max ,故
y
smax压 M
x
Mymax M s max = = Iz Wz
M
smax拉
Wz=I z /y max,是抗弯截面模量。(如表10-1或手册)
梁的弯曲强度条件:
M s max = [s ] Wz
作用 抗力
若材料拉压性能不同,则
s max拉 [s 拉 ] s max压 [s 压 ]
A a b A
d
B a b B
M
若梁由纵向纤维组成,则其变形 是伸长或缩短。 凹部纤维aa 缩短,凸部bb纤维伸 长,总有一层纤维既不伸长又不 缩短,此层称为中性层。 中性层与横截面的交线称为中性 轴。
变形后
中性轴
中性层(面)
19
4. 变形几何关系
考虑梁AA-BB间的微段,oo 在中性层上,r为中性层的 曲率半径。截面坐标如图。
2
C D E 2m 2m 4m
FQ/kN
49 + 13 -
结论一、 剪力沿坐标x的变 化率等于分布载荷集度, 即FQ图中曲线上某点的斜 率等于梁上对应截面处的 载荷集度q。q=0,FQ图为 水平线。
x
M/kNm
124
32
150 + 128
A
B
C
D
E x
结论二、弯矩M延坐标x的变化率等于剪力FQ,即 M图曲线某点的斜率等于对应截面上的剪力。
y
A
q(x)
F
dx
B
x
x
q(x)
M
c
M+dM
dxห้องสมุดไป่ตู้
FQ
FQ+dFQ
平衡方程:SFy=FQ+q(x)dx-(FQ+dFQ)=0 SMC(F)=M+dM-M-FQdx-q(x)dx2/2=0
7
平衡方程:SFy=FQ+q(x)dx-(FQ+dFQ)=0 SMC(F)=M+dM-M-FQdx-q(x)dx2/2=0 整理并略去二阶小量,得到:
10.3.3 静力平衡条件
微段平衡:截面弯矩 M =M, M 分布在截面上,截面内力 与M构成xy 面内的平衡力系。
y
dA y
中性轴 x
Fx=0,即 : As dA=- r ydA = 0;M
E
A
z
E、r均不为零,后一积分是截面对z轴的静矩S z, S z=0, 表示中性轴z过截面形心(垂直于y)。
12
49 1)确定控制点。 约束力、集中力(偶)作用点, 分布载荷起止点。 A、B、C、D、E
q=9
A 4m B
48
45
32
x
C D E 2m 2m 4m
2)计算控制点处FQ、M值。 左边面积+集中载荷 力 、力偶 为正。 3)依据微分关系判定控制点 间各段 FQ、M图的形状, 连接各段曲线。
FQ/kN
d M
A B a o B
r
M
y
a o A
距中性层为y的纵向纤维aa: 变形前: aa = oo