(人教版)反比例函数知识点及经典例题

合集下载

(完整版)初中数学反比例函数知识点及经典例

(完整版)初中数学反比例函数知识点及经典例
似。
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。

反比例函数九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)

反比例函数九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)

第1课时——反比例函数知识点一:反比例函数的定义:1.反比例函数的定义:形如的函数叫做反比例函数。

有时又表示为。

【类型一:判断函数关系】1.下列式子中,成反比例关系的是()A.圆的面积与半径B.速度一定,行驶路程与时间C.平行四边形面积一定,它的底和高D.一个人跑步速度与它的体重2.下面两个问题中都有两个变量:①矩形的周长为20,矩形的面积y与一边长x;②矩形的面积为20,矩形的宽y与矩形的长x.其中变量y与变量x之间的函数关系表述正确的是()A.①是反比例函数,②是二次函数B.①是二次函数,②是反比例函数C.①②都是二次函数D.①②都是反比例函数3.下面几组量不成反比例的是()A.路程一定,时间和速度B.长方形面积一定,长和宽C.圆周长一定,圆的直径和圆周率D.比的前项一定,比的后项和比值【类型二:判断反比例函数解析式】4.下列关系式中,表示y 是x 的反比例函数的是( ) A .21x y =B .3x y =C .12+=x y D .xy 3=5.下列关系式中,y 是x 的反比例函数的是( ) A .xk y =B .21x y =C .121+=x y D .﹣2xy =16.下列函数关系式中,y 是x 的反比例函数的是( ) A .y =5x B .3=xy C .xy 1=D .y =x 2﹣3【类型三:根据反比例函数关系式求字母】7.若函数y =(m 2﹣3m +2)x |m |﹣3是反比例函数,则m 的值是( )A .1B .﹣2C .±2D .28.已知函数y =(m ﹣2)52-m x 是反比例函数,则m 的值为( )A .2B .﹣2C .2或﹣2D .任意实数9.若函数y =(2m ﹣1)22-m x 是反比例函数,则m 的值是( )A .﹣1或1B .小于21的任意实数 C .﹣1D .110.如果函数y =(m ﹣1)x |m |﹣2是反比例函数,那么m 的值是( )A .2B .﹣1C .1D .0知识点一:反比例函数的图像与性质:1. 反比例函数的图像:反比例函数的图像是 双曲线 ,分布在函数的 两 个象限内。

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。

本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。

一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。

反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

其一般形式为y = k/x,其中k为常数。

反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。

2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。

3. 对称性:反比例函数关于两个坐标轴都具有对称性。

二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。

对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。

2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。

三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。

例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。

解析:根据反比例函数的定义,有y = k/x。

代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。

因此,当x = 4时,y = 10/4 = 2.5。

例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。

已知当t = 0时,y = 100,即杆子的初始长度是100cm。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

.人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B. C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B. C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B. C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数 C.非正数 D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④. y随x的增大而减小的函数有().A.0个 B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数 B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数 B.符号相同 C.绝对值相等 D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.WORD格式整理版(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)① 反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.学习好帮手。

人教版九年级数学下册反比例函数知识点归纳及练习含答案

人教版九年级数学下册反比例函数知识点归纳及练习含答案

人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。

它是函数的一种特殊形式,具有一些独特的性质和应用。

下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。

一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。

二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。

2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。

当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。

3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。

b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。

c) 当x等于1时,y等于k,这是反比例函数的特殊点。

d) 反比例函数可以通过求导得到,导数的值为-ky^2。

三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。

2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。

3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。

四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。

答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。

九年级数学反比例函数知识点归纳和典型例题

九年级数学反比例函数知识点归纳和典型例题

新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(一)知识结构(二)(三)(二)学习目标(四)1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.(五)2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.(六)3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.(七)4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.(八)5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(九)(三)重点难点(十)1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.(十一)2.难点是反比例函数及其图象的性质的理解和掌握.(十二)二、基础知识(十三)(一)反比例函数的概念(十四)1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;(十五)2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(十六)3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(十七)(二)反比例函数的图象(十八)在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(十九)(三)反比例函数及其图象的性质(二十)1.函数解析式:()(二十一)2.自变量的取值范围:(二十二)3.图象:(二十三)(1)图象的形状:双曲线.(二十四)越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(二十五)(2)图象的位置和性质:(二十六)与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.(二十七)当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;(二十八)当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(二十九)(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.(三十)图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.(三十一)4.k的几何意义(三十二)如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).(三十三)如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.(三十四)(三十五)图1 图2(三十六)5.说明:(三十七)(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(三十八)(2)直线与双曲线的关系:(三十九)当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(四十)(3)反比例函数与一次函数的联系.(四十一)(四)实际问题与反比例函数(四十二)1.求函数解析式的方法:(四十三)(1)待定系数法;(2)根据实际意义列函数解析式.(四十四)2.注意学科间知识的综合,但重点放在对数学知识的研究上.(四十五)(五)充分利用数形结合的思想解决问题.(四十六)三、例题分析(四十七)1☆.反比例函数的概念(四十八)(1)下列函数中,y是x的反比例函数的是().(四十九)A.y=3x B.C.3xy=1 D.(五十)(2)下列函数中,y是x的反比例函数的是().(五十一)A.B.C.D.(五十二)答案:(1)C;(2)A.(五十三)2.图象和性质(五十四)(1)已知函数是反比例函数,(五十五)①若它的图象在第二、四象限内,那么k=___________.(五十六)②若y随x的增大而减小,那么k=___________.(五十七)(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(五十八)(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(五十九)(4)已知a·b<0,点P(a,b)在反比例函数的图象上,(六十)则直线不经过的象限是().(六十一)A.第一象限B.第二象限C.第三象限D.第四象限(六十二)(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,(六十三)则一次函数y=kx+m的图象经过().(六十四)A.第一、二、三象限B.第一、二、四象限(六十五)C.第一、三、四象限D.第二、三、四象限(六十六)(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().(六十七)(六十八)A.B.C.D.(六十九)答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.(七十)3.函数的增减性(七十一)(1)在反比例函数的图象上有两点,,且,则的值为().(七十二)A.正数B.负数C.非正数D.非负数(七十三)(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().(七十四)A.<<B.<<C.<<D.<<(七十五)(3)下列四个函数中:①;②;③;④.(七十六)y随x的增大而减小的函数有().(七十七)A.0个B.1个C.2个D.3个(七十八)(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).(七十九)答案:(1)A;(2)D;(3)B.(八十)注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.(八十一)4.解析式的确定(八十二)(1)若与成反比例,与成正比例,则y是z的().(八十三)A.正比例函数B.反比例函数C.一次函数D.不能确定(八十四)(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(八十五)(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(八十六)(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).(八十七)①求x 0的值;②求一次函数和反比例函数的解析式.(八十八)(八十九)(5)☆为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:(九十)①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.(九十一)②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;(九十二)③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?(九十三)答案:(1)B;(2)4,8,(,);(九十四)(3)依题意,且,解得.(九十五)(4)①依题意,解得(九十六)②一次函数解析式为,反比例函数解析式为.(九十七)(5)①,,;(九十八)②30;③消毒时间为(分钟),所以消毒有效.(九十九)5.面积计算(一○○)(1)☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().(一○一)A.B.C.D.(一○二)(一○三)第(1)题图第(2)题图(一○四)(2)☆如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC 的面积S,则().(一○五)A.S=1 B.1<S<2C.S=2 D.S>2(一○六)(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.(一○七)(一○八)第(3)题图第(4)题图(一○九)(4)☆已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(一一○)(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x 轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.(一一一)(一一二)第(5)题图第(6)题图(一一三)(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.(一一四)①求这两个函数的解析式;(一一五)②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(一一六)(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.(一一七)①求B点坐标和k的值;(一一八)②当时,求点P的坐标;(一一九)③写出S关于m的函数关系式.(一二○)答案:(1)D;(2)C;(3)6;(一二一)(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(一二二)(5)1.(一二三)(6)①双曲线为,直线为;(一二四)②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),(一二五)因此面积为4.(一二六)(7)①B(3,3),;(一二七)②时,E(6,0),;(一二八)③.(一二九)6.综合应用(一三○)(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().(一三一)A.互为倒数B.符号相同C.绝对值相等D.符号相反(一三二)(一三三)(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B (1,n).(一三四)①求反比例函数和一次函数的解析式;(一三五)②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(一三六)(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y 轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(一三七)①求点A、B、D的坐标;(一三八)②求一次函数和反比例函数的解析式.(一三九)(4)☆如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(一四○)①利用图中条件,求反比例函数的解析式和m的值;(一四一)②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.(一四二)(5)不解方程,判断下列方程解的个数.(一四三)①;②.(一四四)答案:(一四五)(1)D.(一四六)(2)①反比例函数为,一次函数为;(一四七)②范围是或.(一四八)(3)①A(0,),B(0,1),D(1,0);(一四九)②一次函数为,反比例函数为.(一五○)(4)①反比例函数为,;(一五一)②存在(2,2).(一五二)(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;(一五三)②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.(一五四)。

新人教版初三数学反比例函数知识点和例题

新人教版初三数学反比例函数知识点和例题

新人教版初三数学反比例函数知识点和例题一反比例函数的概念1.可以写成的形式;注意自变量x的指数为;在解决有关自变量指数问题时应特别注意系数这一限制条件;2.也可以写成xy=k的形式;用它可以迅速地求出反比例函数解析式中的k;从而得到反比例函数的解析式;3.反比例函数的自变量;故函数图象与x轴、y轴无交点.二反比例函数的图象在用描点法画反比例函数的图象时;应注意自变量x的取值不能为0;且x应对称取点关于原点对称.三反比例函数及其图象的性质1.函数解析式:2.自变量的取值范围:3.图象:1图象的形状:双曲线.越大;图象的弯曲度越小;曲线越平直.越小;图象的弯曲度越大.2图象的位置和性质:与坐标轴没有交点;称两条坐标轴是双曲线的渐近线.当时;图象的两支分别位于一、三象限;在每个象限内;y随x的增大而减小;当时;图象的两支分别位于二、四象限;在每个象限内;y随x的增大而增大.3对称性:图象关于原点对称;即若a;b在双曲线的一支上;则;在双曲线的另一支上.图象关于直线对称;即若a;b在双曲线的一支上;则;和;在双曲线的另一支上.4.k的几何意义如图1;设点Pa;b是双曲线上任意一点;作PA⊥x轴于A点;PB⊥y轴于B点;则矩形PBOA的面积是三角形PAO和三角形PBO的面积都是.如图2;由双曲线的对称性可知;P关于原点的对称点Q也在双曲线上;作QC⊥PA的延长线于C;则有三角形PQC的面积为.图1 图25.说明:1双曲线的两个分支是断开的;研究反比例函数的增减性时;要将两个分支分别讨论;不能一概而论.2直线与双曲线的关系:当时;两图象没有交点;当时;两图象必有两个交点;且这两个交点关于原点成中心对称.3反比例函数与一次函数的联系.四实际问题与反比例函数1.求函数解析式的方法:1待定系数法;2根据实际意义列函数解析式.2.注意学科间知识的综合;但重点放在对数学知识的研究上.三、例题分析1.反比例函数的概念1下列函数中;y是x的反比例函数的是.A.y=3x B.C.3xy=1 D.2下列函数中;y是x的反比例函数的是.A.B.C.D.2.图象和性质1已知函数是反比例函数;①若它的图象在第二、四象限内;那么k=___________.②若y随x的增大而减小;那么k=___________.2已知一次函数y=ax+b的图象经过第一、二、四象限;则函数的图象位于第________象限.3若反比例函数经过点;2;则一次函数的图象一定不经过第_____象限.4已知a·b<0;点Pa;b在反比例函数的图象上;则直线不经过的象限是.A.第一象限B.第二象限C.第三象限D.第四象限5若P2;2和Qm;是反比例函数图象上的两点;则一次函数y=kx+m的图象经过.A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6已知函数和k≠0;它们在同一坐标系内的图象大致是.A.B.C.D.3.函数的增减性1在反比例函数的图象上有两点;;且;则的值为.A.正数B.负数C.非正数D.非负数2在函数a为常数的图象上有三个点;;;则函数值、、的大小关系是.A.<<B.<<C.<<D.<<3下列四个函数中:①;②;③;④.y随x的增大而减小的函数有.A.0个B.1个C.2个D.3个4已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点;则当x>0时;这个反比例函数的函数值y随x的增大而填“增大”或“减小”.4.解析式的确定1若与成反比例;与成正比例;则y是z的.A.正比例函数B.反比例函数C.一次函数D.不能确定2若正比例函数y=2x与反比例函数的图象有一个交点为2;m;则m=_____;k=________;它们的另一个交点为________.3已知反比例函数的图象经过点;反比例函数的图象在第二、四象限;求的值.4已知一次函数y=x+m与反比例函数的图象在第一象限内的交点为P x 0;3.①求x 0的值;②求一次函数和反比例函数的解析式.5为了预防“非典”;某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时;室内每立方米空气中的含药量y 毫克与时间x 分钟成正比例;药物燃烧完后;y与x成反比例如图所示;现测得药物8分钟燃毕;此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________;自变量x 的取值范围是_______________;药物燃烧后y 关于x的函数关系式为_________________.②研究表明;当空气中每立方米的含药量低于1.6毫克时学生方可进教室;那么从消毒开始;至少需要经过_______分钟后;学生才能回到教室;③研究表明;当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时;才能有效杀灭空气中的病菌;那么此次消毒是否有效为什么.5.面积计算1如图;在函数的图象上有三个点A、B、C;过这三个点分别向x轴、y轴作垂线;过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、;则.A.B.C.D.第1题图第2题图2如图;A、B是函数的图象上关于原点O对称的任意两点;AC//y轴;BC//x轴;△ABC的面积S;则.A.S=1 B.1<S<2C.S=2 D.S>23如图;Rt△AOB的顶点A在双曲线上;且S△AOB=3;求m的值.第3题图第4题图4已知函数的图象和两条直线y=x;y=2x在第一象限内分别相交于P1和P2两点;过P1分别作x轴、y轴的垂线P1Q1;P1R1;垂足分别为Q1;R1;过P2分别作x轴、y轴的垂线P2 Q 2;P2 R 2;垂足分别为Q 2;R 2;求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长;并比较它们的大小.5如图;正比例函数y=kxk>0和反比例函数的图象相交于A、C两点;过A作x轴垂线交x轴于B;连接BC;若△ABC 面积为S;则S=_________.第5题图第6题图6如图在Rt△ABO中;顶点A是双曲线与直线在第四象限的交点;AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.7如图;已知正方形OABC的面积为9;点O为坐标原点;点A、C分别在x轴、y轴上;点B在函数k>0;x>0的图象上;点P m;n是函数k>0;x>0的图象上任意一点;过P分别作x轴、y轴的垂线;垂足为E、F;设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时;求点P的坐标;③写出S关于m的函数关系式.6.综合应用1若函数y=k1xk1≠0和函数k2 ≠0在同一坐标系内的图象没有公共点;则k1和k2.A.互为倒数B.符号相同C.绝对值相等D.符号相反2如图;一次函数的图象与反比例数的图象交于A、B两点:A;1;B1;n.①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.3如图所示;已知一次函数k≠0的图象与x 轴、y轴分别交于A、B两点;且与反比例函数m≠0的图象在第一象限交于C点;CD垂直于x轴;垂足为D;若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.4如图;一次函数的图象与反比例函数的图象交于第一象限C、D两点;坐标轴交于A、B两点;连结OC;ODO是坐标原点.①利用图中条件;求反比例函数的解析式和m的值;②双曲线上是否存在一点P;使得△POC和△POD的面积相等若存在;给出证明并求出点P的坐标;若不存在;说明理由.5不解方程;判断下列方程解的个数.①;②.。

新人教版初中数学——反比例函数-知识点归纳及典型题解析

新人教版初中数学——反比例函数-知识点归纳及典型题解析

新人教版初中数学——反比例函数知识点归纳及典型题解析一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式.2.反比例函数的一般形式的结构特征:①k≠0;②以分式形式呈现;③在分母中x的指数为1.典例1 下列函数中,y与x之间是反比例函数关系的是A.xy2B.3x+2y=0C.y=kxD.y=21x【答案】A【解析】A、xy=2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),不属于反比例函数,故此选项错误;D 、y =21x +,是y 与x +1成反比例,故此选项错误. 故选A .1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一平面直角坐标系中,函数y =﹣x +k 与y =kx(k 为常数,且k ≠0)的图象大致是 A . B .C .D .【答案】C【解析】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项D 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =3x D .y =–1x4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x = B .6y x =-C .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A.y=2xB.y=-2xC.y=12xD.y=-12x【答案】B【解析】设反比例函数表达式为y=kx,把M(2-,1)代入y=kx得,k=(-2)×1=-2,∴2yx=-,故选B.典例7 如图,C1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为__________(x>0).【答案】y=–2 x【解析】∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,–1),∴C2对应的函数的表达式为y=–2x,故答案为y=–2x.5.已知反比例函数y=-6x,下列各点中,在其图象上的有A.(-2,-3)B.(2,3)C.(2,-3)D.(1,6)6.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为A.y=12xB.y=-12xC.y=112xD.y=-112x7.在平面直角坐标系中,点P(2,a)在反比例函数y=2x的图象上,把点P向上平移2个单位,再向右平移3个单位得到点Q,则经过点Q的反比例函数的表达式为__________.考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=kx(k≠0)的图象经过A、D两点,则k值为__________.163【解析】如图,过点D作DE⊥x轴于点E,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k , 由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°, ∴DE =12OD =﹣14k ,OE =OD ·cos30°=32×(﹣2k )=﹣34k , 即D (﹣34k ,﹣14k ),∵反比例函数y =kx(k ≠0)的图象经过D 点, ∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣1633,故答案为:﹣1633. 典例9 如图,已知双曲线ky x经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若 △OBC 的面积为9,则k =__________.【答案】6【解析】如图,过点D 作x 轴的垂线交x 轴于点E ,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设点D的横坐标为x,纵坐标就为kx,∵D为OB的中点.∴EA=x,AB=2kx,∴四边形DEAB的面积可表示为:12(kx+2kx)x=9;k=6.故答案为:6.【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k|,结合函数图象所在的象限可以确定k的值,反过来,根据k的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k的几何意义,以简化运算.8.如图,A、B两点在双曲线4yx=的图象上,分别经过A、B两点向轴作垂线段,已知1S=阴影,则12S S+=A.8 B.6 C.5 D.49.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y=x的图象是过原点经过一、三象限,1yx=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A.典例11 已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是A.x<-1或0<x<3 B.-1<x<0或x>3 C.-1<x<0 D.x>3【答案】B【解析】根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(-1,3),(3,-1),∴当y1<y2时,-1<x<0或x>3,故选B.【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用.典例12 如图,已知直线y=–13x+10与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为A.910B.2710C 910D2710【答案】B【解析】如图,过A 作AE ⊥OD 于E ,∵直线解析式为y =–13x +10,∴C (0,10),D (310,0), ∴OC =10,OD =310,∴Rt △COD 中,CD =22 O C OD +=10, ∵OA ⊥AB ,∴12CO ×DO =12CD ×AO , ∴AO =3,∴AD =22OD OA -=9, ∵12OD ×AE =12AO ×AD ,∴AE =91010, ∴Rt △AOE 中,OE =22AO AE -=229103()10-=31010,∴A (31010,91010), ∴代入双曲线y =k x ,可得k =31010×91010=2710,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是__________;(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解析】(1)当0≤x ≤40时,设y 与x 之间的函数关系式为y =ax +b , (10,35)和(30,65)在y =ax +b 的图象上, 把(10,35)和(30,65)代入y =ax +b ,得10353065a b a b +=+=⎧⎨⎩,得 1.520a b ==⎧⎨⎩, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20, 故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y =kx的图象上, ∴80=40k,得k =3200, 即反比例函数y =3200x ,当y =20时,20=3200x,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2的值为A .2B .3C .4D .-44.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系是 A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1D .y 1<y 2<y 35.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <26.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是 A . B .C.D.7.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B 是MD的中点.其中正确结论的个数是A.0个B.1个C.2个D.3个8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6x的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是A.-25B.-121C.-15D.-1249.已知(),3A m、()2,B n-在同一个反比例函数图像上,则mn=__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是__________.13.如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.14.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-<的解集(请直接写出答案).15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)分别求出线段AB 和双曲线CD 的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.已知点A (1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 32.若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1 C.y1>y3>y2D.y2>y3>y13.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是A.B.C.D.4.如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q5.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .66.在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 7.如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =k x(x >0)的图象恰好经过点C ,则k 的值为__________.8.如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.9.已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C . 2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意;变式拓展D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.4.【答案】B【解析】由图知,y y y k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1,故选B.5.【答案】C【解析】∵反比例函数y=-6x中,k=-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C选项符合,故选C.6.【答案】B【解析】设A点坐标为(x,y).∵A点到x轴的距离为3,∴|y|=3,y=±3.∵A点到原点的距离为5,∴x2+y2=52,解得x=±4,∵点A在第二象限,∴x=-4,y=3,∴点A的坐标为(-4,3),设反比例函数的解析式为y=kx,∴k=-4×3=-12,∴反比例函数的解析式为y=12x,故选B.7.【答案】y=15 x【解析】∵点P(2,a)在反比例函数y=2x的图象上,∴代入得:a=22=1,即P点的坐标为(2,1),∵把点P向上平移2个单位,再向右平移3个单位得到点Q,∴Q的坐标是(5,3),设经过点Q的反比例函数的解析式是y=cx,把Q点的坐标代入得:c=15,即y=15x,故答案为:y=15x.8.【答案】B【解析】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6,故选B.9.【答案】D【解析】在Rt △BCD 中, ∵12×CD ×BD =3,∴12×CD ×3=3,∴CD =2, ∵C (2,0),∴OC =2,∴OD =4,∴B (4,3), ∵点B 是反比例函数y =kx(x >0)图象上的点,∴k =12, ∵AC ⊥x 轴,∴S △AOC =2k=6,故选D . 10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =2k,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×2k =k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数ky x=(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =mx图象上, ∴m =–8.∴反比例函数的解析式为y =–8x. ∵点A (–4,n )在y =–8x图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴4224k b k b -+=+=-⎧⎨⎩,解得12k b =-=-⎧⎨⎩.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,当x=0时,y=–2,∴点C(0,–2).∴OC=2,∴S△AOB=S△ACO+S△BCO=12×2×4+12×2×2=6.13.【解析】(1)当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以15560bk b=+=⎧⎨⎩,解得:159bk==⎧⎨⎩,所以y=9x+15,当x≥15时,为反比例函数,设函数关系式为:y=mx,由于图象过点(5,60),所以m=300.则y=300x;(2)当0≤x<5时,y=9x+15=30,得x=53,因为y随x的增大而增大,所以x>53,当x≥5时,y=300x=30,得x=10,因为y随x的增大而减小,所以x<10,10–53=253.答:可加工253min.1.【答案】C考点冲关【解析】由反比例函数的定义知,13y x=是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =8k x-的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2,∴k 1–k 2=4,故选C . 4.【答案】B【解析】∵点(–5,y 1)、(–3,y 2)、(2,y 3)都在反比例函数y =3x上, ∴y 1=–35,y 2=–1,y 3=32. ∵–35<–1<32,∴y 2<y 1<y 3,故选B .5.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点, ∴不等式y 1>y 2的解集是-3<x <0或x >2, 故选C . 6.【答案】C【解析】A .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项不正确; B .由一次函数图象过二、四象限,得a <0,交y 轴正半轴,则b >0,满足ab <0, ∴a −b <0,∴反比例函数y =a bx-的图象过二、四象限,所以此选项不正确; C .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项正确; D .由一次函数图象过二、四象限,得a <0,交y 轴负半轴,则b <0,满足ab >0,与已知相矛盾,所以此选项不正确,故选C . 7.【答案】D【解析】根据反比例函数的图象与系数k 的意义,设A (x 1,y 1),B (x 2,y 2),则有x 1y 1=x 2y 2=2可知S △ODB =S △OCA =1,故①正确;同样可知四边形OCMD 的面积为a ,因此四边形OAMB 的面积为a –2,故不会发生变化,故②正确;当点A 是MC 的中点时,y 2=2y 1,代入x 1y 2=a 中,得2x 1y 1=a ,a =4,由题得1242x x =,整理得x 1=2x 2,因此B 为MD 的中点,故③正确,故选D . 8.【答案】B【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =6x 的图象上,∴D (6,1),E (32,4),∴BE =6-32=92,BD =4-1=3,∴ED =22BE BD +=3213,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即3213BF =3×92,∴BF =913,∴BB ′=1813,设EG =x ,则BG =92-x ,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴(1813)2-(92-x )2=(92)2-x 2,∴x =4526,∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,-213),∴k =-121,故选B .9.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠,将(),3A m 、()2,B n -分别代入,得 3k m =,2k n =-,∴2332k m k n ==--, 故答案为:23-. 10.【答案】5【解析】如图,过点A 作AF y ⊥轴,垂足于点F ;过点B 作BE y ⊥轴,垂足为点E .∵点P 是AB 中点,∴PA PB =.易得△APF ≌△BPE , ∴APFBPESS=,∴ABCDACOFEODBSSS=+23=-+5=,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (2k ,2),∵E 是CD 边中点,∴E (2k-2,1),∴2k-2=k ,解得k =-4,故答案为:-4. 12.【答案】372【解析】如图,过点B 作直线AC 的垂线交直线AC 于点F ,∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC =2BD ,∴OD =2O C . ∵CD =k , ∴点A 的坐标为(3k ,3),点B 的坐标为(–23k ,–32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92, ∴CD =k2==13.【解析】(1)∵已知反比例函数ky x=经过点A (1,-k +4), ∴41kk -+=,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2), ∴2=1+b ,∴b =1,∴反比例函数的表达式为2y x=, 一次函数的表达式为y =x +1.(2)由12y x y x ⎧=+⎪⎨=⎪⎩,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0, ∴x =-2或x =1. ∴y =-1或y =2. ∴21x y ⎧=-⎨=-⎩或12x y ⎧=⎨=⎩.∵点B 在第三象限, ∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)∵B (2,-4)在y =mx上, ∴m =-8.∴反比例函数的解析式为y =-8x. ∵点A (-4,n )在y =-8x上, ∴n =2. ∴A (-4,2).∵y =kx +b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y =-x -2. (2)∵C 是直线AB 与x 轴的交点, ∴当y =0时,x =-2. ∴点C (-2,0).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6. (3)不等式0mkx b x+-<的解集为:-4<x <0或x >2. 15.【解析】(1)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2, ∴AB 解析式为:y 1=2x +30(0≤x ≤10). 设C 、D 所在双曲线的解析式为22k y x=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x ≥44); (2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y=40代入y2=2200x得:x=55.55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.1.【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.2.【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.3.【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.4.【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点,故选A.5.【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),直通中考。

人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)

人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)

第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。

③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。

(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。

3.反比例函数在代数、几何及实际问题中的应用。

四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。

反比例函数讲义(知识点+典型例题)

反比例函数讲义(知识点+典型例题)

变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

(完整版)反比例函数知识点归纳总结与典型例题

(完整版)反比例函数知识点归纳总结与典型例题

反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。

x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。

a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。

4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。

x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。

反比例函数知识点及经典例题

反比例函数知识点及经典例题

C、 y1 y2 y3
D、 y1 y3 y2
知识点五:反比例函数 y 在反比例函数 y
k ( k 为常数, k o )中 k 的几何意义 x
k ( k o )的图象上任取一点,过这一点分别作 x 轴、y x
轴的平行线,与坐标轴围成的矩形面积总是等于常量 k
2
反比例函数知识点总结及典型练习
7. 如图所示,一次函数 y=ax+b 的图象与反比例函数 y= 的图象交于 A、B 1 两点,与 x 轴交于点 C.已知点 A 的坐标为(-2,1) ,点 B 的坐标为( ,m) . 2 (1)求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的 x 的取值范围.
的图象交 A、B 两
C.k =2,m =2
D.k =1,m =1
3
反比例函数知识点总结及典型练习
练习题
2 1.反比例函数 y 的图像位于( ) x A.第一、二象限 B.第一、三象限 C.第二、三象限
D.第二、四象限 ) D、不能确定
2.若 y 与 x 成反比例, x 与 z 成正比例,则 y 是 z 的( A、正比例函数 B、反比例函数 C、一次函数
1 m 的图象如图,则 m 的取值范围是___________. x
3 的图象上有三点 x1 , y1 , x2 , y2 , x3 , y3 ,若x1 x2 0 x3 , x 则下列各式正确的是( )
例 6: 在反比例函数 y
A、 y3 y1 y2
B、 y3 y2 y1


2
m1
是关于 x 的反比例函数?并求其表达
知识点二:反比例函数表达式的确定 求反比例函数表达式可用待定系数法,由于只有一个参数 k,因此只需要利 用一组对应值,就可以求出 k 的值。 k 例 3:已知反比例函数 y 的图象经过点(2,-2) ,求 k 的值。 x

人教版初中数学复习--反比例函数知识点

人教版初中数学复习--反比例函数知识点

一.【知识要点】知识点1反比例函数的定义 重点;理解一般地,形如ky x=(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数,y 的取值范围也是不等于0的一切实数,k 叫做比例系数,另外,反比例函数的关系式也可写成y =kx -1的形式.y 是x 的反比例函数⇔ky x=(k ≠0) ⇔xy =k (k ≠0) ⇔变量y 与x 成反比例,比例系数为k .注意: (1)在反比例函数ky x=(k ≠0)的左边是函数y ,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如1y x =,312y x =等都是反比例函数,但21y x =+就不是关于x 的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y =kx -1或xy =k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式 难点:运用由于反比例函数ky x=中只有一个待定系数,因此只要有一对对应的x ,y 值,或已知其图象上一点坐标,即可求出k ,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式ky x=(k ≠0). (2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k 的方程. (3)解方程,求出待定系数k 的值.(4)将待定系数k 的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展 (1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数kyx=(k≠0)的性质难点;灵活应用(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级 反比例函数
一、基础知识
1. 定义:一般地,形如x
k y =
(k 为常数,o k ≠)的函数称为反比例函数。

x k
y =还可以写成kx
y =1
-
2. 反比例函数解析式的特征:
⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k
⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3. 反比例函数的图像 ⑴图像的画法:描点法
① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序)
③ 连线(从左到右光滑的曲线)
⑵反比例函数的图像是双曲线,x
k
y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲
线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线x
k
y = (0≠k )上任意引x 轴y
轴的垂线,所得矩形面积为k 。

4
5. k )
6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数x
k
y =中
的两个变量必成反比例关系。

7. 反比例函数的应用 二、例题
【例1】如果函数2
22
-+=k k
kx y 的图像是双曲线,且在第二,四象限内,那么的值是多少?
【解析】有函数图像为双曲线则此函数为反比例函数x
k y =,(0≠k )即kx y =1
-(0≠k )又在第二,
四象限内,则0<k 可以求出的值 【答案】由反比例函数的定义,得:
⎩⎨⎧<-=-+01222k k k 解得⎪⎩
⎪⎨⎧<=
-=0211k k k 或 1-=∴k
1-=∴k 时函数2
22
-+=k k
kx y 为x
y 1
-=
【例2】在反比例函数x
y 1
-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。

若3210x x x >>>则
下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。

解法一:由题意得111x y -
=,221x y -=,3
31x y -= 3210x x x >>> ,213y y y >>∴所以选A
解法二:用图像法,在直角坐标系中作出x
y 1
-=的图像
描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法
213321321321,1,1,2
1
1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令
【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点(22
1
,),那么该直线与双曲线的另一个交点为( ) 【解析】
⎩⎨
⎧==⎪⎩
⎪⎨⎧=-=+∴⎪⎭⎫ ⎝⎛-=+=12132
212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线 ⎪⎩⎪⎨⎧==⎩⎨⎧-=-=⎪⎩

⎨⎧=+==+=∴2
21111121,12221
1y x y x x y x y x y x y 得解方程组双曲线为直线为
()11--∴,另一个点为
【例4】 如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线x
m
y =
在第一象限的交点,且2=∆AOB S ,则m 的值是
_____.

解:因为直线m x y +=与双曲线x
m
y =
过点A ,设A 点的坐标为()A A y x ,.
A B C D
则有A
A A A x m
y m x y =
+=,.所以A A y x m =. 又点A 在第一象限,所以A A A A y y AB x x OB ====,.
所以m y x AB OB S A A AOB 2
1
2121==∙=
∆.而已知2=∆AOB S . 所以4=m . 三、练习题
1.反比例函数x
y 2
-=的图像位于( )
A .第一、二象限
B .第一、三象限
C .第二、三象限
D .第二、四象限
2.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )
A 、正比例函数
B 、反比例函数
C 、一次函数
D 、不能确定
3.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数图象大致为( )
4.某气球内充满了一定质量的气体,当温度不变时, 气球内气体的气压P ( kPa ) 是气体体积V ( m 3
)
的反比例函数,其图象如图所示.当气球内气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )
A 、不小于54m 3
B 、小于54m 3
C 、不小于45m 3
D 、小于45
m 3
5.如图 ,A 、C 是函数x
y 1
=
的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1,Rt ΔCOD 的面积为
S 2则 ( )
A . S 1 >S 2
B . S 1 <S 2
C . S 1=S 2
D . S 1与S 2的大小关系不能确定
6.关于x 的一次函数y=-2x+m 和反比例函数y=1
n x
+的图象都经过点A (-2,1).
求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B 的坐标;
(3)△AOB 的面积.
7. 如图所示,一次函数y=ax+b的图象与反比例函数y=k
x
的图象交于A、B两点,与x轴交于点
C.已知点A的坐标为(-2,1),点B的坐标为(1
2
,m).
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
8.某蓄水池的排水管每小时排水8m3,6小时可将满池水全部排空.
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每小时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q的关系式.
(4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?
(5)已知排水管的最大排水量为每小时12m3,那么最少需多长时间可将满池水全部排空?
.9.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x元的反比例函数,且当售价定为100元/件时,每日可售出30件.
(1)请写出y关于x的函数关系式;
(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?
10.如图,在直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数
m
y
x
的图象交于A(-2,
1)、B(1,n)两点。

(1)求上述反比例函数和一次函数的表达式;
(2)求△AOB的面积。

四、课后作业 1.对与反比例函数x
y 2
=
,下列说法不正确的是( ) A .点(1,2--)在它的图像上 B .它的图像在第一、三象限 C .当0>x 时,的增大而增大随x y D .当0<x 时,的增大而减小随x y
2.已知反比例函数()0k
y k x
=
≠的图象经过点(1,-2)
,则这个函数的图象一定经过( ) A 、(2,1) B 、(2,-1) C 、(2,4) D 、(-1,-2)
3.在同一直角坐标平面内,如果直线x k y 1=与双曲线x
k
y 2=没有交点,那么1k 和2k 的关系一定是
( ) A. 1k +2k =0
B. 1k ·2k <0
C. 1k ·2k >0
D.1k =2k
4. 反比例函数y =k x
的图象过点P (-1.5,2),则k =________. 5. 点P (2m -3,1)在反比例函数y =1
x
的图象上,则m =__________.
6. 已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为__________.
7. 已知反比例函数x
m
y 21-=的图象上两点()()2211,,,y x B y x A ,当210x x <<时,有21y y <,则m 的
取值范围是?
8.已知y 与x-1成反比例,并且x =-2时y =7,求:
(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值; (3)y =-2时,x 的值。

9. 已知3=b ,且反比例函数x
b
y +=1的图象在每个象限内,y 随x 的增大而增大,如果点()3,a 在双曲线上x
b
y +=1,求a 是多少?。

相关文档
最新文档