平行四边形章测Microsoft-Word-文档

合集下载

第6章 平行四边形 单元测试(基础过关)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)

第6章 平行四边形 单元测试(基础过关)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)

第6章平行四边形单元测试(基础过关)一、单选题1.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【答案】B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.如图,在平行四边形ABCD中,下列结论中错误的是().A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【答案】D【解析】试题分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选D.3.如图,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3大小无法确定【答案】B【解析】【分析】先判定四边形ABCD是平行四边形,再根据平行四边形的对角相等和三角形外角的性质进行判断即可.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠3+∠BCD=180°,∠1+∠2+∠A=180°,∴∠1+∠2=∠3.故选B.【点睛】考查平行四边形的性质和判定.平行四边形的判定方法共有多种,应用时要认真领会它们之间的联系与区别,同时要根据条件,合理、灵活地选择方法.4.某班同学在学完平行四边形的判定后,开展了一次课外活动课,课上探索出如下结论,其中正确的是()A.当四边形的一组邻角相等且一组对角互补时,此四边形一定为平行四边形B.当四边形的一组对角相等且一组对边相等时,此四边形一定为平行四边形C.当四边形的一组邻角相等且一组对边平行时,此四边形一定为平行四边形D.当四边形的一组对角相等且一组邻角互补时,此四边形一定为平行四边形【答案】D【解析】【分析】根据给出的条件,利用平行四边形的判定定理判定即可.A、等腰梯形满足此条件,但不是平行四边形,故此选项错误;B、根据条件“一组对边相等,一组对角相等”证不出是平行四边形,故此选项错误;C、等腰梯形也满足此条件,但不是平行四边形,故此选项错误;D、一组邻角互补,一组对角相等,可得到任意两对邻角互补,那么可得到两组对边分别平行,为平行四边形,故此选项正确;故选D.【点睛】此题主要考查了平行四边形的判定.关键是熟练掌握平行四边形的判定定理.①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.5.如图,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,则△DEF 的面积等于A.4B.5C.6D.7【答案】C【解析】【分析】根据三角形中位线的性质易得所求三角形的三边,判断出形状后可直接求得面积.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC,又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形,∴S△EDF=12DE•DF=12×3×4=6(cm2).故选C.【点睛】本题考查三角形中位线等于第三边的一半的性质;要注意,根据三角形中位线定理解得所求三角形三边的长后要先判断三角形的形状,不要盲目求解.6.如图,在▱ABCD中,O为对角线AC的中点,AC⊥AB,E为AD的中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.143°B.127°C.53°D.37°【答案】A【解析】【分析】首先根据平行四边形的性质得到:∠BAC=∠DCA=90°,然后根据点O为AC的中点,点E 为AD的中点利用中位线定理得到OE∥CD,从而得到∠AOE=∠ACD=90°,然后根据OF⊥BC得到∠FOC=∠B=53°,从而得到∠EOF=∠EOC+∠FOC=90°+53°=143°.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AC⊥AB,∴∠BAC=∠DCA=90°,∵点O为AC的中点,点E为AD的中点,∴OE∥CD,∴∠COE+∠ACD=180°,∴∠COE=90°∵∠D=∠B=53°,OF⊥BC,∴∠FOC=∠B=53°,∴∠EOF=∠EOC+∠FOC=90°+53°=143°,故选A.【点睛】本题考查了平行四边形的性质,三角形中位线,解题的关键是能够根据题意并利用中位线定理确定答案.7.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【答案】B【解析】试题分析:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°.∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°.∴∠PDC=90°.∴由折叠的性质得到∠CDE=∠PDE=45°.在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.8.如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC.若EF=2,FG=GC=5,则AC的长是()A.12B.13C.D.【答案】B【解析】如图,设AC与DF交于M,AC与EH交于N,∵四边形ABCD是平行四边形,▱ABCD的四个内角的平分线分别相交于点E、F、G、H,∴四边形EFGH是矩形,△ABE≌△CDG,△AEN≌△CGM,∴FG=EH=CG=5,EF=GH=2,CH=7,EN=GM,CM=AN,∵EH=FG,∴FM=NH,设GM=EN=x,则HN=FN=5﹣x,∵GM∥HN,∴MG CG HN CH=,∴5 57 xx=-,∴x=25 12,在Rt △CMG 中,CM =AN 6512,在Rt △CNH 中,CN 9112,∴AC =AN +CN =6512+9112=13,故选B .【点睛】本题考查了平行四边形的性质,勾股定理等,能正确地利用勾股定理进行解题是关键.9.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则()A .AHE BGE∠>∠B .AHE BGE ∠=∠C .AHE BGE∠<∠D .AHE ∠与BGE ∠的大小关系不确定【答案】B【解析】【分析】连接BD ,取中点I ,连接IE ,IF ,根据三角形中位线定理得IE =122AD ,且平行AD ,IF =12BC 且平行BC ,再利用AD >BC 和IE ∥AD ,求证∠AHE =∠IEF ,同理可证∠BGE =∠IFE ,再利用IE >IF 和∠AHE =∠IEF ,∠BGE =∠IFE 即可得出结论.连接BD ,取中点I ,连接IE ,IF∵E ,F 分别是AB ,CD 的中点,∴IE,IF分别是△ABD,△BDC的中位线,∴IE=12AD,且平行AD,IF=12BC且平行BC,∵AD=BC,∴IE=IF,∵IE∥AD,∴∠AHE=∠IEF,同理∠BGE=∠IFE,∵在△IEF中,IE=IF,∴∠IFE=∠IEF,∵∠AHE=∠IEF,∠BGE=∠IFE,∴∠BGE=∠AHE.故选:B.【点睛】此题主要考查学生对三角形中位线定理和三角形三边关系等知识点的理解和掌握,有一定的拔高难度,属于难题.10.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是()A.②④B.①②④C.①②③④D.②③④【答案】B【解析】【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF可得这两个三角形的面积相等,再由MC>BE易得S△BEC <2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF DF AFE DFM ⎧⎪⎨⎪=∠=∠=∠⎩∠,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴FC =FE ,∴∠ECF =∠CEF ,故②正确;③∵EF =FM ,∴S △EFC =S △CFM ,∵MC >BE ,122ECM EFC S CM CE S =⨯= ,12BEC S BE CE =⨯ ∴S △BEC <2S △EFC ,故S △BEC =2S △CEF ,故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确,故选:B.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.二、填空题11.在平行四边形ABCD中,∠B+∠D=200°,则∠A的度数为____.【答案】80°【解析】【分析】利用平行四边形的对角相等、邻角互补可求得答案.详解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°.故答案为:80°.【点睛】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等、邻角互补.12.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.【答案】6【解析】【分析】由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.解:如图:∵△ABC中,D、E分别是AB、AC边上的中点,∴DE是三角形的中位线,∵DE=3cm,∴BC=2DE=6cm.故答案为:6.【点睛】本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.13.若n边形的内角和是它的外角和的2倍,则n=_______.【答案】6【解析】【分析】此题涉及多边形内角和和外角和定理.解:多边形内角和=180(n-2),外角和=360°,所以,由题意可得180(n-2)=2×360,解得:n=6.故答案为:6.14.如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于_______.【答案】【解析】如图,在直角△AOE中,cos AEEAOOA∠=,∴cos2AEOAEAO===∠又∵四边形ABCD是平行四边形,∴2AC OA==15.如图, ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为_____.【答案】15【解析】∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12 CD.∴OE=12 BC.∴△DOE的周长="OD+OE+DE="OD+12(BC+CD)=6+9=15,即△DOE的周长为15.故答案是:15.16.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M在x轴上,点N 在y轴上.如果以点A、B、M、N为顶点的四边形是平行四边形,那么符合条件的点M有____个.【答案】3.【解析】试题分析:利用一组对边相等且平行的四边形是平行四边形进而得出答案.试题解析:如图所示:当AB平行且等于NM时,四边形ABMN是平行四边形,当AB平行且等于N′M′时,四边形ABN′M′是平行四边形.当AB为对角线时,四边形ABN′M′是平行四边形.故符合题意的有3个点.考点:1.平行四边形的判定;2.坐标与图形性质.17.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P 以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.【答案】2s【解析】【分析】设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.如图,设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6-2t,∵AD∥BC,∴AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,∴t=6-2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合.综上所述,2秒后四边形ABQP是平行四边形.故答案为2s.【点睛】此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.18.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD 的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.【答案】175°【解析】如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠C O5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为175°.三、解答题19.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.【答案】见解析.【解析】【分析】根据题意得出四边形AECD为平行四边形,得到AD=CE,根据角平分线的性质以及平行线的性质得到AB=AD,从而得到AB=CE.证明:∵AD∥BC,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.∵AD∥BC,AE∥CD,∴四边形ADCE为平行四边形,∴AD=CE,∴AB=CE.点睛:本题考查了平行四边形的判定与性质以及等腰三角形的判定.注意“等量代换”在本题中的应用.20.小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出理由【答案】可以走回到A点,共走100米【解析】【分析】他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m才能回到原地.所以小华能回到点A.当他走回到点A时,共走100m.21.如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.【答案】结论:OE=OF.理由见解析.【解析】试题分析:结论:OE=OF,欲证明OE=OF,只要证明△AOE≌△COF即可.试题解析:结论:OE=OF.理由∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,{OAE OCF AOE COF AO OC∠=∠∠=∠=,∴△AOE≌△COF,∴OE=OF.22.如图,在▱ABCD中,E、F为对角线BD上的两点,且AE⊥BD,CF⊥BD.求证:BE=DF.【答案】证明见解析【解析】试题分析:∵在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵∠BAE=∠DCF,∴△ABE≌△CDF(ASA),∴BE=DF.考点:平行四边形的性质23.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.24.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【答案】(1)见解析,(2)41【解析】【分析】(1)证明△ABN≌△ADN,即可得出结论.(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.(1)证明:∵BN⊥AN于点N,∴ANB AND∠=∠,在△ABN和△ADN中,∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN≌△ADN(ASA).∴BN=DN.(2)∵△ABN≌△ADN,∴AD=AB=10,DN=NB.又∵点M是BC中点,∴MN是△BDC的中位线.∴CD=2MN=6.∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.25.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.【答案】(1)证明见解析;(2【解析】(1)如图1中,结论:△BCE 是等腰三角形.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠AEB=∠BEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴==26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D ,E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC ,DC ,DE 分别相交于点I ,F ,G ,过点C 作CH //BG 交DE 于点H .①求证:IBC HCE ≌;②若DF CF =,求DG 的长.(2)如图2,将直线BD 绕点O 逆时针旋转α(90α<︒),与线段AD ,BC 分别交于点P ,Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由.【答案】(1)①见解析;②DE 的长为2(2)不变;四边形ABQP 的面积为12【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可.(1)①证明:∵△DCE 由△ABC 平移得到,∴AC //DE ,BC =CE ,∠ACB =∠E ,∴∠ICB =∠E ,∵CH //BG ,∴∠IBC =∠HCE ,∴△IBC ≌△HCE (ASA );②由①可知,△IBC ≌△HCE ,∴IC =HE ,∵AC //DE ,CH //BG ,∴CI //GH ,CH //GI ,∴四边形ICHG 是平行四边形,∴IC =GH ;∵∠FDG =∠FCI ,∠DFG =∠CFI ,DF =CF ,∴△DFG ≌△CFI ,∴DG =IC ,∴DG =GH =HE ,∵DE =AC =6,∴DG =13DE =13AC =2.(2)不变;由平移可知AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,∴OA =OC ,∵AD //BC ,∴∠APO =∠CQO ,∵∠AOP =∠COQ ,∴△AOP ≌△COQ (AAS ),∴S △AOP =S △COQ ,AOP COQ ABC ABQP ABQO ABQO S S S S S S 四边形四边形四边形=+=+=,∵在ABC 中,5AB BC ==,6AC =,∴ABC 的面积不变,∴四边形ABQP 的面积不变,∵AB =BC =5,OA =OC =12AC =3,∴OB ⊥AC ,∴∠AOB =90°,∴4OB ===,∴S △ABC =12AC •OB =12×6×4=12,∴12ABQP S 四边形=.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理,熟练掌握全等三角形的判定方法和平行四边形的性质的判定是解题的关键.。

(完整word版)平行四边形的判定练习题

(完整word版)平行四边形的判定练习题

(一) 平行四边形的判定一、教学目的:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.平行四边形的判定方法平行四边形判定方法1(与边相关) 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 (与边相关) 两组对边分别平行的四边形是平行四边形平行四边形判定方法3 (与边相关) 一组对边平行且相等的四边形是平行四边形平行四边形判定方法4 (与角相关) 两组对角分别相等的四边形是平行四边形平行四边形判定方法5 (与对角线相关)对角线互相平分的四边形是平行四边形。

三、练习题1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.(3).(选择)下列条件中能判断四边形是平行四边形的是( ).(A)对角线互相垂直 (B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分2.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形; ( )(3)一组对边平行,另一组对边相等的四边形是平行四边形; ( )(4)一组对边平行且相等的四边形是平行四边形; ( )(5)对角线相等的四边形是平行四边形; ( )(6)对角线互相平分的四边形是平行四边形.()3.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD4.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.5.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.6.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF7。

北师大版八年级数学下册第六章平行四边形单元测试题及答案

北师大版八年级数学下册第六章平行四边形单元测试题及答案

2020-2021学年北师大版八年级数学下册第六章平行四边形单元测试题及答案(本卷满分120分,考试时间120分钟)一、选择题(本大题共 10小题,每小题3分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列命题:①平行四边形的两组对边分别平行且相等;②平行四边形的对角线互相平分且相等;③平行四边形的对角相等,邻角互补;④平行四边形短边之间的距离大于长边之间的距离。

其中正确的命题个数是()A.1B.2C.3D.42、如图,▱ABCD 的对角线 AC 与 BD 相交于点O,AB⊥AC.若 AB=4,AC=6,则 BD 的长是()A.8B.9C.10D.113.如图,四边形 ABCD 的对角线交于点O,下列条件中不能判断四边形 ABCD 是平行四边形的是()A.OA =OC, OB =ODB.∠BAD=∠BCD, AB ∥CDC. AD∥BC, AD=BCD. AB=CD, AO=CO4.D 为等腰△ABC 底边 BC 上一点,DE //AB,DF // AC,则四边形 AFDE 的周长是()A.2ABB. 2AB +BCC.2BCD.AB+BC5 如图,将CABCD 沿 AE 翻折,使点 B 恰好落在边 AD 上的点F处,则下列结论不一定成立的是()A.AF=EFB.AB=EFB.AE=AFD.四边形 ECDF 是平行四边形6.在下列条件中,能够判定一个四边形是平行四边形的是()A、一组对边平行,另一组对边相等B.—组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线7.如图是一个由 5 张纸片拼成的平行四边形,相邻纸片互不重叠也无缝隙。

其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为 S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S、B.4SC.4S2+S3D.3S1+4S3(第7题)(第10题)8.在▱ABCD 中,AB =3,BC=4,当▱ABCD 的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④9.已知四边形 ABCD 中,AB =2,CD =3,M,N 分别是边 AD,BC 的中点,则线段 MN 的长的取值范围是()A.1<MN <5B.1<MN ≤5C. 0.5<MN<2.5D.0.5<MN≤2.510.如图,▱ABCD 的对角线 AC,BD 交于点O,AE平分∠BAD 交 BC于点E,且∠ADC=60°, BC=2AB,连接OE.有下列结论:①∠CAD =30°;②S▱ABCD=AB·AC;③OB=AB;④BC=4OE.其中成立的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共 6小题,每小题 3 分,共 18 分)11.用两个全等的三角形最多能拼成个不同的平行四边形.12.已知四边形的四个内角的度数之比为 1:3:4:2,则此四边形四个内角的度数分别为,,,.13.如图,▱ABCD 的周长为 20 cm,对角线 AC,BD 相交于点O,△COB 的周长比△AOB 的周长大 2 cm,那么 BC=cm.第13题第14题第16题14.如图,在△ABC 中,∠ACB =90°,M,N 分别是AB,AC 的中点,延长 BC 至点D,使BD=3CD,连接DM,DN,MN.若 AB =6,则 DN=.15.已知在▱ABCD 中,AB,BC,CD 的长分别为 2x+1,3x,x+4,则CABCD 的周长是.16.如图,点 A,B 为定点,定直线 L//AB,P 是直线L上一动点,点M,N 分别为PA,PB 的中点,对下列各值:①线段 MN 的长;②△PAB 的周长;③△PMN 的面积;④直线 MN,AB 之间的距离;⑤∠APB 的度数.其中会随点 P 的移动而变化的是(填序号)三、解答题(本大题共 7小题,共 72 分)17.(本题10分)在▱ABCD 中,∠BCD 的平分线与 BA 的延长线相交于点E,BH⊥EC于点H.求证:CH=EH.18.(本题10分)如图,在▱ABCD 中,点E,F,G,H 分别在AB,BC,CD,DA上,且AE=BF =CG=DH求证:EG 与FH 互相平分.19.(本题10分)如图,四边形 ABCD 为平行四边形,∠BAD 的平分线AE交CD于点F,交 BC 的延长线于点E.(1)求证:BE=CD;(2)连接 BF,若 BF LAE,ZBEA =60°,AB=4,求口ABCD 的面积.20.(本题10分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.求证:四边形 BFCE 是平行四边形,21.(本题10分)如图,在▱ABCD 中,∠DAB=60°,点E,F 分别在CD,AB 的延长线上,且AE=AD,CF=CB.(1)求证:四边形 AFCE 是平行四边形;(2)若去掉已知条件“ZDAB=60””,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.22.(本题10分)在▱ABCD 中,将△BCD 沿ED翻折,使点C落在点E处,BE和AD 相交于点O.求证:OA =OE.23.(本题 12 分)如图,已知∠ABC=90°,D 是直线 AB 上的点,AD=BC.(1)如图①,过点A 作AF ⊥AB,并截取AF=BD,连接 DC,DF,CF,判断△CDF的形状并证明;(2)如图②, E 是直线 BC 上的一点,且 CE = BD,直线 AE,CD 相交于点 P,∠APD 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.参考答案一、1-5BCDAC 6-10CABDC二、11. 3 12.36°;108°;144°;72°. 13. 614.3 15.32 10.②⑤三、。

平行四边形单元测试题(含答案)

平行四边形单元测试题(含答案)

7.一个多边形的内角和等于外角和的一半,那么这个多边形是( )
(A)三角形 (B)四边形 (C)五边形 (D)六边形
8.在等腰三角形 ABC 中,∠C=90°,BC=2 厘米,如果以 AC 的中点 O 为旋转中心,将这个
三角形旋转 180°,点 B 落在点 B′处,那么点 B′与点 B 的原来位置相距多少厘米(姓名一ຫໍສະໝຸດ 选择题(每小题 5 分,共 40 分)
学号
分数
1.在平行四边形 ABCD 中,∠A:∠B:∠C=2:3:2,则∠D=(

(A)36° (B)108° (C)72° (D)60°
2.如果等边三角形的边长为 3,那么连结各边中点所成的三角形的周长为( ).
(A)9 (B)6
(C)3
(D) 9 2
边形 ABCD 的周长为 40,则平行四边形 ABCD 的面积为
.
12 已知平行四边形 ABCD 的两条对角线相交于直角坐标系的原点,点
A,B 的坐标分别为(-1,-5),(-1,2),则 C、D 的坐标分别为
_________________. 13 如图 3,BC 为固定的木条,AB,AC 为可伸缩的橡皮筋.当点 A 在与 BC平行的轨道上滑
5.下列说法正确的是( ).
(A)有两组对边分别平行的图形是平行四边形
(B)平行四边形的对角线相等
(C)平行四边形的对角互补,邻角相等
(D)平行四边形的对边平等且相等
6.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸
方法有( ).
A、无数种
B、4 种
C、2 种
D、1 种
上的两点,且 BE=DF.
求证:(1)AE=CF;(2)AE∥CF.

北师大版初二下册第六章平行四边形检测题及答案

北师大版初二下册第六章平行四边形检测题及答案

北师大版初二下册第六章平行四边形检测题及答案一、选择题〔每题3分,共30分〕1.如图,在□ABCD中,AB=3,BC=5,AC的垂直平分线交AD于点E,那么△CDE的周长是〔〕A.6B.8C.9D.102.如图,□ABCD的周长是28cm,△ABC的周长是22cm,那么AC的长为〔〕A.6cmB.12cmC.4cmD.8cm3.正八边形的每个内角为〔〕A.120°B.135°C.140°D.144°4.在□ABCD中,以下结论一定正确的选项是〔〕A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C5.多边形的内角中,锐角的个数最多为〔〕A.1B.2C.3D.46.在四边形ABCD中,对角线AC、BD相交于点O,以下条件不能判定这个四边形是平行四边形的是〔〕A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如图,在□ABCD中,AC与BD相交于点O,那么以下结论不一定成立的是〔〕A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD8.不能判定一个四边形是平行四边形的条件是〔〕A.两组对边区分平行B.一组对边平行另一组对边相等C.一组对边平行且相等D.两组对边区分相等9. 一个多边形的内角和是540°,那么这个多边形是〔〕A.四边形B.五边形C.六边形D.七边形10.如图,在□ABCD中,对角线AC,BD相交于点O,点E,F区分是边AD,AB的中点,EF交AC于点H,那么AHHC的值为〔〕A.1B.12C.13D.14二、填空题〔每题3分,共24分〕11.如图,在□ABCD中,∠ADO=900,OA=6cm,OB=3cm,那么AD=_____cm,AC=______cm.12.如图,在□ABCD中,E,F区分为边AB,DC的中点,那么图中共有个平行四边形.13.如图,在△ABC中,点D,E区分是AB,AC的中点,∠A=500,∠ADE=600,那么∠C的度数为____.14.假定凸n边形的内角和为12600,那么从一个顶点动身引出的对角线条数是__________.15.假定一个多边形的内角和是外角和的5倍,那么这个多边形是边形.16.如图,在四边形ABCD中,AB=CD,再添加一个条件〔写出一个即可〕,那么四边形ABCD是平行四边形.(图形中不再添加辅佐线)17.如图,在□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,假定点B的落点记为B′,那么DB′的长为 .18.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为 .三、解答题〔共46分〕19.〔6分〕□ABCD的周长为40cm,AB:BC=2:3,求CD和AD的长.20.〔6分〕,在□ABCD中,∠A的平分线分BC成4cm和3cm两条线段,求□ABCD的周长.21.〔6分〕如图,四边形ABCD是平行四边形,AD=12,AB=13,BD⊥AD,,求BC,CD及OB的长.22.〔6分〕如图,在四边形ABCD中,AB∥CD,∠B=∠D,AB=3,BC=6,求四边形ABCD的周长.23.〔6分〕:如图,在□ABCD中,对角线AC,BD相交于点O,EF过点O区分交AD,BC于点E,F求证:OE=OF.24.〔6分〕:如图,在□ABCD中,E,F是对角线BD上的两点,且BF=DE求证:AE=CF25.(10分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F区分为边AC、AB的中点.〔1〕求∠A的度数;〔2〕求EF的长.第六章平行四边形检测题参考答案1.B2.D3.B4.B5.C6.D7.D8.B9.B 10.C11. 12 . 12.4 13. 14.615.十二 16.∥或∠∠或∠∠ (答案不独一)18.25°解析:由于□ABCD与□DCFE的周长相等,且DC为公共边,所以AD=DE,所以∠DAE=∠DEA.由于AB∥DC,DC∥EF,所以AB∥EF,所以∠BAE+∠FEA=180°,即∠BAD+∠DAE+∠FED+∠DEA=180°.由于DE∥CF,∠F=110°,所以∠FED+∠F=180°,那么∠FED=70°.由于∠BAD=60°,所以60°+70°+2∠DAE=180°,所以∠DAE=25°.19.解:由于四边形是平行四边形,所以,.设 cm, cm,又由于平行四边形的周长为40 cm,所以,解得,所以,.20.解:设∠的平分线交于点,如图.由于∥,所以∠∠.又∠∠,所以∠∠,所以.而.①当时,, □的周长为; ②当时, □的周长为. 所以□的周长为或.21.解:由于四边形ABCD 是平行四边形,所以,,.由于,所以,所以.22.解:∵∥,∴ . 又∵,∴ ∠ , ∴ ∥ , ∴ 四边形是平行四边形 , ∴ ∴ 四边形的周长.23.证明:∵ 四边形是平行四边形,∴∥,, ∴∴ △≌△,故.24.证明:∵ 四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. 在ADE △和CBF △中,AD BC ADE FBC DE BF ===,∠∠,,25.解:〔1〕∵ 在Rt △ABC 中,∠C=90°,∠B=60°,∴∠A=90°∠B=30°,即∠A 的度数是30°.〔2〕由〔1〕知,∠A=30°.在Rt △ABC 中,∠C=90°,∠A=30°,AB=8 cm , ∴ .又E、F区分为边AC、AB的中点,∴ EF是△ABC的中位线,∴。

(2021年整理)八年级数学平行四边形的判定单元测试

(2021年整理)八年级数学平行四边形的判定单元测试

(完整版)八年级数学平行四边形的判定单元测试编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)八年级数学平行四边形的判定单元测试)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)八年级数学平行四边形的判定单元测试的全部内容。

(完整版)八年级数学平行四边形的判定单元测试编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)八年级数学平行四边形的判定单元测试这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)八年级数学平行四边形的判定单元测试> 这篇文档的全部内容。

八年级数学平行四边形的判定单元测试班级___________姓名____________学号__________成绩_______一、选择题(每小题3分,共30分)1、关于四边形ABCD:①两组对边分别平行,②两组对边分别相等,③有两组角相等,④对角线AC和BD相等。

以上四个条件中,可以判定四边形ABCD是平行四边形的有()A。

1个 B。

2个 C。

3个 D。

4个2、若A、B、C三点不共线,则以其为顶点的平行四边形共有()A。

1个 B.2个 C.3个 D.4个3.下列说法错误的是()(A)有一个内角是直角的平行四边形是矩形。

(B)矩形的四个角都是直角,并且对角线相等(C)对角线相等的平行四边形是矩形(D)有两个角是直角的四边形是矩形4、∠A和∠C是矩形ABCD的一组对角,则①∠A与∠C相等;②∠A与∠C互补;③∠A是直角;④∠C是直角。

平行四边形单元测试卷

平行四边形单元测试卷

平行四边形单元测试卷一、选择题(每题2分,共10分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 以上都不是2. 下列哪个不是平行四边形的性质?A. 对角线互相平分B. 对边相等C. 对角相等D. 内角和为360°3. 平行四边形的面积如何计算?A. 底乘高B. 对角线乘积的一半C. 周长除以4D. 以上都不是4. 如果一个平行四边形的两组对边分别相等,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 不能确定5. 平行四边形的对角线将平行四边形分成:A. 两个三角形B. 两个梯形C. 两个矩形D. 四个小平行四边形二、填空题(每空1分,共10分)1. 平行四边形的对角线_______。

2. 矩形的四个角都是_______。

3. 菱形的对角线_______。

4. 平行四边形的面积公式为_______。

5. 如果一个平行四边形的底为5厘米,高为3厘米,那么它的面积是_______平方厘米。

三、判断题(每题1分,共5分)1. 所有平行四边形都是矩形。

()2. 菱形的四条边都是相等的。

()3. 平行四边形的对角线一定垂直。

()4. 矩形和菱形都是特殊的平行四边形。

()5. 梯形不是平行四边形。

()四、简答题(每题5分,共10分)1. 请简述平行四边形和矩形的区别。

2. 请解释为什么平行四边形的对角线互相平分。

五、计算题(每题10分,共20分)1. 一个平行四边形的底是8厘米,高是4厘米,请计算它的面积。

2. 如果一个平行四边形的对角线长度分别为10厘米和12厘米,且它们相交于中点,求这个平行四边形的面积。

六、解答题(每题15分,共15分)1. 一个平行四边形的对角线互相垂直,且长度分别为12厘米和16厘米。

如果这个平行四边形的面积是96平方厘米,请求出它的底和高。

答案:一、选择题:1-5 BACAD二、填空题:1. 互相平分 2. 直角 3. 垂直且互相平分 4. 底×高 5.15三、判断题:1-5 ×√×√×四、简答题:1. 平行四边形的对边平行且相等,而矩形的四个角都是直角,且对角线相等。

最新北师大版八年级下册数学平行四边形单元测试试题以及答案

最新北师大版八年级下册数学平行四边形单元测试试题以及答案

最新北师大版八年级下册数学平行四边形单元测试试题以及答案八年级下册平行四边形单元测试试题一、选择题1.在平行四边形ABCD中,∠A:∠B:∠D=1:3:3,则∠C等于()。

A。

45°B。

135°C。

30°D。

150°2.如图,是一个不规则的平面图形,这个图形的周长是()。

A。

80B。

84C。

88D。

1083.如图,在平行四边形ABCD中,CE平分∠BCD,F是AB的中点,若DC=6,AD=4,则A。

3:2:1B。

3:1:2C。

1:2:3D。

2:1:34.如图,在平行四边形ABCD中,AC的垂直平分线交AD与点E,连接CE,若平行四边形的周长是12,则△CDE 的周长是()。

A。

6B。

12C。

10D。

85.如图,在平行四边形ABCD中,EF经过对角线的交点O,OE=3,四边形ABFE的周长是32,则平行四边形ABCD 的周长是()。

A。

29B。

26C。

58D。

526.已知平行四边形的周长是24厘米,相邻的边相差2厘米,则平行四边形的四个边分别是()。

A。

3厘米、9厘米、3厘米、9厘米B。

5.5厘米、6.5厘米、5.5厘米、6.5厘米C。

4厘米、8厘米、4厘米、8厘米D。

5厘米、7厘米、5厘米、7厘米7.多边形的内角中,锐角的个数最多有()个。

A。

1B。

2C。

3D。

48.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()。

A。

1秒B。

2秒C。

3秒D。

4秒9.过一个多边形的顶点可以画10条对角线,则这个多边形的内角和是()。

A。

2340°B。

2160°C。

1800°D。

1980°10.如图,E、F分别是AP、PR的中点,点P在D向C运动过程中,EF将()。

完整word平行四边形的判定练习题含答案推荐文档

完整word平行四边形的判定练习题含答案推荐文档

平行四边形的判定及中位线知能点1平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是(A . AB// CD AD=BCC . AB=CD AD=BC2.具备下列条件的四边形中,A .相邻的角互补).B . / A=/ B, / C=/DD . AB=AD CB=CD不能确定是平行四边形的为( ).B .两组对角分别相等D .对角线交点是两对角线中点C .一组对边平行,另一组对边相等3.如下左图所示,四边形ABCD勺对角线AC和BD相交于点0,下列判断正确的是(ABC)..若AO=OC贝U ABCD是平行四边形;.若AC=BD则ABCD是平行四边形;.若AO=BO CO=DO则ABCD是平行四边形; D.若AO=OC BO=OD则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,AB=CD所以AD=BC所以AD=BC所以AD// BC所以(1)(2)(3)(4)(5)(6)因为因为因为因为因为因为AD//BC,AB// CDAD// BCAB// CDABCD是平行四边形.ABCD是平行四边形.ABCD是平行四边形.ABCD是平行四边形.AB=CD AD=BC所以ABCD是平行四边形.AD=CD AB=AC所以ABCD是平行四边形.总 C正确的打“V”,错误的打“X”.((((()()))))5.已知AD// BC要使四边形ABCE为平行四边形,需要增加条件6.如图所示,/仁/ 2, / 3=/4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD BC=AD E, F为对角线AC上的点,且&如图所示,D为^ ABC的边AB上一点,DF交AC于点E,且AE=CE FC// AB 求证:CD=AF9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=?AB BF=BD连接CE, DE相交于点M求证:CD=CM10 .如图所示,在四边形ABCD中,DC// AB以AD, AC为边作□ ACED延长DC技EB于F,求证:EF=FB知能点2三角形的中位□线11.如图所示,已知 E 为口 ABCD 中 DC 边的延长线上的一点,且 CE=DC 连接AE ,分别交BC, BD 于点F ,G,连接AC 交BD 于点0,连接OF 求证:AB=2OF13.如图所示, DE 是△ ABC 的中位线,BC=8 贝U DE=CE DE 交14. 如图所示, A . 3cm在口 ABCD 中,对角线 AC, BD 交于点0, OE/ BC 交CD?于 E , ?若0E=3cm 则AD 的长为(). B . 6cm C . 9cm D . 12cm在四边形 ABCD 中, E , F , G H 分别是AB, BC, CD AD 的中点,?则四边形EFGH 是平行四边形吗?为什么? 12.如图所示,在于点N 求证: CD16.如图所示,在△ ABC 中,AC=6cm BC=8cm AB=10cm D, E, F 分别是AB BC CA的中点,求△ DEF 的面积.规律方法应用17.如图所示,A, B两点被池塘隔开,在A,B外选一点C,连接AC和BC, ?并分别找出AC和BC的中点M N,如果测得MN=20m那么A, B两点间的距离是多少?18 .如图所示,在□ABCD中, AB=2AD / A=60, E, F分别为AB, CD的中点,EF=1cm 那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△ ABC中,E为AB的中点,CD平分/ ACB ADI CD于点D. ?1试说明:(1) DE// BC (2) DE== ( BC-AQ .2开放探索创新20.如图所示,在△ ABC 中,/ BAC=90 , ADIBC 于D, 么AE与CF相等吗?请验证你的结论.(长沙)如下左图所示,在四边形A BCD中,AB//CD件是________ .(添加一个即可)AC22.23.(呼和浩特)如上右图所示,已知E, F, G H是四边形是_________ .(南京)已知如图19-1-55所示,在Y ABCD中, E, F分别是AB, CD的中点. 求证:(1 (2)四边形AECF是平行四边形.ABCD各边的中点,?则S四边形EFGH S四边形ABC的值BE平分/ ABC交AD?于E, EF// BC 交AC于F,那中考真题实战21 . 要使四边形ABCD为平行四边形,则应添加的条答案:1 . C2 . C3 . D (2)X ( 3)V ( 4)V ( 5)V ( 6)X .AD=BC 或 AB// CD.解:•••/ 仁/ 2,.・. AD// BC又•••/ 3=/ 4,.・. AB// CD •••四边形ABCD 是平行四边形..证明:••• AB=CD BC=AD •••四边形ABCD 是平行四边形. ••• AB// CD •/ BAE / DCF 又••• AE=CE :A ABE^A CDF( SAS, • BE=EF .证明:••• FC// AB •••/ DAC / ACF / ADF / DFC 又••• AE=CE :A ADE^A CF E (AAS), • DE=EF ••• AE=C ,.・.四边形 ADCF 为平行四边形. ••• CD=AF .证明:•••四边形 ABCD 是平行四边形. 4 . (1 )X 5 ••• AB// DC. 又••• BE=AB.・. BE // DC •••四边形 BDCE 是平行四边形. 10 •••DC// BF, •••/ CDF=^ F . 同理,/ BDMWDMC •/ BD=BF •/ BDF=^ F . •••/ CDF=^ CMD ; CD=CM .证明:过点 B 作BG/ AD 交DC 的延长线于 G 连接EG •••DC// AB ••• ABGD 是平行四边形, ••• BG // AD . 在口 ACED 中, AD //CE,A CE // BG 11 •••四边形BCE 助平行四边形,••• EF=FB .证明:•••四边形 ABCD 是平行四边形, ••• AB // CD, AD=BC •/ CE=CD ••• AB //CE 12 •••四边形ABEC 为平行四边形. 1 ••• BF=FC •- OF // — AB,即卩AB=2OF=2.证明:•••四边形 ABCD 是平行四边形,1315 16 ••• AB// CD AD// BC又••• EF// AB ••• EF// CD •••四边形ABEF ECDF 均为平行四边形. 又••• M N 分别为 Y ABEF 和 Y E CDF 对角线的交点.• M 为AE 的中点,N 为DE 的中点,即MN 为△ AED 的中位线.••• MIN/ AD且 MNdAD. 2.4 14 . B •解:EFGH 是平行四边形,连接 AC,在^ ABC 中,EF 是中位线,二EF // - AC. =2 同理,GH // 1 AC=2••• EF //GH •••四边形 EFGH 为平行四边形.•解:••• EF,1••• EF= —AB, 2 DE DF 是^ABC 的中位线, DE=—AC, DF=—BC2 2又AB=10cm BC=8cm AC=6cm •• EF=5cm DE=3cm DF=4cm 而 32+42=25=52,即D E+D REF 2.•••△ EDF 为直角三角形.1 1 2.•-S △EDf =— DE- DF=_ X 3X 4=6( cmf).2 2.解:••• M N 分别是AC BC 的中点. ••• MN >^ ABC 的中位线,••• MN=—AB. 2••• AB=2MN=2 20=40 ( m). 故A , B 两点间的距离是 40m.18•解:连接DE•••四边形ABCD 是平行四边形,••• AB//CD.•••DF=-CD AE=-AB,2 2•••DF//AE.••四边形ADFE 是平行四边形.■- EF=AD=1cm-AB=2AD - - AB=2cm.•AB=2AD •- AB=2AE •- AD=AE••/ 仁/4..•/ A=60° , / 1+/4+/A=180° , ■- / 1=/ A=/4=60°.1920212223 •••△ ADE是等边三角形,••• DE=AE•/ AE=BE:DE=BE.・./ 2=/ 3.•••/ 1=/ 2+/ 3,/ 1=60°, •/ 2=/ 3=30°. •••/ ADB/ 3+/4=90°.••• BD=~AD2J22 12=5/3 (cm)..解:延长AD交BC于F.(1 )••• ADI CD•••/ ADC M FDC=90 .••• CD平分/ ACB •/ ACDM FCD在^ ACD与△ FCD 中,/ ADg FDC DC=DC/ ACDM FCD:.△ ACD^^ FCD •- AC=FC AD=DF又TE为AB的中点,••• DE// BF,即卩DE//BC1(2 )由(1 )知AC=FC DE=-BF.21 1••• DE=^ ( BC-FC) =- ( BC-AQ .2 2.解:AE=CF理由:过E作EG/ CF交BC于G•••/ 3=/ C.•// BAC=90 , ADI BC•••/ ABC/ C=9C° , / ABD/ BAD=90 .•••/ C=/ BAD •/ 3=/ BAD又•••/ 1=/ 2, BE=BE•••△ ABE^A GBE( AAS , •- AE=GE••• EF// BC EG/ CE•••四边形EGCF是平行四边形,••• GE=CF••• AE=CF.答案不唯一,女0 AB=CD或AD// BC1.2•解:(1 )在口ABCD中, AD=CB AB=CD / D=/ B. ••• E, F分别为AB, CD的中点,1 1••• DF=—CD BE=—AB,.・. DF=BE2 2•••△ AFD^A CEB(2)在口ABCD中, AB=CD AB// CD由(1)得BE=DF••• AE=C,.・.四边形AECF是平行四边形.。

人教版八年级初二数学下学期平行四边形单元自检题学能测试试卷

人教版八年级初二数学下学期平行四边形单元自检题学能测试试卷

人教版八年级初二数学下学期平行四边形单元自检题学能测试试卷一、选择题1.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形连接AC交EF 于G,下列结论: ①BE=DF,②∠DAF=15°,③AC⊥EF,④BE+DF=EF,⑤EC=FG;其中正确结论有( )个A.2 B.3 C.4 D.52.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个3.如图,在长方形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF和△PGH的面积和为()A.5 B.6C.7 D.84.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).A .5B .21+C .212+D .512+ 5.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m6.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .47B .310C .10D .127.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .32B .1C .32D .238.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .6D .89.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A .3B .2C .23D .410.如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E 且AB AE =,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①ABC EAD △≌△;②ABE △是等边三角形;③BF AD =;④BEF ABC S S =△△;⑤CEF ABE S S =△△;其中正确的有( )A .2个B .3个C .4个D .5个二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB的最小值为.13.如图,正方形ABCD的对角线相交于点O,对角线长为1cm,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是_____.14.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=62,那么BC=______.15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为_____.16.如图,在平行四边形ABCD,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论:①∠BCD=2∠DCF;②EF=CF;③S△CDF=S△CEF;④∠DFE=3∠AEF,-定成立的是_________.(把所有正确结论的序号都填在横线上)17.如图,在正方形ABCD中,2,点E在AC上,以AD为对角线的所有平行四边形AEDF中,EF最小的值是_________.18.如图,在平面直角坐标系中,直线112y x=+与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当MDC△的周长值最小时,则这个最小值是_______.19.如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD 的最小值等于______.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=a,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=a,测得EC=3BM,那么AB长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 22.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为3cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.23.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.24.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.25.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值. 26.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.27.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.28.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.29.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.30.如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知条件易证△ABE≌△ADF,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,即可判定③;设EC=FC=x,由勾股定理和三角函数计算后即可判定④⑤.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt △ABE 和Rt △ADF 中,AE AFAB AD⎧⎨⎩== , Rt △ABE ≌Rt △ADF (HL ), ∴BE=DF (故①正确). ∠BAE=∠DAF , ∴∠DAF+∠DAF=30°, 即∠DAF=15°(故②正确), ∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF , ∵AE=AF ,∴AC 垂直平分EF .(故③正确). 设EC=FC=x ,由勾股定理,得:,EF CG FG x ===, ∴EC ≠FG (⑤错误) 在Rt △AEG 中,sin 60sin 602sin 60AG AE EF CG ︒︒︒===⨯=,AC ∴=,2xAB +∴=,BE x ∴==,BE DF x ∴+=-≠,(故④错误),综上所述,正确的结论为①②③,共3个, 故选B . 【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题的关键.2.C解析:C 【解析】 【分析】连结CE ,根据菱形的性质和全等三角形的判定可得△ABE ≌△CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt △ABO 中,根据含30°的直角三角形的性质得到AO=2,可得2≤AE≤4,从而得到EF的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∵在菱形ABCD中,AB=BC,∠ABE=∠CBE=30°,BE=BE,∴△ABE≌△CBE,∴AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,∴∠DEF=120°﹣(90°﹣a)=30°+a,∴∠EFC=∠CDE+∠DEF=30°+30°+a=60°+a,∵∠ECF=∠DCO+∠OCE=60°+a,∴∠ECF=∠EFC,∴CE=EF,∴AE=EF,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明△ABE≌△CBE.3.C解析:C【分析】连接EG、FH,根据题意可知△AEF与△CGH全等,故EF=GH,同理EG=FH,再证四边形EGHF为平行四边形,所以△PEF和△PGH的面积和是平行四边形的面积一半,平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小的直角三角形的面积即可求得.【详解】连接EG、FH,如图所示,在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB-BE=4-1=3,CH=CD-DH=3,∴AE=CH,在△AEF和△CGH中,AE=CH,∠A=∠C=90°,AF=CG,∴△AEF ≌△CGH , ∴EF=GH,同理可得△BGE ≌△DFH , ∴EG=FH,∴四边形EGHF 为平行四边形,∵△PEF 和△PGH 的高的和等于点H 到直线EF 的距离, ∴△PEF 和△PGH 的面积和=12⨯平行四边形EGHF 的面积, 求得平行四边形EGHF 的面积=4⨯6--12⨯2⨯3-12⨯1⨯(6-2)-12⨯2⨯3-12⨯1⨯(6-2)=14, ∴△PEF 和△PGH 的面积和=1142⨯=7.【点睛】此题主要考察矩形的综合利用.4.B解析:B 【分析】取AB 的中点M ,连接CM ,EM ,当CE =CM +EM 时,CE 的值最大,根据旋转的性质得到AC ′=AC =2,由三角形的中位线的性质得到EM 12=AC ′=1,根据勾股定理得到AB =2,即可得到结论. 【详解】取AB 的中点M ,连接CM ,EM ,∴当CE =CM +EM 时,CE 的值最大. ∵将直角边AC 绕A 点逆时针旋转至AC ′,∴AC ′=AC =2. ∵E 为BC ′的中点,∴EM 12=AC ′=1. ∵∠ACB =90°,AC =BC =2,∴AB =2,∴CM 12=AB 2=CE =CM +EM 21=. 故选B .【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.5.C解析:C【解析】设正方形O3KJP的边长为a,根据正方形的性质知:O3O42 a,正方形O2IHJ的边长为2a,O2O32a,正方形O1GFH的边长为4a,O1O22a,正方形OCDF的边长为8a,OO12a,∵AO=2OO12am,∴222222,解得:a=2m,∴FD=8a=16m,∴长方形花坛ABCD的周长是2×(2FD+CD)=6FD=96m,故选C.【点睛】本题考查了正方形的性质,主要利用了正方形的对角线与边长的关系,正方形的2倍,熟记性质是解题的关键.6.B解析:B【分析】如图,连接GE,作GH⊥CD于H.则四边形AGHD是矩形,设AG=DH=x,则FH=x-2.首先证明△ABE≌△GHF,推出BE=FH=x-2,在Rt△BGE中,根据GE2=BG2+BE2,构建方程求出x 即可解决问题.【详解】如图,连接GE,作GH⊥CD于H.则四边形AGHD是矩形,设AG=DH=x,则FH=x-2.∵GF垂直平分AE,四边形ABCD是正方形,∴∠ABE=∠GHF=90°AB=AD=GH,AG=GE=x,∵∠BAE+∠AGF=90°,∠AGF+∠FGH=90°,∴∠BAE=∠FGH,∴△ABE≌△GHF,∴BE=FH=x-2,在Rt△BGE中,∵GE2=BG2+BE2,∴x2=42+(x-2)2,∴x=5,∴AB=9,BE=3,在Rt△ABE中,AE=2222+=+=,AB BE93310故选:B.【点睛】此题考查正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.7.D解析:D【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt△ABF中,∠BAF=30°,∴BF=12AB=1,AF=3,∴此时△ABE的最大面积为:12×4×3=23;②当E在CD上时,如图2,此时,△ABE的面积=12S▱ABCD=12×4×3=23;③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积3综上,△ABE的面积的最大值是3故选:D.【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.8.D解析:D【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×h CF的值即可.【详解】连接DE、EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是12×CF×h CF,∵△ABC的面积是24,BC=3CF∴12BC×h BC=12×3CF×h CF=24,∴CF×h CF=16,∴阴影部分的面积是12×16=8,故选:D.【点睛】此题考查平行四边形的判定及性质,同底等高三角形面积的关系,解题中注意阴影部分面积的求法,根据图形的特点选择正确的求法是解题的关键.9.C解析:C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423CD CM-=-故选:C.本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB 与PM 之和的最小值转化为线段DM 的长是解题的关键.10.B解析:B 【分析】由平行四边形的性质和角平分线的定义得出∠BAE =∠BEA ,得出AB =BE =AE ,得出②正确;由△ABE 是等边三角形得出∠ABE =∠EAD =60°,由SAS 证明△ABC ≌△EAD ,得出①正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;③和④不正确. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴∠EAD =∠AEB , 又∵AE 平分∠BAD , ∴∠BAE =∠DAE , ∴∠BAE =∠BEA , ∴AB =BE , ∵AB =AE ,∴△ABE 是等边三角形;②正确; ∴∠ABE =∠EAD =60°, 在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB =CD )等高(AB 与CD 间的距离相等), ∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高, ∴S △AEC =S △DEC , ∴S △ABE =S △CEF ;⑤正确. 若AD 与BF 相等,则BF =BC , 题中未限定这一条件, ∴③不一定正确;若S △BEF =S △ACD ;则S △BEF =S △ABC , 则AB =BF ,∴BF =BE ,题中未限定这一条件, ∴④不一定正确; 正确的有①②⑤.【点睛】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质、三角形的面积关系;此题比较复杂,注意将每个问题仔细分析.二、填空题11.2【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE 线段长转移到线段BO 上. 12.25 【详解】由于点B 与点D 关于AC 对称,所以如果连接DE ,交AC 于点P ,那PE+PB 的值最小.在Rt △CDE 中,由勾股定理先计算出DE 的长度,即为PE+PB 的最小值.连接DE ,交AC 于点P ,连接BD .∵点B 与点D 关于AC 对称, ∴DE 的长即为PE+PB 的最小值, ∵AB=4,E 是BC 的中点, ∴CE=2,在Rt △CDE 中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.13.218cm【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】 解:如图:∵正方形ABCD 的对角线相交于点O , ∴△AEO 与△CFO 关于O 点成中心对称, ∴△AEO ≌CFO , ∴S △AEO =S △CFO , ∴S △AOD =S △DEO +S △CFO , ∵对角线长为1cm ,∴S正方形ABCD=1112⨯⨯=12cm2,∴S△AOD=18cm2,∴阴影部分的面积为18cm2.故答案为:18cm2.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO≌CFO是关键.14.8【分析】通过作辅助线使得△CAO≌△GBO,证明△COG为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC的长.【详解】如图,延长CB到点G,使BG=AC.∵根据题意,四边形ABED为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA为直角三角形,AB为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO=∠GBO,在△CAO和△GBO中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=7=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.15.【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5 故答案为:5【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.16.①②④【分析】①根据平行四边形的性质和等腰三角形的性质即可判断;②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEFDFM ≅△△,得出,FE MF AEFM =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;③由FE MF =,得出EFC CFM SS =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.【详解】①∵点F 是AD 的中点,∴AF FD = .∵在平行四边形ABCD 中,AD =2AB , //,AD BC AF FD CD ∴==,,DFC FCB DFC DCF ∴∠=∠∠=∠ ,FCB DCF ∴∠=∠,∴∠BCD =2∠DCF ,故①正确;②延长EF ,交CD 延长线于点M ,∵四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠,∵点F 是AD 的中点,∴AF FD = .在AEF 和DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEF DFM ASA ∴≅△△,FE MF AEF M ∴=∠=∠.CE AB ⊥ ,90AEC ∴∠=︒,90ECD AEC ∴∠=∠=︒,12CF EM EF ∴==,故②正确; ③∵FE MF =,∴EFC CFM S S = .CFM CDF MDF S S S =+△△△CDF EFC S S ∴<△△,故③错误;④设FEC x ∠= ,则FCE x ∠=,90DCF DFC x ∴∠=∠=︒- ,1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒- .90AEF x ∠=︒- ,3DFE AEF ∴∠=∠,故④正确;综上所述,正确的有①②④,故答案为 :①②④.【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.17.32【详解】解析:∵在正方形ABCD 中,AC=∴AB=AD=BC=DC=6,∠EAD=45°设EF 与AD 交点为O ,O 是AD 的中点,∴AO=3以AD 为对角线的所有▱AEDF 中,当EF ⊥AC 时,EF 最小,即△AOE 是直角三角形,∵∠AEO=90°,∠EAD=45°,OE=2OA=2, ∴EF=2OE=18.(3,2)-【分析】如图(见解析),先根据一次函数的解析式可得点A 、B 的坐标,从而可得OA 、OB 、AB 的长,再根据正方形的性质可得90BAD ∠=︒,DA AB =,然后根据三角形全等的判定定理与性质可得,AE OB DE OA ==,由此即可得出点D 的坐标;同样的方法可求出点C 的坐标,再根据轴对称的性质可得点C '的坐标,然后根据轴对称的性质和两点之间线段最短得出MDC △的周长值最小时,点M 的位置,最后利用两点之间的距离公式、三角形的周长公式即可得.【详解】如图,过点D 作DE x ⊥轴于点E ,作点C 关于y 轴的对称点C ',交y 轴于点F ,连接C D ',交y 轴于点M ',连接C M ',则CF y ⊥轴 对于112y x =+ 当0y =时,1102x +=,解得2x =-,则点A 的坐标为(2,0)A - 当0x =时,1y =,则点B 的坐标为(0,1)B2,1,OA OB AB ∴====四边形ABCD 是正方形90BAD ∴∠=︒,CD DA AB ===90DAE OAB ABO OAB ∴∠+∠=∠+∠=︒DAE ABO ∴∠=∠在ADE 和BAO 中,90AED BOA DAE ABO DA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAO AAS ∴≅1,2AE OB DE OA ∴====213OE OA AE ∴=+=+=则点D 的坐标为(3,2)D -同理可证:CBF BAO ≅1,2CF OB BF OA ∴====123OF OB BF ∴=+=+=则点C 的坐标为(1,3)C -由轴对称的性质得:点C '的坐标为(1,3)C ',且CM C M '=MDC ∴△的周长为5CD DM CM DM C M '++=++由两点之间线段最短得:当点M 与点M '重合时,DM C M '+取得最小值DC ' (3,2),(1,3)D C '-22(31)(23)17DC '∴=--+-=则MDC △的周长的最小值为5517DC '+=+故答案为:(3,2)-,517+.【点睛】本题是一道较难的综合题,考查了正方形的性质、三角形全等的判定定理与性质、轴对称的性质等知识点,正确找出MDC △的周长最小时,点M 的位置是解题关键. 19.6【分析】过点P 作PE ⊥AD 交AD 的延长线于点E ,根据四边形ABCD 是平行四边形,得到 AB ∥CD ,推出PE=12PD ,由此得到当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,利用∠DAB =30°,∠AEP=90°,AB=6求出PB+PE 的最小值=12AB=3,得到2PB+ PD 的最小值等于6.【详解】过点P 作PE ⊥AD 交AD 的延长线于点E ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EDC=∠DAB =30°,∴PE=12PD , ∵2PB+ PD=2(PB+12PD )=2(PB+PE), ∴当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,∵∠DAB =30°,∠AEP=90°,AB=6,∴PB+PE 的最小值=12AB=3, ∴2PB+ PD 的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD 转化为三点共线的形式是解题的关键.202a 321a - 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM 2a ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE ,∵2AE 22a a ==∴AB 2a =.(2)结合(1)可知,AE AM 2a ==, ∴FM 2a a =-,∵EC=3BM ,∴1BM 2FM = ∴2BM 2a a -=∴2321AB 222a a a a --=+=. 故答案为:2a ;321a -. 【点睛】本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)①6;②结论://P EC A ;(2)为4和16.【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题. ()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥,//EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.(1)见解析;(2)t =2;(3)t =1.【分析】(1)由菱形的性质可得AB =CD ,AB ∥CD ,可求CF =AE ,可得结论;(2)由菱形的性质可求AD =2cm ,∠ADN =60°,由直角三角形的性质可求AN 3=3cm ,由三角形的面积公式可求解;(3)由菱形的性质可得EF ⊥GH ,可证四边形DFEM 是矩形,可得DF =ME ,由直角三角形的性质可求AM =1,即可求解.【详解】证明:(1)∵动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动, ∴DF =BE ,∵四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,∴CF =AE ,∴四边形AECF 是平行四边形,∴AF ∥CE ;(2)如图1,过点A 作AN ⊥CD 于N ,∵在菱形ABCD中,AB=2cm,∠ADC=120°,∴AD=2cm,∠ADN=60°,∴∠NAD=30°,∴DN=12AD=1cm,AN=3DN=3cm,∴S△ADF=12×DF×AN=12×12t×3=32,∴t=2;(3)如图2,连接GH,EF,过点D作DM⊥AB于M,∵四边形AECF是平行四边形,∴FA=CE,∵点G是AF的中点,点H是CE的中点,∴FG=CH,∴四边形FGHC是平行四边形,∴CF∥GH,∵四边形EHFG为菱形,∴EF⊥GH,∴EF⊥CD,∵AB∥CD,∴EF⊥AB,又∵DM⊥AB,∴四边形DFEM是矩形,∴DF=ME,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1cm,∵AM+ME+BE=AB,∴1+12t+12t=2,∴t=1.【点睛】本题是四边形综合题,考查了菱形的性质,直角三角形的性质,矩形的判定和性质,灵活运用这些性质解决问题是本题的关键.23.(1)ΔDPM,ΔFPG;等腰直角;(2)线段PG与PC的位置关系是PG⊥PC;PG PC=;(3)2【分析】(1)延长GP交DC于点M,由Р是线段DF的中点,//DC CF,可得∠MDP=∠GFP,DP=FP,利用ASA可证明△DPM≌△FPG;可得DM=GF,MP=GP,根据正方形的性质可得CM=CG,即可证明△CMG是等腰直角三角形,即可得答案;(2)如图,延长GP交DC于点H,利用ASA可证明△GFP≌△HDP,可得GP=HP,GF=HD,进而根据菱形的性质可证明△CHG是等腰三角形,根据等腰三角形“三线合一”的性质可得PG⊥PC,∠HCP=∠GCP,由∠ABC=60°可得∠HCG=120°,进而可得∠CGP=30°,根据含30°角的直角三角形的性质及勾股定理即可得答案;(3)利用线段的和差关系可求出图2中CG的长,由(2)可知∠CGP=30°,根据含30°角的直角三角形的性质即可求出CP的长;在图3中,延长GP到N,使GP=PN,连接DN、CN、CG,过N作NK⊥CD,交CD延长线于K,利用SAS可证明△FGP≌△DNP,可得GF=DN,∠GFP=∠NDP,根据角的和差关系可得∠CDN=120°,根据平角的定义可得∠GBC=120°,利用菱形的性质及等量代换可得DN=GB,利用SAS可证明△NDC≌△GBC,可得CN=CG,∠DCN=∠BCG,根据等腰三角形的性质可得PC⊥GN,根据角的和差关系可得∠NCG=120°,进而可得出∠CNP=30°,可得PC=12CG,根据平角的定义可得∠KDN=60°,即可得出∠KND=30°,根据含30°角的直角三角形的性质可得得出KD的长,利用勾股定理可求出KN的长,再利用勾股定理可求出CN的长,根据含30°角的直角三角形的性质即可得出PC的长.【详解】(1)如图,延长GP交DC于点M,∵Р是线段DF的中点,四边形ABCD、BEFG是正方形,点,,A B E在同一条直线上,∴//DC CF,DP=FP,CD=BC,FG=BG,在△DPM和△FPG中,MDP GFPDP FPDPM FPG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPM≌△FPG,。

平行四边形单元测试题(华师大版含答案)

平行四边形单元测试题(华师大版含答案)

ABC DEF八年级下册平行四边形单元测试题: ,成绩:一、选择题(12题,共48分)1、(2015网评培训)不能判定一个四边形是平行四边形的条件是( B)A. 两组对边分别平行 B. 一组对边平行,另一组对边相等 C. 一组对边平行且相等 D. 两组对边分别相等2、(2014,第10题,3分)在□ABCD中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是(D )A .∠E=∠CDFB .EF=DFC .AD第2题 第3题 第4题 3、(20146.如图,在平行四边形ABCD 中,AB=4,BC=6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( B )A、7 B、10 C、11 D、124、(2015省市,7,3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( D)A .6B .12C .20D .245、若以A (-0.5,0),B (2,0),C (0,1)三点为顶点画平行四边形,则第四个顶点不可能在( D )A .第一象限B .第二象限C .第三象限D .第四象限6、已知:平行四边形ABCD中,AB=13,BC=7,AC的长为整数,则AC的最大值为( B )A、20 B、19 C、7 D、67、( 2015·呼和浩特市初三年级质量普查调研)已知平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC ,若AB=2,AC=8,则对角线BD 长度是( A )A. 45B. 42C. 25D. 228、(2015天津,第11题3分)(2015天津)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为(C)A.130°B.150°C.160°D.170°9、在平行四边形ABCD中,下列描述正确的是(A)A、对角线交于点O,则过点O的直线平分平行四边形的面积B、∠A:∠B:∠C:∠D=3:1:1:3C、对角线是平行四边形的对称轴;D、AB=BC,AC=BD;10、(2014,第10题3分)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(D)A.B.C.D.11、 (2015一模)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD 交CE于点G,连结BE. (1)下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有(D)A.1个 B 2个 C 3个 D.4个12、 (2015·崇安区·一模) 在面积为60的□ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=10,BC=12,则CE+CF的值为 ( D )A. 22+11 3B. 22-11 3C. 22+113或22-11 3D. 22+113或2+ 3二、填空题(6题,共24分)13、(201515,3分)如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD延长线于点F,请你只添加一个条件:BD∥FC 使得四边形BDFC为平行四边形.第13题第14题第16题14、(2015潍坊第二学期期中)以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.15、在平行四边形ABCD中,对角线AC=14,BD=8,则边AB的取值围是6<AB<22 ,边AD的取值围是6<AD<22 。

人教版八年级数学下册第十八章平行四边形检测试题(附答案)

人教版八年级数学下册第十八章平行四边形检测试题(附答案)

精品基础教育教学资料,仅供参考,需要可下载使用!第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2019·十堰)矩形具有而平行四边形不一定具有的性质是CA .对边相等B .对角相等C .对角线相等D .对角线互相平分2.(株洲中考)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是DA .OE =12 DCB .OA =OC C .∠BOE =∠OBAD .∠OBE =∠OCE 第2题图 第3题图 第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为DA .3 cmB .2 cmC .23 cmD .4 cm4.(2019·泸州)四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是BA .AD ∥BCB .OA =OC ,OB =OD C .AD ∥BC ,AB =DC D .AC ⊥BD5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是CA .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形6.(2019·赤峰)如图,菱形ABCD 周长为20,对角线AC ,BD 相交于点O ,E 是CD 的中点,则OE 的长是AA .2.5B .3C .4D .57.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为CA .8B .12C .16D .328.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是DA .12B .24C .123D .163第8题图 第9题图 第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为CA .1B .2C .4-22D .32 -410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是BA .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共15分)11.(2019·长沙)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第11题图 第12题图 第13题图第14题图12.(江西中考)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为50°.13.(2019·湘潭)如图,在四边形ABCD 中,若AB =CD ,则添加一个条件AD =BC ,能得到平行四边形ABCD .(不添加辅助线,任意添加一个符合题意的条件即可)14.如图,菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是5.15.(2019·内江)如图,点A ,B ,C 在同一直线上,且AB =23AC ,点D ,E 分别是AB ,BC 的中点,分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作S 1,S 2,S 3,若S 1=5 ,则S 2+S 3=354. 三、解答题(共75分)16.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF .(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm17.(9分)(2019·柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:连接AC ,如图,在△ABC 和△CDA 中,⎩⎪⎨⎪⎧AB =CD CB =AD AC =CA,∴△ABC ≌△CDA (SSS),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形18.(9分)(2019·新疆)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 中点,连接OE .过点C 作CF ∥BD 交OE 的延长线于点F ,连接DF .求证:(1)△ODE ≌△FCE ;(2)四边形OCFD 是矩形. 证明:(1)∵CF ∥BD ,∴∠ODE =∠FCE ,∵E 是CD 中点,∴CE =DE ,在△ODE 和△FCE 中,⎩⎪⎨⎪⎧∠ODE =∠FCE ,DE =CE ,∠DEO =∠CEF , ∴△ODE ≌△FCE (ASA)(2)∵△ODE ≌△FCE ,∴OD =FC ,∵CF ∥BD ,∴四边形OCFD 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°,∴四边形OCFD 是矩形19.(9分)(2019·大庆)如图,在矩形ABCD 中,AB =3,BC =4.点M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB =∠NCD .在△ABM 和△CDN 中,⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD ,AM =CN ,∴△ABM ≌△CDN (SAS)(2)解:如图,连接EF ,交AC 于点O .在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA =∠FOC ,∠EAO =∠FCO ,AE =CF ,∴△AEO≌△CFO (AAS),∴EO =FO ,AO =CO ,∴O 为EF ,AC 中点.∵∠EGF =90°,OG =12 EF =32 ,∴AG =OA -OG =1或AG =OA +OG =4,∴AG 的长为1或420.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF .(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -AC BE的值. 解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC .∵四边形AECF 是矩形,∴AC =EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=221.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =1∶2时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12 AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形22.(10分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q .(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ .证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ .证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ23.(11分)(2019·重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连接AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若DP =2AP =4,CP =17 ,CD =5,求△ACD 的面积.(2)若AE =BN ,AN =CE ,求证:AD =2 CM +2CE .解:(1)作CG ⊥AD 于G ,如图①所示:设PG =x ,则DG =4-x ,在Rt △PGC 中,GC 2=CP2-PG 2=17-x 2,在Rt △DGC 中,GC 2=CD 2-GD 2=52-(4-x )2=9+8x -x 2,∴17-x 2=9+8x-x 2,解得:x =1,即PG =1,∴GC =4,∵DP =2AP =4,∴AD =6,∴S △ACD =12 ×AD ×CG =12×6×4=12(2)证明:连接NE ,如图②所示:∵BH ⊥AE ,AF ⊥BC ,AE ⊥EM ,∴∠AEB +∠NBF =∠AEB +∠EAF =∠AEB +∠MEC =90°,∴∠NBF =∠EAF =∠MEC ,在△NBF 和△EAF 中,⎩⎪⎨⎪⎧∠NBF =∠EAF ,∠BFN =∠AFE ,BN =AE ,∴△NBF ≌△EAF (AAS),∴BF =AF ,NF =EF ,∴∠ABC =45°,∠ENF =45°,∵∠ANB =90°+∠EAF ,∠CEA =90°+∠MEC ,∴∠ANB =∠CEA ,在△ANB 和△CEA 中,⎩⎪⎨⎪⎧AN =CE ,∠ANB =∠CEA ,BN =AE ,∴△ANB ≌△CEA (SAS),∴∠CAE =∠ABN ,∵∠NBF =∠EAF ,∴∠ABF =∠FAC =45°∴FC =AF =BF ,∴∠ANE =∠BCD =135°,AD =BC =2AF ,在△ANE 和△ECM 中,⎩⎪⎨⎪⎧∠EAF =∠MEC ,AN =EC ,∠ANE =∠ECM ,∴△ANE ≌△ECM (ASA),∴CM =NE ,又∵NF =22 NE =22 MC ,∴AF =22 MC +EC ,∴AD =2 MC +2EC。

(完整word版)人教版八下数学第十八章《平行四边形》单元测试题及【1】,文档

(完整word版)人教版八下数学第十八章《平行四边形》单元测试题及【1】,文档

人教版八下数学第十八章 ?平行四边形? 单元测试题及答案【1】一、填空题( 每空 2 分,共 28分 )1.在□ ABCD中 ,AB =14cm ,BC =16 cm ,那么此平行四边形的周长为cm .2. 要说明一个四边形是菱形,能够先说明这个四边形是形 ,再说明〔只写一种方法〕3.如图 ,正方形 ABCD的对线 AC 、 BD 订交于点O.,那么图中共有个等腰直角三角形 .4.把“直角三角形、等腰三角形、等腰直角三角形〞填入以下相应的空格上. (1) 正方形能够由两个能够完满重合的拼合而成 ;(2) 菱形能够由两个能够完全重合的拼合而成 ;(3) 矩形能够由两个能够完满重合的拼合而成 .5.矩形的两条对角线的夹角为60, 较短的边长为12 cm , 那么对角线长为cm .6.假设直角梯形被一条对角线分成两个等腰直角三角形, 那么这个梯形中除两个直角外 , 其余两个内角的度数分别为和.7.平行四边形的周长为24 cm ,相邻两边长的比为3:1, 那么这个平行四边形较短的边长为cm .8. 依照图中所给的尺寸和比率, 可知这个“十〞字标志的周长为m .lAA DB OO D1mCB C1m(第 8题)(第10题)第3题9.已知菱形的两条对角线长为 12 cm和 6 cm , 那么这个菱形的面积为cm2 .10. 如图 , l 是四边形ABCD的对称轴,如果AD ∥ BC , 有下列结论 :(1) AB ∥CD ;(2) AB=CD ;(3) AB BC;(4) AO=OC .其中正确的结论是.二、选择题(每题 3 分,共 24 分)11.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有()A.4 种 B.5 种 C.7 种 D.8 种12.下列说法中,错误的是()A. 平行四边形的对角线互相均分B. 对角线互相均分的四边形是平行四边形C.菱形的对角线互相垂直D. 对角线互相垂直的四边形是菱形13.给出四个特色(1) 两条对角线相等;(2) 任一组对角互补;(3) 任一组邻角互补;(4) 是轴对称图形但不是中心对称图形, 其中属于矩形和等腰梯形共同拥有的特色的共有()个个个个14. 若是一个四边形的两条对角线互相均分,互相垂直且相等, 那么这个四边形是()A. 矩形B. 菱形C. 正方形D. 菱形、矩形或正方形15.如图 ,直线a∥ b , A是直线 a 上的一个定点,线段BC 在直线b 上搬动 , 那么在移动过程中ABC 的面积〔〕A. 变大B.变小C.不变D.无法确定A aA DEB C bB F C(第 15题)(第 16题)(第17题) 17. 如图 ,在ABC 中 ,AB=AC =5,D是 BC 上的点 ,DE∥AB 交 AC 于点 E,DF∥AC 交AB 于点F,那么四边形AFDE的周长是()18. 四边形ABCD 中 ,AC 交 BD 于点 O,若是只给条件“AB∥ CD 〞 ,那么还不能够判断四边形ABCD为平行四边形,给出以下四种说法:(1) 若是再加上条件“BC=AD 〞 , 那么四边形 ABCD 必然是平行四边形;(2) 若是再加上条件“BAD BCD 〞 ,那么四边形ABCD 必然是平行四边形 ;(3) 若是再加上条件“AO=OC 〞 , 那么四边形 ABCD 必然是平行四边形;(4) 若是再加上条件“DBA CAB 〞 ,那么四边形ABCD 必然是平行四边形其中正确的说法是() A.(1)(2) B.(1)(3)(4) C.(2)(3)D.(2)(3)(4)三、解答题(第 19 题 8 分,第 20~23 题每题10 分,共 48 分)19. 如图 , □ ABCD中,DB=CD , C 70 ,AE ⊥ BD 于 E.试求DAE 的度数.ADEB C(第 19 题)20. 如图 , □ ABCD中 , G是CD上一点 , BG交AD延长线于E, AF=CG,DGE 100 .(1) 试说明; (2) 试求AFD 的度数.EDF=BGD G CAF B〔第 20 题〕21. 工人师傅做铝合金窗框分下面三个步骤进行:(1) 先截出两对吻合规格的铝合金窗料( 如图① ), 使 AB=CD,EF=GH;(2)摆放成如图②的四边形,那么这时窗框的形状是形,依照的数学道理是 :;(3)将直角尺靠紧窗框的一个角(如图③ ), 调整窗框的边框 ,当直角尺的两条直角边与窗框无缝隙时( 如图④ ), 说明窗框合格,这时窗框是形,依照的数学道理是 :.22. 四边形ABCD 中 ,AB=CD,AC=BD,试增加合适的条件使四边形ABCD 成为特殊的平行四边形,并说明原由.23.如图 ,直线 MN 经过线段AC 的端点A,点 B、D分别在NAC 和MAC 的角均分线AE 、 AF 上 ,BD 交 AC 于点 O, 若是 O 是 BD 的中点 ,试找出当点O 在 AC 的什么地址时 , 四边形ABCD 是矩形 ,并说明原由.FD CM OAB EN附加题24. 李大伯家有一口以以下图的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动, 若是要求新池塘成平行四边形的形状.请问李大伯梦想能否实现?假设能 ,请画出你的设计; 假设不能够 , 请说明原由.ADBC答案1.60.2.平行四边形 ;有一组邻边相等 .3.8. 提示 :它们是AOB, BOC, COD ,AOD, ABD, ABC, BCD,ACD.4.(1) 等腰直角三角形; (2) 等腰三角形 ;(3) 直角三角形 .5.24.6. 135; 45.7.3.8.4. 提示 :以以下图 ,将“十〞字标志的某些边进行平移后可获取一个边长为 1 m的正方形 ,所以它的周长为 4 m .(第8题)9. 36.提示:菱形的面积等于菱形两条对角线乘积的一半.10.(1)(2)(4). 提示 :四边形 ABCD 是菱形 .11.B. 12. D. 13. C. 14. C.15. C.提示 :因为 ABC 的底边 BC 的长不变 ,BC 边上的高等于直线a,b 之间的距离也不变 ,所以 ABC 的面积不变 .16. A.提示:由于FAE 是由 DAE 经过折叠后获取的, 所以 FAE DAE190BAF.217. B.提示 : 先说明 DF=BF,DE=CE,所以四边形AFDE的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC.18. C.19.因为 BD=CD,所以 DBC C, 又因为四边形ABCD是平行四边形, 所以 AD∥BC ,所以 D DBC, 因为AE BD , 所以在直角AED 中, DAE 90D90 70 20.20.(1) 因为四边形ABCD 是平行四边形 ,所以AB=DC ,又 AF=CG ,所以 AB -AF=DC -CG,即 GD=BF, 又 DG ∥ BF, 所以四边形DFBG 是平行四边形, 所以DF=BG;(2)因为四边形 DFBG 是平行四边形 , 所以DF∥GB,所以 GBFAFD , 同理可得GBF DGE , 所以 AFDDGE 100 .21. (1) 平行四边, 两组对边分别相等的四边形是平行四边形;(2) 矩 ,有一个是直角的平行四边形是矩形.22. 下面给出两种参照答案:(1) 增加条件AB ∥ DC, 可得出该四边形是矩形;原由 : 因为 AB ∥ DC,AB=DC,所以四边形 ABCD是平行四边形.又因为AC=BD, 所以四边形 ABCD是矩形 .(2) 增加条件AC垂直均分BD, 那么该四边形是正方形.原由:因为 AC垂直均分BD, 所以 AB=AD,BC=CD,又因为 AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形 ,又因为 AC 垂直 BD, 所以四边形ABCD 是正方形 .说明 :解答此类题的要点是要打破思想定势的阻挡, 运用发散思想 ,多方思虑,研究问题在不同样条件下的不同样结论,挖掘它的内在联系,向“纵、横、深、广〞拓展,从而搜寻出增加的条件和所得的结论.23. O 在 AC 的中点时 ,四边形 ABCD 是矩形 .因为 AO=CO,BO=DO,所以四边形ABCD是平行四边形,又1MAC ,1CAN , 所以 FAE FACCAE1MAC CANFAC CAE2 22=1180 = 90 ,所以四边形ABCD 是矩形 . 224.以以下图 , 连结对角线AC、BD,过A、B、C、D分别作BD、AC、BD、AC的平行线 ,且这些平行线两两订交于E、 F、 G、 H,四边形EFGH即为吻合条件的平行四边形.E A HDBF CG。

数学平行四边形单元测试含答案 (2)

数学平行四边形单元测试含答案 (2)

数学平行四边形单元测试含答案一、解答题1.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.2.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,5HG =,求DE 的长.3.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.4.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.=;(1)求证:GF GC(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,AE=AD,作DF⊥AE于点F.(1)求证:AB=AF;(2)连BF并延长交DE于G.①EG=DG;②若EG=1,求矩形ABCD的面积.6.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC 上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.7.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN= °;(给出求解过程)(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)(4)图③中∠CPN= °;(直接写出答案)(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n 的代数式表示,直接写出答案).8.已知正方形ABCD与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .9.点E 在正方形ABCD 的边BC 上,点F 在AE 上,连接FB ,FD ,∠ABF=∠AFB . (1)如图1,求证:∠AFD=∠ADF ;(2)如图2,过点F 作垂线交AB 于G ,交DC 的延长线于H ,求证:DH=2 AG ; (3)在(2)的条件下,若EF=2,CH=3,求EC 的长.10.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)AG2=GE2+GF2,理由见解析;(2)3266【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,3,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(3x)2,解得x=624,推出BN=624,再根据BG=BN÷cos30°即可解决问题.【详解】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x ,MN=3x , 在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x 2+(2x+3x )2,解得x=624-, ∴BN=62+, ∴BG=BN÷cos30°=326+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质. 2.(1)①证明见解析;②证明见解析;(2)410DE =. 【分析】(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;②由①得DM=DE ,根据勾股定理可得2,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.【详解】(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒∴四边形DGHM 为平行四边形,∴DM=GH ,GD HM =,∵90GOD ∠=︒,∴90EDM EOH ∠=∠=︒,∴290EDC ∠+∠=︒,∵90ADC ∠=︒,∴190EDC ∠+∠=︒,∴12∠=∠,在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM ∆∆≌,∴DE DM =,∴DE GH =.②在DEM ∆中,∠EDM=90°,∴222DE DM EM +=,∵DE DM =,∴222DE EM =, ∴2EM DE =,在EHM ∆中,HM EH EM +>,∵GD HM =, ∴2GD EH GH +≥.(2)如图(2),过点D 作DN//GH 交BC 于点N ,则四边形GHND 为平行四边形, ∴DN HG =,GD HN =,∵90C ∠=︒,4CD AB ==,25HG DN == ∴222CN DN DC =-=,∴422BN BC CN =-=-=,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,在ADM ∆和CDN ∆中90C MAD CDN ADM DC AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADM CDN ∆∆≌,∴AM NC =,DM DN =,∵45GOD EOH ∠=∠=︒,∴45EDN ∠=︒,∴45ADE CDN ∠+∠=︒,∴45ADE ADN MDE ∠+∠=︒=∠,在MDE ∆和NDE ∆中MD ND MDE EDN DE DE =⎧⎪∠=∠⎨⎪=⎩,∴MDE NDE ∆∆≌,∴EM EN =,即AE AM AE CN EN +=+=,设AE x =,则BE=4-x ,在Rt BEN ∆中,2222(2)x x +=+, 解得:43x=, ∴2222441043DE AD AE ⎛⎫=+=+= ⎪⎝⎭.【点睛】本题考查正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角形的三边关系及勾股定理,熟练掌握相关性质及判定定理,并正确作出辅助线是解题关键.3.(1)34;(2)y =4t +2;(3)存在,点M 的坐标为(1,0)或(2,0). 【分析】(1)因为BN ∥MP ,故当BN=MP 时,四边形BNMP 为平行四边形,此时点M 在点P 的左侧,求解即可;(2)y=12(BN+PA)•OC,即可求解;(3)①当∠MQA为直角时,则△MAQ为等腰直角三角形,则PA=PM,即可求解;②当∠QMA为直角时,则NB+OM=BC=3,即可求解.【详解】(1)∵BN∥MP,故当BN=MP时,四边形BNMP为平行四边形.此时点M在点P的左侧时,即0≤t<1时,MP=OP﹣OM=3﹣t﹣2t=3﹣3t,BN=t,即3﹣3t=t,解得:t=34;(2)由题意得:由点C的坐标知,OC=4,BN=t,NC=PO=3﹣t,PA=4﹣OP=4﹣(3﹣t)=t+1,则y=12(BN+PA)•OC=12(t+t+1)×4=4t+2;(3)由点A、C的坐标知,OA=OC=4,则△COA为等腰直角三角形,故∠OCA=∠OAC=45°,①当∠MQA为直角时,∵∠OAC=45°,故△MAQ为等腰直角三角形,则PA=PM,而PA=4﹣(3﹣t)=t+1,PM=OP﹣OM=(3﹣t)﹣2t=3﹣3t,故t+1=3﹣3t,解得:t=12,则OM=2t=1,故点M(1,0);②当∠QMA为直角时,则点M、P重合,则NB+OM=BC=3,即2t+t=3,解得:t=1,故OM=OP=2t=2,故点M(2,0);综上,点M的坐标为(1,0)或(2,0).【点睛】本题是四边形综合题,涉及坐标与图形、平行四边形的性质、等腰直角三角形的判定和性质、图形的面积计算等,复杂度较高,难度较大,其中(3)要分类求解,避免遗漏.4.(1)详见解析;(2)BH,理由详见解析【分析】1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=,得结论;【详解】证明:(1)如图1,连接DF ,∵四边形ABCD 是正方形,∴DA DC =,90A C ∠=∠=︒, ∵点A 关于直线DE 的对称点为F , ∴ADE ∆≌FDE ∆,∴DA DF DC ==,90DFE A ∠=∠=︒, ∴90DFG ∠=︒,在Rt DFG ∆和Rt DCG ∆中,∵DF DC DG DG =⎧⎨=⎩∴Rt DFG ∆≌Rt DCG ∆(HL ), ∴GF GC =;(2)2BH AE =,理由是:如图2,在线段AD 上截取AM ,使AM AE =,∵AD AB =,∴DM BE =,由(1)知:12∠=∠,34∠=∠, ∵90ADC ∠=︒,∴123490∠+∠+∠+∠=︒,∴222390∠+∠=︒,∴2345∠+∠=︒,即45EDG ∠=︒,∵EH DE ⊥,∴90DEH ∠=︒,DEH ∆是等腰直角三角形,∴190AED BEH AED ∠+∠=∠+∠=︒,DE EH =,∴1BEH ∠=∠,在DME ∆和EBH ∆中,1DM BE BEH DE EH =⎧⎪∠=∠⎨⎪=⎩∴DME ∆≌EBH ∆∴EM BH =,Rt AEM ∆中,90A ∠=︒,AM AE =,∴EM =,∴BH ;【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.5.(1)见解析;(2)①见解析;②+2【分析】(1)根据矩形的性质,结合角平分线的定义可证明△ABE ≌△AFD (AAS ),进而证得结论;(2)①通过求解∴∠EFG=∠AED=67.5°,∠DFG=∠FDG=22.5°,进而可得EG=FG=DG ; ②AB=x ,则x ,DF=AF=x ,x-x ,利用勾股定理可求解x 值,再根据矩形ABCD 的面积=△AED 面积的2倍可求解.【详解】解:(1)证明:∵四边形ABCD 为矩形,∴AD ∥BC ,∠DAB=∠ABE=90°,∴∠DAE=∠AEB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠BAE=∠AEB=45°,∴AB=EB ,∵DF ⊥AC∴∠AFD=90°,∴∠ABE=∠AFD=90°,∵AE=AD ,∴△ABE ≌△AFD (AAS ),∴AB=AF ;(2)①证明:∵AE=AD ,∠EAD=45°,∴∠AED=∠ADE=67.5°,∴∠FDG=22.5°,∵AB=AF ,∠BAF=45°,∴∠AFB=67.5°,∴∠EFG=67.5°,∴∠EFG=∠AED ,∴FG=EG ,∠DFG=22.5°,∴∠DFG=∠FDG ,∴FG=DG ,∴EG=DG ;②∵EG=1,∴DG=2,设AB=x ,则x ,DF=AF=x ,∴x-x ,x-x )2+x 2=22,解得x 2,∴矩形ABCD 的面积=2×12×AE×DF x 2. 【点睛】本题主要考查勾股定理,矩形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,灵活运用定理是解题的关键.6.(1)见解析;(2)4.8;(3)1282x x【分析】(1)证明△ABP ≌△BCQ 即可得到结论;(2)证明Rt △ABN ≌△Rt △C 'BN 求出DQ ,设AN =NC '=a ,则DN =8﹣a ,利用勾股定理即可求出a ;(3)过Q 点作QG ⊥BM 于G ,设MQ =BM =y ,则MG =y ﹣x ,利用勾股定理求出MQ ,再根据面积相减得到答案.【详解】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中,ABP BCQ AB BCBAP QBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN =NC ',∵BP =13PC ,AB =8, ∴BP =2=CQ ,CP =DQ =6,设AN =NC '=a ,则DN =8﹣a ,∴在Rt △NDQ 中,(8﹣a )2+62=(a +2)2解得:a =4.8, 即AN =4.8.(3)解:过Q 点作QG ⊥BM 于G ,由(1)知BP =CQ =BG =x ,BM =MQ .设MQ =BM =y ,则MG =y ﹣x ,∴在Rt △MQG 中,y 2=82+(y ﹣x )2,∴322x y x =+. ∴S △BMC ′=S △BMQ ﹣S △BC 'Q =1122BM QG BC QC ''⋅-⋅,=1321()88222x x x +⨯-⨯, =1282x x-. 【点睛】此题考查正方形的性质,三角形全等的判定及性质,勾股定理,正确理解题意画出图形辅助做题是解题的关键.7.(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中, CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605,正n 边形时,∠CPN=360n , 故答案为:360n. 【点睛】 此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.8.(1)等腰直角;(2)结论仍成立,见解析;(3)2或42,17.【分析】(1)结论:DM ⊥EM ,DM=EM .只要证明△AMH ≌△FME ,推出MH=ME ,AH=EF=EC ,推出DH=DE ,因为∠EDH=90°,可得DM ⊥EM ,DM=ME ;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) △AMN ≌ △FME ,等腰直角.如图1中,延长EM 交AD 于H .∵四边形ABCD 是正方形,四边形EFGC 是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴//AD EF ,∴MAH MFE ∠=∠,∵AM MF =,AMH FME ∠=∠,∴△AMH ≌△FME ,∴MH ME =,AH EF EC ==,∴DH DE =,∵0EDH 90∠=,∴DM ⊥EM ,DM=ME .(2)结论仍成立.如图,延长EM 交DA 的延长线于点H,∵四边形ABCD 与四边形CEFG 都是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴AD ∥EF,∴MAH MFE ∠=∠.∵AM FM =,AMH FME ∠=∠,∴△AMF ≌△FME(ASA), …∴MH ME =,AH FE=CE =,∴DH DE =.在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴=DM EM ,DM ⊥EM.(3)①当E 点在CD 边上,如图1所示,由(1)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE EC DC 532=-=-=,所以2DM = ②当E 点在CD 的延长线上时,如图2所示,由(2)的结论可得三角形DME 为等腰直角三角形,则DM 2,此时DE DC CE 538=+=+= ,所以42DM = ; ③当E 点在BC 上是,如图三所示,同(1)、(2)理可得到三角形DME 为等腰直角三角形,证明如下:∵四边形ABCD 与四边形CEFG 都是正方形, 且点E 在BC 上∴AB//EF ,∴HAM EFM ∠=∠,∵M 为AF 中点,∴AM=MF∵在三角形AHM 与三角形EFM 中:HAM EFM AM MFAMH EMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMH ≌△FME(ASA),∴MH ME =,AH FE=CE =,∴DH DE =.∵在三角形AHD 与三角形DCE 中:090AD DC DAH DCE AH EF =⎧⎪∠=∠=⎨⎪=⎩, ∴△AHD ≌△DCE(SAS),∴ADH CDE ∠=∠,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时在直角三角形DCE 中2222DE DC CE 5334=+=+= ,所以DM=17【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.9.(1)见解析;(2)见解析;(3)7【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD ,则∠AFD=∠ADF ;(2)首先得出四边形AGHN 为平行四边形,可得FM=MD ,进而NF=NH ,ND=NH ,即可得出答案;(3)首先得出△ADN ≌△DCP (ASA ),得到PC=DN ,再利用在Rt △ABE 中,BE 2+AB 2=AE 2,即可求出答案.【详解】(1)证明:∵∠ABF=∠AFB ,∴AB=AF ,∵四边形ABCD 为正方形,∴AB=AD ,∴AF=AD ,∴∠AFD=∠ADF ;(2)证明:如图1所示:过点A 作DF 的垂线分别交DF ,DH 于M ,N 两点, ∵GF ⊥DF ,∴∠GFD=∠AMD=90°,∴AN ∥GH ,∵四边形ABCD 为正方形,∴AG ∥NH ,∴四边形AGHN 为平行四边形,∴AG=NH ,∵AF=AD ,AM ⊥FD ,∴FM=MD ,连接NF ,则NF=ND ,∴∠NFD=∠NDF ,∵∠NFD+∠NFH=∠NDF+∠H ,∴∠NFH=∠H ,∴NF=NH ,∴ND=NH ,∴DH=2NH=2AG ;(3)解:延长DF 交BC 于点P ,如图2所示:∵四边形ABCD 为正方形,∴AD ∥BC ,∴∠ADF=∠FPE ,∴∠PFE=∠AFD=∠ADF=∠FPE ,∴EF=EP=2,∵∠DAM+∠ADM=∠ADM+∠PDC ,∴∠DAM=∠PDC ,∵四边形ABCD 为正方形,∴AD=DC ,∠ADN=∠DCP ,在△ADN 和△DCP 中DAN PDC AD DCADN PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADN ≌△DCP (ASA ),∴PC=DN ,设EC=x ,则PC=DN=x+2,DH=2x+4,∵CH=3,∴DC=AB=BC=AF=2x+1∴AE=2x+3,BE=x+1,在Rt △ABE 中,BE 2+AB 2=AE 2,∴(x+1)2+(2x+1)=(2x+3)2.整理得:x 2﹣6x+7=0,解得:x 1=7,x 2=﹣1(不合题意,舍去)∴EC=7.【点睛】本题是四边形综合题,主要考查了全等三角形的判定与性质、勾股定理、正方形的性质、平行四边形的性质等知识,解题关键是正确把握正方形的性质.10.(1)证明见解析;(2)菱形;(3)四边形AEGF 是矩形,理由见解析.【分析】(1)根据平行线的性质得到BDE A ∠=∠,根据题意得到DEFBDE ∠=∠,根据平行线的判定定理得到//AD EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到12DE AC =,得到AD DE =,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE EG ⊥,根据有一个角是直角的平行四边形是矩形证明.【详解】 (1)证明://DE AC ,BDE A ∴∠=∠,DEF A ∠=∠,DEF BDE ∴∠=∠,//AD EF ∴,又//DE AC ,∴四边形ADEF 为平行四边形;(2)解:ADEF 的形状为菱形, 理由如下:点D 为AB 中点, 12AD AB ∴=, //DE AC ,点D 为AB 中点,12DE AC ∴=, AB AC =,AD DE ∴=,∴平行四边形ADEF 为菱形,故答案为:菱形;(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,//AF DE ∴,AF DE =,EG DE,=,∴,AF GE//AF DE∴四边形AEGF是平行四边形,=,AD AG,EG DE∴⊥,AE EG∴四边形AEGF是矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.。

初中数学北师大版九年级上册 第一章 特殊平行四边形 单元测试(含答案)

初中数学北师大版九年级上册 第一章 特殊平行四边形 单元测试(含答案)

第一章特殊平行四边形一、单选题1.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是( )A.AB=BC B.AC=BD C.∠ABC=90°D.AC与BD互相平分2.如图,矩形ABCD中,对角线AC,BD交于O点.若∠BOC=120°,AC=8,则AB的长为()A.6B.4C.43D.423.如图在Rt△ABC中,∠ACB=90°,AB=10cm,点D是AB的中点,则CD的长度是()A.7cm B.6cm C.5cm D.4cmCD的长为半径4.如图,矩形ABCD中,AB=10,BC=6,分别以C,D为圆心,以大于12作弧,两弧分别交于G,H两点,作直线GH交CD于点E,连接AE,点D关于AE的对称点为点M,作射线AM交BC于点N,则CN的长为()A .253B .4C .256D .55.如图,在长方形ABCD 中,AB=3,BC=4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为( )A .158B .154C .152D .156.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,对角线AC 与BD 交于点O ,点E 是AD 的中点,连接OE ,△ABD 的周长为12cm ,则下列结论错误的是( )A .OE ∥ABB .四边形ABCD 是中心对称图形C .△EOD 的周长等于3cmD .若∠ABC =90°,则四边形ABCD 是轴对称图形7.如图,在△ABC 中,AB =5,AC =12,BC =13,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A.6013B.3013C.2413D.12138.如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE+PD 的最小值为()A.35B.32C.6D.5二、填空题9.菱形的周长为12cm,它的一个内角为60°,则菱形的面积为.10.如图,在菱形ABCD中,对角线AC,BD相交于点O,H为BC中点,AC=3,BD=4,则线段OH的长为.11.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:;②如果要得到菱形AEDF,那么△ABC应具备条件:.12.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.13.如图,矩形ABCD内有一点P,连接AP,DP,CP,延长CP交AB于点E,若∠APD=90°,AD=8,CP=CD=6,则AE的长是.OA,把矩形OABC沿OB折叠,14.如图,四边形OABC是矩形,点A的坐标为(8,0),AB=12点C落在点D处,BD交OA于点E,则点E的坐标为.15.如图,已知点E在菱形ABCD的边AB上,以BE为边向菱形ABCD外部作菱形BEFG,连接DF,M,N分别是DC,DF的中点,连接MN.若AB=5,BE=2,∠ABC=120°,则MN=.16.如图,在边长为10的正方形ABCD中,E是BC的中点,连接AE,过点B作AE的垂线,交AE于点G,交CD于点H,F是BH上一点,连接EF,若BE=FE,则FH的长为.17.如图,矩形ABCD 中,AB =10,BC =24,点P 在BC 边上,PE ⊥BD ,PF ⊥AC ,则PE +PF = .18.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,BP =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③S △APD +S △APB =12+62;④S 正方形ABCD =4+6.其中正确结论的序号是 .三、解答题19.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC=90°.(1)求证:四边形ABCD 是矩形.(2)若∠ACB=30°,AB=1,求①∠AOB 的度数;②四边形ABCD 的面积.20.如图,在菱形ABCD中,∠A=60∘,AB=4,O是对角线BD的中点,过O点作OE丄AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长;(3)求菱形ABCD的面积.21.如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.22.十一国庆节,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.武玥同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②如图,将纸片沿着直线AE折叠,点D恰好落在BC边上的F处.请你根据①②步骤计算EC,FC的长.23.综合与实践:【问题情境】某数学兴趣小组在学完《平行四边形》之后,研究了新人教版数学教材第64页的数学活动1.其内容如下:如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图1);(1)对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时,得到了线段BN.【知识运用】请根据上述过程完成下列问题:(1)已知矩形纸片ABCD,AB=43,AM=4,求线段BM的长;(2)通过观察猜测∠NBC的度数是多少?并进行证明;【综合提升】(3)乐乐在探究活动的第(2)步基础上再次动手操作(如图2),将MN延长交BC于点G.将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请判断四边形BGHM的形状,并说明理由.参考答案:1.A2.B3.C4.C5.B6.C7.B8.Acm29.93210.5411.∠BAC=90∘AD平分∠BAC 12.22.513.8314.(5,0)15.67216.517.1201318.①③④19.解:(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC=90°,∴四边形ABCD是矩形;(2)∵∠ABC=90°,∠ACB=300,AB=1∴∠BAC=60°,AC=2,BC=3又∵矩形ABCD中,OA=OB∴∠AOB=180°-2∠BAC=60°S□ABCD=1×3=320.解:(1)在菱形ABCD中,∵AB=AD,∠A=60∘,∴△ABD为等边三角形,∴∠ABD=60∘;(2)∵O是对角线BD的中点,BD=2,∴OB=12∵∠ABD=60∘,=1;∴BE=OBcos60∘=2×12(3)过D作DF⊥AB于点F,由(2)可得:OE=OBsin60∘=3,∵OE⊥AB,点O为BD中点,∴DF=2OE=23,则S菱形ABCD=AB⋅DF=4×23=83.21.(1)证明:∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠FAC=∠ACE,∠AFE=∠CEF,∴△AOF≌△COE,∴AF=CE,∴四边形AECF为平行四边形,∵EF经过O且垂直于AC,∴EF是对角线AC的垂直平分线,∴AF=CF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠ADC=60°,∴∠HCD=30°,∴HD=12CD=1,∴CH=CD2−HD2=3,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2−x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2−x)2+(3)2,解得:x=74,∴AF=CF=74,∴菱形AECF的面积为:AF×CH=74×3=734.22.解:∵△ADE由△AFE关于AE对称,∴△ADE≌△AFE,∴DE=FE,AD=AF,∵四边形ABCD是矩形,∴BC=AD=AF=20cm,AB=CD=16cm,在Rt△ABF中,由勾股定理:BF=AF2−AB2=202−162=12cm,∴CF=BC-BF=20-12=8cm.∵四边形ABCD是矩形,∴∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理:EF2=CE2+CF2,代入数据:(16-x)2=x2+64,解得:x=6.∴EC=6cm.综上所述,线段EC=6cm,CF=8cm.23.解:(1)∵四边形ABCD为矩形,∴∠A=90°,∵AB=43,AM=4,∴BM=AB2+AM2=8;(2)猜测:∠NBC=30°,证明:连接AN:∵EF为折痕,∴EF垂直平分AB,∴AN=BN,∵△BMN由△BMA折叠所得,∴AB=BN,∴AN=BN=AB,∴△ABN为等边三角形,∴∠ABN=60°,∴∠NBC=90°−60°=30°;(3)四边形BGHM为菱形,理由:∵△BMN由△BMA折叠所得,∴∠ABM=∠NBM,∠BAM=∠MNB=90°,∵∠ABN=∠ABM+∠NBM=60°,∴∠ABM=∠NBM=30°,∵∠NBC=30°,∴∠NBM=∠NBC=30°,∴∠MBG=60°,∴△BMG是等边三角形,∴BM=BG,∵将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,∴△BMG≌△HGM,BH⊥MG,∴MH=BM,∴MH=BM=BG,∵MH∥BG,∴四边形BGHM是平行四边形,∵BM=BG,∴四边形BGHM是菱形.。

平行四边形单元测试卷(5套题)

平行四边形单元测试卷(5套题)

第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。

八年级数学平行四边形单元测试(一)(北师版)(含答案)

八年级数学平行四边形单元测试(一)(北师版)(含答案)

学生做题前请先回答以下问题问题1:平行四边形的定义是什么?问题2:平行四边形的性质有几条?分别是什么?问题3:平行四边形的判定有几条?分别是什么?问题4:什么是平行线间的距离?问题5:三角形中位线定理是什么?平行四边形单元测试(一)(北师版)一、单选题(共11道,每道9分)1.已知在四边形ABCD中,AB∥CD,添加一个条件后,一定能判定四边形ABCD是平行四边形的是( )A.AD=BCB.AC=BDC.∠A=∠CD.∠A=∠B答案:C解题思路:试题难度:三颗星知识点:平行四边形的判定2.若一个正多边形的每一个外角是30°,那么这个正多边形的边数是( )A.12B.10C.8D.6答案:A解题思路:试题难度:三颗星知识点:多边形外角和定理3.如图,在中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是( )A.2B.3C.4D.5答案:A解题思路:试题难度:三颗星知识点:平行四边形的性质4.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论正确的是( )A. B.AC=BDC.AC⊥BDD.是轴对称图形答案:A解题思路:试题难度:三颗星知识点:平行四边形的性质5.四边形ABCD中,对角线AC,BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件共有( )A.1组B.2组C.3组D.4组答案:C解题思路:试题难度:三颗星知识点:平行四边形的性质与判定6.如图所示,在中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分线.下列说法:①BE=CF;②AE是∠DAB的角平分线;③∠DAE+∠DCF=120°.正确的是( )A.①B.①②C.①②③D.都不正确答案:C解题思路:试题难度:三颗星知识点:平行四边形的性质7.如图,已知△ABC的面积是24,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积是( )A.3B.4C.6D.12答案:C解题思路:试题难度:三颗星知识点:平行线间的距离8.如图,在△ABC中,,在BC上取点D,使DC=AC,作CE⊥AD于E,点F是AB 的中点,连接EF,则为( )A.1:2B.1:3C.1:4D.3:4答案:B解题思路:试题难度:三颗星知识点:三角形中位线定理9.如图,中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB 的长是( )A.5B.4C.3D.答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质10.给定不在同一直线上的三点,则以这三点为顶点的平行四边形有( ).A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:平行四边形的性质11.如图,在四边形ABCD中,AD∥BC,且,BC=6cm,P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动.设运动时间为x秒,则当x=( )cm时,四边形ABQP是平行四边形.A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:平行四边形的判定学生做题后建议通过以下问题总结反思问题1:平行四边形的性质和判定可以从哪些方面考虑?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 4
夏津实验中学2012年数学《平行四边形》测试卷
一、选择题(本大题共20题,每小题3分,共60分)
1.如图,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角
形共有( )
A. 1对
B. 2对
C. 3对
D. 4对
2.在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、
(3,0)、(4,2)则顶点D 的坐标为( )
A .(7,2) B. (5,4) C.(1,2) D. (2,1) 3.如图,□ABCD 中,对角线AC 、BD 交于点O ,点E 是A
B 的中点.
若OE=3 cm ,则BC 的长为 ( )
A .3 cm
B .6 cm
C .9 cm
D .12 cm
4.下面的性质中,平行四边形不一定具有的是 ( )
A.对角互补 B.邻角互补 C.对角相等 D.对边相等 5.下列四个命题中,假命题是( )
A .等腰梯形的两条对角线相等
B .顺次连结四边形的各边中点所得的四边形是平行四边形
C .菱形的每条对角线平分一组对角
D .两条对角线互相垂直且相等的四边形是正方形
6.四边形ABCD 中,∠A∶∠B∶∠C∶∠D=2∶1∶1∶2,则四边形ABCD 的形状是( )
A.菱形
B.矩形
C.等腰梯形
D.平行四边形 7.如图,在等腰梯形ABCD 中,AB∥CD,AD=BC,∠A=60°,AB=9,CD=5, BC 的长是( )
A. 3
B. 4
C. 5
D. 6
8.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ) A. 测量其中三个角是否都为直角 B.测量两组对边是否分别相等 C. 测量一组对角是否都为直角 D.测量对角线是否相互平分 9.如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,
F ,那么阴影部分的面积是矩形ABCD 面积的( ). A .
15 B .14 C .13 D .3
10
10.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点
E ,使DE =5,折痕为PQ ,则PQ 的长为( ) A .12
B .13
C . 14
D .15
11.若O 是四边形ABCD 对角线的交点且OA=OB=OC=OD ,则四边形ABCD 是 ( )
A .等腰梯形
B .矩形
C .正方形
D .菱形
12.能判定四边形ABCD为平行四边形的条件是()
A.AB∥CD,AD=BC; B.∠A=∠B,∠C=∠D;
C.AB=CD,AD=BC; D.AB=AD,CB=CD
13.(2011温州中考)如图,在矩形ABCD中,对角线AC,BD交于点O.已
知∠AOB=60°,AC=16,则图中长度为8的线段有( )
A.2条B.4条C.5条D.6条
14.等腰梯形的腰长为13cm,两底差为10cm,则等腰梯形高为()
(A)12cm (B)69cm (C)69cm (D)144cm
15.如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点
重合,则折痕EF的长是 ( )
(B)
(D)
16.如图,四边形ABCD是正方形,直线l1、l2、l3分别通过A、B、C三点,
且l1∥l2∥l3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD
的面积等于()
A 70
B 74
C 144
D 148
17.(2011湖南益阳)如图,小聪在作线段AB的垂直平分线时,他是这样
操作的:分别以A和B为圆心,大于
1
2
AB的长为半径画弧,两弧相交于C、
D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是
...
A.矩形 B.菱形C.正方形 D.等腰梯形
18.(2011四川宜宾,)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使
AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB
的长为()
A.3 B.4 C.5 D.
6
19.□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=()
A.10°,
B.20°,
C.50°,
D.70°,
20.(2011山东泰安)如图,边长为6的大正方形中有两个小正方形,若
两个小正方形的面积分别为S1,S2,则S1+S2的值为
A.17
B.17
C.18
D.19
B
A
C
D
17题
2 / 4
班级:_______姓名:_________ 考号:_________ 成绩:________ 二、填空题(每小题4分,共20分)
21.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比
△BOC的周长多10cm,则AB=_______ cm.
22.在△ABC中,∠C=90°,AC=6,BC=8,则AB边上的中线CD=.
23.若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为 cm2。

24.如图,四边形ABCD中,E F G H
,,,分别
是边AB BC CD DA
,,,的中点.请你添加一
个条件,使四边形EFGH为菱形,应添加的条
件是 __ .
25.梯形ABCD中,AD∥BC,若对角线AC⊥BD,
且AC=6cm,BD=8cm,则梯形的面积等于______ cm2.
三、解答题(共40分)
26.(9分)已知:在□ABCD中,∠DAB的角平
分线交CD于E,若DE:EC=3:1,AB的长为8,
求BC的长。

27.(9分)如图,已知ABCD中DE⊥AC,BF⊥AC,
求证:四边形DEBF为平行四边形. 28.(9分)如图,在梯形ABCD中,AD∥BC,
AB=DC=AD,∠C=60°,AE⊥BD于点E,
AE=1,求梯形ABCD周长.
29.(13分)已知:如图,在正方形ABCD中,E为CD边上的一点,F为BC的延长线上一点,CE=CF。

⑴△BCE与△DCF全等吗?说明理由;
⑵若∠BEC=60o,求∠EFD。

3 / 4
4 / 4。

相关文档
最新文档