1.1 Visual Feature Extraction 1. HIGH LEVEL FEATURE EXTRACTION TASK
colmap中feature_extractor参数详解 -回复
colmap中feature_extractor参数详解-回复[colmap中feature_extractor参数详解]Feature Extraction(特征提取)是计算机视觉中的一个重要任务,它是从图像中提取出具有代表性的特征点或特征描述子的过程。
在[colmap]([colmap]( Generator)。
检测器用于在图像中检测出特征点的位置,而描述子生成器则根据特征点的位置生成对应的特征描述子。
特征提取器的主要参数在配置文件中进行指定,其具体格式为:feature_extractor {image_path = 文件夹路径database_path = 数据库路径image_list_path = 图片列表路径single_camera = falsesingle_camera_id = -1single_camera_thread_id = 0single_camera_min_num_points = 50log_file = 特征提取日志文件路径feature_extractor = 特征提取算法adaptive_scale_levels = 是否自适应尺度adaptive_scale_params = 自适应尺度参数...}下面将逐个介绍每个参数及其作用:1. image_path:指定包含图像的文件夹路径,feature_extractor将在此文件夹中查找图像进行特征提取。
2. database_path:指定[colmap](3. image_list_path:指定包含图像路径的文本文件路径,文本文件中每行包含一个图像路径,以便于选择特定的图像进行特征提取。
4. single_camera:是否只使用单个相机进行特征提取,默认值为false。
当设置为true时,将仅使用单个相机进行特征提取。
5. single_camera_id:指定要使用的单个相机的ID,默认值为-1。
SWinIR概述
SWinIR概述1.概要图像恢复是⼀个长期存在的低⽔平视觉问题,它旨在从低质量的图像(例如,缩⼩⽐例、有噪声和压缩的图像)中恢复⾼质量的图像。
该⽂提出了⼀种基于Swin变换的强基线模型SwinIR。
SwinIR由浅层特征提取、深度特征提取和⾼质量的图像重建三部分组成。
特别地,深度特征提取模块由⼏个残余的Swin变压器块(RSTB)组成,每个块都有⼏个Swin变压器层和⼀个残余连接。
该⽂对三个具有代表性的任务进⾏了实验:图像超分辨率(包括经典、轻量级和真实世界的图像超分辨率)、图像去噪(包括灰度和彩⾊图像去噪)和JPEG压缩伪影减少。
实验结果表明,SwinIR在不同任务上的性能⽐最先进的⽅法⾼达0.14∼0.45dB,⽽参数总数可减少67%。
参数量和PSNR关系:作为CNN的替代品,Transformer设计了⼀种⾃我注意机制来捕获上下⽂之间的全局交互,并在⼏个视觉问题中显⽰出了良好的性能。
然⽽,⽤于图像恢复的Vision Transformers通常将输⼊图像分割成固定⼤⼩的patch(如48×48),并独⽴处理每个patch。
这种策略不可避免地会带来两个缺点。
⾸先,边界像素不能利⽤补丁之外的邻近像素进⾏图像恢复。
其次,恢复后的图像可能会在每个补丁周围引⼊边界伪影。
虽然这个问题可以通过patch重叠来缓解,但它会带来额外的计算负担。
最近,Swin Transformer集成了CNN和Transformer的优势,显⽰出了巨⼤的前景。
⼀⽅⾯,由于局部注意⼒机制,具有CNN处理⼤尺⼨图像的优势。
另⼀⽅⾯,它具有对移位窗⼝⽅案进⾏远程依赖建模的优势。
2. 模型介绍更具体地说,SwinIR由三个模块组成:浅层特征提取、深度特征提取和⾼质量的图像重建模块。
浅层特征提取模块采⽤卷积层提取浅层特征,并直接传输到重建模块,以保留低频信息。
深度特征提取模块主要由剩余的Swin Transformer块(RSTB)组成,每个Transformer块利⽤多个Swin Transformer进⾏局部注意和跨窗⼝交互。
extractfeaturesfromimage
文章题目:从图像中提取特征的重要性和方法1. 引言从古至今,人类一直在努力探索和理解周围世界的信息和规律。
随着科技的飞速发展,图像处理技术已经成为科学研究、工程应用和日常生活中的重要组成部分。
提取图像中的特征,已经成为图像处理和计算机视觉领域的基础性工作之一。
本文将深入探讨从图像中提取特征的重要性和方法。
2. 什么是图像特征图像特征是指图像中具有独特性和可区分性的局部区域或点。
通常包括边缘、角点、纹理等。
提取特征的目的在于通过运用这些独特的信息,来描述和识别图像中的对象、结构和模式。
3. 图像特征的重要性提取图像特征对于图像处理和计算机视觉领域具有重要意义。
通过特征提取可以减少图像数据的复杂度,从而简化图像分析的过程。
图像特征的提取使得图像的内容更易于理解、比较和识别,为图像检索、物体识别和图像分割等任务提供了基础。
图像特征在机器学习和深度学习领域的应用也非常广泛,例如在图像分类、目标检测和人脸识别等方面发挥着重要作用。
4. 图像特征的提取方法提取图像特征的方法多种多样,常用的包括颜色特征、形状特征、纹理特征和局部特征等。
其中,局部特征是目前应用最广泛的一种方法。
局部特征的提取通常分为三个步骤:特征检测、特征描述和特征匹配。
常用的局部特征算法包括SIFT、SURF、ORB等。
这些算法能够有效地提取图像中的局部不变特征,具有良好的鲁棒性和可靠性。
5. 总结和展望通过本文的介绍,我们对图像特征的提取有了更深入的了解。
图像特征的提取在图像处理和计算机视觉领域中具有重要的地位和作用。
随着技术的不断进步,图像特征提取的方法也在不断演进和完善。
未来,随着深度学习和神经网络技术的发展,图像特征的提取将会变得更加精准和高效。
6. 个人观点作为一名图像处理工程师,我深深地体会到图像特征的重要性和挑战性。
在实际工作中,我通常会根据具体的应用场景和需求,选择合适的特征提取方法和算法,以确保图像处理的准确性和效率。
我相信随着技术的不断发展,图像特征的提取将会变得更加智能化和自动化,为人们的生活和工作带来更多便利和可能性。
colmap中feature_extractor参数详解 -回复
colmap中feature_extractor参数详解-回复[colmap中feature_extractor参数详解]Colmap是一个开源的计算机视觉库,用于从大规模图像或视频数据集中重建稠密、高质量的三维模型。
在Colmap中,feature_extractor是其中一个重要的参数,它是用来提取图像特征的。
在本文中,我们将详细介绍feature_extractor参数的作用以及其各个子参数的具体含义,并逐步解答与之相关的问题。
1. feature_extractor是什么?feature_extractor是Colmap中的一个模块,用于从输入的图像数据中提取出特征点和特征描述子。
特征点是图像中具有独特性质的点,常用来表示图像中的显著特征,例如角点、边缘等。
特征描述子是用来描述特征点周围像素信息的向量,常用来判断两个特征点的相似度。
2. feature_extractor有哪些重要子参数?feature_extractor包括很多具体的子参数,下面是其中几个重要的子参数:- ImageReader:指定图像读取器,用于读取输入图像的格式。
可以选择的选项有OpenCV、PNG、JPEG等。
- ImageListFile:指定包含图像文件路径的列表文件。
- ImageDirectory:指定包含图像文件的目录。
- SiftExtraction:指定是否使用SIFT算法进行特征提取。
- RootSift:指定是否对SIFT特征进行根号斜率归一化处理。
3. ImageReader子参数的作用是什么?ImageReader子参数用于指定图像读取器,它决定了Colmap在读取输入图像时使用的读取格式。
根据需要,可以选择适合的图像读取器,以确保图像数据能够正确解析。
常用的选项有OpenCV、PNG、JPEG等。
4. ImageListFile和ImageDirectory子参数的作用是什么?ImageListFile子参数用于指定一个包含图像文件路径的列表文件。
遥感影像中建筑物平面及高度信息提取方法
2020年5期方法创新科技创新与应用Technology Innovation and Application遥感影像中建筑物平面及高度信息提取方法孙彦花(山东省煤田地质局物探测量队,山东济南250104)1概述遥感技术获取所需信息,不受环境的限制,可以在任意气候下进行。
这是遥感的优势。
遥感技术与地理信息技术的结合,可以凸显出更多的优势,应用到更多的领域。
二者的结合,也是很多地学者关注的焦点[1]。
3S 技术(GIS 技术、GPS 技术,RS 技术)相结合,具有更多的优势,能够推广到更多的应用领域[2]。
基于遥感技术的土地利用动态监测其中一个目的就是提高效率,又能保证精度。
目前最重要的是在现有技术条件下怎么提高自动化提取效率与质量[3]。
2本文主要研究内容本论文研究内容有:(1)图像分割技术。
(2)面向对象的特征提取方法。
(3)建筑物高度信息的初步提取。
(4)实地验证。
到实地进行验证未确定的遥感图像信息,这样保证了信息提取的实际精度。
2.1图像分割技术图像分割是利用图像不同的灰度值等信息将影像分割成多个图斑,然后利用不同的算子把感兴趣地类提取出来。
这样同一区域里的像素一些性质就相同。
2.1.1图像分割原则图像分割的原则有两个:(1)根据图像像素的灰度值是否具有连续性进行处理,如果像素的灰度值是连续的则认为同种地类,否则为不同种地类。
(2)利用区域增长法进行处理,主要是判读选中的区域内部的像素灰度值是否具有相似性,如果相邻区域的像素的灰度值具有相似性则可以将这些区域的像素合并处理。
2.1.2图像分割的主要方法图像分割的方法其实就是把数字图像分成互不相交的区域的过程,其主要方法包括:灰度阈值法、梯度方法、边缘检测法等。
2.2面向对象的特征提取技术ENVI FX 的全名是“面向对象空间特征提取模块-Fea -ture Extraction ”。
它是基于影像空间和光谱特征从高分辨率全色影像或者多光谱影像数据中提取所需的信息。
基于视觉的人行为理解综述
基于语义的视频检索-09
事件检索框架
Textual Query
Visual Exmaple Query
Query Pre-processing & Analysis
HLF-based Retrieval
Concept-based Retrieval
Text-concept Mapping
Example-concept Mapping
帧
• 关键帧提取
场景N
镜头
镜头
图像的底层特征
• 颜色
- RGB_Moment - HSV_Hist
• 边缘
- Edge_Hist
• 纹理
- Gabor
• 关键点 - Sift
视觉系统的结构
图像落到视网膜以后, 经过五类不同细胞(总数达1 亿左右)的复杂加工, 然后通过视神经纤维经过一次 神经交换,到达侧膝体, 最后投射到初级视皮层
应用-视频摘要
• 以静态的关键帧组或动态的视频缩略的形式对视 频做精简的表达
应用-智能视频监控
• 例:进出人数统计
应用-异常事件检测
• 例:放下物体和奔跑
应用-同源视频检测
• 版权保护
应用-按图例查询
• 寻找与图例相似的图片或视频镜头
应用-基于语义的检索
• 例:寻找有3个或3个以上人坐在桌边的镜头
办公室、会议、船、飞机、天空、山脉 …..
• 文字检索:同义词扩展、计算查询词与概 念间的相似性、形成带有权值的查询词组
找到有飞机起飞的镜头
• 图例检索:查询视频在概念上的投影作为 权值,对检索结果进行加权
• 多模态检索结果融合
TRECVID 国际评测
• 视频检索领域中的国际性权威评测,由美 国国家标准技术研究所组织实施。美国国 家标准技术研究所向世界各国的大学和公 司的参评者发布标准测试数据,参评者用 这些标准测试数据测试自己开发的算法和 软件,在规定时间以前提交自己的运行结 果,然后由美国国家标准技术研究所提供 标准答案并对各结果进行评价。
synthesized
Facial Feature Extraction using Eigenspaces and Deformable GraphsJörgen AhlbergImage Coding GroupISY/BK, Linköpings universitet SE-58183Linköping, S WEDEN Email:**********************.seABSTRACTIn model-based coding of image sequences contain-ing human faces, eg videophone sequences, the de-tection and location of the face as well as the extraction of facial features from the images are cru-cial. The facial feature extraction can be regarded as an optimization problem, searching the optimum ad-aptation parameters of the model. The optimum is defined as the parameter set describing the face with the minimum distance to a face space .There are different approaches to reduce the high computational complexity, and here a scheme using deformable graphs and dynamic programming is de-scribed. Experiments have been performed with promising results.1. MODEL-BASED CODINGSince the major application of the techniques de-scribed in this document is model-based coding, an introduction to that topic will follow here. For more details, see eg [8] or [12].The basic idea of model-based coding of video se-quences is illustrated in Figure 1. At the encoding side of a visual communication system (typically, a videophone system), the image from the camera is analysed, using computer vision techniques, and the relevant object(s), for example a human face, is identified. A general or specific model is then adapt-ed to the object, usually the model is a wireframe de-scribing the 3-D shape of the object.Instead of transmitting the full image pixel-by-pixel, or by coefficients describing the waveform of the image, the image is handled as a 2-D projection of 3-D objects in a scene. To achieve this, parameters describing the object(s) are extracted, coded and transmitted. Typical parameters are size, position,shape and texture. The texture can be compressed by some traditional image coding technique, but spe-cialized techniques lowering the bit-rate considera-bly for certain applications have recently been published [13].At the receiver side of the system, the parameters are decoded and the decoder’s model is modified ac-cordingly. The model is then synthesized as a visual object using computer graphics techniques, eg a wireframe is shaped according to the shape and size parameters and the texture is mapped onto its surfac-es.In the following images, parameters describing the change of the model are transmitted. Typically,those parameters tell how to rotate and translate the model, and, in case of a non-rigid object like a hu-man face, parameters describing motion of individ-ual vertices of the wireframe are transmitted. This constitutes the largest gain of the model-based cod-ing, since the motion parameters can be transmitted at very low bit-rates [2].Definitions for coding and representation of pa-rameters for model-based coding and animation of human faces are included in the newly set interna-tional standard MPEG -4 [10,11].ponents of a Model-Based CodingSystem To encode an image sequence in a model-based scheme, we need first to detect and locate the face.This can be done by eg colour discrimination, detec-tion of elliptical objects using Hough-transforms,connectionist/neural network methods, or statistical pattern matching.Then, the facial features need to be extracted. This means to find the positions of a set of points or con-M odel M odelOriginal imagesSynthesizedimagesFigure 1:A Model-based coding system.This work was supported by the European A CTS project V IDAS and the national Swedish SSF project V ISIT . The paper was written during the author’s stay at Heudiasyc, CNRS UMR 6599, UTC, FR-60205 Compiègne, F RANCE , financed by the Swedish Institute and the Telephone Company L M Ericsson’s Foundation for Electrotechnical Research.tours well describing the static shape of the face. For example, MPEG -4 defines a set of 84 facial feature points, constituting one part of the Facial Definition Parameters (FDP s). The other part is the facial tex-ture.During the image sequence the face and the facial feature should be tracked, eg using optical flow computation [7]. The tracking results in parameters describing the global and local motion of the face;the local motion parameters are usually referred to as animation parameters. A syntax for Facial Ani-mation Parameters (FAP s) is also defined in MPEG -4.2. FACIAL FEATURE EXTRACTION ASAN OPTIMIZATION PROBLEM Facial feature extraction is defined as the process of locating specific points or contours in a given facial image (like mouth corners or mouth outline) or to align a face model to the image (ie extract the face model parameters).2.1.Definition of the OptimumTo measure the quality of the facial feature extrac-tion, the distance between the extracted face and a face space can be calculated. The concept of a face space is also used for face detection [6] and facial texture coding [13]. In short, it is a low-dimensional subspace of the N -dimensional image space. Each image of the size pixels, where , is regarded as a vector, and all facial images are as-sumed to belong to the M -dimensional face space spanned by a set of eigenfaces . Usually the set of all face images is modelled as an M -dimensional Gaus-sian distribution, but as pointed out in [13] this is misleading since the face set is obviously non-con-vex. However, there is a non-linear operation called geometrical normalization that transforms the face set to a (more) convex set. The geometrical normal-ization is the process of aligning a wireframe face model to an image, map the texture onto the model and reshape the model into a standard shape, eg , the average human face shape. The resulting texture is called a normalized facial texture [13] or a shape-free face image [3].The geometrical normalization is dependent on the face model used as well as the standard shape,but also the quality of the alignment of the model to the image. Given the model and the standard shape,the optimal alignment of the model could be defined as the one resulting in the normalized facial texture with the minimum distance to the (normalized) face space.2.2.Problem FormulationTypically, a face model consists of a quite large number (K ) of vertices, and to find the optimal de-formation of the model is a search in a 2K -dimen-sional space (since each vertex has 2 coordinates in the image). Consequently, the feature extraction problem can be formulated as a model adaptation problem as follows:•Given a set of parameters , assume a model M that produces an image .•Given the model M and an image I , the optimal parameter set ω* is the one that best describes the image I , ie(1)where δ() is a discrepancy measure (for exam-ple, PSNR ).In our context, the model M is a wireframe model,and the parameter set ω consists of shape parameters of the wireframe model (ie vertex coordinates) and a texture to be mapped on the wireframe (eg eigen-face coefficients). By defining the model so that it only produces images within the face space, ω* is the optimum dicsussed above.2.3.Reducing the Computational Complexity The problem of finding ω* is the high computational complexity due to a ) the high dimensionality of the search space and b ) the computational complexity of projecting a remapped face image onto the face space. There are some different ways to reduce the complexity:•Reduce the search space. The assumption that a wireframe model with K vertices produces a 2K -dimensional search space is true only if all possible deformations of the model are allowed. This is quite unnecessary, since the human head does not deform in all ways.Replacing the vertex position parameters with a limited set of deformations, the search space is reduced considerably.•Use a heuristic search method. Instead of searching all of the space, a directed and/or stochastic heuristic search method could be used to find ω*. There are a number of possible heuristics; see [14] for a tutorial.•Reduce the calculation time of δ(). In the examples above, the normalized texture is pro-jected on a set of eigenfaces to extract eigen-face coefficients (texture parameters). This computation is quite heavy, but may be approx-imated by projecting parts of the image only.For example, the skin on the cheeks does not contribute much compared to eye and mouth regions [13]. Also, the exact placing of feature points/model vertices are more important to the visual quality in eye/mouth regions than inn m ×N n m ⋅=ωΩ∈I M ω,()ω∗ δI I M ω,(),()ωmin arg =cheek regions. It is therefore reasonable to assume that some parts of the face can be omit-ted in the calculation.In the next section, a scheme using deformable graphs to reduce the search space and dynamic pro-gramming to efficiently search the allowed space will be described. The calculation time of δ() is re-duced by omitting all but some important parts of the face area.3. D EFORMABLE G RAPHS AND D YNAMICP ROGRAMMINGInspired by [15], a deformable graph has been im-plemented. A simple graph with six nodes is shown in Figure 2; it is defined as follows:•A graph is a tuple G =〈S,A 〉 that consists of a set of sites and a set of directed arcs .•A site is a tuple s i =〈N,m 〉, where N is a 2-D array of nodes , and m is an attractor or match-ing function m .•A node n i =〈x,y, v 〉 corresponds to a position in the associated image and has a value v given by the site’s attractor at that position.•An attractor is a function indi-cating how well a site fits the position (x,y ).•An arc is a tuple e i =〈〉, where s j and s k are the two sites connected by the arc,x and y are the default distances between s j and s k in the image, and ξ and υ are the maximum deviations from these distances. The arcs are directed ; s j is said to be the parent of s k , and s k to be a child of s j .•An evaluated graph is a graph where the attrac-tors have been computed at all positions and the nodes’ values set accordingly.The graph is first evaluated, ie the attractors are computed. Then, the optimal deformation is calcu-lated using dynamic programming, also known as the Viterbi algorithm [15]. The Viterbi algorithm in its basic version is applied to a sequence of sites, but can be applied to a cycle-free graph as well. The tra-versing order is then implied by the parent-child re-lation; a site cannot be processed until all its children are, and the top site (site s 4 in Figure 2), must conse-quently be processed last.If the values given by the attractors are given in terms of likelihood ratios, the deformable graph is a special case of a Bayesian network [5].3.1. A Deformable Graph for Facial FeatureExtraction The graph illustrated in Figure 3 has been designed to use for facial feature extraction. The sites with statistical pattern matching attractors use the dis-tance to feature space (DFFS ) as attractor, ie the squared Euclidian distance to the space spanned by the principal components for the specific face area (eigenmouths, eigeneyes,...). Together, these areas cover the important area of the face (as discussed earlier). For the eye sites, the iris detector described in [4] is added as well, since it has proven to very precise. Some sites are attracted to edges to find the contours of the face. Both horizontal and vertical edge detections are performed (simply by using So-bel filters), and weighted together at each site ac-cording to the direction of the edge. There are also a few sites without attractor, used for keeping the oth-er sites together and the mid-face line straight.The graph and its workings are explained in more detail in [1].4. EXPERIMENTAL RESULTSAs test data, some of the publicly available images from the M 2VTS database [9] as well as the classic image sequences “Claire” and “Miss America” have been used. All images are of high quality, and the graph deforms well, as shown in Figure 4. Tests have also been performed on images from the face database at Linköping University and the results are satisfactory. In all images, the face has first been lo-cated using the algorithm from the V IDAS project [1,6]; the output is a bounding box within which the graph deformation has been applied. The graph de-formation algorithm runs in a few seconds on a desktop computer (1.5seconds on an UltraS PARC ).S s 1s 2…s n ,,,{}=A a 1a 2…a m ,,,{}=m m x y ,()=s j s k x y ξυ,,,,,Figure 2:A simple graph with directed arcs.s 1s 2s 3s 4s 5s 6Site with edge attractorSite with statistical template attractor Site without attractorFigure 3:A deformable graph for facial featureextraction.5. CONCLUSIONIn this paper, the feature extraction problem has been presented as a multidimensional optimization problem. A method that works in near real-time has been implemented, showing that it is possible to use such methods for the initial feature extraction in a model-based coding scheme.REFERENCES[1]J.Ahlberg, Extraction and Coding of FaceModel Parameters , Licentiate Thesis No.747,Dept. of Electrical Engineering, Linköpings universitet, Sweden, 1999.[2]J.Ahlberg and H.Li, “Representation andCompression of MPEG-4 Facial Animation Pa-rameters using Facial Action Basis Functions”,IEEE Trans. on CSVT , 9(3):405-410, 1999.[3]I.Craw et al., “Automatic extraction of facefeatures”, Pattern Recognition Letters, 5:183-187, 1987.[4]J.Daugman, “High confidence visual recogni-tion of persons by a test of statistical independ-ence”, IEEE Trans. on PAMI , 15(11):1148-1161, 1993.[5] F. V. Jensen, An introduction to Bayesian Net-works, Springer-Verlag, 1996.[6] C.Kervrann et al., ”Generalized LikelihoodRatio-Based Face Detection and Extraction of Mouth Features”, Pattern Recognition Letters,18(9), 1997.[7]H.Li et al., “3-D Motion Estimation in Model-Based Facial Image Coding”, IEEE Trans. on PAMI , 15(6):545-555, 1993.[8]H.Li et al., “Image sequence coding at verylow bit rates: A review”, IEEE Trans. on IP ,3:589-609, 1994.[9]M2VTS, Multi Modal Verification for Tele-services and Security applications , ACTS project No.102.[10]M PEG -4, Final Draft of International Stand-ard, Part 1 (Systems), Doc.No.N2501 of ISO 14496-1, JTC1/SC29/WG11, 1998.[11]M PEG -4, Final Draft of International Stand-ard, Part 2 (Visual), Doc.No.N2502 of ISO 14496-1, JTC1/SC29/WG11, 1998.[12]D.E.Pearson, “Development in Model-BasedVideo Coding”, Proc. of the IEEE , 83(6):892-906, June 1995.[13]J.Ström, Facial Texture Compression forModel-Based Coding, Licentiate Thesis No.716, Dept. of Electrical Engineering,Linköpings universitet, Sweden, 1998.[14]N.A.Thacker and T.F.Cootes, “VisionThrough Optimization”, BMVC Tutorial Notes ,Edinburgh, Scotland, 1996.[15]N.Wiberg, Codes and Decoding on GeneralGraphs, Dissertation No.440, Dept. of Electri-cal Engineering, Linköpings universitet, Swe-den, 1996.Figure 4:Experimental results on “Claire”, “Miss America” and four images from the M2VTS database.。
结合多维度特征的病理图像病灶识别方法
目前,通过病理检查对癌症进行诊断是一种常用的方法,它能够提供明确的疾病诊断,指导病人的治疗。
对病理图像进行人工分析本身是一件非常有挑战性的工作,一张病理切片通常包含数百万个细胞[1],一名病理科医生一天需要分析许多病理图像,这给他们带来很大的工作负担,疲劳阅片现象时有发生[2-3]。
同时,该领域内专家的培养速度赶不上病例的增加速度,将有限的、珍贵的人力资源大量投入到重复的病理图像的识别诊断中是非常可惜的。
通过卷积神经网络[4](Convolutional Neural Network,CNN)快速识别病理图像中的病变区域是本文的主要研究内容。
CNN是一种高效的学习方法,局部连接和权值共享的特点降低了网络模型的复杂程度,减少了需要学习的参数。
将计算机辅助诊断应用于数字病理图像已经结合多维度特征的病理图像病灶识别方法胡伟岸1,邹俊忠1,郭玉成2,张见1,王蓓11.华东理工大学信息科学与工程学院,上海2002372.清影医疗科技(深圳)有限公司,广东深圳518083摘要:长时间的病理图像人工诊断会使医生产生视觉疲劳,误诊和漏诊情况容易发生。
针对以上现象,提出一种结合卷积神经网络中多维度特征的方法,快速准确识别出病理图像中的病灶区域。
使用感兴趣区提取及图像裁剪获得小尺寸图块数据;使用染色校正的方法以解决图块染色不均,对比度弱等问题;搭建深度学习模型,使用多组深度可分离卷积提取不同尺度的特征,加入残差连接以避免梯度消失,联合不同维度的特征信息以提高特征利用率。
实验结果表明,染色校正能够提高预测准确率,上述模型具有参数少、鲁棒性强的特点,最终对病理图像病灶的识别均能达到较高的准确率,假阳性及假阴性均较低,未来将具有广泛的应用前景。
关键词:多维度;深度学习;卷积神经网络;深度可分离;染色校正;病理图像;病灶文献标志码:A中图分类号:TP391doi:10.3778/j.issn.1002-8331.2001-0126Lesion Recognition Method of Pathological Images Based on Multidimensional FeaturesHU Wei’an1,ZOU Junzhong1,GUO Yucheng2,ZHANG Jian1,WANG Bei11.School of Information Science and Engineering,East China University of Science and Technology,Shanghai200237,China2.Tsimage Medical Technology,Shenzhen,Guangdong518083,ChinaAbstract:Time-consuming artificial diagnosis of pathological images will cause visual fatigue of doctors,while both mis-diagnosis and missed diagnosis are easy to occur.In response to the above phenomena,a method combining multidimen-sional features of convolutional neural network is proposed to quickly and accurately identify lesion in pathological images. ROI extraction and image cutting is used to obtain small-scale block data.The method of stain correction is used to solve the problems of uneven staining and weak contrast in block data.A deep learning model is built,using several depthwise separable convolution to extract features of different dimensions,adding residual connection to avoid gradient disappear-ance,combining the feature information of different dimensions to improve feature utilization.The experimental results show that stain correction can improve prediction accuracy and the above model has the characteristics of few parameters and strong robustness.At the same time,the accuracy of lesion recognition in pathological images can reach a high level, while both false positive rate and false negative rate are low,so it will have a broad application prospect in the future.Key words:multidimensional;deep learning;convolutional neural network;depthwise separable;stain correction;patho-logical image;lesion基金项目:国家自然科学基金(61773164);上海市自然科学基金(16ZR1407500)。
增强细节信息特征提取的鱼类个体识别算法
现代电子技术Modern Electronics TechniqueJan. 2024Vol. 47 No. 22024年1月15日第47卷第2期0 引 言近年来,随着智慧渔业精准养殖、水生生物保护、维护生态平衡等概念的提出,对鱼类个体进行精准识别的需求也越来越迫切,已逐步受到产业界、学术界的普遍重视。
鱼类个体识别技术可以广泛应用于渔业养殖、科学研究、生态保护等领域[1‐3]。
P. Cisar 等提出一种以皮肤点图案模式进行鱼类个体自动识别的方法[4],通过在点定位的基础上融合HOG 特征[5]进行个体识别,但使用的鱼类数据均是离开水面的图像,不适用于水下实时环境。
白云翔在改良HOG 特征的基础上,提出了一种对斑马鱼进行多目标跟踪的新方法[6],通过以斑马鱼背部纹理之间的相关关系为基础,并与SVM 分类机理相结合对其进行分类[7],建立斑马鱼的多目标三维轨迹,但对交叉遮挡严重的斑马鱼追踪正确率不高。
B. Renato 等人通过计算机辅助识别证明了照片识别技术在溪流栖息的罗汉鱼个体识别中的潜在应用,但当使用有大量图DOI :10.16652/j.issn.1004‐373x.2024.02.033引用格式:王伟芳,殷健豪,高春奇,等.增强细节信息特征提取的鱼类个体识别算法[J].现代电子技术,2024,47(2):183‐186.增强细节信息特征提取的鱼类个体识别算法王伟芳, 殷健豪, 高春奇, 刘 梁(大连海洋大学 信息工程学院, 辽宁 大连 116023)摘 要: 在鱼类个体识别的实际应用场景中,由于水下环境噪声大、鱼体角度倾斜以及类内特征差异不明显,导致卷积神经网络特征提取能力低下,影响识别准确性。
针对该问题,提出一种增强细节信息特征提取的鱼类个体识别算法(FishNet‐v1)。
改进YOLOv5网络并建立损失函数,优化鱼类个体目标的检测结果。
主干网络在MobileNet‐v1的基础上完成优化,改进深度卷积层,更新ReLU 激活函数,使用Leaky ReLU 保留负值特征信息,实现特征信息的获取。
图像情感计算英语
图像情感计算英语Image Emotion Computation in EnglishIn the realm of artificial intelligence, image emotion computation is a fascinating field that involves the analysis and interpretation of visual data to determine the emotional content conveyed by images. This process is crucial for various applications, including social media analysis, marketing, and human-computer interaction.Key Concepts:1. Emotion Detection: The process of identifying the emotional state or sentiment expressed in an image, which can range from happiness, sadness, anger, to surprise.2. Feature Extraction: This involves identifying the key elements within an image that contribute to the emotional response, such as facial expressions, body language, andcolor schemes.3. Machine Learning Models: Algorithms that are trained to recognize patterns in image data that correlate with specific emotions. These models can be based on deep learning, support vector machines (SVM), or other statistical methods.4. Facial Expression Recognition (FER): A subfield of image emotion computation that focuses on interpreting the emotionsthrough the analysis of facial expressions.5. Contextual Analysis: Understanding the situational context in which an image is presented can greatly enhance the accuracy of emotion computation, as the same image can evoke different emotions in different settings.6. Sentiment Analysis: While typically applied to text, sentiment analysis can also be used in conjunction with image emotion computation to gauge the overall emotional tone of a combined text-image dataset.7. Ethical Considerations: The use of image emotion computation raises privacy and ethical concerns, as it can be used to infer sensitive information about individuals without their consent.Applications:- Marketing: By understanding the emotional response to advertisements, companies can tailor their campaigns to evoke the desired feelings in consumers.- Mental Health: Analyzing the emotional content of patients' photos or videos can assist in monitoring mental health conditions.- Content Moderation: Social media platforms use emotion computation to filter out content that may be disturbing or harmful.- Human-Computer Interaction: Computers and robots can provide more personalized and empathetic responses by understanding the emotional context of human interactions.Challenges:- Subjectivity: Emotions are highly subjective, and what one person finds emotionally charged, another might not.- Cultural Differences: Emotional expressions can vary greatly across different cultures, making it challenging to create universally accurate emotion computation models.- Data Privacy: The collection and analysis of images for emotion computation must be done with respect to individual privacy and data protection laws.The field of image emotion computation is rapidly evolving, and as technology advances, it is becoming increasingly accurate and integral to our digital interactions. Understanding the terminology and concepts behind this technology can help us navigate the complex landscape of AI and emotion.。
基于小样本学习的地面结露结霜现象检测方法
基于小样本学习的地面结露结霜现象检测方法朱磊; 张小虎; 吴谨【期刊名称】《《现代电子技术》》【年(卷),期】2019(042)018【总页数】6页(P130-135)【关键词】地面气象观测; 结露现象检测; 结霜现象检测; 特征提取; 语义描述; 图像分类【作者】朱磊; 张小虎; 吴谨【作者单位】武汉科技大学信息科学与工程学院湖北武汉 430081【正文语种】中文【中图分类】TN911.23-34; TP391.410 引言当地表温度下降且周围相对湿度上升时,如果此时露点温度高于某个物体表面温度,空气中的水蒸气就会凝结在该物体表面上。
如果此时物体表面的温度高于结冰临界温度,称之为结露,否则称之为结霜[1]。
地面结露和结霜现象对生态环境的意义重大。
两类现象对作物的生长、森林的水分平衡,以及作物的保护等方面均具有相当大的影响。
例如,露水是土壤水分的主要来源之一,对作物、小昆虫等动植物的生存非常重要。
同时,在沙漠地区,露水对稳固沙土具有积极作用。
晚秋和早春的结霜现象对于农作物的保护有着潜在的影响,同时,可能对果树带来非常严重的伤害[2]。
我国制定的《地面气象观测规范》指出,在无雨的夜间,地面观测员必须不定时地以触感或视觉方式检查固定区域的地表植物表面来记录两类现象发生的情况[3]。
可以看到,我国在结露和结霜现象的业务观测中还处于人工观测的阶段。
事实上,目前已有一些方法和设备能够部分解决两类现象的自动化观测,但均存在无法应用于业务观测的问题。
本文将这些方法或设备分为间接观测和直接观测两类。
在间接方法中,研究者主要关注露点温度、环境湿度等气象要素与结露和结霜现象之间的关系,并以此构建可计算的数学模型。
例如,文献[4]分析了地面植被温度与露点温度的差异对结露现象发生的指示性,但此类方法通常只具有统计意义,在单次的现象预测中存在较大的误差。
直接观测方法的种类相对较多,例如利用吸水纸、木质材料等作为凝结下垫面,并通过自动称重的方式检测凝结现象,但此类方法无法区分结露和结霜现象。
feature_extraction原理
feature_extraction原理
Feature extraction(特征提取)是指从原始数据中提取出具有代表性的特征的过程。
特征是指能够代表数据的某种属性、特点或者模式的数量化表示,可以作为后续机器学习或数据分析任务的输入。
Feature extraction的原理可以分为以下几个步骤:
1. 数据预处理:首先对原始数据进行预处理,包括数据清洗、去噪、归一化等操作,以确保数据的准确性和一致性。
2. 特征选择:在特征提取之前,需要对原始数据中的特征进行选择,以减少冗余特征和噪声特征的影响,并仅保留对目标任务有意义的特征。
3. 特征转换:将原始数据转换为更能表达数据特点的特征表示。
通常采用的方法包括主成分分析(PCA)、线性判别分析(LDA)、离散余弦变换(DCT)等。
4. 特征提取:从转换后的特征表示中提取出具有代表性的特征。
常用的特征提取方法包括统计特征提取、频域特征提取、时域特征提取等。
5. 特征降维:在特征提取的过程中,可能会提取出大量的特征。
为了减少特征的维度,提高计算效率和模型训练效果,需要进行特征降维处理,常见的方法包括主成分分析(PCA)、线性判别分析(LDA)、特征选择等。
通过以上步骤,可以将原始数据转换为一组具有代表性的特征,以供后续的机器学习或数据分析任务使用。
特征的质量和选择对最终模型的性能有重要影响,因此在特征提取的过程中需要充分考虑数据的特点和任务的要求。
feature extraction和fine-tuning
feature extraction和fine-tuning标题:深入理解Feature Extraction与Finetuning在深度学习中的应用一、引言在深度学习领域,Feature Extraction和Finetuning是两种常用的技术手段,它们在图像识别、自然语言处理、语音识别等各类任务中发挥着重要作用。
本文将详细解析这两者的概念、工作原理以及实际应用步骤。
二、Feature Extraction1. 定义Feature Extraction,即特征提取,是指通过预训练的深度学习模型,提取输入数据(如图像、文本)的高级抽象特征的过程。
这些特征通常具有较强的表达能力和泛化能力,能够有效地描述数据的关键信息。
2. 工作原理在深度学习模型中,每一层神经网络都会对输入数据进行变换并提取出相应的特征。
底层网络主要提取一些基础的、局部的特征(如图像的颜色、纹理),而高层网络则能提取更复杂、更具语义的特征(如图像的形状、物体类别)。
因此,我们可以通过截取预训练模型的高层输出作为输入数据的特征表示。
3. 实际应用步骤(1)选择一个预训练的深度学习模型,如ResNet、VGG、BERT等。
(2)加载预训练模型的权重,并设置模型的可训练参数为False,以防止在后续过程中修改预训练模型的参数。
(3)将待提取特征的数据输入到预训练模型中,获取高层输出。
(4)将高层输出作为输入数据的特征表示,用于后续的机器学习或深度学习任务。
三、Finetuning1. 定义Finetuning,即微调,是指在预训练模型的基础上,针对特定任务进行部分或全部参数的重新训练,以优化模型在该任务上的性能。
2. 工作原理预训练模型已经在大规模数据集上学习到了丰富的通用特征,但对于特定任务可能存在一定的适应性问题。
Finetuning通过调整预训练模型的部分或全部参数,使其能够更好地适应特定任务的特性,从而提升模型的性能。
3. 实际应用步骤(1)选择一个预训练的深度学习模型,并加载其权重。
fx 使用手册
1.3 练的合并分割的方法叫 thresholding, 这种方法有利于提取点的特征 (例如:飞机)。Thresholding 是一个 可选项,对 Region Means 影像第一波段进行处理,合并临近分割。 对于和背景具有高对比度的地物 Thresholding 提取的地物效果非常 好 (例如,白色的船与深色的水)。 选择以下选项的其中一项: No Thresholding (默认):跳过这一步,进行下一步操作; Thresholding (advanced) :如果选择该选项,会弹出 Region Means 影像的直方图, 按照以下过程继续操作: (1)点击预览 Preview,出现预览窗口; (2)点击并拖拉直方土图上白色虚线来确定最大最小域值,预 览窗口只根据 DN 值将影像分割成白色和黑色,白色表示前景,黑色 表示背景,如果不改变虚线表示 No Thresholding; 注意:可以通过调整透明度来预览影像分割效果。如图 2-4 所示
1.4 计算属性(Computing Attributes)
在 这 一 步 里 , ENVI Zoom 为 每 一 个 目 标 物 计 算 spatial, spectral, 以及 texture 等属性 。如图 2-5 所示。
—————————————————————————————————————————————— 010-62054260/1/2/3 北京市朝阳区德胜门外华严北里甲 1 号健翔山庄 D5-D6
航天星图科技(北京)有限公司
FX 特征提取模块使用手册
一、ENVI FX 特征提取模块介绍
ENVI 特征提取模块(ENVI Feature Extraction)基于影像空间 以及影像光谱特征,从高分辨率全色或者多光谱数据中提取信息,该 模块可以提取各种特征地物如车辆、建筑、道路、河流、桥、河流、 湖泊以及田地等。令人欣慰的是该模块可以预览影像分割效果,还有 就是它基于目标来对影像进行分类(传统的影像分类是基于像素的, 也就是说利用每个像素的光谱信息对影像进行分类) 。该项技术对于 高光谱数据有很好的处理效果,对全色数据一样适用。对于高分辨率 全色数据, 这种基于目标的提取方法能更好的提取各种具有特征类型 的地物。一个目标物体是一个关于大小、光谱以及纹理(亮度、颜色 等)的感兴趣区域, ENVI FX 能同时定义多个这样的感兴趣区域。 ENVI Feature Extraction 将影像分割成不同的区域, 产生目标 区域,这个流程很有帮助而且直观 , 同时允许您定制自己的应用程 序。 整个流程如下图所示:
基于高层语义的图像检索
Levels 2 and 3 together are referred to as semantic image retrieval, and the gap between Levels 1 and 2 as the semantic gap .
3.The low-level image feature
In CBIR,images are indexed by their visual content, such as color,texture, shapes. A pioneering work was published by Chang in 1984, in which the author presented a picture indexing and abstraction approach for pictorial database retrieval . The pictorial database consists of picture objects and picture relations.To construct picture indexes, abstraction operations are formulated to perform picture object clustering and classification.
extract_features 参数
extract_features 参数
extract_features 参数的定义可能有多个,具体取决于上下文和使用该参数的函数或方法。
以下是一些可能的定义:
1. data: 待处理的数据集或样本。
例如:extract_features(data),其中data是一个包含原始数据的数据集。
2. feature_func: 用于提取特征的函数或方法。
例如:
extract_features(data, feature_func),其中feature_func是一个用
户自定义的函数,用于从给定的数据中提取特征。
3. normalize: 是否对提取的特征进行归一化处理。
例如:extract_features(data, feature_func, normalize=True),其中normalize是一个布尔值,表示是否对提取的特征进行归一化
处理。
4. n_components: 降维后的特征维数。
例如:
extract_features(data, feature_func, n_components=10),其中
n_components是一个整数,表示希望降维到的特征维数。
5. Other additional parameters: 其他可能与特征提取相关的参数,具体取决于具体应用和需求。
需要根据具体的上下文和函数定义来确定extract_features的参数。
图像处理专业英语词汇
图像处理专业英语词汇Introduction:As a professional in the field of image processing, it is important to have a strong command of the relevant technical terminology in English. This will enable effective communication with colleagues, clients, and stakeholders in the industry. In this document, we will provide a comprehensive list of commonly used English vocabulary related to image processing, along with their definitions and usage examples.1. Image Processing:Image processing refers to the manipulation and analysis of digital images using computer algorithms. It involves various techniques such as image enhancement, restoration, segmentation, and recognition.2. Pixel:A pixel, short for picture element, is the smallest unit of a digital image. It represents a single point in an image and contains information about its color and intensity.Example: The resolution of a digital camera is determined by the number of pixels it can capture in an image.3. Resolution:Resolution refers to the level of detail that can be captured or displayed in an image. It is typically measured in pixels per inch (PPI) or dots per inch (DPI).Example: Higher resolution images provide sharper and more detailed visuals.4. Image Enhancement:Image enhancement involves improving the quality of an image by adjusting its brightness, contrast, sharpness, and color balance.Example: The image processing software offers a range of tools for enhancing photographs.5. Image Restoration:Image restoration techniques are used to remove noise, blur, or other distortions from an image and restore it to its original quality.Example: The image restoration algorithm successfully eliminated the noise in the scanned document.6. Image Segmentation:Image segmentation is the process of dividing an image into multiple regions or objects based on their characteristics, such as color, texture, or intensity.Example: The image segmentation algorithm accurately separated the foreground and background objects.7. Image Recognition:Image recognition involves identifying and classifying objects or patterns in an image using machine learning and computer vision techniques.Example: The image recognition system can accurately recognize and classify different species of flowers.8. Histogram:A histogram is a graphical representation of the distribution of pixel intensities in an image. It shows the frequency of occurrence of different intensity levels.Example: The histogram analysis revealed a high concentration of dark pixels in the image.9. Edge Detection:Edge detection is a technique used to identify and highlight the boundaries between different objects or regions in an image.Example: The edge detection algorithm accurately detected the edges of the objects in the image.10. Image Compression:Image compression is the process of reducing the file size of an image without significant loss of quality. It is achieved by removing redundant or irrelevant information from the image.Example: The image compression algorithm reduced the file size by 50% without noticeable loss of image quality.11. Morphological Operations:Morphological operations are a set of image processing techniques used to analyze and manipulate the shape and structure of objects in an image.Example: The morphological operations successfully removed small noise particles from the image.12. Feature Extraction:Feature extraction involves identifying and extracting relevant features or characteristics from an image for further analysis or classification.Example: The feature extraction algorithm extracted texture features from the image for cancer detection.Conclusion:This comprehensive list of English vocabulary related to image processing provides a solid foundation for effective communication in the field. By familiarizing yourself with these terms and their usage, you will be better equipped to collaborate, discuss, andpresent ideas in the context of image processing. Remember to continuously update your knowledge as the field evolves and new techniques emerge.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 Machine Learning approach by SVM, LDF and GMM
For each type of extracted feature, we make use of SVM classifier (SVM), linear discriminative function (LDF) classifier or Gaussian mixture model (GMM) for training. The details are summarized in Table 1. Thus, there are 9 visual classifiers trained for each concept. The SVM is trained using the SVMlight tool (Joachims, 2002) and the LDF and GMM classifiers are trained using the AUC maximized learning algorithm (Gao & Sun, 2006). Based on our experiments on the development set of TRECVID 2005, we find AUC maximized learning algorithm works better than the best-tuned SVM system. Table 1: Description of classifiers (+: the classifier is available for the feature) GCC GLCM HSV RGB LAB Gabor SVM + + + + + LDF + + + GMM
+
For each image, we use the 451 (9*39) features from the feature-space and then train a SVM classifier for each concept. PCA or LSA is also applied to reduce the selected feature space dimensions. We follow the approach in (Gao et al, 2007) which uses a knowledge-based method to retain only informative components. This is done by extracting the pair-wise concepts association among the 39 concepts based on the development set. The strength of the association, Str, for the target concept A and the concept B is defined as, * Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
Table 2: Evaluation Results in inferred MAP
MAP
Run4 0.055
Run5 0.037
Run6 0.040
1.3 Bi-gram Model for Pattern Di multimedia pattern discovery problem can be decomposed into two sub-problems: choosing suitable representations of the raw data, and learning a model from these representations. We first transform the high dimensional continuous video stream into tractable token sequence. As video data is high-dimensional, multi-modal and continuous stream, we first need to decompose the video stream into tractable token sequence. The video keyframes in training video dataset are clustered by the K-means algorithm (K is predefined number of clusters) using feature of global HSV auto-correlograms. After the clustering, video key-frames that have similar low-level features are labeled with the same token. In this way, the original input video stream is transformed into token sequences. We also map the test video key-frames into the clusters of training set. Similarly, the test video stream could also be transformed into token sequences. Then, we apply soft matching models based on bi-grams (Cui et al, 2006) to model pattern matching as a probabilistic process that generates token sequences to reveal the video patterns. Ngram language modeling is one important approach which models local sequential dependencies between adjacent tokens. We apply linear interpolation (Manning et al, 1999) of unigrams and bigrams to represent probability of bigrams in our task. The reason is two-fold: (1) to smooth probability distribution in order to generate more accurate statistics for unseen data; and (2) to incorporate conditional probability of individual tokens appearing in specific slots. Considering the “local context token” around <TARGET>, it is modeled as a window centered on <TARGET> according to a predefined size W=3: < token−W, . . . , token−2, token−1, TARGET, token1, token2, . . . tokenW >. In particular, we model the sequence of pattern tokens as:
TRECVID 2006 by NUS-I2R
Tat-Seng Chua, Shi-Yong Neo, Yantao Zheng, Hai-Kiat Goh, Sheng Tang*, Yang Xiao and Ming Zhao School of Computing, National University of Singapore Sheng Gao, Xinglei Zhu, Lekha Chaisorn, Qibin Sun Institute for Infocomm Research, Singapore
ABSTRACT
NUS and I R joint participated in the high-level feature extraction and automated search task for TRECVID 2006. In both task, we only make use of the standard TRECVID available annotation results. For HLF task, we develop 2 methods to perform automated concept annotation: (a) fully machine learning approach using SVM, LDF and GMM; and (b) Bi-gram model for Pattern Discovery and Matching. As for the automated search task, our emphases this year are: 1) integration of HLF: query-analysis to match query to possible related HLF and fuse results from various participating groups in the HLF task; and 2) integration of event structures present implicitly in news video in a time-dependent event-based retrieval. The proposed generic framework involves various multimodal (including HLFs) features as well as the implicit temporal and event structures to support precise news video retrieval.