2014年希望杯试卷
第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有种.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是.10.(5分)如图中共有三角形个.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A 不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=495 .【分析】根据加法交换律及结合律计算.【解答】解:29+42+87+55+94+31+68+76+13=(29+31)+(42+68)+(87+13)+(94+76)+55=60+110+100+170+55=495故答案为:495.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装36 盒.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.【解答】解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是28 .【分析】根据题意,可设最小的偶数是2N,因为是连续的10个偶数,从小到大排列出来,后一个都比前一个大2,再根据题意解答即可.【解答】解:设最小的一个偶数为2N,由题意可得:2N+2(N+1)+2(N+2)+…+2(N+7)+2(N+8)+2(N+9)=19010×2N+0+2+4+…+14+16+18=19020N+(0+18)×10÷2=19020N+18×5=19020N+90=19020N=100N=5那么最大的一个偶数是:2(N+9)=2×(5+9)=2×14=28.答:其中最大的那个偶数是28.故答案为:28.【点评】根据题意可知,连续的偶数每相邻的两个相差都是2,设出最小的,一次排列出来,再根据题意列出方程进一步解答即可.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年53 岁.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.【解答】解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有 4 种.【分析】一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.【解答】解:在1~30这30个数中,一共有2、3、5、7、11、13、17、19、23、29共10个质数,从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有:18~27,19~28,20~29,或21~30,有4种;故答案为:4.【点评】此题的解答关键是明确质数与合数的意义.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为10 .【分析】如图:因为面积为36的正方形,边长是6,所以设上面长方形的宽为x,则下面的长方形的长是6﹣x,再根据小长方形的周长相等,列出方程求出x,再根据长方形的面积公式S=ab进行解答.【解答】解:因为6×6=36,所以面积为36的正方形,边长是6,小长方形的宽是6÷3=2设上面长方形的宽为x2×(6﹣x)+2+2=6+6+2x12﹣2x+4=12+2x4x=4x=1阴影部分的面积是:2×(6﹣1)=10;答:图中阴影长方形的面积为10.故答案为:10.【点评】关键是根据题意,算出上面长方形的宽为x,再根据小长方形的周长相等,列出方程解答.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是27 .【分析】最大正方形有两个,每个的面积是8,则两个总面积是16;中等正方形有两个,每个的面积是4,则两个总面积是面积是8;剩余3个三角形的面积是3;据此解答即可.【解答】解:1×8×2+1×4×2+3×1=16+8+3=27答:“蝙蝠”图案的面积是27.故答案为:27.【点评】此题解答的关键在于弄清阴影部分与各部分的面积关系,分类求出各部分面积.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是20 秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.【解答】解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是12 .【分析】有4个互不相等的自然数,它们的平均数是10,且是4个互不相等的自然数,求最大至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是9和11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,据此解答即可.【解答】解:因为要使最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是10﹣1=9和10+1=11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,答:其中最大的数至少是12.故答案为:12.【点评】明确要求最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数.10.(5分)如图中共有三角形30 个.【分析】此题可通过分类列举解答:①单个的三角形;②由2个三角形构成;③由3个三角形构成;④由4个三角形构成;⑤最大三角形.【解答】解:由1个三角形构成:10个,由2个三角形构成:10个,由3个三角形构成:0个,由4个三角形构成:8个,最大的三角形:2个,共有:10+10+0+8+2=30(个)故答案为:30.【点评】此题通过分类,列举出每类中有几个三角形.在列举时,注意防止遗漏.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是794 .【分析】根据大数除以小数,商22余数是2,所以大数减去2后是小数的22倍,则和830减去2就是小数的(22+1)倍,因此,根据除法的意义,小数可求得,然后进一步可以求出大数.【解答】解:(830﹣2)÷(22+1)=828÷23=36830﹣36=794答:两个数中较大的一个是 794.故答案为:794.【点评】此题属于和倍问题的应用题,解答的关键是理解大数减去2后是小数的22倍.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是1342 .○●○●●○●●●○●○●●○●●●○●○●●○…【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.【解答】解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A 不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?【分析】这两个数是A和B,由“如果数A增加2,则它与数B的积比A、B的积大60”列出方程,解答求出A和B,然后根据“如果数A增加2,数B减少3”把A和B代入,即可求出它们的积比A、B的积大多少.【解答】解:这两个数是A和B,可得:AB+60=(A+2)×B,AB﹣24=A(B﹣3);因为AB+60=(A+2)×B则AB+60=AB+2B则 B=30把B=30代入AB﹣24=A(B﹣3),可得:30A﹣24=A(30﹣3)30A﹣24=27AA=8(8+2)×(30﹣3)﹣30×8=10×27﹣240=30答:它们的积比A、B的积大30.【点评】此题属于用字母表示数,根据题意,列出等式,进而求出A、B 的值,是解答此题的关键.14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.【解答】解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).【分析】先观察每个方框,方框的面积就是外面正方形的面积,减去里面正方形的面积,外面正方形的边长是6厘米,里面正方形的边长是(6﹣1×2)厘米,由此根据正方形的面积公式求出每个方框都得面积;再观察图2,发现4个方框有6处重叠,重叠部分的是一个边长是1厘米的正方形;再用4个方框的面积和减去6个小正方形的面积就是方框盖住的面积.【解答】解:6×6﹣(6﹣1×2)×(6﹣1×2)=36﹣16=20(平方厘米)20×4﹣1×1×6=80﹣6=74(平方厘米)答:桌面被这些方框盖住的面积是74平方厘米.【点评】解决本题关键是通过图找出方框的面积,以及重叠部分的面积,正确的运用正方形的面积公式进行求解.16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.【解答】解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:48:30;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2014年第十二届希望杯五年级二试详解.doc
2014年第十二届小学“希望杯”全国数学邀请赛五年级第2 试详细解答一、填空题(每题5 分,共60 分。
)1. 能被2,3,7整除的最小的三位数是_________。
【答案】126【考点】因数与倍数【解析】找2,3,7 的最小公倍数是2×3×7=42,最小的三位数42 的3倍是126。
2. 在1-100 的自然数中,数字和是5 的倍数的数有__________个。
【答案】19【考点】计数之枚举法【解析】数字之和是5 的有:5,50,14,41,23,32数字之和是10的有:19,91,28,82,37,73,46,64,55数字之和是15的有:69,96,78,87共有19个。
3. 如图1,有10克、25 克、50 克的砝码各一个,若在天平上只称量一次,则可以称出的重量有___________种。
【答案】10【考点】计数之枚举法【解析】单独放的:10,25,50和的有:35,60,75,85差的有:15, 40,65共有10种。
4. 如图2,将黑、白两种小球从上到下逐层排列,每层都是从左到右逐个地排。
当白球第一次比黑球多2013个时,恰好排完第_________层的第_________个。
【答案】2014 层的4026 个【考点】计算之等差数列找规律【解析】观察规律是每两层,白球比黑球多2个2013÷2=1006 (1)1006×2=2012,则前2012 层,白球比黑球多2012 个下一层2013 层为全黑,共有2013×2-1=4025个小球2014 层为白,要想比2013 层多1个球,则为第4026 个小球。
因此是2014 层的第2046 个。
5. 有10个连续的偶数,其中最大的偶数是最小的偶数的4 倍。
在这10个偶数中,最小的是________。
【答案】6【考点】数论之奇数与偶数【解析】最大偶数是最小偶数的4 倍,则把最小偶数看成2,4,6,······来试数,当最小偶数是6 时,最大偶数24,这时刚好有10个连续的偶数。
2014年第十二届四年“希望杯”第2试
2014年第十二届小学"希望杯"全国数学邀请赛四年级决赛一、填空题(每空5分,共60分)1、计算:29+42+87+55+94+31+68+76+13=()2、21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装()盒。
3、190表示成10个连续偶数的和,其中最大的偶数是()。
4、当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同。
妈妈今年()岁。
5、从1、2、3、4、……、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有()种。
6、将面积为36的正方形按图1的方式分成4个周长相等的长方形,取图中阴影长方形的面积为()。
7、图2的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是()。
8、一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米。
坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是()秒。
9、有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是()。
10、图3中共有三角形()个。
11、两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是()。
12、有白棋子和黑棋子共2014个,按照如图4的规律从左到右排成一行,其中黑棋子的个数是()。
○●○●●○●●●○●○●●○●●●○●○●●○……二、解答题(每题15分,共60分。
)每题都要写出推算过程。
13、如果数A增加2,则它与数B的积比A、B的积大60;如果数A不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B 的积大多少?14、水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果。
2014年“希望杯”全国数学邀请赛赛前模拟试卷(1)
2014年“希望杯”全国数学邀请赛赛前模拟试卷(1)一、解答题(共15小题,满分0分)1.计算:2007×2008﹣2006×2009.2.计算:19×5.3.计算:1+++++.4.(2013•北京模拟)2006×2008×(+)=_________.5.计算:+++…+.6.(1+0.12+0.23)×(0.12+0.23+0.34)﹣(1+0.12+0.23+0.34)×(0.12+0.23)=_________.7..8.20.07×39+200.7×4.1+40×10.035.9..10.3.625+0.﹣1.11.计算:×5.4=_________.12.计算:7.625﹣6+5.75﹣1=_________.13.计算:=_________.14.计算:4.8×17.4×6.25﹣37.5×0.174×5.=_________.15.计算:25.5%÷[3﹣(5.55×1﹣2÷0.4)].2014年“希望杯”全国数学邀请赛赛前模拟试卷(1)参考答案与试题解析一、解答题(共15小题,满分0分)1.计算:2007×2008﹣2006×2009.考点:四则混合运算中的巧算.专题:计算问题(巧算速算).分析:通过观察,此题数字非常接近,因此可把某些数字进行拆分,进行简算.把2007看作2006+1,把2009看作2008+1,计算即可.解答:解:2007×2008﹣2006×2009=(2006+1)×2008﹣2006×(2008+1)=2006×2008+2008﹣2006×2008﹣2006=2008﹣2006=2点评:仔细观察数据,根据数字特点,通过数字拆分,灵活简算.2.计算:19×5.考点:分数的简便计算.专题:运算定律及简算.分析:把19改写成20﹣,进而应用乘法分配律简算得解.解答:解:19×5=(20﹣)×5=20×5﹣×5=100﹣=99.点评:根据数据的特点,把算式中数进行适当的改写,从而运用运算定律进行简算.3.计算:1+++++.考点:分数的巧算.专题:计算问题(巧算速算).分析:通过观察,从第三项开始,后一个数都是前一个数的,于是原式变为1+++﹣+﹣+﹣,计算即可.解答:解:1+++++=1+++﹣+﹣+﹣=1++﹣=1++﹣=2点评:注意数字拆分,通过加减相互抵销,解决问题.4.(2013•北京模拟)2006×2008×(+)=2.考点:分数的巧算.分析:根据题意,先把2006×2008看做整体,由乘法分配律,再根据题意进行计算即可.解答:解:2006×2008×(+)=+=+====2;故答案为:2.点评:根据题目,找准计算的方法,是巧算这类题目的关键.5.计算:+++…+.考点:分数的巧算.专题:计算问题(巧算速算).分析:首先用等差求和公式求出分母来,就是(2+n)×n÷2,然后每一项就是,此项可以写成﹣,那么本题把每一项都分开就只剩下第一项和最后一项,结果就是1﹣,据此解答.解答:解:+++…+=+++…+=﹣+﹣+﹣+…+﹣=1﹣=点评:仔细观察,根据数字特点,运用拆项的方法,解决问题.6.(1+0.12+0.23)×(0.12+0.23+0.34)﹣(1+0.12+0.23+0.34)×(0.12+0.23)=0.34.考点:小数的巧算.分析:通过观察发现这个算式较长,数据较多,但括号中有重复的数据,因此可设0.12+0.23=x,0.12+0.23+0.34=y,算式就简化为:(1+x)y﹣(1+y)x由此将算式整理计算即可.解答:解:设0.12+0.23=x,0.12+0.23+0.34=y.则:(1+0.12+0.23)×(0.12+0.23+0.34)﹣(1+0.12+0.23+0.34)×(0.12+0.23)=(1+x)y﹣(1+y)x,=y+xy﹣x﹣xy,=y﹣x,=(0.12+0.23+0.34)﹣(0.12+0.23),=0.12﹣0.12+0.23﹣0.23+0.34,=0.34.故答案为:0.34.点评:在完成此类包含数据较多且式中含有相同子算式的题目中,可通过用字母代替式中数据或算式将原算式简化后进行巧算.7..考点:分数的四则混合运算.专题:运算顺序及法则.分析:根据分数除法的意思,除以一个数,等于乘这个数的倒数,然后再根据乘法分配律进行简算.解答:解:,=×3+15×﹣,=×7+15×﹣2×,=×(7+15﹣2),=×20,=15.点评: 完成本题要注意分析式中数据,运用合适的简便方法计算.8.20.07×39+200.7×4.1+40×10.035.考点: 运算定律与简便运算.专题: 运算定律及简算.分析: 20.07×39+200.7×4.1+40×10.035,根据因数与积的变化规律将原式转化为:20.07×39+20.07×41+20×20.07,再运用乘法分配律进行简算.解答: 解:20.07×39+200.7×4.1+40×10.035,=20.07×39+20.07×41+20×20.07,=20.07+(39+41+20),=20.07×100,=2007;点评: 此题考查的目的是理解掌握乘法分配律的意义,并且能够灵活运用乘法分配律进行简便计算.9..考点:分数的巧算. 专题:计算问题(巧算速算).分析: 通过观察,此题数字很有特点,可把原式变为:,分子、分母可运用乘法分配律计算.解答: 解:=,=,=3.点评:此题构思巧妙、新颖别致.要仔细观察,抓住特点,运用所学知识,进行巧妙解答.10.3.625+0.﹣1.考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先把0.化成分数是=,然后再按照从左向右的顺序进行计算.解答:解:3.625+0.﹣1=3.625+﹣1=4﹣1=2.点评:本题关键是把循环小数化成分数,然后再进一步解答.11.计算:×5.4=0.03.考点:繁分数的化简.分析:欲求本题的计算结果,首先要把繁分数化为分数除法的形式,把小数化为分数,再计算即可解答.解答:解:×5.4=3×××=×××==0.03.故答案为:0.03.点评:本题主要考查了把繁分数化为最简分数或整数的过程.繁分数化简一般采用以下方法:先找出繁分数中的主分数线,确定出分母部分和分子部分,然后这两部分分别进行计算,每部分的计算结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果.12.计算:7.625﹣6+5.75﹣1=5.考点:整数、分数、小数、百分数四则混合运算.分析:本题可先将式中的小数化为分数,然后再据交换律进行简算即可.解答:解:7.625﹣6+5.75﹣1=﹣+5﹣1,=7﹣1+5﹣,=6+﹣6,=12﹣6,=5.点评:在完成式中同时有分数及小数的四则混合运算题目时,要据式中数据的特点灵活将式中的分数与小数进行互化.13.计算:=.考点:四则混合运算中的巧算.分析:本题可根据式中数据的特点根据分配律将算式中的分子分母化为具有相同因数的乘法算式的形式进行巧算:分子=2×(1×2.3×4.5)+4×(1×2.3×4.5),分母=1×2.3×4.5+3×(1×2.3×4.5),由此进行巧算即可.解答:解:,=,=,=.故答案为:.点评:完成此类题目要认真分析式中数据,根据式中数据的特点及内在联系找到合适的巧算方法进行巧算.14.计算:4.8×17.4×6.25﹣37.5×0.174×5.=487.2.考点:小数的巧算.分析:本题可将算式中17.4及0.174根据乘法算式的性质变为1.74,将5.化为分数后,再据分配律进行巧算.解答:解:4.8×17.4×6.25﹣37.5×0.174×5.=48×1.74×6.25﹣3.75×1.74×,=300×1.74﹣××1.74,=300×1.74﹣20×1.74,=(300﹣20)×1.74,=280×1.74,=487.2.故答案为:487.2点评:当算式中含有循环小数时,一般要将循环小数化为分数进行计算.15.计算:25.5%÷[3﹣(5.55×1﹣2÷0.4)].考点:整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则.分析:先算小括号里面的乘法和除法,再算小括号里面的减法,再算中括号里面的减法,最后算括号外面的除法.解答:解:25.5%÷[3﹣(5.55×1﹣2÷0.4)]=25.5%÷[3﹣(7.4﹣5.25)]=25.5%÷[3﹣2.15]=25.5%÷0.85=0.3.点评:考查了分数、小数和百分数四则混合运算,注意运算顺序和运算法则,然后再进一步计算.。
2014年希望杯赛前模拟试卷(六年级课件)修改后(5)
(
孵化率=
孵化出的小鸡数 100 0 0 孵化所用的鸡蛋数
)分别如图10和图11 。
所示:则该鸡场这3次孵化出的小鸡总数为
只,平均孵化率是
• 12、
由图表中的信息可知。选择长跑训练的人数占全班 人数的 %,这个班共有同学 人
• 13、
• 14、
ห้องสมุดไป่ตู้
• 15、
希望杯模拟试卷点评
专题五 统计图表
知识概述
• • • • 三种统计图的优缺点 条形图: 扇形图: 折线图:
解题思路
• 1 、从图中读取需要的信息加以应用 • 2 、运用分数、百分数、比的知识来解答
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
• 1、图1是小华家最近 四星期家庭支出统计 图小华家这四星期平 均每星期的生活消费 是 元。
• 5、一天,小刚发烧了,早晨烧的很厉害, 吃过药后感觉好多了,中午时小刚的体温 基本正常,但是下午他的体温又升高,知 道半夜小刚才感觉身上不那么烫了。下面 能基本反映出小刚这一天(0时——24时) 体温变化情况的是 。(填序号)
• 6、在2005年北京市用水情况统计表中,若工业 用水量比环境用水量的6倍多0.20亿立方米则 2005年北京市用水总量是 亿立方米。
上月销量 本月销量 -a 0 表示本月销量低于上月销量,且 100 0 0 上月销量
0
• 8、图6是2008年5月十家企业汽车销售情况 统计表,如果2008年5月广州本田的销量为 24599辆,那么,2008年4月份广州本田的 销量为 辆 本月销量 上月销量 环比= 100 0 0 上月销量 • (题中
2014年希望杯赛前模拟试卷(六年级课件修改后)(2)
4
暂停
• 4、一串数按下列规律排列: • 1,2,3,2,3,4,3,4,5,4,5,6… ,从左边数 第100个数是几?为什么?
34
暂停
• 5、图1是我国古代著名的“杨辉三角” • 求:(1) 第10行的第2个数;9 • (2)第8行所有数字之和
28 第102行的第2个和第3 个数分别是 和 ,
其中,第2014个分数是 提示:等差数列的和
52 111
。
暂停
• 3、已知:21=2 ,22=4 ,23=8 ,24=16, • 22014的个位数字是
4
拓展训练
• (1) 1+1×2+1×2×3+1×2×3×4+1×2×3× 4×5+1×2×3×4×5×6+…+1×2×3×4 ×…×99×100的个位数字是几?
暂停
2013年复试第9题
2013 2013 2013 2013 2013 • 1 2 3 4 5 数是
除以5,余
。
暂停
100题相关
5 • 12、将 化成小数并求出小数点后第 13
2013位上的数字
100题相关
5 • 12、将 化成小数并求出小数点后第 13
2013位上的数字
100题相关
题型分类:
• 图形分割与覆盖: • 分类讨论、乘法原理、递推 • “退”的思想: • 知难而退、退而思、思而后进 •
题目导航
1 2 3 4 5
6
7
8
9
10
11
12
13
1、
• 你是如何观察的? • 答案:12345678987654321
暂停
数列
• 2、已知一串分数:
2014年希望杯赛前模拟试卷(六年级)(3)
• 10、在图8所示的除法算式中,□内各填入 一个数字,使算式成立
• 11、有一个乘法运算的竖 式如图9所示:将其中的所 有奇数数字1、3、5、7、9 都换成字母A,偶数数字2、 4、6、8、0都换成字母B 成为下面的式子,请恢复 原来的乘法运算竖式。
• 12
• 13
• 14
• 15
• 7、将13、15、17、19、21、23这六个数 分别填入图5中的圆圈内,使三角形每边上 的3个数之和相等,则这个和最大 是 ; • 最小是 。
• 8、将1~8这8个数分别填入图6中的○内, 但相邻的两个数不能填在有线段相连的两 个○中
• 9、在如图7所示的3个三位数的加法算式中, 每一个□内有一个数字,则□内的数字之 和最大是 ;最小是 。
北 北
京
北 京 奥
+
北 京 奥 运
2 0 0 8
• 2、如图2所示的竖式中,不同的汉字代表 不同的数字,相同的汉子代表相同的数字, 那么“做+练-习”= 。
做 练 习
×做 练 习 □□□ 6 □ □□ 0 □□ 2 □ □□ □ □
• 3、如图3所示两位数乘以两位数的竖式中, 只写出了三个数字1,若其余的数字都不是 1,那么这个竖式的乘积时 。
解题思路
• 利用运算时每一位运算结果的特点; • 结合假设法,分类讨论,算一算,猜一 猜 • 突破点:条件最多的地方, • 最高位与最低位
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
• 1、如图1所示的竖式中,不同的汉字代表 不同的数字,相同的汉子代表相同的数字, 那么“运”字所代表的数字是 。
第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每题5分,共60分)1.(5分)若0.4285+x=1.5,则x=.2.(5分)同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是元.3.(5分)如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转圈.4.(5分)有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是.5.(5分)A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比2:3:4,三个分数的和是,则A﹣B﹣C=.6.(5分)如图,将长方形ABCD沿线段DE翻折,得到六边形EBCFGD.若∠GDF=20°,则∠AED=°.7.(5分)如图,在平行四边形ABCD中,点E是BC的中点,DF=2FC.若阴影部分的面积是10,则平行四边形ABCD的面积是.8.(5分)如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°.以点B 为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分面积)是.(π取3)9.(5分)参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有人.10.(5分)如图所示,在正方形ABCDEF中,若△ACE的面积为18,则三个阴影部分的面积和为.11.(5分)小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了小时.12.(5分)甲乙两人分别从相距10千米的A、B两地出发,相向而行,若同时出发,他们将在距A、B中点1千米处相遇;若甲晚出发5分钟,则他们将在A、B中点处相遇,此时,甲走了分钟.二、解答题(每题15分,共60分)13.(15分)超市购进砂糖桔500kg,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?14.(15分)将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有个边长是1的正方形.15.(15分)如图,△ABC是边长为108cm的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△ABC的边爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.16.(15分)用0、1、2、3、4、5中的某两个数组成一个五位偶数,其中一个数字出现2次,另一个数字出现3次.那么共有多少个满足条件的五位数.2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每题5分,共60分)1.(5分)若0.4285+x=1.5,则x=1.【解答】解:原方程可变为:+x=1.5,x=1.5﹣所以,x=1.故答案为:1.2.(5分)同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是375 元.【解答】解:300÷(1﹣20%)=300÷0.8=375(元)答:这款遥控飞机在星星玩具店的售价是375元.故答案为:375.3.(5分)如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转20 圈.【解答】解:设小轮的半径为1,2×3.14×(1×2)×10÷(2×3.14×1)=12.56×10÷6.28=125.6÷6.28=20(圈),答:后轮转20圈.故答案为:20.4.(5分)有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是1:5 .【解答】解:把总个数当作“1”,可设第一组为x则:15x+21×(1﹣x)=20×115x+21﹣21x=206x=1x=则第二组为:1﹣=它们的比为::=1:5.故答案为:1:5.5.(5分)A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比2:3:4,三个分数的和是,则A﹣B﹣C=.【解答】解:分数值的比是(3÷2):(2÷3):(1÷4)=18:8:3,==6.(5分)如图,将长方形ABCD沿线段DE翻折,得到六边形EBCFGD.若∠GDF=20°,则∠AED=35 °.【解答】解:∠ADE=(90+20)÷2=55(度),∠AED=180﹣90﹣55=35(度)答:∠AED=35°;故答案为:35.7.(5分)如图,在平行四边形ABCD中,点E是BC的中点,DF=2FC.若阴影部分的面积是10,则平行四边形ABCD的面积是24 .【解答】解:连结AC,因E是BC的中点,根据等底等高的三角形面积相等可知S△ACE=S△ABE=S平行四边形ABCD又DF=2FCS△AFC=S△ADC=S平行四边形ABCDS平行四边形ABCD+S平行四边形ABCD=10S平行四边形ABCD=10S平行四边形ABCD=24答:平行四边形的面积是24.故答案为:24.8.(5分)如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°.以点B 为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分面积)是75 .(π取3)【解答】解:把三角形EBD旋转到三角形ABC的位置,那么阴影部分可以合并成两个扇形之间的一段圆环.如下图所示:阴影部分AMNE的面积为:S AMNE=S扇形ABE﹣S扇形MBN=﹣=25π;π取3,所以面积为:S AMNE=25×3=75故答案为:75.9.(5分)参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有51 人.【解答】解:参加2个的情况共6种,(体操、武术)、(体操、钢琴)、(体操、书法)、(武术、钢琴)、(武术、书法)、(钢琴、书法),还可以是参加1个的4种.这里可以把这10个情况看做10个抽屉,10×5+1=51(人)答:参加小组的学生至少有51人;故答案为:51.10.(5分)如图所示,在正方形ABCDEF中,若△ACE的面积为18,则三个阴影部分的面积和为 6 .【解答】解:如图,正六边形的面积被平均分成了18个面积相等的部分,又已知若△ACE的面积被平均分成了9部分,又△ACE的面积为18,则阴影部分的面积的和为:18÷9×3=6.故答案为:6.11.(5分)小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了 6 小时.【解答】解:分针每小时走=30°小红出门时分针与时针相差360°﹣30°×2×60°=300°回家是分针与时针相差30°×4=120°分针又超过时针30°×4=120°又超过了时针180°整个过程分针比时针多走了120°+180°=300°,因此,上小红出门和回家时,分针的位置没变,只是时数相加即可,即10时﹣4时=6时.故答案为:6.12.(5分)甲乙两人分别从相距10千米的A、B两地出发,相向而行,若同时出发,他们将在距A、B中点1千米处相遇;若甲晚出发5分钟,则他们将在A、B中点处相遇,此时,甲走了10 分钟.【解答】解:若甲晚出发5分钟,则他们将在A、B中点处相遇,设此时甲走了x分钟,得::=3:2(x+5):x=3:23x=2x+10x=10答:甲走了10分钟.故答案为:10.二、解答题(每题15分,共60分)13.(15分)超市购进砂糖桔500kg,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?【解答】解:500×4.8÷(500﹣500×10%)×(1+20%)=2400÷450×1.2=6.4(元)答:每千克砂糖桔的零售价应定为6.4元.14.(15分)将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有 3 个边长是1的正方形.【解答】解:设用3×3的正方形x个,2×2的正方形y个,1×1的正方形z个,那么有关系式:9x+4y=49﹣z,简单尝试可知x≤4,y≤9,z=0时,解9x+4y=49,x=5,y=1(舍);x=1,y=10(舍);z=1时,解9x+4y=48,x=4,y=3(舍);x=1,y=12(舍);z=2时,解9x+4y=47,x=3,y=5(舍,发现如果用3个3×3的,无法放5个2×2的);z=3时,解9x+4y=46,x=2,y=7,尝试画一下发现可以满足条件.如下图:故答案为:3.15.(15分)如图,△ABC是边长为108cm的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△ABC的边爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.【解答】解:甲的路程=108×2÷(4+5)×4=96(厘米),乙的路程=108×2﹣96=120(厘米).第二次在BC中点相遇,则由第一次相遇到第二次相遇甲的路程是120﹣108÷2=66(厘米),乙的路程是96+108+108÷2=258(厘米).相遇后甲乙速度比=4:(5×120%)=2:3,故甲行66厘米时,乙爬行的路程是66÷2×3=99(厘米),则甲休息的10秒钟,乙爬行的距离是258﹣99=159(厘米),乙最初的爬行速度是159÷10÷(1+20%)=13.25(cm/s),甲的速度是13.25÷5×4=10.6(cm/s)答:虫子甲的爬行速度为10.6cm/s,乙的爬行速度为13.25cm/s.16.(15分)用0、1、2、3、4、5中的某两个数组成一个五位偶数,其中一个数字出现2次,另一个数字出现3次.那么共有多少个满足条件的五位数.【解答】解:(1)当个位是0时:需要再从剩下的5个数中选一个,0的个数可以是两个也可以是3个,当有两个0时有4种排列方式,有三个0时有6种排列方式,所以共有:5×(4+6)=50(个)其中最高位是0的有:5×(1+3)=20(个)符合条件的有:50﹣20=30(个)(2)个位不是0时,可以是2或4两种,需要再从剩下的5个数中选一个,当2或4有两个时有4种排列方式,当2或4有三个时有6种排列方式,所以共有:2×5×(4+6)=100(个)其中最高位是0的有:2×(3+3)=12(个)故符合条件的有:100﹣12=88(个)所以共有:30+88=118(个)答:满足条件的五位数有118个.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:48:13;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2014年第十二届小学六年级希望杯全国数学邀请赛培训100题
2014年第十二届小学“希望杯”全国数学邀请赛培训100题1、计算6554433221++++2、x 比y 大30%,y 比300少30%,则y x -的值为多少?3、小光将 1.23乘以一个数a 时,把 1.23误看成了1.23,使乘积比正确结果少0.3。
则 正确结果是多少?4、在三个数:0.14292,17,10.32-中,最小的是哪一个?最大的是哪一个?5、根据前三个图形中数的规律,求第四个图形中x 所表示的数。
2 32 31171511 15 26 2713 131206、计算201320144025201120122012201320122013⨯+⨯+⨯7、在括号内填上一个分数,使等式成立:74) (15131=++。
8、在算式121916131) (1219161311⨯⨯⨯⨯=++++中,( )中应填入的数是多少?9、从公元前1500年到公元317年被认为是玛雅文化的前古典时期,从公元317年到889年为玛雅文化的古典时期,从公元889年到1697年为玛雅文化的后古典时期。
则前古典时期占整个玛雅文化的百分之几?xx 2153010、一台笔记本电脑在电池电量为92%的时候还可以使用3小时50分钟。
如果电脑打开时是100%的电量,那么从电脑打开到还剩92%电量时过去了多少分钟?11、小刚去商店买了一个滑板,回到家后,看到网上的滑板售价为100元,这个价格比商店的售价低了20%,则小刚买滑板付了多少钱?12、将135化成小数并求小数点后第2013位上的数字。
13、分数1931的分子,分母同时加a ,结果等于43,求a 。
14、分数518a +化成的小数是比1小的循环小数,求自然数a 。
15、小琳参加了4次数学能力测试,她用其中任意三次的平均分加上另一次的分数,得 到四个成绩:212,184,200,172。
求她四次测试的平均分。
16、已知A 和B 都是自然数,且9154137=+B A ,求A 和B 的和。
2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每题5分,共60分)1.(5分)若0.4285+x=1.5,则x=.2.(5分)同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是元.3.(5分)如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转圈.4.(5分)有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是.5.(5分)A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比2:3:4,三个分数的和是,则A﹣B﹣C=.6.(5分)如图,将长方形ABCD沿线段DE翻折,得到六边形EBCFGD.若∠GDF=20°,则∠AED=°.7.(5分)如图,在平行四边形ABCD中,点E是BC的中点,DF=2FC.若阴影部分的面积是10,则平行四边形ABCD的面积是.8.(5分)如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°.以点B为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分面积)是.(π取3)9.(5分)参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有人.10.(5分)如图所示,在正方形ABCDEF中,若△ACE的面积为18,则三个阴影部分的面积和为.11.(5分)小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了小时.12.(5分)甲乙两人分别从相距10千米的A、B两地出发,相向而行,若同时出发,他们将在距A、B中点1千米处相遇;若甲晚出发5分钟,则他们将在A、B中点处相遇,此时,甲走了分钟.二、解答题(每题15分,共60分)13.(15分)超市购进砂糖桔500kg,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?14.(15分)将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有个边长是1的正方形.15.(15分)如图,△ABC是边长为108cm的等边三角形,虫子甲和乙分别从A 点和C点同时出发,沿△ABC的边爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.16.(15分)用0、1、2、3、4、5中的某两个数组成一个五位偶数,其中一个数字出现2次,另一个数字出现3次.那么共有多少个满足条件的五位数.2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每题5分,共60分)1.(5分)若0.4285+x=1.5,则x=1.【分析】注意到:142857×7=999999,0.4285=.【解答】解:原方程可变为:+x=1.5,x=1.5﹣所以,x=1.故答案为:1.【点评】注意:循环小数化分数技巧.2.(5分)同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是375元.【分析】把星星玩具店的售价看作单位“1”,网上售价是星星玩具店的售价的(1﹣20%),根据分数除法的意义列式解答即可.【解答】解:300÷(1﹣20%)=300÷0.8=375(元)答:这款遥控飞机在星星玩具店的售价是375元.故答案为:375.【点评】此题考查的是分数除法应用题,要先找准单位“1”,再据题中的数量关系列式解答.3.(5分)如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转20圈.【分析】根据圆的周长公式:c=2πr,首先求出大、小轮的周长,然后用大轮周长的10倍除以小轮的周长即可.【解答】解:设小轮的半径为1,2×3.14×(1×2)×10÷(2×3.14×1)=12.56×10÷6.28=125.6÷6.28=20(圈),答:后轮转20圈.故答案为:20.【点评】此题主要考查圆的周长公式的灵活运用.4.(5分)有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是1:5.【分析】根据本题中所给的数量关系,如果第一组数和第二组数的总个数为“1”的话,可设第一组为x,那么第二组就为(1﹣x),由此可得方程:12.8x+10.2×(1﹣x)=12.02.【解答】解:把总个数当作“1”,可设第一组为x则:15x+21×(1﹣x)=20×115x+21﹣21x=206x=1x=则第二组为:1﹣=它们的比为::=1:5.故答案为:1:5.【点评】本题的关健是把总个数看作单位“1”,再根据两组数的平均数是20,列出方程求解.5.(5分)A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比2:3:4,三个分数的和是,则A﹣B﹣C=.【分析】它们的分子之比是3:2:1,分母的比2:3:4,则分数值的比是(3÷2):(2÷3):(1÷4)=18:8:3,然后再按比例分配的方法进行解答即可.【解答】解:分数值的比是(3÷2):(2÷3):(1÷4)=18:8:3,==【点评】本题比较难,关键是求出3个分数的分数值的比,再按比例分配的方法解答.6.(5分)如图,将长方形ABCD沿线段DE翻折,得到六边形EBCFGD.若∠GDF=20°,则∠AED=35°.【分析】先求出ADG的度数,为90+20=110度,因为∠ADE=∠EDG,进而用ADG 的度数除以2求出∠ADE的度数,然后根据三角形的内角和是180度,用“180﹣90﹣∠ADE,即可求出∠AED的度数.【解答】解:∠ADE=(90+20)÷2=55(度),∠AED=180﹣90﹣55=35(度)答:∠AED=35°;故答案为:35.【点评】此题属于简单图形的折叠问题,先求出ADG的度数,进而求出∠ADE 的度数,是解答此题的关键;用到的知识点:三角形的内角和是180度.7.(5分)如图,在平行四边形ABCD中,点E是BC的中点,DF=2FC.若阴影部分的面积是10,则平行四边形ABCD的面积是24.【分析】连结AC,因E是BC的中点,所以三角形ACE 的面积等于三角形ABE的面积,是平行四边形面积的,又DF=2FC,所以三角形AFC的面积是三角形ADC面积的,是平行四边形面积的,再根据阴影部分的面积是10,可求出平行四边形的面积,据此解答.【解答】解:连结AC,因E是BC的中点,根据等底等高的三角形面积相等可知S△ACE=S△ABE=S平行四边形ABCD又DF=2FCS△AFC=S△ADC=S平行四边形ABCDS平行四边形ABCD+S平行四边形ABCD=10S平行四边形ABCD=10S平行四边形ABCD=24答:平行四边形的面积是24.故答案为:24.【点评】本题主要考查了学生根据高相等的三角形的面积的比等于底边的比来解答问题的能力.8.(5分)如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°.以点B为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分面积)是75.(π取3)【分析】把三角形EBD旋转到三角形ABC的位置,那么阴影部分可以合并成两个扇形之间的一段圆环.再进行作答会简化计算步骤.【解答】解:把三角形EBD旋转到三角形ABC的位置,那么阴影部分可以合并成两个扇形之间的一段圆环.如下图所示:阴影部分AMNE的面积为:S AMNE=S扇形ABE﹣S扇形MBN=﹣=25π;π取3,所以面积为:S AMNE=25×3=75故答案为:75.【点评】本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.9.(5分)参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有51人.【分析】参加2个的情况共6种,(体操、武术)、(体操、钢琴)、(体操、书法)、(武术、钢琴)、(武术、书法)、(钢琴、书法);还可以是参加1个的4种,这里可以把这10个情况看做10个抽屉,考虑最差情况,每个抽屉只有5人,那么就有50人,再多1个人,无论放在哪个抽屉,都会出现6,由此即可利用抽屉原理解决问题.【解答】解:参加2个的情况共6种,(体操、武术)、(体操、钢琴)、(体操、书法)、(武术、钢琴)、(武术、书法)、(钢琴、书法),还可以是参加1个的4种.这里可以把这10个情况看做10个抽屉,10×5+1=51(人)答:参加小组的学生至少有51人;故答案为:51.【点评】此题考查了抽屉原理在实际问题中的灵活应用;根据题干,找出学生参加学习班的所有可能情况,是解决本题的关键.10.(5分)如图所示,在正方形ABCDEF中,若△ACE的面积为18,则三个阴影部分的面积和为6.【分析】如图,通过添加辅助线,这个正六边形的面积被平均分成了18个面积相等的部分,阴影部分面积之和占全部18个之中的3份,△ACE的面积是9份,由此可求出1份的面积,进而求出三个阴影部分的面积和.【解答】解:如图,正六边形的面积被平均分成了18个面积相等的部分,又已知若△ACE的面积被平均分成了9部分,又△ACE的面积为18,则阴影部分的面积的和为:18÷9×3=6.故答案为:6.【点评】此题通过其它方法也能求出,比较麻烦,根据正六边形的特征,巧妙地添加辅助线,把整个图形分面积成相等的18份,解答就比较容易了.11.(5分)小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了6小时.【分析】小红在上午将近11点时出家门,这时我们可以推出她出门的时间是10点多,但不到11点,在10点整时,分针与时针相差360°﹣30°×2×60°=300°,然后分针追上时针重合,小红在下午将近5点时回到家,也就是她回家的时间是4点多,但到5点,4点整时,分针与时针相差30°×4=120°,最后又超过了时针180°,整个过程分针比时针多走了120°+180°,实际上小红出门和回家时,分针的位置没变,只是时数相加即可,即10时﹣4时=6时.【解答】解:分针每小时走=30°小红出门时分针与时针相差360°﹣30°×2×60°=300°回家是分针与时针相差30°×4=120°分针又超过时针30°×4=120°又超过了时针180°整个过程分针比时针多走了120°+180°=300°,因此,上小红出门和回家时,分针的位置没变,只是时数相加即可,即10时﹣4时=6时.故答案为:6.【点评】此题是考查钟面问题,比较难,关键是弄明白小红出门和回家时间分针的位置没变,上午10时多几分出门,下午4时多几分回的家,只有回家的整数时减去出门时的整数即可.12.(5分)甲乙两人分别从相距10千米的A、B两地出发,相向而行,若同时出发,他们将在距A、B中点1千米处相遇;若甲晚出发5分钟,则他们将在A、B中点处相遇,此时,甲走了10分钟.【分析】“同时出发,他们将在距A、B中点1千米处相遇”可知甲走了10÷2+1=6(千米),乙走了4千米,两人的所走的路程比为:6:4=3;2,两人的速度比也是3:2;若甲晚出发5分钟,则他们将在A、B中点处相遇,各走了5千米,设此时甲走了x分钟,则甲的速度为,乙的速度为,根据两人的速度比是3;2,列等式为:=3:2,解决问题.【解答】解:若甲晚出发5分钟,则他们将在A、B中点处相遇,设此时甲走了x分钟,得::=3:2(x+5):x=3:23x=2x+10x=10答:甲走了10分钟.故答案为:10.【点评】此题解答的关键在于求出两人的速度比,然后列比例式解答.二、解答题(每题15分,共60分)13.(15分)超市购进砂糖桔500kg,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?【分析】首先求得损耗10%后砂糖桔的进价为500×4.8÷(500﹣500×10%),再利用售价=进价×(1+利润率)求得零售价即可.【解答】解:500×4.8÷(500﹣500×10%)×(1+20%)=2400÷450×1.2=6.4(元)答:每千克砂糖桔的零售价应定为6.4元.【点评】在算出总成本的基础上,根据利润率求出卖出的总钱数是完成本题的关键,完成本题同时要注意,由于损耗是10%,所以在算进价时,应减去总数的10%.14.(15分)将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有3个边长是1的正方形.【分析】设用3×3的正方形x个,2×2的正方形y个,1×1的正方形z个,那么有关系式:9x+4y=49﹣z,其中我们求z的最小正整数解即可.【解答】解:设用3×3的正方形x个,2×2的正方形y个,1×1的正方形z个,那么有关系式:9x+4y=49﹣z,简单尝试可知x≤4,y≤9,z=0时,解9x+4y=49,x=5,y=1(舍);x=1,y=10(舍);z=1时,解9x+4y=48,x=4,y=3(舍);x=1,y=12(舍);z=2时,解9x+4y=47,x=3,y=5(舍,发现如果用3个3×3的,无法放5个2×2的);z=3时,解9x+4y=46,x=2,y=7,尝试画一下发现可以满足条件.如下图:故答案为:3.【点评】解答此题关键是以1×1的正方形的个数为突破口,既然是求最少个数,就从0开始找起.15.(15分)如图,△ABC是边长为108cm的等边三角形,虫子甲和乙分别从A 点和C点同时出发,沿△ABC的边爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.【分析】开始时甲乙速度比是4:5,则路程比也是4:5,甲的路程=108×2÷(4+5)×4=96(厘米),乙的路程=108×2﹣96=120(厘米).第二次在BC中点相遇,则由第一次相遇到第二次相遇甲的路程是120﹣108÷2=66(厘米),乙的路程是96+108+108÷2=258(厘米).相遇后甲乙速度比=4:(5×120%)=2:3,故甲行66厘米时,乙爬行的路程是66÷2×3=99(厘米),则甲休息的10秒钟,乙爬行的距离是258﹣99=159(厘米),乙最初的爬行速度是159÷10÷(1+20%)=13.25(cm/s),甲的速度是13.25÷5×4=10.6(cm/s).【解答】解:甲的路程=108×2÷(4+5)×4=96(厘米),乙的路程=108×2﹣96=120(厘米).第二次在BC中点相遇,则由第一次相遇到第二次相遇甲的路程是120﹣108÷2=66(厘米),乙的路程是96+108+108÷2=258(厘米).相遇后甲乙速度比=4:(5×120%)=2:3,故甲行66厘米时,乙爬行的路程是66÷2×3=99(厘米),则甲休息的10秒钟,乙爬行的距离是258﹣99=159(厘米),乙最初的爬行速度是159÷10÷(1+20%)=13.25(cm/s),甲的速度是13.25÷5×4=10.6(cm/s)答:虫子甲的爬行速度为10.6cm/s,乙的爬行速度为13.25cm/s.【点评】本题考查了多次相遇问题,关键是得出相遇后甲乙速度比=4:(5×120%)=2:3,故甲行66厘米时,乙爬行的路程是66÷2×3=99(厘米).16.(15分)用0、1、2、3、4、5中的某两个数组成一个五位偶数,其中一个数字出现2次,另一个数字出现3次.那么共有多少个满足条件的五位数.【分析】通过分析:用0、1、2、3、4、5中的某两个数组成一个五位偶数:(1)当个位是0时,需要再从剩下的5个数中选一个,0的个数可以是两个也可以是3个,当有两个0时有4种排列方式,有三个0时有6种排列方式,所以共有5×(4+6)=50个,其中最高位是0的有5×(1+3)=20个,符合条件的有50﹣20=30个;(2)个位不是0时,可以是2或4两种,需要再从剩下的5个数中选一个,当2或4有两个时有4种排列方式,当2或4有三个时有6种排列方式,所以共有2×5×(4+6)=100个.其中最高位是0的有2×(3+3)=12个,故符合条件的有100﹣12=88个;所以共有30+88=118个满足条件的五位数.据此解答即可.【解答】解:(1)当个位是0时:需要再从剩下的5个数中选一个,0的个数可以是两个也可以是3个,当有两个0时有4种排列方式,有三个0时有6种排列方式,所以共有:5×(4+6)=50(个)其中最高位是0的有:5×(1+3)=20(个)符合条件的有:50﹣20=30(个)(2)个位不是0时,可以是2或4两种,需要再从剩下的5个数中选一个,当2或4有两个时有4种排列方式,当2或4有三个时有6种排列方式,所以共有:2×5×(4+6)=100(个)其中最高位是0的有:2×(3+3)=12(个)故符合条件的有:100﹣12=88(个)所以共有:30+88=118(个)答:满足条件的五位数有118个.【点评】分个位是0时还是不是0时讨论是解答本题的关键.。
2014年希望杯奥数100题答案
2014年四年级希望杯100题1、计算:67+135-5×7+264÷82、计算:13+29+32+46+57+68+71+85+943、计算:364×25÷(14÷4 )4、计算:(1953+1956+1958+1962+1959+1947+1957 )÷75、将运算符号“+ ,- , × , ÷”填在下面的圆圈中,使得算式成立.2○2○2○2○2=56、在四个数:10、10、4、4之间填入“+”、“-”、“×”、“÷”“()”,使写出的算式的计算结果是24。
7、两个自然数的和是94,积是2013 ,求这两个数。
8、按顺序排列的7个数,它们的平均数是9 ,已知前4个数的平均数是5 ,后4个数的平均数是12,求第四个数。
9、若5个连续自然数的和是1265,求这5个自然数中最小的数。
10、20至24这5个连续自然数的和再加上2000等于另外4个连续自然数的和,求另外4 个连续自然数中最小的数。
11、有3个数a、b、c,要求计算a- ( b+c ),李辉算成了a-b+c,结果多出100,求c12、一个两位数,在它的两个数字中间添加一个0,就比原来的数多720 ,这样的两位数最大是多少?.13、四位数6823的a倍是各位数字不同的最小的六位数,求a.=ddd15、某手机号码是abcbdeefcgh ,已知其中不同的字母代表1, 2, 3,…,9中的不同的数字,d最大,h 比d小2 ,而且a<e<b<c<f<g<h ,请写出这个手机的号码.16、将1,2,3,4,5,6分别写到一个正方体的六个面内,将相对两个面内的数作为一个长方形的长和宽,计算这样得到的长方形的面积的和,求和的最大值,最小值.17、用21跟小棒摆成10个三角形,如图按照这种方式,用65根小棒能摆出多少个三角形?18、观察下面算式的规律,求第100个算式的得数.2+3, 3+7, 4+11, 5+15,…和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差19、爷爷今年60岁,三个孙子的年龄分别是12岁、10岁和8岁,那么,几年后三个孙子的年龄和等于爷爷的年龄?20、小红长到妈妈今年的年龄时,妈妈77岁。
2014希望杯赛前100题祥解
32、小明按1~5报数,小红按 1~4报数,两人以同样的速度 同时开始报数,则当俩人都报 了150个数时,有多少次俩人报 的数相同?
33、一本书的页码共含有25个 数字8,则这本书至少有多少页? 至多有多少页?
34、小红与小亮玩“石头剪刀 布”游戏,约定如果赢了就上 三层台阶,他们从第12级台阶 开始玩,玩了20次,小红站在 第30级台阶上,则小红共赢了 多少次?
37、7个互不相等的自然数按照 从小到大顺序排列,前三个数 的平均数是16,后三个数的平 均数是20,求中间三个数的平 均数。ห้องสมุดไป่ตู้
38、文文在计算一列数的平均 数时,错把117写成了171,得 到的结果为127,发现后重新计 算得到正确结果是125,。请问 这一列数共有多少个?
39、一个两位质数,它的个位 数字比十位数字大3,求这个质 数。
28、有一个自然数,它的最小的因数与第二小 的因数之和是4,最大的因数与第二大的因数之 和是180,求这个自然数。
29、有504个苹果、630个桃子、 462个香蕉,用这些水果最多可 以分成多少份同样的礼物? (三种水果均无剩余)
30、和是1463的三个自然数的最 大公因数是多少?
31、长方形操场四周种了一圈树,每相邻 两棵树相隔5米,且长方形的长是宽的2倍, 四个顶点处均种有树。甲乙二人同时从同 一个顶点出发,向不同的方向走去,甲的 速度是乙的3倍,乙在拐了第一个弯之后的 第5棵树与甲相遇。问操场四周一共种了多 少棵树?
1、3.14×67+8.2×31.490×0.314
2、12.56÷12.5÷0.8
3、16.92÷[2.64×(5.6-2.1) +0.16]
4、(32×0.63×0.95)÷ (1.6×21×1.9)
2014年希望杯赛前模拟试卷(六年级)(5)
• 15、某部队奉命从驻地乘车赶往某地区, 如果车速比原来提高1/9,就可以比预定时 间提前20分钟赶到;如果先按原速行驶72 千米,再将车速提高1/3,就可以比预定时间 提前30分钟赶到,这支部队的行程是 千米。 • 思路:路程一定,速度与时间成反比
0
• 8、图6是2008年5月十家企业汽车销售情况 统计表,如果2008年5月广州本田的销量为 24599辆,那么,2008年4月份广州本田的 销量为 辆 本月销量 上月销量 环比= 100 0 0 上月销量 • (题中
• 9、王大爷养了鸡、鸭、猪、羊四种动物, 共100个,脚数共有280只,结合图7中的信 息,计算王大爷家养鸡 只。
希望杯模拟试卷点评
专题五 统计图表
一、 四则运算
二、 找规律填数
三、 数字谜语
四、 比和比例
五、 统计图表
六、 操作题
七、 最值问题
八、 排列组合
九、 平面几何
十、 立体几何
十一、 逻辑推理
十二、 应用问题
知识概述
• • • • 三种统计图的优缺点 条形图: 扇形图: 折线图:
解题思路
• 1 、从图中读取需要的信息加以应用 • 2 、运用分数、百分数、比的知识来解答
• 10、如图3,点D、E在△ABC的边BC上, BD:DE:EC=2:3:4,。若△AEC的面积比 △ABD的面积大10平方厘米,则△ADE的 面积是 平方厘米
• 11、今年,妈妈的年龄是小明年龄的6倍, 明年,妈妈的年龄将是小明的5倍,则小 明今年 岁。
• 12、把235根火柴放进3个盒子里,使第1盒 火柴的根数的 • •
• 7、 图5为从甲地到乙 地乘坐出租车时所付 车费y(元)与所行路 程s(千米)之间的数 量关系图像的一部分, 从图像可以知道,乘 坐3.6千米时需付车费 元,乘车6.6千米时需 付车费 元,10元钱 最多可以乘车 千米。
2014年“希望杯”全国数学邀请赛真题
得3分, 输了就扣 2 分 , 每个回合都分出胜 负 . 游 戏 开 始 前, 两人各有2 玩了1 0 分, 0 个回合后 , 小红的得分是 4 则小红赢了 0分, 个回合 .
如图 5, 线段 A 点E㊁ 点E㊁ 1 5. B 和C D 垂直且相等 , F㊁ G 是线段A B 的四等分点 , H 是线段 C 从A㊁ D 的三等分点 , B㊁ C㊁ D㊁ E㊁ F㊁ G㊁ H 这8个点中任选3个作为顶点构成三
每个数 n 都写了n 次 . 当写到 2 数字 1 出现了 0 的时候 ,
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, , 次. .
题号
1
2
3
4
5
一个小数 , 若去掉小数点 , 则得到的整数与原小数的和是 2 那么这个小数是 5. 0 1 . 3, 已知三位数 a 则a 6. b c 与c b a 的差a b c -c b a =1 9 8, b c 最大是 . 若将 2 那么 , 不同的表示方法有 7. 0 表示成若干个互不相同的奇数的和 ,
五年级
注意事项 :
第 1 试答题卡
阅卷人 得 分
参赛学生须在本页顶部的 参赛学生信息 表格中填写自己的信息 ㊂ 1.答题前 , 超出答题区域书写的答案无效 ㊂ 3.按照题号顺序在各题目的答案栏作答 , 请阅卷老师在 阅卷人 处签字 ㊂ 4.阅卷结束后 ,
签字笔 ㊁ 圆珠笔填写答案 , 字体工整 ㊁ 笔迹清楚 ㊂ 2.一律使用黑色或蓝色的钢笔 ㊁
含底面积 )是 积(
.
Hale Waihona Puke 若1 得到的余数都相同 , 那么 , 用2 1 8. 1 5, 2 0 0, 2 6 8 被某个大于 1 的自然数除 , 0 1 4除 以这个自然数 , 得到的余数是 .
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有种.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是.10.(5分)如图中共有三角形个.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=495.【分析】根据加法交换律及结合律计算.【解答】解:29+42+87+55+94+31+68+76+13=(29+31)+(42+68)+(87+13)+(94+76)+55=60+110+100+170+55=495故答案为:495.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装36盒.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.【解答】解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是28.【分析】根据题意,可设最小的偶数是2N,因为是连续的10个偶数,从小到大排列出来,后一个都比前一个大2,再根据题意解答即可.【解答】解:设最小的一个偶数为2N,由题意可得:2N+2(N+1)+2(N+2)+…+2(N+7)+2(N+8)+2(N+9)=19010×2N+0+2+4+…+14+16+18=19020N+(0+18)×10÷2=19020N+18×5=19020N+90=19020N=100N=5那么最大的一个偶数是:2(N+9)=2×(5+9)=2×14=28.答:其中最大的那个偶数是28.故答案为:28.【点评】根据题意可知,连续的偶数每相邻的两个相差都是2,设出最小的,一次排列出来,再根据题意列出方程进一步解答即可.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年53岁.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.【解答】解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有4种.【分析】一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.【解答】解:在1~30这30个数中,一共有2、3、5、7、11、13、17、19、23、29共10个质数,从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有:18~27,19~28,20~29,或21~30,有4种;故答案为:4.【点评】此题的解答关键是明确质数与合数的意义.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为10.【分析】如图:因为面积为36的正方形,边长是6,所以设上面长方形的宽为x,则下面的长方形的长是6﹣x,再根据小长方形的周长相等,列出方程求出x,再根据长方形的面积公式S=ab进行解答.【解答】解:因为6×6=36,所以面积为36的正方形,边长是6,小长方形的宽是6÷3=2设上面长方形的宽为x2×(6﹣x)+2+2=6+6+2x12﹣2x+4=12+2x4x=4x=1阴影部分的面积是:2×(6﹣1)=10;答:图中阴影长方形的面积为10.故答案为:10.【点评】关键是根据题意,算出上面长方形的宽为x,再根据小长方形的周长相等,列出方程解答.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是27.【分析】最大正方形有两个,每个的面积是8,则两个总面积是16;中等正方形有两个,每个的面积是4,则两个总面积是面积是8;剩余3个三角形的面积是3;据此解答即可.【解答】解:1×8×2+1×4×2+3×1=16+8+3=27答:“蝙蝠”图案的面积是27.故答案为:27.【点评】此题解答的关键在于弄清阴影部分与各部分的面积关系,分类求出各部分面积.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是20秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.【解答】解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是12.【分析】有4个互不相等的自然数,它们的平均数是10,且是4个互不相等的自然数,求最大至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是9和11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,据此解答即可.【解答】解:因为要使最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是10﹣1=9和10+1=11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,答:其中最大的数至少是12.故答案为:12.【点评】明确要求最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数.10.(5分)如图中共有三角形30个.【分析】此题可通过分类列举解答:①单个的三角形;②由2个三角形构成;③由3个三角形构成;④由4个三角形构成;⑤最大三角形.【解答】解:由1个三角形构成:10个,由2个三角形构成:10个,由3个三角形构成:0个,由4个三角形构成:8个,最大的三角形:2个,共有:10+10+0+8+2=30(个)故答案为:30.【点评】此题通过分类,列举出每类中有几个三角形.在列举时,注意防止遗漏.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是794.【分析】根据大数除以小数,商22余数是2,所以大数减去2后是小数的22倍,则和830减去2就是小数的(22+1)倍,因此,根据除法的意义,小数可求得,然后进一步可以求出大数.【解答】解:(830﹣2)÷(22+1)=828÷23=36830﹣36=794答:两个数中较大的一个是794.故答案为:794.【点评】此题属于和倍问题的应用题,解答的关键是理解大数减去2后是小数的22倍.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是1342.○●○●●○●●●○●○●●○●●●○●○●●○…【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.【解答】解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?【分析】这两个数是A和B,由“如果数A增加2,则它与数B的积比A、B的积大60”列出方程,解答求出A和B,然后根据“如果数A增加2,数B减少3”把A和B代入,即可求出它们的积比A、B的积大多少.【解答】解:这两个数是A和B,可得:AB+60=(A+2)×B,AB﹣24=A(B﹣3);因为AB+60=(A+2)×B则AB+60=AB+2B则B=30把B=30代入AB﹣24=A(B﹣3),可得:30A﹣24=A(30﹣3)30A﹣24=27AA=8(8+2)×(30﹣3)﹣30×8=10×27﹣240=30答:它们的积比A、B的积大30.【点评】此题属于用字母表示数,根据题意,列出等式,进而求出A、B的值,是解答此题的关键.14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.【解答】解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).【分析】先观察每个方框,方框的面积就是外面正方形的面积,减去里面正方形的面积,外面正方形的边长是6厘米,里面正方形的边长是(6﹣1×2)厘米,由此根据正方形的面积公式求出每个方框都得面积;再观察图2,发现4个方框有6处重叠,重叠部分的是一个边长是1厘米的正方形;再用4个方框的面积和减去6个小正方形的面积就是方框盖住的面积.【解答】解:6×6﹣(6﹣1×2)×(6﹣1×2)=36﹣16=20(平方厘米)20×4﹣1×1×6=80﹣6=74(平方厘米)答:桌面被这些方框盖住的面积是74平方厘米.【点评】解决本题关键是通过图找出方框的面积,以及重叠部分的面积,正确的运用正方形的面积公式进行求解.16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.【解答】解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.。
2014希望杯100题
培训题.1.计算:(1+0.2%+2%+20%)×(0.2%+2%+20%+200%)一(1+0.2%+2%+20%+200%)×(0.2%+2%+20%).2.计算:2016×323 1.3+3243⨯÷⨯(1+3+5+7+9)20+43.计算:1113111123-⨯⨯+1124111234-⨯⨯+1135111345-⨯⨯+…+11-20142016111201420152016⨯⨯ 4.观察下面的一列数,找出规律,求a,b .1,2,6,15,31,56,a,141,b,286. 5. 1111111+++++201620152014201320122011的整数部分是 6.若x+y=56,m+n=35,求xm+yn+xn+ym 的值. 7.若两个不同的数字A 、B 满足73AAB B =+,求A+B .8.定义[a]表示不超过数a 的最大整数,如[0.1]=0,[8.23]=8,求[53]+[75]十[97]+…+[9795]+[9997]的值. 9.比较1111322224和2222544446的大小 10.若2015201520142014P=2016201620152015-,20142014201320132015201520142014Q =-,1120152016R =- 比较P ,Q.R 的大小11.若一个分数的分子减少10%,分母增加20%,则新分数比原来分数减少了___%.12.一个分数,若分母减1,化简后得13;若分子加4,化简后得 12,求这个分数. 13.将一个三位数的百位数字减1,十位数字减2,个位数字减3,得到了一个新的三位数.如果新的三位数是原来的23,那么原来的 三位数是_______ .14.某校学生报名参加“希望杯”全国数学邀请赛的人数是未报 名人数的15,后来又有180名同学报名,此时报名的人数是未报名人 数的13.这个学校有学生________人. 15.若x,y,z 是彼此不同的非零数字,且xyz -zyx =396,求两位数xz 的最小值.16.a ,b ,c ,d ,e ,f ,g ,h 是按顺序排列的8个数,它们的和是72. 若其中任意4个相邻的数和都相等,求a+b+c+d 的值.17.从125,1.2,118,1415,80%,76,这七个数中选出三个数,分 别记为A 、B 、c 使得A B C +最小,这时,A=____,B+C=_______ . 18.如果a 是1~9这九个数字中的某一个,那么9a......a aa aaa aa a ++++个是a 的_____倍.19.已知a 是质数,b 是偶数,且22a +b =788,则a ×b=______.20.已知a ,b ,c 都是质数,并且a+b+c+ab+bc+ac=133,则abc =____.21.有一列数1,1,2.3,5,…,从第2个数起,后一个数是它前面 两个数的和,求第101个数被3除的余数.22.若35个不同的自然数(不含0)的平均数是20,求这35个自然 数中最大的数.23.三个数79,95,107分别除以一个大于2的自然数M ,得到相 同的余数N .求M ×N 的值.24.甲乙两班共76人,两班男女人数之比分别为2:3和5:7,若甲班男生比乙班多1人,则乙班有女生多少人?25.有一个三位数,它分别除以1、2、3、4、5这5个自然数的余数 互不相同,求满足题意的最大的三位数.26.A 、B 、C 、D 是2到16中的四个不同的奇数,A B 和C D 都是最简 真分数并且彼此不等,若A+B=C+D ,则A B 和C D 的值有几组? 27.在一次数学竞赛中,小红的准考证号是一个四位数.其中,十 位数字是个位数字的3倍,百位数字是十位数字的12,百位数字和千 位数字之和等于个位数字和十位数字之和,这四个数字的平均数是4,则小红的准考证号是 ______.28.分母是201 6的所有最简真分数的和是多少?29.从1开始的n 个连续的自然数,从中去掉最大的3个数,若剩 下的自然数的平均数是30,求n 的值.30.从1,2,3,…,2016中取出n 个数相乘,若乘积的个位数字是1l ,求n 的最大值.31.图1是由16根火柴和2张卡片组成的算式,请你移动火柴,使式子成立.(给出一种方法即可)32.将1到16这16个数填入4×4的网格中,将一个数与相邻(相邻,指前、后、左、右,角上的数只有2个相邻的数)的数进行比较,如果最多只有1个数比它大,那么就称这个数是“希望数”,求1到16这16个数中最多有几个“希望数”.33.某班30人参加跳绳比赛,记录员在记录成绩时漏写一个空(记录成绩如下表)已知该班平均每人跳绳16个,则记录员漏写的这个空的值为______.34.某项工程计划在80天内完成.开始由6人用35天完成了全部工程的13,随后再增加6人一起完成这项工程,那么,这项工程提前______天完成.35.一本故事书,小光5天读完,小羽3天读完;一本英语书,小羽5天读完,小飞4天读完,小光每天的读书量比小飞每天的读书量少百分之几?36.一本故事书的页码中,数字3-共出现了333次,则这本书共有多少页?37.现在的时刻是上午8点30分,从这个时刻开始,经过1 2956 分钟后,是几点几分?38.求四点到五点之间,时针与分针成角的时刻.39.某书店规定:会员买书可打八五折,但办理会员卡需交15 元,某单位现需购买若干本原价是14元的书,已知办理会员卡划算,则该单位至少要买多少本书?40.有50张数字卡片,在每张上面写一个3的倍数,或5的倍数,其中,是3的倍数的卡片张数占60%,是5的倍数的卡片张数占80%.那么,是15的倍数的卡片有____张.41.假设水结咸水后体积会增加110,则一块176立方分米的冰块融化75%后,剩下的冰水混合物的体积是多少?42.两杯相同重量的糖水,若糖与水的重量比分别是1:4和3:7,则将两杯糖水混合后,糖与糖水的重量之比是多少?(答案写成百分比的形式)43.某商品在进价240元的基础上提价a%后,再打八五折出售,可获利72元,求a的值.(保留两位小数)44.买3支铅笔和4支碳素笔共用10. 80元钱,若买4支铅笔和3支碳素笔可少付0. 60元.求铅笔和碳素笔各多少元一支?45.知图2是由两个半径为2的直角扇形和两个腰长为2的等腰直角三角形组成,求图中阴影部分的面积.46.某自行车前轮的周长是135米,后轮的周长是145米,则当 前轮转的圈数比后轮转的圈数多10圈时,自行车行走了多少米?47.要制造甲、乙两批零件,张师傅单独制造甲零件要9小时,单独 制造乙零件要12小时.王师傅单独制造甲零件要3小时,单独制造乙 零件要15小时.如果两人合作制造这两批零件,最少需要_____小时.48.有黑白混合但数量相同的三堆棋子,第一堆的黑棋子和第二 堆的白棋子数量相同,第三堆白棋子数是黑棋子数的2倍,求第三堆 中的黑棋子占全部黑棋子的百分比.49.养殖场养了鸡、鸭、猪、羊四种动物,数头共有300个.数脚共有840只.结合图3中的信息,养殖场养____只鸡.50.甲、乙两商店以同一价格购进一种商 品,乙购进的件数此甲少18,而甲、乙分别按获 利75%和80%的定价出售,两商店全部售完后,甲比乙多获得一部分利润,这部分利润又恰好够他再购进这种商品4件,那么甲两次共购进这种商品_______件.51.某建筑工地,有47的工人做任务A ,余 下的工人中,56的人做任务B ,其余做任务c .两 小时后,调走做任务A 和做任务C 的工人总数 的118做任务D ,此时做任务A 和做任务c 的人 共有51人,求这个工地的工人总人数.52.数一数图4中共有多少个长方形(不包括正方形).53.如图5,由若干个小等边三角形构成,其中每十三角形的顶点都被称为格点,则以图中的格点为顶点的等边三角形有多少个?54.如图6,由18个1×1×1的小正方体组成,在图中能找到多少个1×2×2的长方体?55.如图7所示,在圆上有8个点,把其中任意两点连接起来,求过A 点的线段与其他线段相交在圆的内部最多有多少个交点.56.如图8,在S ×5的网格中,每一个小正方形的面积为1,点P 可以是每个小正方形的顶点,求满足S △PAB=2的点P 的个数.57.蓄水池有甲、乙、丙三个进水管,如果想灌满整池水,单独打 开甲管需6小时,单独打开乙管需8小时,单独打开丙管需10小时, 上午8点三个管同时打开,中间甲管因故关闭,结果到中午12点水 池被灌满.求甲管被关闭的时间.58.设边长为整数、面积为2016的不同长方形有n 1个,边长为整数、面积为n 1的不同长方形有n 2个,求201 6÷(n 1+n 2).59.如图9所示,一个大长方形被分成9个小长方形.小长方形内的数字表示它的面积,小长方形外面的数字表示那个小长方形的那一条边的长,求大长方形的面积.60.有甲、乙、丙三人,已知甲和乙的平均年龄是26岁,乙和丙的平均年龄是21岁,甲和丙的平均年龄是19岁,求三人的平均年龄.61.如图10,小正方形的59被阴影部分覆盖,大 正方形的1516被阴影部分覆盖,求小正方形的阴影部 分与大正方形阴影部分面积比.62.有人问毕达哥拉斯:他的学校中有多少学生,他回答说:“现在,有一半的学生学数学,四分之一的学生学音乐,七分之一的学生在休息,还剩三个女同学…,”那么毕迭哥拉斯的学校中有____名学生.63.如果一个圆的面积与它的周长的数值相等,求圆的半径.64.如图11,在正方形ABCD 中,AB=2,以C为圆心,CD 长为半径画弧,再以B 为圆心,BA 为半径画弧,与前一条孤交于E ,求扇形BAE 的面积.(圆 周率3)65.如图12,AB=BC =2,且AB ⊥BC ,与都是半径为1的半圆弧,求这个图形的面积.66.天天、Cindy 、Kimi 、石头、Angela 五人按顺序依次取出21个小球.Kimi :“我取了剩下的小球的个数的三分之二”;Cindy :“我取了剩下的小球的个数的一半”,天天:“我取了剩下的小球的个数的一半”,石头:“我取了剩下的全部小球”,Angela:“大家取小球的个数都不同哎!”请问:Kimi 是_____个取小球的,取了_____个.67.在分子为7的最简分数中,与0.2 016最接近的分数的分母 是______.68.把一个圆柱体沿高的方向截短3厘米,它的体积减少84. 78 立方厘米,求这个圆柱体的底面半径.(圆周率取3.1 4) 69.规定:a*b=1134a b +,若(4*3)*a=1,则a=______. 70.现有一块边长为20cm 的正方形铁皮,若在四个角处各锯掉 一个边长为自然数acm(0<a<10)的小正方形铁皮,将其折成一个 无盖的长方体,求长方体的最大体积.71.一个圆锥形容器,若水面高度是圆锥高度的一半时装水的体积是201.6立方厘米,求这个容器的体积.72.为计算一个底部是圆柱形瓶子的容积,将瓶子装一定体积的水放在桌面上,然后把瓶子倒置,测得部分数据如图13,则瓶子的 容积是多少?(结果保留,不考虑瓶身的厚度)73.8个相同的小长方体可拼成如图14所示的大长方体,若小长方体的表面积是10.8,求大长方体的体积.74.某班有3个数学小组,第1小组的人 数是其余小组总人数的13,第2小组的人数 是其余小组总人数的14,第3小组有22人,求该班共有多少人. 75.超市运来一批大米,第一天卖掉15,第二天卖掉余下部分的 14,第三天卖掉余下部分的13,这时还剩下600千克,求超市在前三 天共卖掉了多少千克大米?76.某商场销售一种商品,由于进价降低5%,售价保持不变,使获利提高6%,则原利润率是_______.77.甲乙两个容器中共有水810毫升,先将甲容器中10%的水倒入乙容器,再将乙容器中10%的水倒入甲容器,这时甲乙两个容器中的水量相等,问:原来乙容器中有多少水?78.将201 6个红球、201个白球排成一条直线,至少会有多少个红球连在一起?79.有5角,1元的两种硬币若干枚,把它们分成钱数相等的两堆,其中,第一堆中5角硬币与1元硬币的个数比为5:3,第二堆中5角硬币与1元硬币的钱数比为1:2,则这袋硬币总共至少有____枚.80.不透明的袋中装有外形完全相同的红球6个,黑球5个,白球4个,从中任取两球,求这两球都不是白球的概率.81.A、B、C三人单独制作一个零件的时间分别为:20分钟,30分钟.35分钟,单独维护一台机器的时间分别为:32分钟,28分钟,24 分钟.现需制作20个零件,维护25台机器,问三人合作至少需要多长时间才能完成?(要求:每个零件及每台机器必须由同一人负责)82.某校四、五、六三个年级的总人数在200到300之间,若四、五年级的人数比是4:3,五、六年级的人数比为7:11,求三个年级的总人数.83.小明、小雷、小乐三人参加“希望杯”全国数学邀请赛,其中小明、小雷的平均成绩比他们三个人的平均成绩少5分,小雷、小乐的平均成绩比他们三个人的平均成绩多3分.已知小雷的成绩是84分,求他们三个人的平均成绩.84.六年级3班有40名学生,学号分别是1~40.除小明之外,将其余39名学生分成5组,可使每个小组的学生学号之和都相等;若将这39名学生分成8组,也可使每个小组的学生学号之和相等,问:小明的学号是多少?85.王明、李华两人玩射击游戏,箭靶如图15所示,规定:王明射中甲部分才算成功,李华射中乙部分才算成功,若 AOB=90,C为弧AB的中点,问:王明、李华两人谁的成功率大些?86.A、B、C、D四人中有一个人手里有巧克力,四人的叙述如下:A:巧克力不在我这里;B:巧克力在D那里;c:巧克力在B那里;D:巧克力不在我这里,若其中只有一人说了假话,那么谁的手里有巧克力.87.一条绳子第一次剪掉1米,第二次剪掉剩余部分的14;,第三次剪掉1米,第四次剪掉剩余部分的12,第五次剪掉1l米,第六次剪掉剩余部分的23,这根绳子还剩下1米,则这根绳子原来有____米.88.A、B、c、D四人排成一排照相,其中A与C必须相邻.B不排在第一个,D不排在最后一个,则有几种排列方法?89.六年级1到4班的四间教室排成一排,如图16所示,甲、乙、丙、丁四人分别走进四间教室,且每间教室恰好走进一人,已知乙未进2班教室,求乙、丙两人走进相邻两班教室的方法有多少种?90.现要将35颗糖果分给6人,若每个人分得的糖果数各不相同,则分得糖果最多的那个人至少分得几颗?91.将放有乒乓球的2016个盒子从左到右排成一行,如果最左边的盒子里放了8个乒乓球,且每相邻的5个盒子里球的总个数都是42,那么最右边的盒子里的乒乓球的个数为_________.92.有分别标有1,2,3,4,5,6的6个小球和6个盒子,现将小球全部放进盒子里,要求:盒子的编号不能比盒子里的小球的编号大,且编号为3的盒子至少装1个球.求共有多少种不同的方案?93.如果两个人每天工作2小时,2天生产2件商品.那么,6个人每天工作6小时,6天生产商品____件.94.列车A通过180米的隧道需15秒,通过150米的隧道需13 秒.列车B的车长为120米,它的行驶速度是36千米/小时.则两辆车从相遇到错车而过需多少秒.95.甲、乙两人分别从不同的两地A、B同时同向朝c地出发,且A、B两地在C地的同一侧,行驶了20分钟,甲从A到达B,此时甲、乙相距700米;又行驶了30分钟,乙到达c地,此时甲距C地还有100 米,求A、B两地相距多少米?96.M=1×2×3×…×2016,用M除以13,将所得的商再除以13,重复以上操作,直到所得的商不能被13整除为止,求M可整除多少次1 3?97.A、B两地相距1800米,甲、乙两人分别从A、B两地同时出发相向而行,15分钟后两人相遇,已知甲的速度是70米/分钟,如果乙提速10%,甲、乙仍从A、B两地同时出发相向而行,则出发多少分钟后两人相遇.98.从甲港往下游相距24千米的乙港运860吨货物,大船每艘可装运120吨,小船每艘可装运72吨,大船、小船载货时在静水中的速度都是33千米/时,水速是3千米/时;大船、小船在空载时在静水中的速度都是39千米/时.大船、小船上午8点同时从甲港出发,求两船一起将货物运达乙港的时间.(装卸时间不计,大、小船每次都正好装满)99. 100人排队依次跑步经过某座桥,其中前面50人,每两人之间相距1米,后面50人,每两人之间相距2米,第50人和51人之间相距5米,已知他们每分钟都跑1 50米,整个队伍通过该桥用了3分钟,求该桥长度.100.某唱片公司新推出5首歌,为检验这些歌曲的受欢迎程度,现邀请520名听众对这些歌曲进行评价,每首歌不喜欢的人数如表所示.又每人至少喜欢1首歌,其中,仅喜欢1首歌的有70人,5首歌都喜欢的是60人,喜欢2首歌和喜欢3首歌的人数一样多,那么仅喜欢4首歌的有_______人.参考答案1.设0.2%+2%+20%=a,0.2%+2%+20%+200%=b.则原式=(1+a)b- (l+b)a =b-a =2.2.原式=2016×1531.3+3 48⨯⨯⨯2520+4=2016⨯153 (10)(1.310)3 48504÷⨯⨯+⨯=34(133)8⨯⨯+=243.原式=1111112312⎫⎛⎪-⎪⎪⨯⨯⎪⎝⎭+1111113423⎫⎛⎪-⎪⎪⨯⨯⎪⎝⎭+1111114534⎫⎛⎪-⎪⎪⨯⨯⎪⎝⎭+…+1111112015201620142015⎫⎛⎪-⎪⎪ ⨯⨯⎪⎝⎭=111 20152016⨯11112-⨯=2015⨯2016-2=40622384.观察1,2,6,15,31,56,a,141,b,286:后面一个数减去前面一个数,得1,4,9,16,25…..则a-56=36,b-141=64解得a=92,b=2055.对分母进行放缩先缩:原式>1111111+++++ 201120112011201120112011=20116=13356后放:原式<1111111+++++ 201620162016201620162016=20166=336故原式的整数部分是3356.xm+yn+xn+ym=x(m+n)+y(m+n)=(m+n)(x+y)=35 56=127.因为0.=2 3。
2014年六年级希望杯数学竞赛试卷
第四届希望杯数学竞赛试卷(六年级完卷时间:60分钟)成绩:___________一、填空。
(21分)1、( )∶20=4∶( )=0.2=50( )=( )%2、一个三位小数,用“四舍五入”法精确到百分位约是45.80,这个数最大是( ),最小是( )。
3、若5a=3b(a、b均不为0)那么b:a=( ):( )。
4、找规律:1,3,2,6,4,( ),( ),15,11,……5、在小数3.1415926的两个数字上方加2个循环点,得到循环小数,这样的循环小数中,最小的 。
6、一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是_______。
7、甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,______店的售价更便宜,便宜_____元。
二、选择正确答案的序号填在括号里。
(21分)1、21千克的53是1千克的( )。
A 、53 B 、103 C 、65 D 、472、72×8÷72×8的计算结果为( )。
A 、1 B 、54911 C 、65 D 、643、下列图形中,对称轴最少的是( )A 、长方形B 、正方形C 、等腰三角形D 、圆4、一根长2米的绳子,先用去31 ,再用去31米,还剩下( )米。
A 、 131B 、34C 、1D 、 23 5、一个圆的半径扩大4倍,面积扩大( )倍。
A 、4B 、8C 、16D 、6、把5克盐溶解在100克水中,盐和盐水重量的比是( )。
A 、 1:20B 、20:21C 、1:217、在任意的37个人中,至少有( )人的属相相同。
A 、2B 、4C 、6三、下面各题怎样简便就怎样算。
(16分)(1)3.7×99+3.7 (2)5.93+0.64+0.07+0.36(3)2013÷201320142013 (4)21+41+81+161+321+641四、解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年希望杯试卷
姓名
一、想想填填。
(45分)每小题3分。
1.4个百和3个一合起来是( )。
2.在□里填入合适的数。
(9分)
6
5
0 + 7 2 -4 2 5
1 0 0 8 6 4 3.看图回答:( 北
(1)邮政局在学校的( )面,超市在小青家的( )面。
(2)小洪上学,她从家出发,先向( )面走到邮政局,再向( )走到学校。
4.一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分钟,全部锯完需要( )分。
5.从午夜零时到中午12时,时针和分针共重叠( )次。
6.一个人唱一首歌要3分钟,8个人合唱这首歌要( )分钟。
7.根据“37037×3=111111”,在括号里填上适当的数。
37037×( )=222222 37037×( )=555555
8.观察下列各组数的排列规律,然后填空。
3,5,9,15,23,( ),( ),( )。
2,3,5, 9,17,( ),( ),( )。
9.两个数的和是792,其中一个加数的个位是0,若把0去掉则与另一个加数相同,这两个数学校
分别是()和()。
10.2011+2013+2015+2017+2019=()×()=()。
11.用0,1,2,3这四个数字可以组成()个不同的三位数。
12.哥哥5年前的年龄和妹妹3年后的年龄相等,当哥哥()岁时,正好是妹妹年龄的3倍。
三、列式计算。
(8分)
100-98+96-94+92-90+……+8-6+4-2 1001×1001-1001
四、完成下列图(12分)
1、将2,4,6,8,10,12这六个数分别填入下面的圆圈中,使每条边上三个数的和等于22。
2、右图中共有多少个三角形?
3.下图是一个“凹”字形的花园圃,求花圃的周长。
(单位:米)
五、解决问题。
(35分)
1.用200元钱买下面三种球中的任意两种各一个,还剩多少元?
48元65元86元
2.下面是小华从家到学校的线路图。
一天放学回家,她想经过商店买文具后再回家,小华最少要走多少米路?
3.某养鸡专业户养的母鸡比公鸡多246只,养的母鸡是公鸡的4倍。
养的公鸡和母鸡各多少只?
4.今年五月一日(劳动节)是星期四,今年十月一日(国庆节)是星期几?
5、一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?
6、3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克,一筐苹果和一筐橘子各重多少千克?
7、小华家先后买了两批小鸡。
第一批的20只每只重60克,第二批的30只每只重70克。
小华家的小鸡平均多重?。