第十四章 整式的乘法与因式分解 小专题(七) 因式分解 同步练习(含答案)
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b) D.x2﹣16+3x=(x+4)(x﹣4)+3x 2.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列计算中,结果正确的是()A.2a﹣a=2 B.t2+t3=t5C.(﹣x2)3=﹣x6D.x6÷x3=x2 4.若3x=15,3y=5,则3x-y等于( ).A.5 B.3 C.15 D.105.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.已知x2﹣8x+a(a为常数)可以写成一个完全平方式,则a的值为()A.16 B.﹣16 C.64 D.﹣648.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2 B.﹣7、2 C.﹣7、﹣2 D.7、﹣29.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5 B.﹣10 C.﹣5 D.1010.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k 个完全平方数的和,那么k的最小值为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知若a+b=﹣3,ab=2,则(a﹣b)2═.12.因式分解:m2﹣n2﹣2m+1=.13.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.14.9992﹣998×1002=.15.因式分解:x3-2x2y+xy2=________.16.已知3a=5,9b=10,则3a+2b的值为________.17.已知A=2x+y,B=2x-y,计算A2-B2=________.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为.三.解答题(共46分,19题6分,20 ---24题8分)19.计算:(1)计算:12﹣38+|3﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).20.分解因式:(1)m3n-9mn; (2)(x2+4)2-16x2; (3)x2-4y2-x+2y;(4)4x3y+4x2y2+xy3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2, 对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积S 1的差(即S ﹣S 1)是一个常数,求出这个常数.24.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2+3x﹣9)(x2+3x+1)+25进行因式分解的过程.解:设x2+3x=y原式=(y﹣9)(y+1)+25(第一步)=y2﹣8y+16(第二步)=(y﹣4)2(第三步)=(x2+3x﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4进行因式分解.参考答案一、题号 1 2 3 4 5 6 7 8 9 10 答案 C A C B B B A B C D二、11.解:∵a+b=﹣3,ab=2,∴(a﹣b)2═(a+b)2﹣4ab=(﹣3)2﹣4×2=9﹣8=1.故答案为:1.12.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).13.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.14.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.15.x(x-y)216.5017.8xy18.解:依题意得剩余部分为(2m+3)2﹣(m+3)2=4m2+12m+9﹣m2﹣6m﹣9=3m2+6m,而拼成的矩形一边长为m,∴另一边长是(3m2+6m)÷m=3m+6.故答案为:3m+6. 三、19. 解:(1)原式=23﹣2+2﹣3=3;(2)原式=a 2﹣2a+3a ﹣6﹣a 2+a =2a ﹣6.20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:由题意可得,方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2, 方案三:.23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 > S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.解:(1)>.理由:S1=(m+1)(m+7)=m2+8m+7,S=(m+2)(m+4)=m2+6m+8,2∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.24.解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x﹣1)2(x+4)2;故答案为:(x﹣1)2(x+4)2;(3)(9x2﹣6x+3)(9x2﹣6x﹣1)+4设9x2﹣6x=y,原式=(y+3)(y﹣1)+4,=y2+2y+1,=(y+1)2,=(9x2﹣6x+1)2,=(3x﹣1)4.。
八年级数学上册第十四章整式的乘法与因式分解单元综合测试题含解析
《第14章整式的乘法与因式分解》一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.3.如果(a3)2•a x=a24,则x=.4.计算:(1﹣2a)(2a﹣1)=.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.7.已知(﹣x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2﹣(a1+a3)2的值.8.已知:A=﹣2ab,B=3ab(a+2b),C=2a2b﹣2ab2,则3AB﹣AC=.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.10.我国北宋时期数学家贾宪的著作《开方作法本源》中的“开方作法本源图”如图所示,通过观察你认为图中的a=.二、选择题11.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=﹣4x2D.(﹣3a3)•(﹣5a5)=15a812.如果一个单项式与﹣3ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a2c D.ac13.计算[(a+b)2]3•(a+b)3的正确结果是()A.(a+b)8 B.(a+b)9C.(a+b)10D.(a+b)1114.若x2﹣y2=20,且x+y=﹣5,则x﹣y的值是()A.5 B.4 C.﹣4 D.以上都不对15.若25x2+30xy+k是一个完全平方式,则k是()A.36y2B.9y2C.6y2D.y216.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.617.计算(5x+2)(2x﹣1)的结果是()A.10x2﹣2 B.10x2﹣x﹣2 C.10x2+4x﹣2 D.10x2﹣5x﹣218.下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题(共46分)19.利用乘法公式公式计算(1)(3a+b)(3a﹣b);(2)10012.20.计算:(x+1)2﹣(x﹣1)2.21.化简求值:(2a﹣3b)2﹣(2a+3b)(2a﹣3b)+(2a+3b)2,其中a=﹣2,b=.22.解方程:2(x﹣2)+x2=(x+1)(x﹣1)+x.23.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?《第14章整式的乘法与因式分解》参考答案与试题解析一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法:底数不变指数相加,可得答案.【解答】解:x•x a•x b•x c=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.【考点】单项式乘多项式;单项式乘单项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:﹣2ab(a﹣b)=﹣2ab•a+2ab•b=﹣2a2b+2ab2,(﹣a2)3(﹣a32)=﹣a6•(﹣a32)=a38.故答案为:﹣2a2b+2ab2,a38.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.如果(a3)2•a x=a24,则x=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据幂的乘方进行计算,再根据同底数幂的乘法得出方程6+x=24,求出即可.【解答】解:∵(a3)2•a x=a24,∴a6•a x=a24,∴6+x=24,∴x=18,故答案为:18.【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=24.4.计算:(1﹣2a)(2a﹣1)=.【考点】完全平方公式.【分析】先提取“﹣"号,再根据完全平方公式进行计算即可.【解答】解:(1﹣2a)(2a﹣1)=﹣(1﹣2a)2=﹣(1﹣4a+4a2)=﹣1+4a﹣4a2,故答案为:﹣1+4a﹣4a2.【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:∵长4×109mm,宽2。
第14章 整式的乘法与因式分解 单元测试(含答案)
第十四章整式的乘法与因式分解(90分钟 100分)一、选择题(每小题3分,共30分)1.(2020·朝阳中考)下列运算正确的是( C )A.a3·a2=a6B.(a3)2=a5C.2a3÷a2=2a D.2x+3x=5x2【解析】A.a3·a2=a5,故不正确;B.(a3)2=a6,故不正确;C.2a3÷a2=2a,正确;D.2x+3x=5x,故不正确.2.(2020·眉山中考)下列计算正确的是( C )A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(-2a2b)3=-8a6b3D.(-x)5÷x2=x3【解析】A.原式=x2+2xy+y2,不符合题意;B.原式不能合并,不符合题意;C.原式=-8a6b3,符合题意;D.原式=-x5÷x2=-x3,不符合题意.3.下列运算正确的是( B )A.a2·a4=a8B.210+(-2)10=211C.(-1-3a)2=1-6a+9a2D.(-3x2y)3=-9x6y3【解析】A.a2·a4=a6,故本选项不符合题意;B.210+(-2)10=210+210=(1+1)×210=2×210=211,故本选项符合题意;C.(-1-3a)2=1+6a+9a2,故本选项不符合题意;D.(-3x2y)3=-27x6y3,故本选项不符合题意.4.下列因式分解正确的是( D )A.x2-y2=(x-y)2B.-x2-y2=-(x+y)(x-y) C.x2-2xy+4y2=(x-2y)2D.-x2-2xy-y2=-(x+y)2【解析】A.x2-y2=(x-y)(x+y),故此选项错误;B.-x2-y2,无法分解因式,故此选项错误;C.x2-2xy+4y2,不是完全平方式,故此选项错误;D.-x2-2xy-y2=-(x+y)2,正确.5.(2021·厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a可以是( C )A.2x2B.4x2C.2x D.4x【解析】∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是2x.6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( A )A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b) D.(a+b)(a-2b)【解析】根据题意得:(a+2b)(a-2b)=a2-4b2.7.为了用乘法公式计算(2x-3y-4z)( 2x-3y+4z),甲乙丙丁四位同学分别对它们进行了变形,其中变形正确的是( B )A.[2x-(3y+4z)][2x-(3y-4z)] B.[(2x-3y)-4z][(2x-3y)+4z] C.[(2x-4z)-3y][(2x+4z)-3y] D.[(2x-4z)+3y][(2x-4z)-3y] 【解析】观察(2x-3y-4z)( 2x-3y+4z),符号相同的是2x,-3y,符号相反的是-4z和4z,把符号相同的放在一起,符号相反的放在一起.8.若x2+(m-1)x+1可以用完全平方公式进行因式分解,则m的值为( D )A.-3 B.1 C.-3,1 D.-1,3【解析】∵x2+(m-1)x+1可以用完全平方公式进行因式分解,∴m-1=±2,解得m=-1或m=3.9.(2021·娄底期末)如果(x-3)(2x+4)=2x2-mx+n,那么m,n的值分别是( C )A.2,12 B.-2,12C.2,-12 D.-2,-12【解析】∵(x-3)(2x+4)=2x2-2x-12=2x2-mx+n,∴-m=-2,n=-12,解得m=2,n=-12.10.(2021·长沙期末)定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:1=12-02,3=22-12,5=32-22,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为( A )A.10 000 B.40 000 C.200 D.2 500【解析】介于1到200之间的所有“明德数”之和为:(12-02)+(22-12)+(32-22)+…+(992-982)+(1002-992)=12-02+22-12+32-22+42-32+…+992-982+1002-992=1002=10 000.二、填空题(每小题3分,共24分)11.(2020·丹东中考)因式分解:mn3-4mn=__mn(n+2)(n-2)__.【解析】原式=mn(n2-4)=mn(n+2)(n-2).12.(2020·咸宁中考)因式分解:mx2-2mx+m=__m(x-1)2__.【解析】mx2-2mx+m=m(x2-2x+1)=m(x-1)2.13.计算:(π-3)0+|-2 021|=__2__022__.【解析】原式=1+2 021=2 022.14.(2020·十堰中考)已知x+2y=3,则1+2x+4y=__7__.【解析】∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7.15.如果(m2+n2+1)与(m2+n2-1)的乘积为15,那么m2+n2的值为__4__.【解析】∵(m2+n2+1)与(m2+n2-1)的乘积为15,∴(m2+n2+1)(m2+n2-1)=15,∴(m2+n2)2-1=15,即(m2+n2)2=16,解得m2+n2=4(负数舍去).16.已知a3n=5,b2n=3,则a6n·b4n的值为__225__.【解析】a6n·b4n=a3n×2·b2n×2=(a3n)2·(b2n)2=52·32=225.17.把一根20 cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5 cm2,则这两段铁丝的长分别为__12__cm和8__cm__.【解析】设其中较长的一段的长为x cm(10<x<20),则另一段的长为(20-x)cm.则两个小正方形的边长分别为1x cm和41(20-x)cm.4∵两正方形面积之差为5 cm2,∴(14x)2-[14(20-x)]2=5,解得x=12.则另一段长为20-12=8(cm).∴两段铁丝的长分别为12 cm和8 cm. 18.观察、分析、猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=__[n(n+3)+1]2__.(n为整数)【解析】∵1×2×3×4+1=[(1×4)+1]2=52,2×3×4×5+1=[(2×5)+1]2=112,3×4×5×6+1=[(3×6)+1]2=192,4×5×6×7+1=[(4×7)+1]2=292,∴n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2.三、解答题(共46分)19.(6分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.(2)计算:(2x-3y)2-(y+3x)(3x-y).(3)已知x m=3,x n=2,求x3m+2n的值.(4)解方程:4(x-2)(x+5)-(2x-3)(2x+1)=11.【解析】(1)[x(x2y2-xy)-y(x2-x3y)]÷3x2y=(x3y2-x2y-x2y+x3y2) ÷3x2y=(2 x3y2-2x2y) ÷3x2y=2 x3y2÷3x2y-2x2y÷3x2y=23xy-23.(2)(2x-3y) 2-(y+3x)(3x-y)=4x2-12xy+9y2-(9x2-y2)=4x2-12xy+9y2-9x2+y2=-5x2-12xy+10y2.(3)因为x m=3,x n=2,所以x3m+2n=x3m×x2n=(x m)3×(x n)2=33×22=108.(4)4(x2+5x-2x-10)-(4x2+2x-6x-3)=4(x2+3x-10)-(4x2-4x -3)=11,4x2+12x-40-4x2+4x+3=11,移项合并同类项得16x=48,x=3.20.(6分)某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2) (第一步)=a2+2ab-a2-b2(第二步)=2ab-b2 (第三步)(1)该同学解答过程从第____步开始出错,错误的原因是______________;(2)写出此题正确的解答过程.【解析】(1)该同学解答过程从第二步开始出错,错误的原因是去括号时没有变号.答案:二 去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.21(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x +10.(1)求正确的a,b的值.(2)计算这道乘法题的正确结果.【解析】(1)(2x-a)(3x+b)=6x2+2bx-3ax-ab=6x2+(2b-3a)x-ab=6x2+11x-10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2-9x+10.∴{2b-3a=11,2b+a=-9,解得{a=-5,b=-2.(2)这道乘法题的正确结果为:(2x-5)(3x-2)=6x2-4x-15x+10=6x2-19x+10.22.(8分)已知a,b,c分别是△ABC的三边.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解.(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.【解析】(1)ac-bc=c(a-b),-a2+2ab-b2=-(a2-2ab+b2)=-(a -b)2.(2)∵ac-bc=-a2+2ab-b2,∴c(a-b)=-(a-b)2,c(a-b)+(a-b)2=0,(a-b)(c+a-b)=0,∵a,b,c分别是△ABC的三边,满足两边之和大于第三边,即c+a-b>0,∴a-b=0,即a=b,故△ABC的形状是等腰三角形.23.(8分)有一个边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.【解析】由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.24.(10分)(2021·潍坊期末)阅读下列材料,并回答问题:若一个正整数x能表示成a2-b2(a,b是正整数,且a>b)的形式,则正整数x称为“明礼崇德数”.例如:因为7=2×3+1=32+2×3+1-32=(3+1)2-32=42-32,所以7是“明礼崇德数”;再如:因为12=4×3=32+2×3+1-32+2×3-1=(3+1)2-(32-2×3+1)=(3+1)2-(3-1)2=42-22,所以12是“明礼崇德数”;再如:M=x2+2xy=x2+2xy+y2-y2=(x+y)2-y2(x,y是正整数),所以M也是“明礼崇德数”.问题1:2 021是“明礼崇德数”吗?说明理由;问题2:2 020是“明礼崇德数”吗?说明理由;问题3:已知N=x2-y2+4x-6y+k(x,y是正整数,k是常数,且x >y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.【解析】问题1:2 021是“明礼崇德数”.理由如下:2 021=2×1 010+1=1 0102+2×1 010+1-1 0102=1 0112-1 0102 ;问题2:2 020是“明礼崇德数”.理由如下:2 020=4×505=(5052+2×505+1)-(5052-2×505+1)=5062-5042;问题3:∵N=x2-y2+4x-6y+k=(x2+4x+4)-(y2+6y+9)+k+5=(x+2)2-(y+3)2+k+5,∴当k+5=0时,N=(x+2)2-(y+3)2为“明礼崇德数”,此时k=-5,故当k=-5时,N为“明礼崇德数”.关闭Word文档返回原板块。
第14章 整式的乘法与因式分解 人教版数学八年级上册同步提优专题训练(含答案)
专题训练 整式的乘法与因式分解1.[2020·遵义]下列计算正确的是( )A.x2+x=x3B.(-3x)2=6x2C.8x4÷2x2=4x2D.(x-2y)(x+2y)=x2-2y22.[2019·绵阳]已知4m=a,8n=b,其中m,n为正整数,则22m+6n可以表示为( )A.ab2B.a+b2C.a2b3D.a2+b33.[2020·益阳]下列因式分解正确的是( )A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)4.[2020·淮安]如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( )A.205B.250C.502D.5205.[2018·乐山]已知实数a,b满足a+b=2,ab=34,则a-b的值为( )A.1B.-52C.±1 D.±526.[2020·乐山改编]已知3m=4,32m-4n=2.若9n=x,则x的值为( )A.8B.4C.8D.27.[2020·武汉]计算:[a3·a5+(3a4)2]÷a2= .8.[2020·成都]已知a=7-3b,则式子a2+6ab+9b2的值为 .9.[2020·聊城]分解因式:x(x-2)-x+2= .10.[2020·绥化]分解因式:m3n2-m= .11.[2020·杭州]设M=x+y,N=x-y,P=xy.若M=1,N=2,则P= .12.[2020·南通]计算:(2m+3n)2-(2m+n)(2m-n).13.[2020·北京]已知5x2-x-1=0,求式子(3x+2)(3x-2)+x(x-2)的值.14.[2019·河池]分解因式:(x-1)2+2(x-5).15.[2018·衢州]有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图4-T-1所示的三种方案:图4-T-1小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2.对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2.请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:16.[2018·安庆模拟]特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B,C,B+C=10,A>3),那么它们的乘积是一个四位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的计算结果;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz;(3)计算:99991×99999= .17.[2019·随州]若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+x3=45,则x= ;②若7y-y8=26,则y= ;③若t93+5t8=13t1,则t= .【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm一定能被 整除,mn-nm一定能被 整除,mn·nm-mn一定能被 整除(请从大于5的整数中选择合适的数填空).【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小顺序重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532-235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为 ;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.典题讲评与答案详析1.C2.A [解析] ∵4m =a ,8n =b ,∴22m+6n =22m ×26n =(22)m ×(23)2n =4m ×82n =4m ×(8n )2=ab 2.故选A .3.C4.D [解析] 设较小的奇数为x ,较大的奇数为x+2,根据题意得(x+2)2-x 2=(x+2-x )(x+2+x )=4x+4.若4x+4=205,即x=2014,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.5.C [解析] ∵a+b=2,ab=34,∴(a+b )2=4=a 2+2ab+b 2.∴a 2+b 2=52.∴(a-b )2=a 2-2ab+b 2=1.∴a-b=±1.6.C [解析] ∵3m =4,32m-4n =(3m )2÷(3n )4=2,∴42÷(3n )4=2.∴(3n )4=42÷2=8.又∵9n =32n =x ,∴(3n )4=(32n )2=x 2.∴x 2=8.∵x>0,∴x=8.7.10a 68.49 [解析] ∵a=7-3b ,∴a+3b=7.∴a 2+6ab+9b 2=(a+3b )2=72=49.9.(x-2)(x-1)10.m (mn+1)(mn-1)11.-34 [解析] (x+y )2=x 2+2xy+y 2=1,(x-y )2=x 2-2xy+y 2=4.两式相减得4xy=-3,解得xy=-34.∴P=-34.12.解:原式=4m 2+12mn+9n 2-(4m 2-n 2)=4m 2+12mn+9n 2-4m 2+n 2=12mn+10n 2.13.解:(3x+2)(3x-2)+x(x-2)=9x2-4+x2-2x=10x2-2x-4.∵5x2-x-1=0,∴5x2-x=1.∴原式=2(5x2-x)-4=-2.14.解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).15.解:方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2.方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.16.解:(1)7221.(2)验证:(10x+y)(10x+z)=100x2+10xz+10xy+yz=100x2+10x(y+z)+yz=100x2+100x+yz=100x(x+1)+yz.(3)999900000917.解:(1)①∵mn=10m+n,∴若2x+x3=45,则10×2+x+10x+3=45,解得x=2.故答案为2.②若7y-y8=26,则10×7+y-(10y+8)=26,解得y=4.故答案为4.③由abc=100a+10b+c及四位数的类似公式,得若t93+5t8=13t1,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,解得t=7.故答案为7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴mn+nm一定能被11整除.∵mn-nm=10m+n-(10n+m) =9m-9n=9(m-n),∴mn-nm一定能被9整除.∵mn·nm-mn=(10m+n)(10n+m)-mn=100mn+10m2+10n2+mn-mn=10(10mn+m2+n2),∴mn·nm-mn一定能被10整除.故答案为11,9,10.(3)①若选的数为325,则用532-235=297.以下按照上述规则继续计算:972-279=693,963-369=594,954-459=495,954-459=495,….故答案为495.②当任选的三位数为abc时,第一次运算后得100a+10b+c-(100c+10b+a)=99(a-c),结果为99的倍数.∵a>b>c,∴a≥b+1≥c+2.∴a-c≥2.又∵9≥a>c≥0,∴a-c≤9.∴a-c=2,3,4,5,6,7,8,9.∴第一次运算后可能得到198,297,396,495,594,693,792,891,再让这些数字经过运算,分别可以得到:981-189=792,972-279=693,963-369=594,954-459=495,954-459=495,….故均可产生黑洞数495.。
8年级数学人教版上册同步练习-整式的乘法(含答案解析)
第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
整式的乘法与因式分解习题带答案精选全文完整版
可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。
第14章 整式的乘法与因式分解 人教版八年级上册同步训练(含答案)
八年级上册第14章同步训练一.解答题1.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.2.计算(1)3﹣9+3﹣4;(2)﹣++;(3)(﹣)(+)+(﹣1)2.3.解答下列问题(1)一正方形的面积是a2+6ab+9b2(a>0,b>0),则表示该正方形的边长的代数式是.(2)求证:当n为正整数时,(2n+1)2﹣(2n﹣1)2能被8整除.4.(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).5.已知,关于x,y的方程组的解为x、y.(1)x=,y=(用含k的代数式表示);(2)若x、y互为相反数,求k的值;(3)若2y•3m•8x=12m,求m的值.6.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上.BC=DE=a,AC =BD=b,AB=BE=c,且AB⊥BE.(1)在探究长方形ACDF的面积S时,我们可以用两种不同的方法:一种是找到长和宽,然后利用长方形的面积公式,就可得到S;另一种是将长方形ACDF看成是由△ABC,△BDE,△AEF,△ABE组成的,分别求出它们的面积,再相加也可以得到S.请根据以上材料,填空:方法一:S=.方法二,S=S△ABC+S△BDE+S AEF+S△ABE=ab+b2﹣a2+c2.(2)由于(1)中的两种方法表示的都是长方形ACDP的面积,因此它们应该相等,请利用以上的结论求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.7.阅读材料∵(x+3)(x﹣2)=x2+x﹣6,∴(x2+x﹣6)÷(x﹣2)=x+3,这说明多项式x2+x﹣6能被x﹣2整除,同时也说明多项式x2+x﹣6有一个因式为x﹣2;另外,当x=2时,多项式x2+x﹣6的值为零.根据上述信息,解答下列问题(1)根据上面的材料猜想:已知一个多项式有因式x﹣2,则说明该多项式能被整除,当x=2时,该多项式的值为;(2)探索规律:一般地,如果一个关于x的多项式M,当x=k时,M的值为0,试确定M与代数式x﹣k之间的关系;(3)应用:已知x﹣2能整除x2+kx﹣14,利用上面的信息求出k的值.8.已知有理数x,y满足x+y=,xy=﹣3.(1)求(x+1)(y+1)的值;(2)求x2+y2的值.9.阅读下列材料:定义:任意两个实数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为a,b的“如意数”.(1)若a=3,b=﹣2,则a,b的“如意数”c=.(2)若a=﹣m﹣4,b=m,试说明a,b的“如意数”c≤0.(3)已知a=x2(x≠0),且a,b的“如意数”为c=x4+x2﹣1,请用含x的式子表示b.10.因式分解:(1)3a2b2﹣6ab3;(2)﹣27a3b+18a2b2﹣3ab3;(3)x3+5x2﹣x﹣5;(4)(x2﹣4)2﹣9x2.参考答案一.解答题1.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).2.解:(1)原式=12﹣3+9﹣=9+8;(2)原式=2+5+2=9;(3)原式=5﹣2+3﹣2+1=7﹣2.3.(1)解:∵a2+6ab+9b2=(a+3b)2,∴表示该正方形的边长的代数式是a+3b.故答案为:a+3b;(2)证明:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n×2=8n,∴原式能被8整除.4.解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.5.解:(1),②﹣①得3y=6﹣9k.∴y=2﹣3k,把y=2﹣3k代入①得x=k﹣4.故答案为:k﹣4,2﹣3k;(2)∵x、y互为相反数,∴k﹣4+2﹣3k=0.∴k=﹣1;(3)∵2y•23x=12m÷3m,∴23x+y=(12÷3)m,∴23x+y=22m,∴2m=3x+y=3(k﹣4)+2﹣3k=3k﹣12+2﹣3k=﹣10,∴m=﹣5.6.解:(1)S=b(a+b)=ab+b2.故答案为S=ab+b2;(2)由题意得:,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2;(3)∵a2+b2=c2,且c=10,a=6,∴62+b2=102,∴b=8,∴S=ab+b2=6×8+64=112.答:S的值为112.7.解:(1)已知一个多项式有因式x﹣2,说明此多项式能被(x﹣2)整除,当x=2时,该多项式的值为0;故答案为:(x﹣2),0;(2)根据(1)得出的关系,得出M能被(x﹣k)整除;(3)∵x﹣2能整除x2+kx﹣14,∴当x﹣2=0时,x2+kx﹣14=0,当x=2时,x2+kx﹣14=4+2k﹣14=0,解得:k=5.8.解:(1)(x+1)(y+1)=xy+(x+y)+1=﹣3++1=﹣1;(2)x2+y2=(x+y)2﹣2xy=+6=6.9.解:(1)∵c=ab+a+b=3×(﹣2)+3+(﹣2)=﹣5.∴a,b的“如意数”c是﹣5.故答案为:﹣5.(2)c=m(﹣m﹣4)﹣m﹣4+m=﹣m2﹣4m﹣4=﹣(m2+4m+4)=﹣(m+2)2∵(m+2)2≥0,∴﹣(m﹣2)2≤0,∴a,b的“如意数“c≤0.(3)∵c=x2×b+x2+b=x4+x2﹣1,∴b(x2+1)=x4﹣1,∵x2+1≠0,∴b===x2﹣1.10.解:(1)3a2b2﹣6ab3=3ab2(a﹣2b);(2)﹣27a3b+18a2b2﹣3ab3=﹣3ab(9a2﹣6ab+b2)=﹣3ab(3a﹣b)2;(3)x3+5x2﹣x﹣5=x2(x+5)﹣(x+5)=(x+5)(x+1)(x﹣1);(4)(x2﹣4)2﹣9x2=(x2﹣4+3x)(x2﹣4﹣3x)=(x+4)(x﹣1)(x﹣4)(x+1).。
《第14章整式的乘法与因式分解》单元测试题(含答案).doc
(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
《第14章整式的乘法与因式分解》单元测试含答案
《第14章整式的乘法与因式分解》单元测试含答案一、选择题(共3小题)1.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.242.下面的多项式在实数范畴内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+13.若A=101×9996×10005,B=10004×9997×101,则A﹣B之值为何?()A.101 B.﹣101 C.808 D.﹣808二、填空题(共10小题)4.在实数范畴内因式分解:x2y﹣3y=______.5.已知a2﹣a﹣1=0,则a3﹣a2﹣a+2020=______.6.已知a+b=2,ab=1,则a2b+ab2的值为______.7.分解因式:ax2+2ax﹣3a=______.8.在实数范畴内分解因式:x3﹣6x=______.9.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为______.10.设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列,结果是______<______<______.11.已知实数a,b满足:a2+1=,b2+1=,则2020|a﹣b|=______.12.分解因式:x2﹣3x+2=______.13.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为______.三、解答题(共4小题)14.假如把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把如此的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,因此64746是“和谐数”.再如:33,181,212,4664,…,差不多上“和谐数”.(1)请你直截了当写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.15.假如把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把如此的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,差不多上“和谐数”.(1)请你直截了当写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.16.已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.17.设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,要求出所有满足条件的k的值;若不能,请说明理由.第14章整式的乘法与因式分解(17)参考答案一、选择题(共3小题)1.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24【解答】解:依照题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.2.下面的多项式在实数范畴内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1【解答】解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.故选:D.3.若A=101×9996×10005,B=10004×9997×101,则A﹣B之值为何?()A.101 B.﹣101 C.808 D.﹣808【解答】解:∵A=101×9996×10005,B=10004×9997×101,∴A﹣B=101×9996×10005﹣10004×9997×101=101[(10000﹣4)(10000+5)﹣(10000+4)(10000﹣3)]=101(100000000+10000﹣20﹣100000000﹣10000+12)=101×(﹣8)=﹣808;故选D.二、填空题(共10小题)4.在实数范畴内因式分解:x2y﹣3y= y(x﹣)(x+).【解答】解:原式=y(x2﹣3)=y(x﹣)(x+),故答案为:y(x﹣)(x+).5.已知a2﹣a﹣1=0,则a3﹣a2﹣a+2020= 2020 .【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2020=a(a2﹣a)﹣a+2020=a﹣a+2020=2020,故答案为:2020.6.已知a+b=2,ab=1,则a2b+ab2的值为 2 .【解答】解:∵a+b=2,ab=1,∴a2b+ab2=ab(a+b)=2.故答案为:27.分解因式:ax2+2ax﹣3a= a(x+3)(x﹣1).【解答】解:ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1).故答案为:a(x+3)(x﹣1)8.在实数范畴内分解因式:x3﹣6x= x(x+)(x﹣).【解答】解:原式=x(x2﹣6)=x(x+)(x﹣).故答案为:x(x+)(x﹣)9.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70 .【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.10.设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列,结果是 a <c < b .【解答】解:a=192×918=361×918,b=8882﹣302=(888﹣30)×(888+30)=858×918,c=10532﹣7472=(1053+747)×(1053﹣747)=1800×306=600×918,因此a<c<b.故答案为:a<c<b.11.已知实数a,b满足:a2+1=,b2+1=,则2020|a﹣b|= 1 .【解答】解:∵a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,(a+b)(a﹣b)=,[ab(a+b)+1](a﹣b)=0,∴a﹣b=0,即a=b,∴2020|a﹣b|=20200=1.故答案为:1.12.分解因式:x2﹣3x+2= (x﹣1)(x﹣2).【解答】解:x2﹣3x+2=(x﹣1)(x﹣2).13.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23 .【解答】解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为:23.三、解答题(共4小题)14.假如把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把如此的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,因此64746是“和谐数”.再如:33,181,212,4664,…,差不多上“和谐数”.(1)请你直截了当写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【解答】解:(1)四位“和谐数”:1221,1331,1111,6666;任意一个四位“和谐数”都能被11整数,理由如下:设任意四位数“和谐数”形式为:abba(a、b为自然数),则a×103+b×102+b×10+a=1001a+110b,∵=91a+10b∴四位数“和谐数”abba能被11整数;∴任意四位数“和谐数”都能够被11整除(2)设能被11整除的三位“和谐数”为:xyx,则x•102+y•10+x=101x+10y,=9x+y+,∵1≤x≤4,101x+10y能被11整除,∴2x﹣y=0,∴y=2x(1≤x≤4).15.假如把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把如此的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,差不多上“和谐数”.(1)请你直截了当写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【解答】解:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯独)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:a,b,c,d.个位到最高位排列:d,c,b,a.由题意,可得两组数据相同,则:a=d,b=c,则===91a+10b为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都能够被11整除;(2)设能被11整除的三位“和谐数”为:,则满足:个位到最高位排列:x,y,z.最高位到个位排列:z,y,x.由题意,两组数据相同,则:x=z,故==101x+10y,故===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).16.已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.【解答】解:∵a+b=2,∴(a+b)2=4,∴a2+2ab+b2=4,又∵ab=﹣3,∴a2﹣6+b2=4∴a2+b2=10,∴(a2+b2)ab=a3b+ab3=﹣30.17.设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,要求出所有满足条件的k的值;若不能,请说明理由.【解答】解:能;(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.。
2023学年人教版八年级数学上册《第14章整式乘法与因式分解》同步知识点分类练习题(附答案)
2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》同步知识点分类练习题(附答案)一.同底数幂的乘法1.计算:a2•a5+a•a3•a3.二.幂的乘方与积的乘方2.计算(﹣)2022×(1.5)2023的结果是()A.﹣B.C.D.﹣3.计算:x4•x5•(﹣x)7+5(x4)4﹣(x8)2.三.单项式乘单项式4.计算:(1)(﹣3ab)•(﹣2a)•(﹣a2b3);(2)四.单项式乘多项式5.计算(﹣2x)(x3﹣x+1)=.6.计算:(1)(﹣3x3y)(4x﹣3x2﹣1);五.多项式乘多项式7.若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6 8.计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)六.完全平方公式9.已知x2+(k﹣1)xy+4y2是一个完全平方式,则k的值是()A.5B.5或﹣3C.﹣3D.±410.已知(a+b)2=7,(a﹣b)2=3,则ab=.11.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.12.已知:(2021﹣a)(2020﹣a)=3,则(2021﹣a)2+(2020﹣a)2的值为13.已知:a=2020x+2021,b=2020x+2022,c=2020x+2023.则a2+b2+c2﹣ab﹣bc﹣ac的值为14.若x是不为0的有理数,已知M=(x2+2x+1)(x2﹣2x+1),N=(x2+x+1)(x2﹣x+1),则M与N的大小是15.已知a+b=﹣4,ab=3.求:(1)a2+b2;(2)a﹣b的值.16.已知:a(a﹣1)﹣(a2﹣b)=﹣5.求:代数式﹣ab的值.七.完全平方公式的几何背景17.如图两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.2418.如图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是.(2)用两种不同的方法求图中阴影部分的面积.【方法1】S阴影=;【方法2】S阴影=;(3)观察如图2,写出(a+b)2,(a﹣b)2,ab这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若x+y=10,xy=16,求x﹣y的值.八.平方差公式19.若a﹣b=1,则代数式a2﹣b2﹣2b的值为()A.0B.1C.2D.320.若m+n=2,m2﹣n2=12,则(m﹣n)2=21.计算:=.22.计算(2+1)×(22+1)×(24+1)…(2128+1)+1=.23.要求:利用乘法公式计算.(1)2023×2021﹣20222;九.平方差公式的几何背景24.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)25.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.26.如图1,将边长为a的大正方形剪去一个边长为b的小正方形并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为.27.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).十.因式分解的意义28.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ax+4x2=(a﹣2x)2D.ax+ay+a=(ax+y)29.阅读:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式及m的值.解“设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n ∴解得∴另一个因式为x﹣7,m的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣5,求另一个因式及k的值.(2)已知2x2﹣13x+p有一个因式x﹣3,则P=.十一.公因式30.通过因式分解求下列多项式的公因式:a2﹣1,a2﹣a,a2﹣2a+1.十二.因式分解-提公因式法31.若多项式﹣6ab+18abx+24aby的一个因式是﹣6ab,那么另一个因式是()A.1﹣3x﹣4y B.﹣1﹣3x﹣4y C.1+3x﹣4y D.﹣1﹣3x+4y 32.化简求值:当a=2025时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.十三.因式分解-运用公式法33.若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.20 34.已知多项式4x2﹣(y﹣z)2的一个因式为2x﹣y+z,则另一个因式是()A.2x﹣y﹣z B.2x﹣y+z C.2x+y+z D.2x+y﹣z 35.分解因式:(a2+1)2﹣4a2.36.因式分解:(1)(因式分解)a3﹣4a2+4a;(2)(因式分解)x4﹣16.十四.提公因式法与公式法的综合运用37.因式分解:(1)9x2﹣81.(2)m3﹣8m2+16m.38.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).十五.因式分解-分组分解法39.多项式x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz因式分解后的结果是()A.(y﹣z)(x+y)(x﹣z)B.(y﹣z)(x﹣y)(x+z)C.(y+z)(x﹣y)(x+z)D.(y+z)(x+y)(x﹣z)40.下列多项式已经进行了分组,能接下去分解因式的有()(1)(m3+m2﹣m)﹣1;(2)﹣4b2+(9a2﹣6ac+c2);(3)(5x2+6y)+(15x+2xy);(4)(x2﹣y2)+(mx+my)A.1个B.2个C.3个D.4个41.观察下面分解因式的过程,并完成后面的习题分解因式:am+an+bm+bn解法一:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)根据你发现的方法,分解因式:(1)mx﹣my+nx﹣ny(2)2a+4b﹣3ma﹣6mb.十六.实数范围内分解因式42.在实数范围内分解因式:(1)9a4﹣4b4;(2)x2﹣2 x+3.十七.因式分解的应用43.已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b﹣25,则最长边c的范围()A.1<c<7B.4≤c<7C.4<c<7D.1<c≤444.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?参考答案一.同底数幂的乘法1.解:a2•a5+a•a3•a3=a7+a7=2a7.二.幂的乘方与积的乘方2.解:(﹣)2022×(1.5)2023=()2022×(1.5)2022×1.5=.故选:B.3.解:x4•x5•(﹣x)7+5(x4)4﹣(x8)2=x9•(﹣x7)+5x16﹣x16=﹣x16+5x16﹣x16=3x16;三.单项式乘单项式4.解:(1)(﹣3ab)•(﹣2a)•(﹣a2b3)=6a2b•(﹣a2b3)=﹣6a4b4.(2)=2a2b4×a2b4=a4b8.四.单项式乘多项式5.解:(﹣2x)(x3﹣x+1)=﹣2x4+2x2﹣2x,故答案为:﹣2x4+2x2﹣2x.6.解:原式=﹣12x4y+9x5y+3x3y;五.多项式乘多项式7.解:已知等式整理得:x2+x﹣6=x2+ax+b,利用多项式相等的条件得:a=1,b=﹣6,故选:D.8.解:(1)原式=﹣10m2n3+8m3n2;(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.六.完全平方公式9.解:∵(x±2y)2=x2±4xy+4y2,∴k﹣1=±4,∴k=5或k=﹣3.故选:B.10.解:(a+b)2﹣(a﹣b)2=4ab=7﹣3=4,所以可得:ab=1,故答案为:111.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.12.解:设x=2021﹣a,y=2020﹣a,∴x﹣y=2021﹣a﹣2020+a=1,∵(2021﹣a)(2020﹣a)=3,∴xy=3,∴原式=x2+y2=(x﹣y)2+2xy=1+2×3=7,13.解:∵a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(c2﹣2ac+a2)]=[(a﹣b)2+(b﹣c)2+(c﹣a)2]而a=2000x+2001,b=2000x+2002,c=2000x+2003,∴a﹣b=2000x+2001﹣(2000x+2002)=﹣1,同理b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3.14.解:由M=(x2+2x+1)(x2﹣2x+1),=x4﹣2x2+1,N=(x2+x+1)(x2﹣x+1),=x4+x2+1,∴M﹣N=x4﹣2x2+1﹣(x4+x2+1),=﹣3x2,∵x是不为0的有理数,∴﹣3x2<0,即M<N.15.解:(1)∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=16﹣2×3=10.(2)∵a2+b2=10,ab=3,∴(a﹣b)2=a2+b2﹣2ab=10﹣2×3=4,∴a﹣b=±2.16.解:∵a(a﹣1)﹣(a2﹣b)=﹣5,∴a2﹣a﹣a2+b=﹣5,∴b﹣a=﹣5,∴﹣ab====.七.完全平方公式的几何背景17.解:如图,三角形②的一条直角边为(a﹣b),另一条直角边为b,因此S△②=(a﹣b)b=ab﹣b2,S△①=a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=a2﹣ab+b2,=[(a+b)2﹣3ab],=(100﹣54)=23,故选:C.18.解:(1)a﹣b;(2)方法1:S阴影=(a﹣b)2,方法2:S阴影=(a+b)2﹣4ab;(3)(a﹣b)2=(a+b)2﹣4ab;(4)∵x+y=10,xy=16,∴(x﹣y)2=(x+y)2﹣4xy=102﹣4×16=36,∴x﹣y=±6.八.平方差公式19.解:∵a﹣b=1,∴a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=1×(a+b)﹣2b=a﹣b=1,故选:B.20.解:∵m+n=2,m2﹣n2=(m+n)(m﹣n)=12,∴m﹣n=6,则原式=62=36.故答案为:36.21.解:=﹣x2,故答案为:﹣x2.22.解:原式=(2﹣1)(2+1)×(22+1)×(24+1)…(2128+1)+1=(22﹣1)×(22+1)×(24+1)…(2128+1)+1=(24﹣1)×(24+1)…(2128+1)+1=2256﹣1+1=2256,故答案为:2256.23.解:(1)原式=(2022+1)×(2022﹣1)﹣20222=20222﹣1﹣20222=﹣1.(2)原式=[(2x﹣y)+3][(2x﹣y)+3]=(2x﹣y)2﹣9=4x2﹣4xy+y2﹣9.九.平方差公式的几何背景24.解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,拼成的矩形的面积是:(a+b)(a﹣b),∴根据剩余部分的面积相等得:a2﹣b2=(a+b)(a﹣b),故选:B.25.解:设大正方形的边长为a,小正方形的边长为b,根据题意得a2﹣b2=40,∴(a+b)(a﹣b)=40;∵S阴=S△ACD﹣S△CDE,∴S阴=×CD×AB﹣×CD×BE=(a+b)a﹣(a+b)b=(a+b)(a﹣b)∵(a+b)(a﹣b)=40,∴S阴=×40=20.故答案为:20.26.解:图1的面积a2﹣b2,图2的面积(a+b)(a﹣b)由图形得面积相等,得a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).27.解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.十.因式分解的意义28.解:A.从左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.等式的的左右两边不相等,应改为ax+ay+a=a(x+y+1),故本选项不符合题意;故选:C.29.解:(1)设另外一个因式为:x+n∴(2x2+3x﹣k)=(2x﹣5)(x+n)∴∴n=4,k=20(2)设另一个因式为:2x+n∴2x2﹣13x+p=(2x+n)(x﹣3)∴∴解得:故答案为:(2)21十一.公因式30.解:a2﹣1=(a+1)(a﹣1);a2﹣a=a(a﹣1),a2﹣2a+1=(a﹣1)2,∴a2﹣1,a2﹣a,a2﹣2a+1的公因式是(a﹣1).十二.因式分解-提公因式法31.解:﹣6ab+18abx+24aby=﹣6ab(1﹣3x﹣4y),所以另一个因式是(1﹣3x﹣4y).故选:A.32.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2025=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2025=2025.十三.因式分解-运用公式法33.解:4x2+kx+25=(2x+a)2,当a=5时,k=20,当a=﹣5时,k=﹣20,故k+a的值可以是:25或﹣25.故选:A.34.解:原式=(2x+y﹣z)(2x﹣y+z),∴另一个因式是2x+y﹣z.故选:D.35.解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.36.解:(1)原式=a(a2﹣4a+4)=a(a﹣2)2;(2)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).十四.提公因式法与公式法的综合运用37.解:(1)9x2﹣81=9(x2﹣9)=9(x+3)(x﹣3);(2)m3﹣8m2+16m=m(m2﹣8m+16)=m(m﹣4)2.38.解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).十五.因式分解-分组分解法39.解:x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz=(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z=(y﹣z)x2+(y﹣z)2x﹣yz(y﹣z)=(y﹣z)[x2+(y﹣z)x﹣yz]=(y﹣z)(x+y)(x﹣z).故选:A.40.解:(1)分组错误,无法继续分解因式;(2)﹣4b2+(9a2﹣6ac+c2)可用完全平方公式和平方差公式分解;(3)分组错误,无法继续分解因式;(4)(x2﹣y2)+(mx+my)用平方差公式和提公因式法继续分解因式.故选:B.41.(1)解法一:原式=(mx﹣my)+(nx﹣ny)=m(x﹣y)+n(x﹣y)=(m+n)(x﹣y);解法二:原式=(mx+nx)﹣(my+ny)=x(m+n)﹣y(m+n)=(m+n)(x﹣y);(2)解法一:原式=(2a+4b)﹣(3ma+6mb)=2(a+2b)﹣3m(a+2b)=(2﹣3m)(a+2b);解法二:原式=(2a﹣3ma)+(4b﹣6mb)=a(2﹣3m)+2b(2﹣3m)=(2﹣3m)(a+2b).十六.实数范围内分解因式42.解:(1)原式=(3a2+2b2)(3a2﹣2b2)=(3a2+2b2)(a+b)(a﹣b);(2)原式=(x﹣)2.十七.因式分解的应用43.解:∵a2+b2=6a+8b﹣25,∴(a﹣3)2+(b﹣4)2=0,∴a=3,b=4;∴4﹣3<c<4+3,∵c是最长边,∴4≤c<7.故选:B.44.解:(1)x2﹣4x+3=x2﹣2×2x+22﹣22+3=(x﹣2)2﹣12=(x﹣1)(x﹣3);(2)x2+2x+2=x2+2x+12﹣12+2=(x+1)2+1,故当它有最小值时x的值是﹣1.。
人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)
C. a 2 3a 5
D. a 2 8a 5
1 A. 3
6. 若 a b A. 10
2
1 9
53.7 0
) C. 20
1
D. 2 3
1 8
m
n 2
a 8 b 6 ,那么 m 2 2n 的值是(
B. 52
2 2
D. 32 ( ) D. 30 xy
第十四章《整式的乘法与因式分解》
一、选择题(每小题只有一个正确答案)
1.多项式 xy 2 x y 9 xy 8 的次数是
4 3 3
(
) D. 6
A. 3 2.下列计算正确的是
B. 4 ( )
C. 5
A. 2 x 2 6 x 4 12 x 8 B.
y y
4 m
3 m
五、简答题 21、在长为 3a 2 ,宽为 2b 1 的长方形铁片上,挖去长为 2a 4 ,宽为 b 的小长方形铁 片,求剩余部分面积.
22、在如图边长为 7.6 的正方形的角上挖掉一个边长为 2.6 的小正方形,剩余的图形能否
拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少. (5 分)
个,多项式有 9.单项式 5 x y z 的系数是
2 4
10.多项式 3ab 4 ab 11. ⑴ x 2 x 5 ⑶ 2a b
1 有 5
.
.
y
5
3 4
2 4
.
2
3
⑷ x y
.
⑸ a9 a3 12.⑴ mn 2 ⑶ ( 2a b( 13. ⑴ a
人教版八年级上册第十四章《整式的乘法与因式分解》单元练习题(含答案)
人教版八年级上册第十四章《整式的乘法与因式分解》单元练习题(含答案)一、选择题(共8小题,每小题分,共0分)1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2+abD.a(a-b)=a2-ab2.若(x-a)(x+b)=x2+mx+n,则m,n分别为()A.m=b-a,n=-abB.m=b-a,n=abC.m=a-b,n=-abD.m=a+b,n=-ab3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×10174.计算:xn+1•xn-1÷(xn)2的结果是()A.-1B.1C.0D.±15.若3x+2y=3,求27x×9y的值为()A.9B.27C.6D.06.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.… …请你猜想(a+b)10的展开式第三项的系数是()A.36B.45C.55D.667.若(x-5)(2x-n)=2x2+mx-15,则m、n的值分别是()A.m=-7,n=3B.m=7,n=-3C.m=-7,n=-3D.m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A.-2B.0C.2D.3二、填空题9.若x+=3,分式(x−)2=.10.当a=-2时,(b-a)(a+b)(a2+b2)-(a4+b4)的值为.11.已知8×2m×16m=211,则m的值为.12.若27m÷9÷3=321,则m=.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(a-b)2=____________(化为a、b两数和与积的形式).14.如图,在长为a、宽为b的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有a、b、m、n的代数式表示是.15.给下列多项式添括号,使它们的最高次项系数变为正数. (1)-x2+x=____________;(2)3x2-2xy2+2y2=_______________;(3)-a3+2a2-a+1=________________;(4)-3x2y2-2x3+y3=________________.16.计算:(−a2b)3=.三、解答题17.若x=3an,y=-a2n−1,当a=2,n=3时,求anx-ay的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?第十四章《整式的乘法与因式分解》单元练习题答案解析1.【答案】B【解析】大正方形的面积=(a-b)2,还可以表示为a2-2ab+b2,∴(a-b)2=a2-2ab+b2.故选B.2.【答案】A【解析】∵(x-a)(x+b)=x2+mx+n,∴x2+(b-a)x-ab=x2+mx+n,∴m=b-a,n=-ab.故选A.3.【答案】D【解析】根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D.4.【答案】B【解析】原式=x2n÷x2n=1,故选B.5.【答案】B【解析】27x×9y=33x×32y=33x+2y=33=27,故选B.6.【答案】B【解析】(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.7.【答案】C【解析】∵(x-5)(2x-n)=2x2+mx-15,∴2x2-(10+n)x+5n=2x2+mx-15,故5n=−15,m=−10−n,解得m=−7 ,n=−3.故选C.8.【答案】C【解析】∵(y2-ky+2y)(-y)的展开式中不含y2项,∴-y3+ky2-2y2中不含y2项,∴k-2=0,解得k=2.故选C.9.【答案】5【解析】∵x+=3 ∴(x-)2=x2+-2=(x+)2-4=9-4=5.故答案为5.10.【答案】-32【解析】(b-a)(a+b)(a2+b2)-(a4+b4)=(b2-a2)(a2+b2)-(a4+b4)=(b4-a4)-(a4+b4)=-2a4;∵a=-2,∴原式=-2×a4=-2×(-2)4=-32.故答案为-32.11.【答案】【解析】8×2m×16m=211,23×2m×24m=211,23+m+4m=211,3+m+4m=11,m=,故答案为.12.【答案】8【解析】原式等价于33m÷32÷3=33m-2-1=321,3m-2-1=21.解得m=8,故答案为8.13.【答案】(a+b)2-4ab【解析】∵小正方形的边长为(a-b),∴面积为(a-b)2,又∵小正方形的面积=大正方形的面积-4×长方形的面积,∴小正方形面积为(a-b)2=(a+b)2-4ab,故答案为(a+b)2-4ab.14.【答案】(b-2n)(a-m)【解析】在长为a、宽为b的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有a、b、m、n的代数式表示是(b-2n)(a-m),故答案为(b-2n)(a-m).15.【答案】(1)-(x2-x)(2)-(2xy2-3x2-2y2)(3)-(a3-2a2+a-1)(4)-(3x2y2+2x3-y3)【解析】(1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-a3+2a2-a+1=-(a3-2a2+a-1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3).16.【答案】-a6b3【解析】(−a2b)3=-a6b3,故答案为-a6b3.17.【答案】解:anx-ay=an×3an-a×(-a2n−1)=3a2n+a2n∵a=2,n=3,∴3a2n+a2n=3×26+×26=224.【解析】把x=3an,y=-a2n−1,,代入anx-ay,利用同底数幂的乘法法则,求出结果.18.【答案】解:原式=x2-5x+3x-15-x2+2x=-15.【解析】根据多项式与多项式相乘的法则、单项式与多项式相乘的法则以及合并同类项法则计算即可.19.【答案】解:(1)S1=a2−b2,S2=(a+b)(a-b);(2)(a+b)(a-b)=a2-b2;(3)原式=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=(216-1)+1=216.【解析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a-b)=a2-b2;(3)从左到右依次利用平方差公式即可求解.20.【答案】解:依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.【解析】先计算出这一时刻天宫一号腾空之后飞行速度22×3.4×102米/秒,再除以这架喷气式飞机的速度是5×102米/秒即可,从而得出答案.21.【答案】解:正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.【解析】根据正方体的表面积公式,可得积的乘方,根据积的乘方,可得答案.人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分)1.下列运算正确的是( )A.a3+a3=a6B.2(a+1)=2a+1C.(ab)2=a2b2D.a6÷a3=a22.(1+x2)(x2-1)的计算结果是( )A.x2-1B.x2+1C.x4-1D.1-x43.任意给定一个非零数m,按下列程序计算,最后输出的结果是( )A.mB.m-2C.m+1D.m-14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27b D .a =4b二、填空题(每题3分,共18分)11.计算:(m +1)2-m 2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x =y +4,则代数式x 2-2xy +y 2-25的值为____.14.若a =2,a -2b =3,则2a 2-4ab 的值为____.15.若6a =5,6b =8,则36a -b =____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分)17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B 10.B11.2m +112.213.-914.1215.6425 16.a 2+2ab +b 2=(a +b )217.(1)原式=-60x 3y 4.(2)原式=-18a +13.(3)原式=-a -b .(4)原式=2ab .18.(1)原式=-(m -x )2(m -y ). (2)原式=a (x +4)2. (3)原式=x 2(x +9y )(x -9y )19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a ).人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题1.计算结果正确的是() A. B. C. D.2.计算12x a a a a ⋅⋅=,则x 等于( )A.10B.9C.8D.43.下列计算正确的是( )A .326a a a ∙=B .()239a a =C .5510x x x +=D .78y y y ∙= 4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( )A.10B.11C.12D.13 5.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6. 7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( )A .322324x y x y -B .12x y -C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( )A .(﹣a +b )(a ﹣b )B .(x +2)(2+x )C .(3x +y )(y ﹣3x ) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=36 10.下列等式从左往右因式分解正确的是( )A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++-D .()()2414141x x x -=+- 11.下列多项式能分解因式的是( )A .22x y +B .22x y xy -C .22x xy y ++D .244x x +- 12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有()A.1个B.2个C.3个D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______.15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题17.计算:(13|(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()10132π-⎛⎫-+ ⎪⎝⎭ (2)化简:()()()32223x x y x y x y xy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a b ab -+÷- 20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案1.A2.A3.D4.B5.B6.B7.C8.C9.D10.B11.B12.C13.(a-7)(a+2)14.16.15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7- 14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+ 20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±621.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=- 人教版数学八年级上册第16章整式的乘法与因式分解单元测试题(1)一、选择题(每小题4分,共48分)1.﹣的相反数是( )A .﹣B .4C .﹣4D .2.下列计算正确的是( )A .3a ﹣2a =1B .3mn ﹣2nm =mnC .3a 2+5a 2=8a 4D .x 2y ﹣2xy 2=﹣xy 23.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于( )A .30°B .45°C .50°D .60°4.一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .5.如图,a 、b 在数轴上的位置如图,则下列各式正确的是( )A .ab >0B .a ﹣b >0C .a +b >0D .﹣b <a6.如果单项式﹣3x m +3y n 和﹣x 5y 3是同类项,那么m +n 的值为( ) A .2 B .3 C .5 D .87.下列说法正确的是( )A .若AC =BC ,则点C 是线段AB 的中点B .若∠AOC =∠BOC ,则直线OC 是∠AOB 的平分线C .连接A 、B 的线段叫做A 、B 两点间的距离D .若DE =5,DF =8,EF =13,则点D 在线段EF 上8.当x =﹣1时,代数式2ax 2+3bx +8的值是12,则6b ﹣4a +2=( )A .﹣12B .10C .﹣6D .﹣229.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A .B .C.D.10.若一个多边形的对角线共有14条,则这个多边形的边数是()A.6B.7C.10D.1411.一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第3次输出的结果是()A.7x+1B.15x+1C.31x+1D.15x+1512.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第2018次“移位”后,则他所处顶点的编号为()A.1B.2C.3D.4二、填空题(每小题3分,共36分)13.2018年00:12:14,天猫双十一总成交额超36200000000元,已超过2013年双十一全天的成交额,其中36200000000用科学记数法表示为:.14.单项式﹣的系数是.15.14°48′=°.16.如图,一个长方形ABCD边长AB=2cm,BC=3cm绕轴l旋转一周得到的立体图形的体积是cm3(结果保留π).17.某书店出售图书的同时,推出一项租书业务,每租看1本书,租期不超过3天,每天租金a元;租期超过3天,从第4天开始每天另加收b元.如果租看1本书7天归还,那么租金为元.18.8点30分时刻,钟表上时针与分针所组成的角为度.19.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东20°方向航行至点C,则∠ABC=度.20.计算(2﹣nx+3x2)﹣2(﹣4x2﹣2x+1)的结果中不含x项,则n=.21.a、b为有理数,现在规定一种新的运算“⊕”,如a⊕b=﹣ab+a2﹣1,则(2⊕3)⊕(﹣3)=.22.如图,C是线段AB上一点,M为AB的中点,N为AC的中点,若AB=10cm,AC=7cm,则MN的长度为cm.23.若a、b互为相反数,c、d互为倒数,m的绝对值是3,则﹣2a+3cd﹣2b=.24.学校的某社团组织了一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分,其中题a满分10分,题b、题c满分均为15分.竞赛结果,每个学生至少答对了一题,三题全答对的有2人,答对其中两道题的有14人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为27,答对题b的人数与答对题c的人数之和为20,则这个社团的平均成绩是分.三、解答题(共66分)25.(20分)有理数的计算:(1)1﹣(﹣8)+12+(﹣11);(2)|﹣|; (3)﹣12﹣(1﹣)×[6+(﹣3)3]; (4)()×(﹣6)2﹣5.5×8+25.5×8.26.(10分)整式的化简:(1)7x +6x 2+5x ﹣x 2+1;(2)2. 27.(8分)先化简再求值:3,其中x =4,y=﹣.28.(8分)已知如图,∠AOB :∠BOC =5:3,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,且∠BOE =16°,求∠DOE 的度数.29.(10分)某校初2021届1到4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(1)完成表格;(2)根据记录的数据可知4个班实际一共购书 本?(3)书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届1班实际购书最少花费多少元?30.(10分)若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为39.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;(2)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的值.2018-2019学年重庆市渝中区巴蜀中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【分析】根据相反数的定义,只有符号不同的两个数互为相反数解答.【解答】解:﹣的相反数是.故选:D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【分析】直接利用合并同类项法则,进而分别判断得出答案.【解答】解:A、3a﹣2a=a,故此选项错误;B、3mn﹣2nm=mn,正确;C、3a2+5a2=8a2,故此选项错误;D、x2y﹣2xy2,无法计算,故此选项错误;故选:B.【点评】此题主要考查了合并同类项,正确把握合并同类项的法则是解题关键.3.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.4.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于俯视图为三角形.主视图为两个长方形和左视图为长方形可得此几何体为三棱柱.故选:A.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.【分析】根据数轴上的数,右边的数总是大于左边的数,即可得到a,b的大小关系,判断选项是否正确.【解答】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选:B.【点评】本题主要考查了利用数轴比较实数的大小.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.【分析】根据同类项的定义,得出关于m,n的方程,求出m,n的值,然后即可求得m+n的值.【解答】解:∵单项式﹣3x m+3y n和﹣x5y3是同类项,∴m+3=5,n=3,∴m=2,n=3,∴m+n=5,故选:C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.7.【分析】根据线段中点、角平分线、两点之间距离意义可判断A、B、C选项正误;根据有公共端点的两线段和是否等于最长一条来判断是否共线.【解答】解:A:点C不一定在线段AB上,故错误;B:角平分线是射线,且射线OC不一定在∠AOB内部,故错误;C:连接A、B的线段的长度是A、B两点间的距离,故错误;D:因为DE+DF=EF故点D在线段EF上,故正确,故选:D.【点评】本题考查线段中点,角平分线,两点距离等知识.深刻理解.理解相关定义、性质是解答关键.8.【分析】将x=﹣1代入2ax3+3bx+8=12得到2a﹣3b=4,整体代入6b﹣4a+2=﹣2(2a ﹣3b)+2计算可得.【解答】解:将x=﹣1代入2ax2+3bx+8=12,得:2a﹣3b=4,则6b﹣4a+2=﹣2(2a﹣3b)+2=﹣2×4+2=﹣8+2=﹣6,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.9.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:四个方格形成的“田”字的,不能组成正方体,A错;出现“U”字的,不能组成正方体,B错;以横行上的方格从上往下看:C选项组成正方体.故选:C.【点评】如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.10.【分析】根据多边形的对角线的条数公式列式进行计算即可求解.【解答】解:设这个多边形的边数是n,则=14,整理得,n2﹣3n﹣28=0,解得:n=7,n=﹣4(舍去).故选:B.【点评】本题主要考查一元二次方程的应用,解题的关键是掌握多边形对角线条数与边数的关系,并据此列出方程.11.【分析】由原理图可知,运算的方式为:,由第一次输出为3x+1可得N 的值.依次入输出的结果作为下一次有输入整式M即可【解答】解:第一次输入M=x+1得整式:,整理得3x+2+N=3x+1,故2+N =1,解得N=﹣1∴运算原理为:第二次输入M=3x+1,运算得第三次输入M=7x+1,运算得故第3次输出的结果是15x+1故选:B.【点评】此题考查整式加减的运算能力,细心观察运算原理即可.12.【分析】根据“移位”的特点确定出前几次的移位情况,从而找出循环规律,然后解答即可.【解答】解:第一次移位是2到4,第二次移位是4到3,第三次移位是3到1,第四次移位是1到2,可知四次移位为一个循化,2018÷4=504……2,故第2018次“移位”后,则他所处顶点的编号为3,故选:C.【点评】此题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.二、填空题(每小题3分,共36分)13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36200000000=3.62×1010,故答案为:3.62×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】直接利用单项式的系数确定方法分析得出答案.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.15.【分析】根据1°=60′,1′=60″进行计算即可.【解答】解:14°48′=14.8°,故答案为:14.8【点评】本题考查了度分秒的换算,掌握1°=60′,1′=60″是解题的关键.16.【分析】一个矩形绕着它的一边旋转一周,根据面动成体的原理和圆柱的体积即可解.【解答】解:一个长方形绕轴l旋转一周得到的立体图形是圆柱.圆柱的体积=π×22×3=12πcm3,故答案为:12π【点评】本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.17.【分析】根据题目中的条件,每租看1本书,租期不超过3天,每天租金a元,则3天的租金为3a元;当超过3天后,每天的租金为a+b元.【解答】解:7天所付的租金总额为3a+4(a+b)=7a+4b元.【点评】按照题目中的已知条件,根据租金的不同,分成两部分予以考虑:(1)三天以内,每天租金a元;(2)超过三天,每天租金a+b元.18.【分析】根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【解答】解:时针30分钟所走的度数为30×0.5=15°,8点30分时刻,分针与8点之间的夹角为2×30=60°,∴此时时钟面上的时针与分针的夹角是60°+15°=75°.故答案为:75.【点评】本题考查钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.19.【分析】首先根据方位角的定义得出∠EAB=45°,∠CBF=20°,再根据南北方向是平行的得出∠ABF=45°,然后和∠CBF相加即可得出答案.【解答】解:如图,由题意,可得∠EAB=45°,∠CBF=20°.∵AE∥BF,∴∠ABF=∠EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+20°=65°,故答案为:65.【点评】本题考查了方向角和角的有关计算的应用,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.20.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2﹣nx+3x2+8x2+4x﹣2=11x2+(4﹣n)x由于不含x的项,∴4﹣n=0,∴n=4,故答案为:4.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.【分析】直接利用新定义将原式变形进而得出答案.【解答】解:∵a⊕b=﹣ab+a2﹣1,∴(2⊕3)⊕(﹣3)=(﹣2×3+4﹣1)⊕(﹣3)=﹣3⊕(﹣3)=3×(﹣3)+(﹣3)2﹣1=﹣1.故答案为:﹣1.【点评】此题主要考查了有理数的混合运算,正确掌握相关定义是解题关键.22.【分析】观察图形可将MN转化,即MN=AM﹣AN,而M、N分别是AB、AC中点,代入长度即可计算出MN的长度.【解答】解:由题意可得MN=AM﹣AN而M、N分别是AB、AC中点,∴AM=AB,AN=AC∴MN=AB﹣AC=×10﹣×7=1.5故答案为1.5.【点评】本题考查的是线段的相关计算问题,借助图形正确找出相应的等量关系是解决本题的关键.23.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,以及m的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=3或﹣3,则原式=﹣0+3=3,故答案为:3【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】设答对a题的有x人,答对b题的有y人,答对c题的有z人,根据“答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为27,答对题b的人数与答对题c的人数之和为20”,即可得出关于x、y、z的三元一次方程组,解之即可得出x、y、z的值,由x、y、z的值结合a、b、c三题的分值可求出全班总得分,由x、y、z的值结合答对两题及答对三题的人数可求出全班总人数,再利用平均分=总分÷人数,即可求出结论.【解答】解:设答对a题的有x人,答对b题的有y人,答对c题的有z人,根据题意得:,解得:.全班总得分为18×10+(11+9)×15=480(分),全班总人数为18+11+9﹣1×14﹣2×2=20(人),全班的平均成绩为480÷20=24(分).故答案为:24.【点评】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题(共66分)25.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题;(4)根据乘法分配律和有理数的乘法和加减法可以解答本题.【解答】解:(1)1﹣(﹣8)+12+(﹣11)=1+9+12+(﹣11)=11;(2)|﹣|==;(3)﹣12﹣(1﹣)×[6+(﹣3)3]=﹣1﹣[6+(﹣27)]=﹣1﹣×(﹣21)=﹣1+3=2;(4)()×(﹣6)2﹣5.5×8+25.5×8=()×36+(﹣5.5+25.5)×8=4+(﹣3)+9+20×8=4+(﹣3)+9+160=170.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.【分析】(1)根据合并同类项的方法可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)7x +6x 2+5x ﹣x 2+1=5x 2+12x +1;(2)2=2a 3b ﹣ab 2﹣a 3b +4ab 2﹣ab 2=a 3b +2ab 2.【点评】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法. 27.【分析】直接去括号利用整式的加减运算法则计算,进而把已知数据代入即可得出答案.【解答】解:原式=3x 3﹣xy 2+4xy ﹣6x 3﹣xy +xy 2=﹣3x 3+xy 2+3xy ,当x =4,y =﹣时,原式=﹣3×43+4×(﹣)2+3×4×(﹣)=﹣3×64+9﹣18=﹣201.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.28.【分析】设∠BOC =x °,则∠AOB =5x °,∠AOC =8x °,再根据角平分线的定义用x 表示出∠COE ,通过∠BOE =∠COE ﹣∠COB 解出值,再根据角的和差关系即可求解问题.【解答】解:设∠BOC =x °,则∠AOB =5x °,∠AOC =8x °,∵OE 是∠AOC 的平分线,∴∠COE =∠AOC =4x °.∵∠BOE =∠COE ﹣∠COB ,∴16°=5x °﹣4x °,解得x =16.∵OD 是∠BOC 的平分线,∴∠BOD=∠BOC=2x°=32°.∴∠DOE=∠DOB+∠BOE=32°+16°=48°.【点评】本题主要考查了角平分线的定义,分析出角的和差倍分关系是解题的关键.29.【分析】(1)由于4班实际购入21本,且实际购数量与计划购数量的差值=﹣9,即可得计划购书量=30,进而可把表格补充完整.(2)把每班实际数量相加即可.(3)分别求出方案甲和方案乙的费用,通过比较即可.【解答】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=﹣9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33﹣30=3本,3班实际购入数量=30﹣8=22本.故答案依次为42,+3,22(2)4个班一共购入数量=42+33+22+21=118本,另解:4个班一共购入数量=30×4+12+3﹣8﹣9=118故答案为118(3)如果按甲方案购书,每次购入15本,则可以购入7次,且最后还剩13本书单独购买,即总花费=30×(15﹣2)×7+30×13=3120(元)如果按乙方案购书,则共花费=30×118×90%=3186故按甲方案购入书花费最少为3120元【点评】本题考查了正负数的应用,利用正负数在生活实际中的计算能力,并通过相关运算来比较大小,进而得出最佳方案,这里要注意,生活中在选择方案时,要注意所有可能的情况.30.【分析】(1)按照定义求解即可;(2)设A的十位数字是a,个位数字是b,表示出至善数和明德数,作差可证明;(3)分明德数各位数字与5的和大于10和小于10两种可能来考虑,根据“明德数”的各位数字之和是B的“至善数”各位数字之和的一半列式求解.【解答】解:(1)26的至善数是中间加5,各位256,明德数是加5,故为31,故答案为:256,31;(2)设A的十位数字是a,个位数字是b,则它的至善数是100a+50+b,明德数是10a+b+5,∵100a+50+b﹣(10a+b+5)=90a+45=45(2a+1)∴“至善数”与“明德数”之差能被45整除;(3)设B的十位数字是a,个位数字是b,则它的至善数位数字之和是a+5+b,明德数位数字之和是a+b+5或a+1+(5+b﹣10)=a+b﹣4,当a+5+b=2(a+b+5)时,b<5,a+b=﹣10,不符合题意;当a+5+b=2(a+b﹣4)时,b≥5,a+b=13,所以a=4,b=9或a=5,b=8或a=6,b=7,或a=7,b=6或a=8,b=5,∴B是49,58,67,76或85;【点评】本题主要考查因式分解的应用,根据题意表示出A、B两数的“明德数”、“至善数”及其变化是解题的关键.。
人教版初中数学八年级上册 第十四章 14.3 整式的乘法 因式分解练习(含答案)
第十四章14.3整式的乘法因式分解练习1.因式分解:a2+2a+1=.2.因式分解:﹣3x2+6xy﹣3y2=.3.分解因式:a2b+4ab+4b=______.4.分解因式:2x2﹣8=_____________5.因式分解:4ax2﹣4ay2=_____.6.计算:20182﹣2018×2017=_____.7.把多项式9x3﹣x分解因式的结果是_____.8.把16a3﹣ab2因式分解_____.9.已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=_____.10.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,则△ABC是_____三角形. 11.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.12.已知m²-n²=16,m+n=5,则m-n=5 ___________________.二、解答题13.因式分解:(2x+y)2﹣(x+2y)2.14.因式分解(x﹣2y)2+8xy.15.利用因式分解计算:2022+202×196+98216.把下列多项式分解因式:(1)3a2﹣12ab+12b2 (2)m2(m﹣2)+4(2﹣m)17.分解因式:(1)3x2﹣12x (2)(3)18.已知n为整数,试说明(n+7)2﹣(n﹣3)2一定能被20整除.19.已知a=2017x+2016,b=2017x+2017,c=2017x+2018.求a2+b2+c2﹣ab﹣bc﹣ca的值.20.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.21.先化简,再求值:4xy+(2x ﹣y )(2x+y )﹣(2x+y )2,其中x=2016,y=1.22.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=51-.23化简,求值(1)已知代数式(x ﹣2y )2﹣(x ﹣y )(x+y )﹣2y 2①当x=1,y=3时,求代数式的值;②当4x=3y ,求代数式的值.(2)已知3a 2+2a+1=0,求代数式2a (1﹣3a )+(3a+1)(3a ﹣1)的值.24.已知x 4+y 4+2x 2y 2﹣2x 2﹣2y 2﹣15=0,求x 2+y 2的值参考答案1.(a+1)2 2.﹣3(x﹣y)2 3.b(a+2)24.2(x+2)(x﹣2)5.4a(x﹣y)(x+y)6.2018 7.x(3x+1)(3x﹣1)8.a(4a+b)(4a﹣b)9.-4 10.等边11.x﹣212. 16/513.3(x+y)(x﹣y).14.(x+2y)2.15.9000016.(1)3(a﹣2b)2;(2)(m﹣2)2(m+2).17.(1)3x(x-4) (2)-2(m-2n)2 (3)(x-1)(a+b)(a-b)18.∵(n+7)2﹣(n﹣3)2=[(n+7)+(n-3)][(n+7)﹣(n﹣3)]=20(n+2),∴(n+7)2﹣(n﹣3)2一定能被20整除.19.3.∵a=2017x+2016,b=2017x+2017,c=2017x+2018,∴a﹣b=-1,b﹣c=-1,a﹣c=-2,则原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(a-c)2]=×(1+1+4)=3.20.a=b,c=b21.﹣2y2,﹣2.22.,023.(1)①15;②0;(2)﹣2.24.x2+y2=5.。
八年级数学上册第十四章整式的乘法与因式分解专项训练题(带答案)
八年级数学上册第十四章整式的乘法与因式分解专项训练题单选题1、下列4个算式中,计算错误的有()(1)(-c)4÷(-c)2=-c2(2)(-y)6÷(-y)3=-y3(3)z3÷z0=z3(4)a4m÷a m=a4A.4个B.3个C.2个D.1个答案:C分析:根据同底数幂的乘法及除法法则进行逐一计算即可.解:∵(-c)4÷(-c)2=(-c)4-2=c2≠-c2,∴(1)计算错误,符合题意;∵(-y)6÷(-y)3=(-y)6-3=(-y)3=-y3,∴(2)计算正确,不符合题意;∵z3÷z0=z3∴(3)计算正确,不符合题意;∵a4m÷a m=(a m)4÷a m=(a m)4-1=a3m≠a4,∴(4)计算错误,符合题意,∴(1)(4)两项错误,计算错误的有2个,故选:C.小提示:本题考查同底数幂的乘法及除法法则∶(1)同底数的幂相乘,底数不变,指数相加;(2)同底数的幂相除,底数不变,指数相减,熟记同底数幂的乘法及除法法则是解题的关键.2、已知a+b=4,则代数式1+a2+b2的值为()A.3B.1C.0D.-1答案:A分析:通过将所求代数式进行变形,然后将已知代数式代入即可得解. 由题意,得1+a 2+b 2=1+a +b 2=1+42=3 故选:A. 小提示:此题主要考查已知代数式求代数式的值,熟练掌握,即可解题.3、已知5x=3,5y=2,则52x ﹣3y=( )A .34B .1C .23D .98答案:D分析:首先根据幂的乘方的运算方法,求出52x 、53y 的值;然后根据同底数幂的除法的运算方法,求出52x ﹣3y 的值为多少即可.∵5x =3,5y =2, ∴52x =32=9,53y =23=8, ∴52x ﹣3y =52x 53y =98. 故选D .小提示:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4、关于x 、y 的多项式x 2−4xy +5y 2+8y +15的最小值为( )A .−1B .0C .1D .2答案:A分析:利用完全平方公式对代数式变形,再运用非负性求解即可.解:原式=x 2−4xy +5y 2+8y +15=x 2−4xy +4y 2+y 2+8y +16-1=(x −2y )2+(y +4)2-1∵(x −2y )2≥0,(y +4)2≥0,∴原式≥-1,∴原式的最小值为-1,故选A.小提示:本题考查完全平方公式的变形,以及平方的非负性,灵活运用公式是关键.5、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.6、若2m=a,32n=b,m,n为正整数,则23m+10n的值等于()A.a3b2B.a2b3C.a3+b2D.3a+2b答案:A分析:根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.∵2m=a,32n=b,∴23m+10n=23m×210n=(2m)3×(210)n=(2m)3×[(32)n]2=a3b2,故选A.小提示:本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7、下列运用平方差公式计算,错误的是().A.(a+b)(a−b)=a2−b2B.(x+1)(x−1)=x2−1C.(2x+1)(2x−1)=2x2−1D.(−a+b)(−a−b)=a2−b2答案:C解:A.(a+b)(a−b)=a2−b2,正确;B.(x+1)(x−1)=x2−1,正确;C.(2x+1)(2x−1)=4x2−1,错误;D.(−a+b)(−a−b)=a2−b2,正确.故选C.8、(−2)99+(−2)100=()A.(-2)99B.299C.2D.-2答案:B分析:(−2)99+(−2)100利用乘方的定义变形为−299+2×299,合并即可得到答案.(−2)99+(−2)100=−299+2100=−299+2×299=299.故选:B.小提示:本题主要考查了积的乘方、整式的加减,解题的关键是掌握积的乘方及整式加减运算法则.9、计算(a+3)(﹣a+1)的结果是()A.﹣a2﹣2a+3B.﹣a2+4a+3C.﹣a2+4a﹣3D.a2﹣2a﹣3答案:A分析:运用多项式乘多项式法则,直接计算即可.解:(a+3)(﹣a+1)=﹣a2﹣3a+a+3=﹣a2﹣2a+3.故选:A.小提示:本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10、下列运算正确的是()A.(−m2n)3=−m6n3B.m5−m3=m2C.(m+2)2=m2+4D.(12m4−3m)÷3m=4m3答案:A分析:根据积的乘方、幂的乘方、同类项定义、完全平方公式、整式的除法的运算法则计算即可.解:A、(−m2n)3=−m6n3,故此选项正确;B、m5和m3不属于同类项,不能相加,故此选项错误;C、(m+2)2=m2+4m+4,故此选项错误;D、(12m4−3m)÷3m=4m3−1,故此选项错误;故选:A.小提示:本题主要考查积的乘方、幂的乘方、同类项定义、完全平方公式、整式的除法的运算法则等知识点,运用以上知识点正确计算每个选项的值是解题关键.填空题11、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.12、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a 2−b 2=(a +b)(a −b)=−116,∵a +b =−14, ∴a −b =−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.13、若a 、b 互为相反数,c 、d 互为倒数,则(a +b )2−2cd =_______.答案:-2分析:利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,则原式=0-2=-2.所以答案是:-2.小提示:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14、分解因式:x 2y −6xy 2+9y 3=_______;答案:y (x −3y )2分析:先提公因式y ,再运用完全平方公式分解即.解:x 2y -6xy 2+9y 3=y (x 2-6xy +3y 2)=y (x -3y )2.小提示:本题考查提公因式与公式法综合运用,熟练掌握提公因式与公式法分解因式是解题的关键.15、若|x +2|+(y −12)2=0,则x 2020y 2021的值为_________.答案:12分析:根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.解:∵|x +2|≥0,(y −12)2≥0,且|x +2|+(y −12)2=0,∴x +2=0,y −12=0,即x =−2,y =12, ∴x 2020y 2021=(−2)2020(12)2021=(−2×12)2020×12=12. 故答案是:12. 小提示:本题考查幂的运算,解题的关键是掌握幂的运算法则.解答题16、已知a =413+213+113,求3a −1+3a −2+a −3的值.答案:1.分析:利用立方差公式和完全立方公式运算,即可解答提示:a =(213)2+213⋅113+(113)2,所以(213−1)⋅a =2−1=1,所以1a =213−1,1a +1=213,(1a +1)3=2,1a 3+3a 2+3a +1=2,则3a −1+3a −2+a −3=2−1=1.小提示:此题考查立方差公式和完全立方公式,掌握运算法则是解题关键17、先化简,再求值:(1)[(3x +2y)(3x −2y)−(x +2y)(5x −2y)]÷(4x),其中x =100,y =25.(2)若x 满足x 2−2x −12=0,求代数式(2x −1)2−x(x +4)+(x −2)(x +2)的值.答案:(1)x −2y ,50(2)4x 2−8x −3,-1分析:(1)先计算多项式乘多项式,再合并后计算多项式除以单项式,最后代入数值求解即可;(2)先计算多项式乘多项式,再合并同类项,最后将已知式子的值整体代入求解即可;(1)解:原式=[(9x 2−4y 2)−(5x 2−2xy +10xy −4y 2)]÷4x=(9x 2−4y 2−5x 2−8xy +4y 2)÷4x=(4x 2−8xy )÷4x=x −2y ,将x =100,y =25代入可得,原式=100−2×25=100−50=50.(2)原式=4x2−4x+1−x2−4x+x2−4,=4x2−8x−3,∵x2−2x−1=0,2∴x2−2x=1,2∴4x2−8x=2,∴原式=2−3=−1.小提示:本题主要考查了整式的混合运算以及求代数式的值,熟练掌握平方差公式和完全平方公式是解题的关键.18、阅读材料并解答下列问题.你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图甲中的①或②的面积表示.(1)请写出图乙所表示的代数恒等式;(2)画出一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述式子另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.答案: (1)(a+2b)(2a+b)=2a2+5ab+2b2(2)见解析(3) (a+2b)(a+3b)=a2+5ab+6b2分析:(1)根据长方形的面积=长×宽,即可解决问题.(2)画一个长为(a+3b),宽为(a+b)的长方形即可.(3)任意写一个一个只含有a,b的等式,根据长方形的面积公式,确定长与宽,再利用分割法画出图形即可.(1)(a+2b)(2a+b)=2a2+5ab+2b2(2)画法不唯一,如图所示:(3)答案不唯一,例如:(a+b)(a+2b)=a2+3ab+2b2可以用下图表示:小提示:本题考查多项式乘多项式,长方形的面积等知识,解题的关键是理解题意,是数形结合的好题目,这里的等式左右两边分别表示长方形的面积的两种求法.。
八年级上册(人教版)-第十四章-整式的乘法与因式分解-同步练习(含解析)
八年级上册(人教版)-第十四章-整式的乘法与因式分解-同步练习一、单选题1.把代数式分解因式,结果正确的是()A. B. C. D.2.分解因式:2x2﹣2=()A.2(x2﹣1)B.2(x2+1)C.2(x﹣1)2D.2(x+1)(x﹣1)3.把x3﹣2x2y+xy2分解因式,结果正确的是()A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)24.下列运算中,正确的是()A.3a2﹣a2=2B.(a2)3=a5C.a2•a3=a5D.(2a2)2=2a45.下列运算中,正确的是()A. B. C. D.6.下列计算正确的是()A.a﹣(2a﹣b)=﹣a﹣bB.(a2﹣2ab+a)÷a=a﹣2bC. D.(a+2b)(a﹣b)=a2+ab﹣2b27.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm28.计算(﹣ab2)3÷(﹣ab)2的结果是()A.ab4B.﹣ab4C.ab3D.﹣ab39.一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102-12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是()A.15B.16C.17D.18二、填空题10.已知a+b=2,a﹣b=3,则a2﹣b2=________11.因式分解:a3b﹣ab=________.12.如果,,那么a m-2n =________13.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式9x3-4xy2,取x=10,y=9时,用上述方法产生的密码是:________ (写出一个即可).14.若,,则的值是________.15.计算:(21a3-7a2)÷7a=________.16.你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=________;请你利用上面的结论,解决下面的问题:若x2+x+1=0,求x2017的值.17.已知a m=4,a n=5,则的值是________.18.分解因式:a3+ab2﹣2a2b=________.三、计算题19.分解因式:20.计算(1);(2)21.分解因式:(1)a2b-abc;(2)x(m+n)-y(m+n)+(m+n)(3)9x2-16y2(4)3ax2-6axy+3ay2答案一、单选题1.【答案】D【解答】解:,=3x(x2-2xy+y2),=3x(x-y)2.故答案为:D.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.2.【答案】D【解答】解:原式=2(x2﹣1)=2(x+1)(x﹣1),故选D【分析】原式提取2,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3.【答案】D【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.4.【答案】C【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、(a2)3=a6,故此选项错误;C、a2•a3=a5,正确;D、(2a2)2=4a4,故此选项错误;故答案为:C.【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、合并同类项法则分别判断得出答案.5.【答案】A【解答】A. ∵ ,A符合题意B. ,B不符合题意;C. ∵ ,C不符合题意;D. ∵a2与a3不是同类项,不能合并,D不符合题意.故答案为:A.【分析】同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于各因数分别乘方的积;计算即可.6.【答案】D【解答】解:A、a﹣2a+b=﹣a+b,故A错误;B、a2÷a﹣2ab÷a+a÷a=a﹣2b+1,故B错误;C、(﹣2)3=﹣a6,故C错误;D、(a+2b)(a﹣b)=a2+ab﹣2b2,故D正确.故选:D.【分析】根据去括号、合并同类项,整式的除法,积的乘方等于乘方的积,多项式乘多项式,可得答案.7.【答案】B【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.【解答】矩形的面积是:(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=6a+15(cm2).故选B.【点评】本题考查了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.8.【答案】B【解答】解:(﹣ab2)3÷(﹣ab)2=﹣a3b6÷a2b2=﹣ab4,故答案为:B.【分析】根据积的乘方法则、单项式除单项式法则计算即可.9.【答案】D【解答】解:A、15=42-12,正确,不符合题意;B、16=52-32,正确,不符合题意;C、17=92-82,正确,不符合题意;D、18不能配成两个自然数的平方差,错误,符合题意.故答案为:D.【分析】根据题意逐项分析,看给定的数能否配成两个自然数的平方差即可作出判断.二、填空题10.【答案】6【解答】解:∵a+b=2,a﹣b=3,∵a2﹣b2=(a﹣b)(a+b)=2×3=6.故答案为:6.【分析】直接利用平方差公式分解因式进而将已知代入求出即可.11.【答案】ab(a+1)(a﹣1)【解答】解:a3b﹣ab =ab(a2﹣1)=ab(a+1)(a﹣1).故答案为:ab(a+1)(a﹣1).【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用平方差公式继续分解.12.【答案】【解答】a m﹣2n.故答案为:.【分析】根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.13.【答案】104812或101248或481012或481210或121048或124810任意一个均对【解答】先将多项式9x3-4xy2因式分解可得: ,因为x=10,y=9,则各因式的值是: ,则密码是:104812或101248或481012或481210或121048或124810.【分析】先利用提公因式法分解因式,再利用平方差公式法分解到每一个因式都不能再分解为止,最后将x=10,y=9,分别代入每一个因式,算出结果,再将三个结果任意组合即可产生密码。
人教版八年级上册 第十四章 整式 的乘法与因式分解 14.3 因式分解 同步练习含答案
人教版八年级上册第十四章整式的乘法与因式分解14.3 因式分解同步练习1、填空题1、分解因式:a3﹣4a2+4a=2、计算:=3、已知a﹣b=1,则a2﹣b2﹣2b的值是4、已知实数、满足,且,则的值为5、已知,则的值为二、选择题6、下列各式由左边到右边的变形,是分解因式的为()A. B.C. D.7、下列各式中,能用平方差公式分解因式的是( )A. B. C. D.8、计算(-2)2018+(-2)2019等于( )A. -24037 B. -2 C. -22018 D. 220189、若是代数式的因式,则m与n的值为()A. B.C. D.10、从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A. B.C. D.11、因式分解的结果是()A. B.C. D.12、已知,则代数式的值是( )A.一15 B.一2 C.一6 D.613、已知是一个完全平方式,则k的值是( )A.8 B.±8 C.16 D.±1614、若a+b=-1,则3a2+3b2+6ab的值是( ).A.-1 B.1 C.3 D.-315、分解因式(x-3)(x-5)+1的结果是( ).A.x2-8x+16 B.(x-4)2 C.(x+4)2 D.(x-7)(x-3)16、已知x-2y=3,那么代数式3-2x+4y的值是( )A.-3 B.0 C.6 D.917、若m-n=-6,mn=7,则mn2-m2n的值是( ).A.-13 B.13 C.42 D.-42三、简答题18、如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.19、化简求值:(1-4y)(1+4y)+(1+4y)2,其中y=.20、给出三个多项式:,,,请你选择掿其中两个进行加减运算,并把结果因式分解.21、.已知,求的值.22、已知,求的值.23、已知x2+x-1=0,求x3+2x2+3的值.24、已知x=,求代数式(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值,在解这道题时,小茹说:“只给出了x的值,没给出y的值,求不出答案.”小毅说:“这道题与y的值无关,不给出y的值,也能求出答案.”你认为谁的说法正确?请说明理由.参考答案一、填空题1、a (a﹣2)2 .2、4ab3、 1.4、200815、-252二、选择题6、D7、C8.C9、D10、D11、B12、A13、D14、.C 15、.B16、A 17、C 三、简答题18、解:∵(x-3)(x+5)=x2+5x-3x-15=x2+2x-15,∴A=2,B=-15,∴3A-B=21.故3A-B的值为21.19、原式=1-16y2+(1+8y+16y2)=1-16y2+1+8y+16y2=2+8y,当y=时,原式=2+8×=2+=.20、选择1,3相加+=21、722、423、424、解:小毅的说法正确,理由如下:原式=4x2-y2-(8x2-6xy+y2)+2y2-6xy=4x2-y2-8x2+6xy-y2+2y2-6xy=-4x2.化简后y消掉了,所以代数式的值与y无关.所以小毅的说法正确.。
人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)
第十四章《整式的乘法与因式分解》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:1.计算(-a3)2的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x2=x4B.(a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a6 3.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1) C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)24.多项式a(x2-2x+1)与多项式(x-1)(x+1)的公因式是( ) A.x-1 B.x+1 C.x2+1 D.x25.下列计算正确的是( )A.-6x2y3÷2xy3=3x B.(-xy2)2÷(-x2y)=-y3C.(-2x2y2)3÷(-xy)3=-2x3y3D.-(-a3b2)÷(-a2b2)=a46.若a>0且a x=2,a y=3,则a x-2y的值为()A.13B.-13C.23D.297.若a+b=3,a-b=7,则ab的值为()A.-10 B.-40 C.10 D.408.(2020·宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是() A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌9.分解因式x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果是(x-2)·(x+1),那么x2+ax+b分解因式的正确结果为() A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)10.已知n是整数,则式子18[1-(-1)n](n2-1)的计算结果( )A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二、填空题(共8小题,每小题3分,满分24分)11.已知a+b=3,a-b=5,则代数式a2-b2的值是________.12.分解因式:(1)x2y-4y=____________;(2)a2b-2ab+b=__________.13.多项式x2+mx+25恰好是另一个多项式的平方,则常数m=________. 14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.15.当x 时,(x﹣4)0等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .18.已知a+=3,则a2+的值是.三、解答题(共5小题,满分46分)19.(12分)计算:(1)a2·a4+(a3)2; (2)(-a3b)2÷(-3a5b2);(3)(a+b-c)(a+b+c).20.(10分)分解因式:(1)-x4+1 (2)y2-4-2xy+x2.21.(10分)阅读下面求y 2+4y +8的最小值的解答过程.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4.∴y 2+4y +8的最小值为4.仿照上面的解答过程,求x 2-2x +3的最小值.22.已知2a =3,2b =6,2c =12,x =355,y =444,z =533.(1)求证:a +c =2b ;(2)判断x ,y ,z 的大小关系,并说明理由.23.先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =1;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎨⎧m +2n =1,3m -2n =11.七、(本题满分12分)24.(1)已知a-b=1,ab=-2,求(a+1)(b-1)的值;(2)已知(a+b)2=11,(a-b)2=7,求ab的值;(3)已知x-y=2,y-z=2,x+z=5,求x2-z2的值.25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.C.2.C.3. D.4.A.5. B.6.D7.A.8. D.9.B.10.C.二、填空题(共8小题,每小题3分,满分24分)11.1512.y(x+2)(x-2) b(a-1)213.±1014.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.【考点】代数式求值.【专题】计算题.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.15.当x 时,(x﹣4)0等于1.【考点】零指数幂.【专题】计算题.【分析】根据0指数幂底数不能为0列出关于x的不等式,求出x的取值范围即可.【解答】解:∵(x﹣4)0=1,∴x﹣4≠0,∴x≠4.故答案为:≠4.【点评】本题考查的是0指数幂的定义,即任何非0数的0次幂等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.【考点】因式分解的意义.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.已知a+=3,则a2+的值是.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a 2+2+=9, ∴a 2+=9﹣2=7.故答案为:7.三、解答题(共5小题,满分46分)19.解:(1)原式=a 6+a 6=2a 6.(4分) (2)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)(3)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(12分) 20.解:(1)原式=-(x 2+4)(x +2)(x -2).(5分) (2)原式=(x -y )2-4=(x -y +2)(x -y -2).(10分)21.解:x 2-2x +3=x 2-2x +1+3-1=(x -1)2+2.(6分)∵(x -1)2≥0,∴(x -1)2+2≥2,(8分)∴x 2-2x +3的最小值为2.(10分)22.(1)证明:∵2a =3,2b =6,2c =12,∴2a ·2c =3×12=36=(2b )2,(2分)∴2a +c=22b ,∴a +c =2b .(4分)(2)解:y >x >z .(5分)理由如下:x =355=(35)11,y =444=(44)11,z =533=(53)11,而35=243,44=256,53=125.(7分)∵256>243>125,∴44>35>53,∴y >x >z .(9分)23.解:(1)原式=(x 2-2xy +y 2+x 2-y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x =3,y =1时,原式=3-1=2.(6分)(2)⎩⎨⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.(8分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(12分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(4分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,∴①-②得4ab =4,∴ab =1.(8分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(12分)25.(1)(x-y+1)2(3分)(2)解:令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,再将A还原,得原式=(a+b-2)2.(8分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1.令n2+3n=A,则原式=A(A+2)+1=A2+2A+1=(A+1)2,∴原式=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(14分)。