八年级上册数学勾股定理

合集下载

探索勾股定理(19张PPT)数学八年级上册

探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等

数学八年级上册勾股定理

数学八年级上册勾股定理

数学八年级上册勾股定理一、勾股定理的内容1. 定理表述- 在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。

- 例如,一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边c满足3^2+4^2=c^2,即9 + 16=c^2,c^2=25,所以c = 5。

2. 定理的证明- 赵爽弦图证明法- 赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形。

- 设直角三角形的两条直角边分别为a、b(b>a),斜边为c。

大正方形的面积可以表示为c^2,同时它又等于四个直角三角形的面积加上中间小正方形的面积。

- 四个直角三角形的面积为4×(1)/(2)ab = 2ab,中间小正方形的边长为b - a,其面积为(b - a)^2=b^2-2ab+a^2。

- 所以c^2=a^2+b^2。

- 毕达哥拉斯证法(拼图法)- 用四个全等的直角三角形(直角边为a、b,斜边为c)拼成一个以a + b为边长的正方形。

- 这个大正方形的面积为(a + b)^2=a^2+2ab + b^2,同时它又等于四个直角三角形的面积加上中间边长为c的正方形的面积,即4×(1)/(2)ab+c^2=2ab +c^2。

- 所以a^2+b^2=c^2。

二、勾股定理的应用1. 已知直角三角形的两边求第三边- 当已知两条直角边求斜边时,直接使用c=√(a^2)+b^{2}。

例如,直角边a = 6,b = 8,则c=√(6^2)+8^{2}=√(36 + 64)=√(100)=10。

- 当已知一条直角边和斜边求另一条直角边时,使用a=√(c^2)-b^{2}(设c为斜边,b为已知直角边)。

例如,斜边c = 13,一条直角边b = 5,则a=√(13^2)-5^{2}=√(169 - 25)=√(144)=12。

2. 解决实际问题中的直角三角形问题- 例如,在一个长方形中,已知长为8米,宽为6米,求对角线的长度。

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

八年级上册数学公式法

八年级上册数学公式法

八年级上册数学公式法
1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方。

公式:$a^2 + b^2 = c^2$
其中,$a$ 和 $b$ 是直角三角形的两条直角边,$c$ 是斜边。

2.平方差公式:$(a+b)(a-b) = a^2 - b^2$
用于计算两个数的平方差。

3.完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和$(a-b)^2 = a^2 -
2ab + b^2$
用于计算一个数的平方,加上或减去两倍的该数与另一数的乘积,再加或减另一数的平方。

4.二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (其中$a
\geq 0, b \geq 0$)
用于计算两个非负数的平方根的乘积。

5.二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (其
中 $a \geq 0, b > 0$)
用于计算一个非负数的平方根除以另一个非负数的平方根。

6.分式的乘法法则:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
用于计算两个分式的乘积。

7.分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times
\frac{d}{c} = \frac{ad}{bc}$
用于计算一个分式除以另一个分式。

八年级数学上册 知识点总结

八年级数学上册 知识点总结

八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。

3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。

二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。

2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。

3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和−1.零没有倒数。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算。

三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。

八年级数学上册知识点:勾股定理

八年级数学上册知识点:勾股定理

八年级数学上册知识点:勾股定理八年级数学上册知识点:勾股定理一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

常见考法(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。

3.1勾股定理 课件(共32张PPT) 苏科版八年级数学上册

3.1勾股定理 课件(共32张PPT) 苏科版八年级数学上册

C A
S正方形c
B C
图2-1
A
B 图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
1 62 2
18(单位面积)
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B B′
C
D
A
E
练习1
36
如图,正方形 ABCD 的边长为 6,则图中两个
阴影部分的正方形面积之和为__________.
图放大
第4题
练习2
在△ABC 中,∠B=90°,AB=c, BC=a,AC =b.
(1)已知 a=6,b=10,求 c 的长; 解:∵∠B=90°,a=6,b=10, ∴c2=b2-a2=102-62=64,∴c=8.
接 CE,若 AE=3,BE=5,则边 AC 的长为( )
A.3
B.4
C.6
D.8
图放大
第6题
3或5
练习4
在 Rt△ABC 中,两条边的长分别为 a=1,b=2, 则 c2=________.
第8题
练习5
12
如图,在等腰三角形 ABC 中,AB=AC=10,D 为 BC 中点,AD=8,则 BC=________.
3.1 勾股定理(1)
3.1 勾股定理(1)
想一想
如图,一块长约 60m、宽 约 80m 的长方形草坪,被一 些人沿对角线踏出了一条 “捷径”,请问同学们:
1.走“捷径”的客观原因 是什么?为什么?

北师大版八年级数学上册《1.1.1勾股定理》教学课件(共19张PPT)

北师大版八年级数学上册《1.1.1勾股定理》教学课件(共19张PPT)

例1 高为2.5 m的木梯,架在高为2.4 m的墙上(如图),
这时梯脚与墙的距离是多少?
A
解:在Rt△ABC中,根据勾股定理,得:
BC2=AB2-AC2=2.52-2.42=0.49,
所以BC=0.7.
即梯脚与墙的距离是0.7 m.
C
B
例2 求斜边长为17 cm、一条直角边长为15 cm的直角三 角形的另一边长.
正方形C的面积应该怎么计算呢?
C A
B
图①
➢ 分“割”成若干个直角边为整数的三角形 SC=12×2×3×4+1×1=13;
➢ 把C“补”成边长为5的正方形 SC=5×5-12×2×3×4=13.
观察:
C A
B
图①
正方形A中含有__4__个小正方形,即A的 面积是___4__. 正方形B中含有__9__个小正方形,即B的 面积是___9__. 正方形C中含有_1_3__个小正方形,即C的 面积是__1_3__.
第一章 勾股定理
1.1 探索勾股定理
第1课时 勾股定理
学习目标
1.经历探索勾股定理的过程,了解勾股定理的探 究方法;
2.掌握勾股定理,并能运用勾股定理解决一些简 单问题.
新知引入
一个直角三角形的两条直角边长分别是3和4,你 知道它的第三边长吗?
实际上,利用勾股定理我们可以很容易地解决这个问题. 勾股定理是一个古老的定理,人类很早就发现了这个定理.
观察:
A'
C'
B'
图②
正方形A'中含有__1_6_个小正方形,即 A'的面积是__1_6__.
正方形B'中含有__9__个小正方形,即 B'的面积是__9___.
正方形C'中含有__2_5_个小正方形,即 C'的面积是__2_5__.

八年级上册数学期末知识点:勾股定理

八年级上册数学期末知识点:勾股定理

八年级上册数学期末知识点:勾股定理第二章
勾股定理
2.1探索勾股定理
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

注意:电视机有多少英寸,指的是电视屏幕对角线的长度。

2.2勾股数
.勾股定理的逆定理:若三角形的三边长a,b,c满足a2+b2=c2,则该三角形是直角三角形。

在∆ABc中,a,b,c为三边长,其中c为最大边, 若a2+b2=c2,则∆ABc为直角三角形;
若a2+b2>c2,则∆ABc为锐角三角形;
若a2+b2<c2,则∆ABc为钝角三角形。

2.勾股数:满足a2+b2=c2的三个正整数,称为勾股数。

规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数,仍能够成直角三角形。

一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。

常用勾股数:3,4,5
9,12,15
5,12,13
8,15,17
6,8,10
7,24,25
勾股数须知:连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,10。

八年级数学勾股定理单钩和双钩知识点

八年级数学勾股定理单钩和双钩知识点

八年级数学勾股定理单钩和双钩知识点勾股定理是数学中非常重要的一条定理,也是我们学习数学的重要一步。

在数学中,掌握数学定理的知识点是很重要的,所以我们来探讨关于勾股定理单钩和双钩的知识点。

一、勾股定理
勾股定理是一个古老的几何定理,其基础概念为:直角三角形中,斜边的平方等于两直角边平方的和。

这个定理用代数符号表示,即
a²+b²=c²,其中a、b是直角边,c是斜边。

二、单钩定义
单钩是指一个由数学单位网格组成的图形,它可以使用4个元素,分别为钩头、钩尾、右腿和左腿。

单钩的形状可以看作是一个勾股定理的三边形,其中两直角边长度为1,斜边长度为√2。

三、单钩勾股定理
我们可以将一个单钩看作是勾股定理的一部分,一个右腿表示一个直角边,一个左腿表示另一个直角边,而斜边就是单钩的对角线。

根据勾股定理,我们可以计算单钩的对角线长度,即√(1²+1²)=√2。

四、双钩定义
双钩是指由多个单钩组成的一个图形,这些单钩构成了一个L形。

双钩可以用不同的符号表示,如λ (lambda)或Y,其中每个单钩的长度相等。

五、双钩勾股定理
双钩的勾股定理是将其分成两个直角三角形,并计算其斜边长度。

由于每个单钩的斜边长度为√2,我们可以使用双钩中的单钩数量和形状来计算其斜边长度。

六、结论
勾股定理是数学中非常重要的一条定理,可以用来解决直角三角形中的各种问题。

单钩和双钩是勾股定理的一种变形,可以展现勾股定理的不同形式。

掌握勾股定理的定义和应用可以帮助我们更好地理解数学,在数学中取得更好的成绩。

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。

它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。

关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。

之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。

2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。

通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

八上数学勾股定理

八上数学勾股定理

八上数学勾股定理知识点总结归纳嘿,小伙伴们,咱们今天来聊聊八年级上册数学里超级实用的一个知识点——勾股定理。

别一听定理俩字儿就觉得头疼,咱们用简单易懂的语言,多举例子,保证让你一听就懂,一学就会!一、勾股定理是啥?勾股定理,简单来说,就是在一个直角三角形里,直角边的平方和等于斜边的平方。

听起来有点绕,咱们举个例子就明白了。

假设你有一个直角三角形,它的两条直角边分别叫做a 和b,斜边叫做c。

那么,勾股定理就可以写成这样:a² + b² = c²。

二、勾股定理的应用求边长勾股定理最常用的就是求直角三角形的边长。

比如说,你知道了一个直角三角形的两条直角边,就可以用它来求斜边;反过来,如果你知道斜边和其中一条直角边,也能求出另一条直角边。

例子1:已知直角三角形的两条直角边分别是3米和4米,那么斜边有多长呢?根据勾股定理,咱们可以列出式子:3² + 4² = c²。

计算一下,就是9 + 16 = c²,所以c² = 25,那么c就是5(注意,边长不能是负数,所以咱们只取正值)。

所以,斜边长度是5米。

例子2:已知直角三角形的斜边是5米,其中一条直角边是3米,那么另一条直角边有多长呢?这次咱们用斜边和已知的直角边来求另一条直角边。

根据勾股定理,列出式子:3² + b² = 5²。

计算一下,就是9 + b² = 25,所以b² = 16,那么b 就是4(同样,边长不能是负数)。

所以,另一条直角边长度是4米。

解决实际问题勾股定理不仅在数学题里好用,在生活中也能帮咱们解决不少问题。

比如说,你想知道学校操场旗杆的高度,但是没有合适的工具怎么办?这时候,勾股定理就能派上用场了。

例子3:假设你站在离旗杆底部10米远的地方,用一根2米长的竹竿竖直举起,发现竹竿的顶端刚好和旗杆的顶端在同一水平线上。

八年级数学上册 第一章 勾股定理 1.1 探索勾股定理(第1课时)课件

八年级数学上册 第一章 勾股定理 1.1 探索勾股定理(第1课时)课件
平方
(píngfāng)

a2+b2=c2 .
3.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长的平方为(
A.2 B.24 C.74 D.12

第四页,共九页。
.如果(rúguǒ)
)
B
1.若直角三角形的三边(sān biān)长分别为6,8,m,则m2的值为( D
A.10
C.28
)
B.100
2
即阴影部分(bùfen)的面积为72π cm2.
第八页,共九页。
内容(nèiróng)总结
第一章 勾股定理。A.2 B.24
C.74
D.12。1.若直角三角形的三边长分别为
6,8,m,则m2的值为(
)。2.如图,在边长为1个单位(dānwèi)长度的小正方形组成的网格中,点
A,B都是格点,则线段AB的长度为(
C.76
D.80
C
第六页,共九页。
4.在△ABC中,∠C=90°,AB=25,AC=20,求△ABC的周长(zhōu chánɡ).
解:∵AB2=AC2+BC2,
∴BC2=AB2-AC2=252-202=152.
∴BC=15.
∴△ABC的周长(zhōu chánɡ)是25+20+15=60.
第七页,共九页。
5.求下列图中阴影(yīnyǐng)部分的面积:
(1)
(2)
解:(1)由题图,得132-122=25(cm2),则阴影部分的面积为25 cm2.
(2)设半圆的直径(zhíjìng)为d cm,由勾股定理,得d2=252-72=576,则d=24,
S
1
2
半圆= π

八年级数学上册 第一章 勾股定理 1.2 一定是直角三角形吗教学课件

八年级数学上册 第一章 勾股定理 1.2 一定是直角三角形吗教学课件
4
位置关系,并说明理由.
CB,
解:AF⊥EF.设正方形的边长为4a,
则EC=a,BE=3a,CF=DF=2a.
在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2. 在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2. 在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2. 在△AEF中,AE2=EF2+AF2, ∴△AEF为直角三角形,且AE为斜边.
第三页,共二股定理的逆定理
探究:下面有三组数分别是一个三角形的三边(sān 长a, biān) b, c:
①5,12,13; ②7,24,25; ③8,15,17. 回答下列问题:
1.这三组数都满足 a2+b2=c2吗?
2.分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角 三角形吗?
归纳 根据勾股定理及其逆定理,判断一个三角形是不是直角三角形,只要看两条较小边 长的平方和是否等于最大边长的平方.
12/13/2021
第十三页,共二十六页。
变式1: 已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为
大于1的正整数).试问(shìwèn)△ABC是直角三角形吗?若是,
哪一条边所对的角是直角?请说明理由
计算最长边的平方是否等于其他两边的平方和即可.
12/13/2021
第十九页,共二十六页。
当堂(dānɡ tánɡ)练习
1.如果线段(xiànduàn)a,b,c能组成直角三角形,则它们的比可以是 ( )
A.3:4:7 B B.5:12:13 C.1:2:4
D.1:3:5
2. 将直角三角形的三边长扩大同样的倍数,则得到
解:∵AB²+BC²=(n²-1)²+(2n)² =n4 -2n²+1+4n² =n4 +2n²+1

数学初中八年级勾股定理

数学初中八年级勾股定理

数学初中八年级勾股定理一、基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法。

用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

二、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

八年级数学上册勾股定理知识点总结

八年级数学上册勾股定理知识点总结

八年级数学上册勾股定理知识点总结勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理是人类早期发现并证明的重要数学定理之一。

下面是整理的八年级数学上册勾股定理知识点,仅供参考希望能够帮助到大家。

八年级数学上册勾股定理知识点1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

证明1、对事情作出判断的句子,就叫做命题。

即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。

一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

在证明时需注意:①在一般情况下,分析的过程不要求写出来。

②证明中的每一步推理都要有根据。

如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

学好初中数学的方法和技巧总结主动预习预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。

如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

八年级上册数学勾股定理知识点

八年级上册数学勾股定理知识点

八年级上册数学勾股定理知识点八年级上册数学勾股定理知识点1.勾股定理的内容:假如直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:假如三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大一样倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:假设一个直角三角形三边的.长分别是三个连续的自然数,那么这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,那么它的三边长分别为解析:可知三边长度为6,8,10,那么周长为24例2:直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,那么斜边为5 第二种情况:当斜边长度为4时,一条直角边为3,那么另一边为根号7《点评》此题是一道易错题目,同学们应该认真审题!例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的选项是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C初中数学的方法和技巧多做主要是指做习题,学数学一定要做习题,并且应该适当地多做些。

做习题的目的首先是纯熟和稳固学习的知识;其次是初步启发灵敏应用知识和培养独立考虑的才能;第三是融会贯穿,把不同内容的数学知识沟通起来。

在做习题时,要认真审题,认真考虑,应该用什么方法做?能否有简便解法?做到边做边考虑边总结,通过练习加深对知识的理解。

必需要有错题本说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

八年级数学上第14章勾股定理14.1勾股定理2直角三角形三边的关系__验证勾股定理授课新华东师大1

八年级数学上第14章勾股定理14.1勾股定理2直角三角形三边的关系__验证勾股定理授课新华东师大1

知1-讲
3.用拼图法证明命题1的思路: (1)图形经过割补拼接后,只要没有重叠,没有空隙,面
积不会改变; (2)根据同一种图形的面积的不同表示方法列出等式; (3)利用等式性质变换证明结论成立,即拼出图形→写出
图形面积的表达式→找出等量关系→恒等变形→推出 命题1的结论.
知1-讲
例1 图14.1-1是用硬纸板做成的四个两直角边长分别 是a,b,斜边长为c的全等的直角三角形和一个 边长为c的正方形,请你将它们拼成一个能证明 命题1的图形. (1)画出拼成的这个图形的示意图; (2)证明命题1.
知2-讲
(2)已知直角三角形的一边确定另两边的关系; (3)证明含有平方关系的几何问题; (4)作长为n(n≥1,且n为整数)的线段; (5)一些非直角三角形的几何问题、日常生活中的
应用问题,对于这些问题,首先要将它们转化, 建立直角三角形模型,然后利用勾股定理构建方 程或方程组解决.
知2-讲
例2 如图,Rt △ABC的斜边AC比直角边 AB长 2cm,另一直角边BC长为6 cm.求AC的长.
知2-讲
本题运用建模思想解题,根据实际问题画出直 角三角形,再运用勾股定理解答.当图形不是直角 三角形时,常常通过作垂线构造直角三角形.
知2-讲
例5 如图,有一张直角三角形纸片,两直角边AC =6 cm,BC=8 cm,现将直角边AC沿AD折 叠,使点C落在斜边AB上的点E处,试求CD 的长.
导引:利用折叠前后重合的线段相等、重合的角相等, 通过勾股定理列方程,在Rt△BDE中求出线段 DE的长,从而得到CD的长.
解: 由已知AB=AC - 2, BC =6cm, 根据勾股定理,可得 AB2 + BC2 = (AC - 2)2 +62 = AC2, 解得AC= 10(cm).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC=5-1=4.设
B
F
绳索长为OA=OB=x尺。
则 OF=OA-AF=(x-4)尺 在Rt△OBF中,由勾股定理, E
A
得: OB2=BF2+OF2,即 x2=102+(x-4)2
D
C
图1
解得:x=14.5尺 ∴绳索长为1大4.家5好尺。
一、判断题
1. ΔABC的两条边a=6,b=8,则c=10
你能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
∵ 5824625480 742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错 ‹# ›
小结 说说这节课你有什么收获?
探索直角三角形两直角边的平方和等于斜边的平方; 利用勾股定理解决实际问题。
‹# ›
作业
。×
()
2.若直角三角形的两边长为3和4,则 12 13
第三边为5。 ( × )
3.若a、b、c为直角△ABC的三边,则
a2+b2=c2。
( ×)
二、填空题
A
1、如右图,阴影部分是一个正方形
,则此正方形的面积为( 2)5 。 8米
2、如图,从电线杆的顶端A点,扯一
根钢丝绳固定在地面上的B点,这
根钢丝绳的长度是( 10米 ) 。
3、正方形Ⅰ,Ⅱ,Ⅲ的面积有什么关系?
即 a2+ b2= c2 。
SⅠ+
SⅡ=
SⅢ

为什么?因为大正方形的面积相等大家,好而SⅠ+ SⅡ和SⅢ的面积都 3 。
等于大正方形面积减去四个直角三角形的面积。

归纳总结
勾股定理
直角三角形两直角边的平 方和等于斜边的平方。
如果直角三角形两直角边分别为a、b,
族自信心与自豪感,激发学习兴趣。
大家好
2
合作探究
图一
图二
小直角三角形的长直角边等于a,短直角边等于b,斜边等于c.
1=、a将2 ,四正个方三形角Ⅱ形的摆面放积在S第Ⅱ一= 个b正2 方形。内,如图一所示,则正方形Ⅰ的面积SⅠ 2=、c将2 四。个三角形摆放在第二个正方形内,如图二所示,则正方形Ⅲ的面积SⅢ
将它向前推两步(一步指“双步”,即左右脚各迈一步,一步 为5尺)并使秋千的绳索拉直,其踏板离地5尺.求绳索的长.
分CD析= 1:0尺画;出CF如=图5尺的.图Rt形O,B由F中题设意O可B知为AxC尺=,你1尺能;解答这个题
吗?
O
解:如图1,设OA为静止时秋千绳索的
长,则
AC=1,CF=5, BF=CD=10. AF=CF-
于是 AB= 100 =10
B
O
所以,钢丝绳的长度大家为好 10米.
例2
明朝程大位的著作《算法統宗》裏有一道“蕩秋千”
的趣題,是用詩歌的形式:
平地秋千未起,踏板一尺離地;
送行二步與人齊,五尺人高曾記。
仕女佳人爭蹴,終朝笑語歡嬉;
索長有幾
良工高士好奇,算出索長有幾?
Hale Waihona Puke 大家好现代汉语的意思是:有一架秋千,当静止时其踏板离地1尺;
习题5.2 A组 T1、2、3
大家好
14
谢谢
大家好
15
斜边为c,那么 a2 + b2 = c2
B
c
a
在西方又称毕达
哥拉斯定理!
A
大家好
b
C
4
❖ 精y=讲0点拨
勾股定理揭示了直角三角形三边之间的关系
c2=a2+b2 即c= a2 + b2 a2=c2-b2 即a= c2 - b2 = (c+b)(c- b) b2=c2-a2 即b= c2 - a2 = (c+a)(c- a)
一根钢丝绳固定在地面上的B点,这根钢
丝绳的长度是多少?(AO=8米 BO=6米)
分析:
连接OB,OB与OA垂直,得直角三角形,在此直 角三角形中,已知两直角边求斜边,应该用勾

股定理.
如图,在Rt△AOB中,∠O=90°,
A
AO=8米 ,BO=6米,
由勾股定理,得
AB2=AO2+BO2
=82+62=100
大家好
O 6米 B
10
如图,图中所有四边形都是正方形,
正方形Ⅰ的边长为7你能求出正方形A、B、
C、D的面积之和吗?
B
C D
A

a

b
c
答案:49
Ⅰ7
大家好
11
想 一 想
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。
大家好
5
学以致用
如果知道了直角三角形任意两边的长度, 就可以利用勾股定理求第三边的长。
x 3
┓ 4
X=5
10 8
x
x=6 大家好
❖ 凡是可以构成一个直角 三角形三边的一组正整 数,称之为勾股数。
❖ 像3,4,5; ❖ 6、8,10; ❖ 5,12,13等都是勾
股数。
6
例1 如图5—2,从电线杆OA的顶端A点,扯
第5章 实数
大家好
1
学习y=0目标
一、知识与技能:
能记住勾股定理,会运用勾股定理解决一些与 直角三角形有关的实际问题。
二、过程与方法:
经历勾股定理的探索过程,感受数形结合的思 想,尝试用多种方法验证勾股定理,体验解决 问题策略的多样性。
三、情感、态度与价值观:
通过对勾股定理历史的了解,增强同学们的民
相关文档
最新文档