第9章 异方差问题检验与修正
异方差的诊断及修正
异方差的诊断与修正—甘子君 经济1202班 1205060432一、异方差的概念:异方差性(heteroscedasticity )是相对于同方差而言的。
所谓同方差,是为了保证回归参数估计量具有良好的统计性质,经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。
如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。
在回归模型的经典假定中,提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var也就是说iu 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =kik i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为ni u X X Y iki k i i ,,2,1221 =++++=βββ如果其它假定均不变,但模型中随机误差项iu 的方差为).,,3,2,1(,)(22n i u Var i i ==σ则称iu 具有异方差性。
也称为方差非齐性。
二、内容根据1998年我国重要制造业的销售利润与销售收入数据,运用EV 软件,做回归分析,用图示法,White 检验模型是否存在异方差,如果存在异方差,运用加权最小二乘法修正异方差。
三、过程:(实践过程、实践所有参数与指标、理论依据说明等)(一) 模型设定为了研究我国重要制造业的销售利润与销售收入是否有关,假定销售利润与销售收入之间满足线性约束,则理论模型设定为:i Y =1β+2βi X +i μ其中,i Y 表示销售利润,i X 表示销售收入。
由1998年我国重要制造业的销售收入与销售利润的数据,如图1:1988年我国重要制造业销售收入与销售利润的数据 (单位:亿元)(二)参数估计1、双击“Eviews”,进入主页。
异方差性的检验和补救
异方差性的检验和补救一、研究目的和要求表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型,检验其是否存在异方差,并加以补救。
表1 我国制造工业1998年销售利润与销售收入情况二、参数估计EVIEWS 软件估计参数结果如下Dependent Variable: Y Method: Least Squares Date: 06/01/16 Time: 20:16 Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob. C 12.03349 19.51809 0.616530 0.5429 X0.1043940.008442 12.366580.0000R-squared 0.854694 Mean dependent var 213.4639 Adjusted R-squared 0.849105 S.D. dependent var 146.4905 S.E. of regression 56.90455 Akaike info criterion 10.98938 Sum squared resid 84191.34 Schwarz criterion 11.08453 Log likelihood -151.8513 Hannan-Quinn criter. 11.01847 F-statistic 152.9322 Durbin-Watson stat 1.212781 Prob(F-statistic)0.000000用规范的形式将参数估计和检验结果写下2ˆ12.033490.104394(19.51809)(0.008442) =(0.616530) (12.36658)0.854694152.9322iY X t R F =+ = =三、 检验模型的异方差(一) 图形法 1. 相关关系图X YX Y 相关关系图2. 残差图形生成残差平方序列22e resid ,做2e 与解释变量 X 的散点图如下。
异方差的检验与修正
西安财经学院本科实验报告学院(部)统计学院实验室 313 课程名称计量经济学学生姓名学号 1204100213 专业统计学教务处制2014年12 月 15 日《异方差》实验报告开课实验室:313 2014年12月22第六部分异方差与自相关4. 在本例中,参数估计的结果为:2709030.01402097.01402.728X X Y ++=Λ(2.218) (2.438) (16.999)922173.02=R D.W.=1.4289 F=165.8853 SE=395.2538三.检查模型是否存在异方差 1.图形分析检验 (1)散点相关图分析分别做出X1和Y 、X2和Y 的散点相关图,观察相关图可以看出,随着X1、X2的增加,Y 也增加,但离散程度逐步扩大,尤其表现在X1和Y.这说明变量之间可能存在递增的异方差性。
在Graph/scatter 输入log(x2) e^2,结果如下:(2)残差相关图分析建立残差关于X1、X2的散点图,可以发现随着X 的增加,残差呈现明显的扩大趋势,表明模型很可能存在递增的异方差性。
但是否确实存在异方差还应通过更进一步的检验。
2.GQ 检验首先在主窗口Procs菜单里选Sort current page命令,输入排序变量x2,以递增型排序对解释变量X2进行排序,然后构造子样本区间,分别为1-12和20-31,再分别建立回归模型。
(1)在Sample菜单里,将区间定义为1—12,然后用OLS方法求得如下结果(2)在Sample菜单里,将区间定义为20—31,然后用OLS方法求得如下结果则F的统计量值为:6699.834542929948192122===∑∑iieeF在05.0=α下,式中分子、分母的自由度均为9,查F分布表得临界值为:18.3)9,9(05.0=F,因为F=8.6699>18.3)9,9(05.0=F,所以拒绝原假设,表明模型确实存在异方差。
第9章 异方差问题检验与修正
How to test the heteroskedasticity?
Residual plot
第9章 异方差:检验与修正
Heteroskedasticity: test and correction
Contents
What’s heteroskedasticity? Why worry about heteroskedasticity? How to test the heteroskedasticity? Corrections for heteroskedasticity?
k 1 1
Because RSS and TSS are not affected by heteroskedasticity, our R2 and adj-R2 are also not
affected by heteroskedasticity.
The consequences of heteroskedasticity, cont.
heteroskedasticity, cont.
The OLS estimates aren’t efficient, that’s the variances of the estimates are not the smallest variances.
If the standard errors are biased, we can not use the usual t statistics or F statistics for drawing inferences. That is, the t test and F test and the confidence interval based on these test don’t work.
异方差的检验及修正
异方差问题的检验与修正【实验目的】1、深刻理解异方差性的实质、异方差出现的原因、异方差的出现对模型的不良影响(即异方差的后果),掌握估计和检验异方差性的基本思想和修正异方差的若干方法。
2、能够运用所学的知识处理模型中的出现的异方差问题,并要求初步掌握用Eviews处理异方差的基本操作方法。
【实验原理】1、最小二乘估计。
2、异方差。
3、最小二乘残差图解释异方差。
4、Breusch-Pagan检验(B-P检验)和White检验(怀特检验)检验特定方差函数的异方差性。
5、稳健标准差和加权最小二乘法对特定方差函数的异方差性的修正。
【实验软件】Eviews6.0【实验步骤】一、设定模型首先将实验数据导入软件之中。
(注:本实验报告正文部分只显示软件统计结果,导入数据这一步骤参见附A)本次实验的数据主要是Big Andy店的食品销售收入数据与食品价格数据,共采用了75组。
实验数据来源于课本中的例题,由老师提供。
如下表:表Big Andy店月销售收入和价格的观测值sales price sales price sales price sales price 73.2 5.6975.7 5.5978.1 5.773.7671.8 6.4974.4 6.2288 5.2271.2 6.3762.4 5.6368.7 6.4180.4 5.0584.7 5.3367.4 6.2283.9 4.9679.7 5.7673.6 5.2389.3 5.0286.1 4.8373.2 6.2573.7 5.8870.3 6.4173.7 6.3585.9 5.3478.1 6.2473.2 5.8575.7 6.4783.3 4.9869.7 6.4786.1 5.4178.8 5.6973.6 6.3967.6 5.4681 6.2473.7 5.5679.2 6.2286.5 5.1176.4 6.280.2 6.4188.1 5.187.6 5.0476.6 5.4869.9 5.5464.5 6.4984.2 5.0882.2 6.1469.1 6.4784.1 4.8675.2 5.8682.1 5.3783.8 4.9491.2 5.184.7 4.8968.6 6.4584.3 6.1671.8 5.9873.7 5.6876.5 5.3566 5.9380.6 5.0282.2 5.7380.3 5.2284.3 5.273.1 5.0874.2 5.1170.7 5.8979.5 5.6281 5.2375.4 5.7175 5.2180.2 5.2873.7 6.0281.35.45756.0581.25.83696.33其中,sales 表示在某城市的月销售收入,以千美元为单位;price 表示在该城市的价格,以美元为单位。
异方差的检验与修正
西安财经学院本科实验报告学院(部)统计学院实验室313课程名称计量经济学学生姓名学号1204100213专业统计学教务处制2014年12 月15 日《异方差》实验报告五、实验过程原始记录(数据、图表、计算等) 一.选择数据1.建立工作文件并录入数据File\New\workfile, 弹出Workfile create 对话框中选择数据类型.Object\new object\group,按向上的方向键,出现两个obs 后输入数据.中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元城市 y x1 x2 城市 y x1 x2 北京 5724。
5 958.3 7317。
2 湖北 2732。
5 1934。
6 1484。
8 天津 3341。
1 1738.9 4489 湖南 3013。
3 1342.6 2047 河北 2495。
3 1607。
1 2194。
7 广东 3886 1313。
9 3765.9 山西 2253.3 1188。
2 1992.7 广西 2413。
9 1596。
9 1173。
6 内蒙古 2772 2560.8 781.1 海南 2232。
2 2213。
2 1042.3 辽宁 3066。
9 2026。
1 2064。
3 重庆 2205。
2 1234.1 1639。
7 吉林 2700.7 2623。
2 1017。
9 四川 2395 1405 1597.4 黑龙江 2618。
2 2622.9 929.5 贵州 1627。
1 961。
4 1023。
2 上海 8006 532 8606.7 云南 2195.6 1570。
3 680。
2 江苏 4135.2 1497。
9 4315.3 西藏 2002。
2 1399.1 1035.9 浙江 6057。
2 1403.1 5931。
7 陕西 2181 1070。
4 1189。
8 安徽 2420。
9 1472。
8 1496。
3 甘肃 1855.5 1167。
计量经济学--异方差的检验及修正
经济计量分析实验报告一、实验项目异方差的检验及修正二、实验日期2015.12.06三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,进行异方差的检验和补救。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
检验是否存在异方差并补救。
五、实验步骤1、建立模型。
以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆)t 4X — 城乡居民储蓄存款年末增加值(亿元)3、对模型进行多重共线性检验。
4、检验异方差是否存在。
六、实验结果(一)、消除多重共线性之后的模型多元线性回归模型估计结果如下:4321000779.0053329.0151924.0720076.0-99.81113ˆX +X +X +X =Y i SE=(26581.73) (0.230790) (0.108223) (0.013834) (0.020502) t =(3.051494) (-3.120046) (1.403805) ( 3.854988) (0.038020)R2=0.969693R2=0.957571F=79.98987(1)拟合优度检验:可决系数R 2=0.969693较高,修正的可决系数R 2=0.957571也较高,表明模型拟合较好。
异方差性的概念类型后果检验及其修正方法
异方差性的概念类型后果检验及其修正方法异方差性(heteroscedasticity)是指随着自变量的变化,被解释变量的方差不保持恒定,呈现出不同的分散特征。
异方差性可能会导致线性回归模型的参数估计不精确,误差项的标准误差的估计不准确,常见的检验和修正方法包括Breusch-Pagan检验和White检验,同时,还可以采取加权最小二乘法或者转换变量的方法来修正异方差性。
异方差性可以分为条件异方差和非条件异方差两种类型。
条件异方差是指在给定自变量的情况下,被解释变量方差的大小存在差异;非条件异方差则是指被解释变量的方差在整个样本空间内都存在差异。
异方差性的后果是导致参数估计的不准确性和偏误。
当存在异方差性时,OLS(普通最小二乘法)估计的标准误差会低估真实标准误差,从而使得参数显著性以及模型拟合效果可能出现问题。
此外,在存在异方差性的情况下,t检验、F检验等假设检验的结果也会受到影响。
在进行线性回归模型时,常常需要对异方差性进行检验。
一种常用的检验方法是Breusch-Pagan检验,其基本思想是对残差的平方与自变量进行回归,然后通过F检验来判断异方差的存在与否。
另一种常用的检验方法是White检验,它是在一个包含自变量和交互项的扩展模型中对残差的平方与自变量进行回归,通过Wald检验统计量来判断异方差的存在与否。
异方差性可以通过多种修正方法来处理。
其中,一种常用的方法是采用加权最小二乘法(WLS)来估计参数。
WLS的基本思想是将方差不恒定的观测值加权,使得每个观测值的权重与方差的倒数成正比。
另一种常用的方法是通过转换变量,使得原始数据变换成具有恒定方差的形式,例如对数变换、平方根变换等。
下面以一个案例来说明如何检验和修正异方差性。
假设我们研究了城市的房价(被解释变量)与房屋面积和所在地区(自变量)之间的关系。
我们采集了100个样本数据,并构建了线性回归模型进行分析。
1.检验异方差性:使用Breusch-Pagan检验来检验模型的异方差性。
2019年第9章 异方差问题检验与修正.ppt
Patterns of heteroskedasticity
Y
X homoskedasticity Y Y Increasing with X
185.1 nurse 1569.5 space 274.8 consumption 2828.1 electronics 225.9 chemistry 3751.9 polymer 2884.1 computer 4645.7 fuel 5036.4 auto
The scatter graph between R&D expenditure and Sales
What’s heteroskedasticity?
What is Heteroskedasticity?
Recall
the assumption of homoskedasticity implied that conditional on the explanatory variables, the variance of the unobserved error, u, was constant
X1 X2 X3
.
.
E(Y|X) = b0 + b1X
X
Examples
Generally, cross-section data more easily induce heteroskedasticity because of different characteristics of different individuals. Consider a cross-section study of family income and expenditures. It seems plausible to expect that low income individuals would spend at a rather steady rate, while the spending patterns of high income families would be relatively volatile. If we examine sales of a cross section of firms in one industry, error terms associated with very large firms might have larger variances than those error terms associated with smaller firms; sales of larger firms might be more volatile than sales of smaller firms.
异方差性的检验方法和修正
Z N UE L异方差性的检验方法和修正一、 实验目的熟练掌握异方差性的检验方法和修正处理方法二、实验原理异方差(heteroskedasiticity )是计量经济工作红线性回归模型经常遇到的问题,异方差的存在对线性回归分析有很强的破坏作用。
利用异方差的图形检验、戈德菲尔特-夸特检验、怀特检验方法,检验案例中线性回归模型的异方差是否存在,若存在的话,如何通过加权最小二乘法进行修正,建立能够真正反应案例的经济模型,实现对经济的正确指导作用。
三、实验要求通过Eviews 软件应用给定的案例做异方差模型的图形检验法、Glodfeld-Quanadt(戈德菲尔特-夸特)检验与White(怀特)检验,并使用加权最小二乘法(WLS)对异方差进行修正。
四、 实验步骤在现实经济活动中,最小二乘法的基本假定并非都能满足,本案例讲讨论随机误差项违背基本假定的一个方面—异方差性。
本案例将介绍:异方差模型的图形检验、戈德菲尔特-夸特检验、怀特检验;异方差模型的加权最小二乘法修正。
1、建立workfile 和对象,录入2007年城镇居民收入X 和消费额Y 的数据。
2、参数估计按住ctrl 键,同时选中序列X 和序列Y ,点右键,在所出现的右键菜单中,选择open\as Group 弹出一对话框,点击其上的“确定”,可生成并打开一个群对象。
在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X 与Y 的简单散点图,可以看出X 与Y 是带有截距的近似线性关系。
点击朱界面菜单Quick\Estimate Equation, 在弹出的对话框中输入 Y C X,点确定即可到回归结果,如下:VariableCoefficientStd. Errort-StatisticProb. C 756.6871570.1912 1.3270760.1948X0.3076930.01908216.124970.0000R-squared0.899659 Mean dependent var 8689.161Durbin-Watson stat1.694571 Prob(F-statistic)0.0000003、异方差检验本案例用的是2007年的全国各个诚实城镇居民收入和消费额,由于地区之间这种差异使得模型很容易产生异方差,从而影响模型的估计和运行,为此必须对该模型是否存在异方差进行检验。
异方差问题的检验和修正
14655.1 178.3 274.8 consumption 101314.1 1595.3 10278.9
metal
21896.2 258.4 2828.1 electronics 116141.3 6107.5 8787.3
house
26408.3 494.7 225.9 chemistry 122315.7 4454.1 16438.8
.
E(Y|X) = b0 + b1X
.
X1
X2
X3
X
Examples
Generally, cross-section data more easily induce heteroskedasticity because of different characteristics of different individuals.
0
0
0
0
100000
200000
sales (million dollars)
100000
200000
sales (million dollars)
300000
300000
Why Worry About Heteroskedasticity?
The consequences of
heteroskedasticity
var(u|X)=s2 (homoskedasticity)
If this is not true, that is if the variance of u is different for different values of the X’s, then the errors are heteroskedastic
计量经济学异方差的检验与修正实验报告
计量经济学实验报告关于异方差性的检验与修正2012/11/18学院:国际教育学院专业:国际经济与贸易班级:10级一班姓名:苗子凯学号:1014102025一.异方差检验运行Eviews,依次单击file→new→work file→unstructed→observation 20。
命令栏中输入“data y x”,打开“y x”表,接下来将数据输入其中。
然后开始进行LS回归,命令栏中输入“ls y c x”回车,即得到回归结果如下回归方程为::Y = 272.3635389 + 0.7551249391*X二.开始检验异方差White 检验法:依次单击View →Residual Tests →Heteroskedasticity test →Whit 经估计出现white 检验结果,如下图:所以拒绝原假设,表明模型存在异方差Goldfeld-Quanadt 检验法: 在命令栏中直接输入:ls y c x →sort 1 20(进行排序) →smpl 1 8 →ls y c x →enter 得到如下结果:99.5%565.122置信水平下的卡方值>=nR继续取样本,在命令栏中直接输入: smpl 13 20 →ls y c x→enter得到如下结果:计算F统计量:F=RSS2/RSS1=615472.0/126528.3=4.864;F=4.864> F0.05(6,6)=4.28,拒绝原假设,表明模型确实存在异方差性。
帕克检验重新打开eviews,依次键入以下步骤:file→new→work file→unstructed→observation 20。
命令栏中输入“data y x”,打开“y x”表,接下来将数据输入其中。
然后键入:genr lne2=log(resid^2) → genr lnx=log(x) →ls lne2 c lnx得到结果如下:可得到α=3.47,且t=2.89,说明显著性明显,而α的显著性不为零意味着存在显著性。
计量经济 异方差性的检验与修正
10.12异方差性的检验与修正⒈图形分析检验观察利润总额(Y)与主营业务收入(X)的散点图从图中可以看出,随着主营业务收入的增加,利润总额的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⒉ Goldfeld-Quandt检验⑴将样本按解释变量排序,并分成三部分。
(3-17为样本1,27-41为样本2,序列中间的18-26被除去)⑵利用样本1建立回归模型1,如下图所示,其残差平方和为150868.6⑶ 利用样本2建立回归模型2,如图所示,其残差平方和为4030726⑷ 在同方差性假定下,计算F 统计量:12/RSS RSS F = = 4030726/150868.6 = 26.7168, (21RSS RSS 和分别是模型1和模型2的残差平方和)取05.0=α时,查F 分布表得 F 0.05(15-1-1,15-1-1)=2.5769,而 F = 26.7168 > F 0.05 = 2.5769,所以拒绝同方差性假设,表明存在异方差性。
⒊ White 检验⑴利用序前数据建立回归模型: Y C X ,回归结果如图:回归模型⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图white 检验结果其中F 值为辅助回归模型的F 统计量值。
在同方差性假定下,取显著水平05.0=α,怀特统计量2nR =4.42908<20.05X (2)=5.59,不拒绝同方差性假设。
接下来就有两种可能:1、 原模型具有同方差性2、 由于怀特检验只能检验单调递增或单调递减型异方差,所以原模型可能是复杂型的异方差。
4.异方差的修正(WLS)在运用 WLS 法修正过程中,我们选用了权数W=1/x。
在工作文件窗口中点Quick\Estimate Equation输入 y c x,然后在图中点Options 选项,选中 Weighted LS/TLS 复选框,在 Weight 框中输入1/x,即可得到加权最小二乘法的结果。
检验异方差性与调整异方差性
检验异方差性与调整异方差性1. 异方差性的概念及检验方法异方差性指的是随机变量的条件方差,并且条件方差不是常数。
也就是说,观测值的方差不仅仅取决于均值,还可能取决于其他因素。
在统计分析中,如果存在异方差性,会对参数估计和假设检验产生影响。
因此,需要在进行统计分析之前,先检验数据是否存在异方差性。
1.1 异方差性检验方法常用的异方差性检验方法有多种,包括:•基于残差的图形检验方法,如残差图和方差-均值图;•基于统计检验的方法,如Levene检验、Bartlett检验以及Brown-Forsythe检验;1.2 基于残差的图形检验方法1.2.1 残差图残差图是一种简单直观的检验异方差性的方法。
在残差图中,横轴表示预测值或观测值的均值,纵轴表示对应的残差。
如果残差的方差与均值无关,则残差图应该呈现出随机分布的特点。
反之,如果残差图中存在明显的模式,即残差的方差与均值相关,则可以初步判断存在异方差性。
1.2.2 方差-均值图方差-均值图是一种更细致的检验异方差性的方法。
在方差-均值图中,横轴表示预测值或观测值的均值,纵轴表示对应的残差的方差。
如果方差-均值图中存在明显的模式,即残差的方差与均值相关,则可以初步判断存在异方差性。
1.3 基于统计检验的方法1.3.1 Levene检验Levene检验是一种常用的检验异方差性的方法。
Levene检验基于修正后的中位数差异进行计算,主要用于检验两个或多个样本之间的方差是否存在显著差异。
在假设检验中,原假设为各组样本方差相等,备择假设为各组样本方差不等。
如果p值小于设定的显著性水平(如0.05),就可以拒绝原假设,认为样本之间存在异方差性。
1.3.2 Bartlett检验Bartlett检验是另一种常用的检验异方差性的方法。
Bartlett检验基于观测值与各组均值差异进行计算,主要用于检验两个或多个样本之间的方差是否存在显著差异。
在假设检验中,原假设为各组样本方差相等,备择假设为各组样本方差不等。
计量经济学异方差的检验与修正
《计量经济学》实训报告实训项目名称异方差模型的检验与处理实训时间 2012-01-02实训地点实验楼308班级学号姓名实 训 (实 践 ) 报 告实 训 名 称 异方差模型的检验与处理一、 实训目的掌握异方差性的检验及处理方法。
二 、实训要求1.求销售利润与销售收入的样本回归函数,并对模型进行经济意义检验和统计检验;2.分别用图形法、Goldfeld-Quant 检验、White 方法检验模型是否存在异方差;3.如果模型存在异方差,选用适当的方法对异方差进行修正,消除或减小异方差对模型的影响。
三、实训内容建立并检验我国制造业利润函数模型,检验异方差性,并选用适当方法对其进行修正,消除或不同)四、实训步骤1.建立一元线性回归方程;2.建立Workfile 和对象,录入数据;3.分别用图形法、Goldfeld-Quant 检验、White 方法检验模型是否存在异方差;4.对所估计的模型再进行White 检验,观察异方差的调整情况,从而消除或减小异方差对模型的影响。
五、实训分析、总结表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料。
假设销售利润与销售收入之间满足线性约束,则理论模型设定为:12i i i Y X u ββ=++其中i Y 表示销售利润,i X 表示销售收入。
表1 我国制造工业1998年销售利润与销售收入情况行业名称销售利润Y 销售收入X 行业名称销售利润销售收入食品加工业187.25 3180.44 医药制造业238.71 1264.1食品制造业111.42 1119.88 化学纤维制品81.57 779.46饮料制造业205.42 1489.89 橡胶制品业77.84 692.08烟草加工业183.87 1328.59 塑料制品业144.34 1345纺织业316.79 3862.9 非金属矿制品339.26 2866.14服装制品业157.7 1779.1 黑色金属冶炼367.47 3868.28皮革羽绒制品81.7 1081.77 有色金属冶炼144.29 1535.16木材加工业35.67 443.74 金属制品业201.42 1948.12家具制造业31.06 226.78 普通机械制造354.69 2351.68造纸及纸品业134.4 1124.94 专用设备制造238.16 1714.73印刷业90.12 499.83 交通运输设备511.94 4011.53文教体育用品54.4 504.44 电子机械制造409.83 3286.15石油加工业194.45 2363.8 电子通讯设备508.15 4499.19化学原料纸品502.61 4195.22 仪器仪表设备72.46 663.681.建立Workfile和对象,录入销售收入X和销售利润Y:图1 销售收入X和销售利润Y的录入2.图形法检验⑴观察销售利润Y与销售收入X的相关图:在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X 与Y 的简单散点图(图1),可以看出X 与Y 是带有截距的近似线性关系,即随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
实验 异方差的检验与修正
实验异方差的检验与修正实验目的1、理解异方差的含义后果、2、学会异方差的检验与加权最小二乘法实验内容一、准备工作。
建立工作文件,并输入数据,用普通最小二乘法估计方程(操作步骤与方法同前),得到残差序列。
表2列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
表2 我国制造工业1998年销售利润与销售收入情况二、异方差的检验1、图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图3-1):SCAT X Y图3-1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews 工作文件窗口中点击resid对象来观察)。
图3-2 我国制造业销售利润回归模型残差分布图3-2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
2、Goldfeld-Quant检验⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3-3),其残差平方和为2579.587。
SMPL 1 10LS Y C X图3-3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图3-4),其残差平方和为63769.67。
SMPL 19 28 LS Y C X图3-4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性3、White 检验⑴建立回归模型:LS Y C X ,回归结果如图3-5。
异方差检验及修正讲解
异方差(fānɡ chà)检验及修正
我们利用上次的nnn文件中的实例(shílì)数据进 行分析。 具体步骤: 1.OLS拟合:首先对数据进行回归分析,在工作 文件主显示窗口选定需要分析的回归方程\打开 估计方程及其统计检验结果输出窗口(见下图一)。
精品资料
Байду номын сангаас
异方差检验(jiǎnyàn)及修正
精品资料
异方差(fānɡ chà)检验及修正
精品资料
异方差检验(jiǎnyàn)及修正
White Heteroskedasticity(no cross terms)与White Heteroskedasticity(cross terms)选项的区别在于:在no cross terms选项下得到的辅助回归方程中不包含原回归方程左手变 量的交叉乘积项作为解释变量;而cross terms选项下得到的辅 助回归方程中包含原回归方程左手变量的交叉乘积项作为解释 变量。在我们(wǒ men)使用的一元回归例子中,这两个选项 的作用没有区别。当我们(wǒ men)分析多元回归模型的异方 差问题时,因为所选辅助回归方程的解释变量不同,这两个选 项的作用就不同了。
精品资料
异方差(fānɡ chà)检验及修正
4.加权最小二乘法 我们仍然使用nnn文件的数据,点工具栏上点
Proc\make Equations,选择估计方法—普通最小二乘法, 点击Options 按钮进入方程估计选择对话框,在LS\TSLS Options选项框中选择Weighted LS/TSLS\在对话框内输 入权重(quán zhònɡ)1/abs(resid),点击确定应用,回 到估计方程对话框,点击确定得到加权最小二乘法回归方 程(见图四,并与图一中的方程比较)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
293543 9528.2 18415.4
The scatter graph between R&D expenditure and Sales
15000
10000
5000
0
0
100000
200000
300000
sales (million dollars)
Why Worry About Heteroskedasticity?
heteroskedasticity, cont.
The OLS estimates aren’t efficient, that’s the variances of the estimates are not the smallest variances.
If the standard errors are biased, we can not use the usual t statistics or F statistics for drawing inferences. That is, the t test and F test and the confidence interval based on these test don’t work.
Patterns of heteroskedasticity
Y X
homoskedasticity
Y
Decreasing with X
Y
var(u|X)=s2 (homoskedasticity)
If this is not true, that is if the variance of u is different for different values of the X’s, then the errors are heteroskedastic
ui
2
b1
The consequences of heteroskedasticity, cont.
The R2 and adj-R2 are unaffected by heteroskedasticity.
R2 ESS 1 RSS
TSS
TSS
R
2
1
RSS n TSS n
var(ui|Xi)=si2(heteroskedasticity)
Example of homoskedasticity
f(Y|X)
.
Y
.
. E(Y|X) = b0 + b1X
homoskedasticity
X1
X2
X3
Example of Heteroskedasticity
f(Y|X)
.
There is a shortcut to do the residual plot test when there are more than 1 independent variables. That is, we plot the residual with the fitted value Ŷ, because Ŷ is just the linear combination of all Xs.
OLS estimates are still unbiased and consistent The R2 and adj-R2 are unaffected by
heteroskedasticity The standard errors of the estimates are biased.
What’s heteroskedasticity?
What is Heteroskedasticity?
Recall the assumption of homoskedasticity implied that conditional on the explanatory variables, the variance of the unobserved error, u, was constant
metal
21896.2 258.4 2828.1 electronics 116141.3 6107.5 8787.3
house
26408.3 494.7 225.9 chemistry 122315.7 4454.1 16438.8
manufacture 32405.6 1083 3751.9 polymer
The standard errors of the estimates are biased if we have heteroskedasticity
bˆ1 b1+ XXiiXXu2i ,
var bˆ1
varb1
+XXiiXXu2i
第9章 异方差:检验与修正
Heteroskedasticity: test and correction
Contents
What’s heteroskedasticity? Why worry about heteroskedasticity? How to test the heteroskedasticity? Corrections for heteroskedasticity?
The OLS estimates aren’t efficient. Then, the t test and F test and the confidence interval don’t work.
How to test the heteroskedasticity?
Residual plot
The consequences of
heteroskedasticity
OLS estimates are still unbiased and consistent,
even if we do not assume homoskedasticity.
take the simple regression as an example
k 1 1
Because RSS and TSS are not affected by heteroskedasticity, our R2 and adj-R2 are also not
affected by heteroskedasticity.
The consequences of heteroskedasticity, cont.
XiXXi 2Xva2r2ui
Becauseofheteroskedasticity,then varui si2, whicharenotconstant,therefore,
var bˆ1
Xi
X
s 2 2 i
sales
rdexp profit
packing
6375.3 62.5 185.1 nurse
80552.8 6620.1 13869.9
nonbank
11626.4 92.9 1569.5 space
95294 3918.6 4487.8
service
14655.1 178.3 274.8 consumption 101314.1 1595.3 10278.9
In a word, when there exists heteroskedasticity, we can not use t test and F test as usual. Or else, we’ll get the misleading result.
Summary of the consequences of heteroskedasticity
Residual plot, cont.
e2
X a) homoskedasticity
e2
X b)
e2
e2
e2
.
22
However, OLSestimateofthevarianceofbˆ1
is
Xi X
s2
.
2
Xi X
So, inthiscase, OLSestimatesofthevariancesofthepartial coefficientsarebiased.
The consequences of
X
X
X
c)
d)
e)
Residual plot, cont.
If there are more than one independent variables, we should plot the residual squared with all the independent variables, separately.
Y= b0 + b1 X +u We know the OLS estimator of b1 is
bˆ1
Xi X Yi Xi X2
b1
+
Xi X ui Xi X 2
E
bˆ1
E
b1
+
Xi X Xi X
X Increasing with X
Y
X Complicated heteroskedasticity
The relation between R&D expenditure and Sales