计数、译码、显示电路·
计数器及其译码显示电路设计
计数器及其译码显示电路设计一、引言计数器及其译码显示电路是数字电路中常见的模块,广泛应用于计数、测量、定时等领域。
本文将介绍计数器及其译码显示电路的设计原理和实现方法。
二、计数器的基本原理计数器是一种能够在一定范围内按照规定的步长进行累加或累减操作的电路。
常见的计数器有二进制计数器和十进制计数器两种。
1.二进制计数器二进制计数器是指能够在二进制数字系统中进行累加或累减操作的电路。
其基本原理是通过触发器来实现数据存储和状态转移,以达到累加或累减的目的。
常见的二进制计数器有同步计数器和异步计数器两种。
同步计数器是指所有触发器都在同一个时钟脉冲下进行状态转移,因此具有较高的稳定性和精度。
异步计数器则是指每个触发器都有自己独立的时钟输入,因此具有较高的速度和灵活性。
2.十进制计数器十进制计数器是指能够在十进制数字系统中进行累加或累减操作的电路。
其基本原理是通过将二进制计数器的输出信号转换为十进制数字系统中的数字,以达到实现十进制计数的目的。
常见的十进制计数器有BCD计数器和二进制-BCD码转换器两种。
三、译码显示电路的基本原理译码显示电路是一种能够将数字信号转换为对应的字符或图形信号进行显示的电路。
常见的译码显示电路有BCD-7段译码器和BCD-10段译码器两种。
1.BCD-7段译码器BCD-7段译码器是指能够将4位二进制代码转换为对应的7段LED数字管显示信号的电路。
其基本原理是通过查表法将4位二进制代码映射到对应的7段LED数字管上,以实现数字信号到字符信号的转换。
2.BCD-10段译码器BCD-10段译码器是指能够将4位二进制代码转换为对应的10个LED 灯管显示信号的电路。
其基本原理与BCD-7段译码器相似,不同之处在于需要额外添加3个LED灯管用于表示“.”、“-”和“+”等符号。
四、计数器及其译码显示电路设计实例下面以一个4位同步二进制计数器及其对应的BCD-7段译码器为例,介绍其设计过程。
集成触发器及其应用电路设计与计数译码显示电路
02
搭建测试环境
根据测试计划搭建相应的测试环境, 包括所需的仪器、设备、电源等。
03
执行测试
按照测试计划进行测试,记录测试数 据和结果。
重复测试
对修复后的电路进行重复测试,确保 问题得到解决且电路功能正常。
05
04
问题定位与修复
根据测试结果定位问题所在,分析原 因并采取相应的措施进行修复。
集成触发器及其应用电路的测试与调试实例
03
计数器电路设计
计数器的定义与分类
计数器的定义
计数器是一种用于对输入脉冲进行计数的电路,通常由触发器组成。
计数器的分类
根据进制数不同,计数器可分为二进制计数器、十进制计数器和任意进制计数器 。
计数器电路的设计原理
计数器的工作原理
计数器通过接收输入脉冲信号,按照 一定的逻辑关系进行计数,并将计数 值输出。
集成触发器的选择
根据具体的电路设计和应用需求,选择合适 的集成触发器类型,如D触发器、JK触发器 等。
04
译码显示电路设计
译码显示电路的定义与分类
定义
译码显示电路是一种将输入的二进制代码转换为相应的输出信号,以驱动显示器件显示相应数字或字 符的电路。
分类
根据显示器件的不同,译码显示电路可分为LED显示译码电路、LCD显示译码电路、数码管显示译码 电路等。
集成触发器在应用电路设计中的具体应用
集成触发器的概念
集成触发器是一种常用的数字逻辑门电路,它具有两个稳定状态,可以通过输入信号进行 触发翻转。
应用场景
集成触发器在应用电路设计中主要用于实现时序逻辑和组合逻辑功能。例如,在计数器、 寄存器、分频器等电路中广泛应用。
设计要点
multisim仿真教程计数器译码器数码管驱动显示电路
将对话框中Node name改成与数码管相对应 的符号A。其他与逻辑分析仪的输入端的连 线都以此法行之,点击仿真开关或按F5键进 行仿真,计数器的输出和数码管的波形时序 关系则立即直观的被显示在“Logic Analyzer—XLA1”的面板窗口中。见图 12.7.2。
图12.7.3 Node对话框
由输出端QB和QD经逻辑组合电路接至计数器 (LOAD)端,构建计数进位阻塞电路。在设 计时可根据需要,由相应的输出端构建组合 逻辑电路,从而实现不同进制的计数器。
图12.7.1 计数器、译码器、数码管驱动显示电路
从虚ห้องสมุดไป่ตู้仪器中取逻辑分析仪XLA1,其上有1~F 共16个输入端,1~4端分别于计数器的四个数 据输出端QA~QD相连,第5~11端 分别与数码 管的七段A~G相连,第12端接CLK脉冲输入端。 用鼠标双击逻辑分析仪,将出现逻辑分析仪面 板窗口如图12.7.2所示。
图12.7.2 时钟脉冲、输入、输出波形时序关系图
改变逻辑分析仪Clock区(Clock/Div)的个 数,从“1”调到“32”。在图12.7.2的左侧 显示的号码为原理图的节点号码,其并不能表 示出计数器输出端和数码管的段位字母,显示 不用鼠标左键双击与逻辑分析仪“1”号输入端 连接的图线,出现如图12.7.3所示对话框。直 观,所以要对原理图进行编辑。
计数、译码和显示电路
实验计数、译码和显示电路一、实验目的:1. 掌握二进制加减计数器的工作原理。
2. 熟悉中规模集成计数器及译码驱动器的逻辑功能和使用方法。
二、实验准备:1.计数:计数是一种最简单、最基本的逻辑运算,计数器的种类繁多,如按计数器中图3.11.2另外一种可预计的十进制加减可逆计数器CD4510,用途也非常广,其引脚排列如图3.11.3所示,其中,E P 为预计计数使能端,in C 为进位输入端,1P ~4P 为预计的输入端,out C 为进位输出端,U /D 为加减控制端,R 为复位端,CD4510输入、输出间的逻辑功能如表所示。
表3.11.2:。
2. 译码与显示:十进制计数器的输出经译码后驱动数码管,可以显示0~9十个数字,CD4511是BCD~7段译码驱动集成电路,其引脚排列如图3.11.4所示。
LT 为试灯输入,BI 为消隐输入,LE 为锁定允许输入,A 、B 、C 、D 为BCD 码输入,a~g 为七段译码。
CD4511的逻辑功能如表所示。
LED 数码管是常用的数字显示器,分共阴和共阳两种,BS112201是共阴的磷化镓数码管,其外形和内部结构如图3.11.5所示。
图3.11.5三、计算机仿真实验内容:1. 计数10的电路:(1).单击电子仿真软件Multisim7基本界面左侧左列真实元件工具条“CMOS”按钮,从弹出的对话框“Family”栏中选“CMOS_10V”,再在“Component”栏中选取4093BD和4017BD各一只,如图3.11.6所示,将它们放置在电子平台上。
图3.11.6(2).单击电子仿真软件Multisim7基本界面左侧左列真实元件工具条“Source”按钮,从弹出的对话框“Family”栏中选“POWER_SOURCES”,再在“Component”栏中选取“VDD”和地线,将它们调出放置在电子平台上。
(3). 双击“VDD”图标,将弹出如图3.11.7所示对话框,将“V oltage”栏改成“10”V,再点击下方“确定”按钮退出。
计数译码显示电路实验报告总结
计数译码显示电路实验报告总结本次实验是关于计数译码显示电路的搭建和测试。
通过实验,我们掌握了计数器的原理和译码显示电路的工作原理,并能够正确地搭建和测试这些电路。
实验中,我们使用的计数器是74LS161,它是一种同步4位二进制计数器,能够实现递增和递减计数,并能够输出位宽为4位的计数值。
我们将其与译码显示电路74LS47相连,通过74LS47将计数器的输出值转换成7段数码管所显示的数字。
在实验前,我们先对74LS161计数器和74LS47译码显示电路的原理进行了学习和理解。
我们知道,74LS161计数器拥有一个时钟输入,通过时钟信号的触发,可以实现计数器的递增或递减。
而74LS47译码显示电路拥有四个输入端口,分别对应着四位二进制码的输出,通过译码器将输出值转换成7段数码管所显示的数字。
在搭建电路时,我们按照实验指导书中给出的电路图和连接方式进行了连接。
在连接时,我们要注意电路的接线是否正确,以免出现电路短路或开路等问题。
在实验过程中,我们进行了递增和递减计数的测试,观察数码管的显示结果。
我们发现,当计数器的计数值递增或递减时,数码管显示的数字也相应地改变。
这说明我们搭建的电路连接正确,电路能够正常工作。
在实验中,我们还进行了译码器的测试。
我们先将74LS161计数器的输出接到译码器的输入端口,然后将译码器的输出端口分别接到不同的7段数码管上,观察数码管的显示结果。
我们发现,译码器能够正确地将计数器输出值转换成7段数码管所显示的数字。
这说明我们搭建的译码器电路也正确无误。
总的来说,本次实验使我们掌握了计数器和译码显示电路的原理和工作方式,并能够正确地搭建和测试这些电路。
通过本次实验,我们不仅提高了自己的实验操作能力,也加深了对数字电路原理的理解。
实验一:用原理图设计全加器和计数译码显示电路
实验一(1):用原理图输入法设计一位全加器
实验一(2):用原理图输入法设计计数器(74160)和译码器(7448),顶层用原理图设计
实验目的:
(1)熟悉应用QuartusII编译图形输入;
(2)掌握利用QuartusII对图形输入的仿真;
(3)掌握用图形设计法基本逻辑电路。
二、实验内容:
设计并调试好一个一位二进制全加器及一个计数译码显示器,并用EL-EDA-V型EDA实验开发系统进行系统仿真。
设计一个10计数器用7448及74160设计计数译码显示电路。
三、实验条件:
(1)电脑;
(2)开发软件QuartusII8.1;
(3)设备:EL—EDA—V型
EDA实验开发系统;
(4)拟用芯片:ACEX1K
EP1K100QC208-3;
四、实验设计:
1、(1)异或门与二输入端与非门构成二进制全加器逻辑电路图:
(2)仿真波形:
其封装后:
(1)仿真波形:
(1)显示电路图:
其封装后:
(2)仿真波形:
4、(1)计数译码显示电路结构图:
(2)仿真波形:
5、管脚锁定:
五、设计处理
(1)输入底层设计文本和顶层电路
(2)编译
(3)仿真
(4)选择器件、锁定引脚、再次编译
(5)硬件测试
六、实验结果及总结:
实验过程中,在执行图形输入设计计数译码显示电路的时候,出现ERROR 其原因为将74160的输入端接在高电平上,排除方法为,将高电平改成接地。
在实验中,特别是图形输入设计中,应该先了解芯片的功能,再对芯片进行输入,输出设计,这样才能减少错误的出现。
电路实验计数器、译码器和数码显示器
二.实验原理
二.实验原理
3.数码显示器
1)作用:直观的显示数码。
2)分类:
•按显示器发光段数分为七段显示或八端显示;
•按显示器所用发光材料分为荧光数码管、半导体数码 管(LED)及液晶显示器。
二.实验原理
七段数码显示器: 七段发光线段分别用a、b、c、d、e、f、g七个小写字母表示。
二.实验原理
C
四.思考题
ENDEND
Thanks For Your Coming
计数器、译码器和数码显示器 的应用
汇报人姓名
汇报时间:xx月xx日
掌握计数器的逻辑功能及使用方法。
01
熟悉译码器和数码显示器的使用方法。
02
一.实验目的
是数字系统的基本逻辑器件。 记录输入时钟脉冲的个数 实现分频、定时 产生节拍脉冲和脉冲序列
计数器
1
按工作方式分:同步式和异步式; 按计数进制分:二进制、十进制、任意进制; 按计数方式分:加计数、减计数、可逆计数器。
地
三.实验内容
实验箱内部已经连接
三实验内容
N:
思考:观察波形时,应选用Q3、Q2、Q1、Q0、 N哪一个作为触发信号?
Q1:
Q2:
Q3:
Q0:
0 1 2 3 4 5 6 7 8 9 0 1
三.实验内容
05
LE为锁定输入,优先级再次之。在LT= 1、BI= 1条件下,LE接高电平,则输出a ~ g状态锁定,保持不变。
g为高电平输出有效。
BI为灭灯输入,优先级次之。在LT= 1条件下,BI接低电平,则输出a ~ g全为低电平,数码管熄灭不亮。
因此,CC4511在译码工作状态时,必须LT= 1、BI= 1、LE = 0。
实验_六计数、译码和显示电路(Y)
十进制计数器 CT74LS160(162)与二进制计数器 74LS161(163) 比较
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
CP
CTT CTT CTP CT74LS161 CO CTP CT74LS160 CO CT74LS163 CT74LS162 (162)与 CR LD D0 D1 D2 D3 D3 CP CR LD D0 D1 D2CT74LS160 CT74LS161(163)有何不同? CR LD
0 1 2 3 4 5 6 7 8 9 10
也可取 D3 D2 D1 D0 = 0011 LD = CO CO = Q3 Q0
方案 2:用 “160” 的后七个状态 0011 ~ 1001实现七进制计数。
取 D3 D2 D1 D0 = 0011 ,LD = CO
1 CP
CTT Q0 Q1 Q2 Q3 CTP CT74LS160 CO
00 0 0
01 0
Z
11 0 0
10 1
Q3 Q2 Q1
n +1 n +1 n +1
= Q 2n
= Q 1n = Q 3n
即:
Q3n+1(010)=1, Q3n+1(101)=0
Q2n+1(010)=0 , Q2n+1(101)=1 Q1n+1(010)=1 , Q1n+1(101)=0
010 101
Z = Q 3n Q 2n 自启动失败, 改变 Q1:
Q1
n +1
n n = Q3n + Q2 Q1
010
101
这样:Q1n+1(010)=1, Q1n+1(101)=1 明显的, 能够自启动
数电实验报告 实验三 译码显示电路
数电实验报告实验三译码显示电路姓名:学号:班级:院系:指导老师:2016年目录实验目的: (2)实验器件与仪器: (2)实验原理: (3)实验内容: (7)实验过程: (8)实验总结: (9)实验:实验目的:1.掌握中规模集成译码器的逻辑功能和使用方法2.熟悉数码管的使用实验器件与仪器:1.数字电路实验箱、数字万用表、示波器2.器件:74LS48、74LS194、74LS73、74LS00实验原理:1.数码显示译码器(1)七段发光二极管(LED)数码管LED数码管是目前最常用的数字显示器,一个LED数码管可用来显示一位0~9十进制数和一个小数点。
小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随现实光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~2.5V,每个发光二极管的点亮电流在5~10mA。
LED数码管要显示BCD码所表示的十进制数字就需要有一个专门的译码器,该译码器不但要完成译码功能,还要有相当的驱动能力。
(2)B CD码7段译码驱动器此类译码器有74LS47(共阳),74LS48(共阴),CC4511(共阴)等,本实验系采用74LS48 BCD码存锁/七段译码/驱动器。
驱动共阴极LED数码管。
A0、A1、A2、A3—BCD码输入端a、b、c、d、e、f、g—译码输出端,输出“1”有效,用来驱动共阴极LED数码管。
LT—灯测试输入端,LT= “0”时,译码输出全为“1”RBI—灭零输入端,RBI= “0”时,不显示多余的零。
BI/RBO—作为输入使用时,灭灯输入控制项。
作为输出端使用时,灭零输出端。
2.扫描式显示对多位数字显示采用扫描式显示可以节电,这一点在某些场合很重要。
对于某些系统输出的数据,应用扫描式译码显示,可使电路大为简化。
利用数码管的余辉效应和人眼的视觉暂留效应,虽然在某一时刻只有一个数码管在显示,但人眼看到的是多个数码管“同时”被点亮的效果。
有些系统,比如计算机,某些A/D 转换器,是以这样的形式输出数据的:由选路信号控制多路开关,先后送出(由高位到低位或由低位到高位)以为十进制的BCD码,如图(三)所示。
计数器的逻辑电路
计数器是一种在数字系统中广泛使用的逻辑电路。
它能够记录和显示数字信息,在各种领域中都有广泛的应用,如计算机、控制系统等。
计数器的种类很多,根据其记录和显示数字信息的方式不同,可以分为二进制计数器、十进制计数器、N进制计数器等。
其中,二进制计数器是最简单的一种,它采用二进制编码方式,即0和1的组合表示数字信息。
十进制计数器则采用十进制编码方式,即0到9的数字表示数字信息。
而N进制计数器则采用N 进制编码方式,可以表示任意进制的数字信息。
计数器的逻辑电路设计是实现计数器功能的关键。
一般来说,计数器的逻辑电路可以分为三个部分:触发器、译码器和显示电路。
首先,触发器是计数器中最基本的逻辑单元,它能够存储二进制信息,具有置位、复位和翻转三种基本操作。
在计数器中,需要使用多个触发器来存储计数器的状态。
其次,译码器是计数器中用于将二进制信息转换为对应的十进制数字的逻辑单元。
在设计中,需要根据具体的计数器需求选择合适的译码器。
最后,显示电路是计数器中用于将数字信息显示出来的逻辑单元。
它一般由一些LED灯或者液晶显示屏组成,根据译码器输出的信号来显示相应的数字信息。
除了以上三个部分,计数器中还需要添加一些控制信号以实现计数、清零、置数等功能。
这些控制信号可以通过一些简单的逻辑门来实现。
总的来说,计数器的逻辑电路设计是一个比较复杂的过程,需要考虑触发器的选择、译码器的设计、显示电路的组成以及控制信号的实现等多个方面。
同时,还需要考虑到计数器的功耗、速度、稳定性等多个因素。
因此,在实际应用中,需要根据具体的需求和条件来选择合适的计数器设计。
实验四_计数译码显示
实验四 计数、译码、显示综合实验一、实验目的1、熟悉计数、译码、显示电路的工作原理及电路结构;2、了解计数器、译码器和显示器的逻辑功能;3、运用计数器、译码器和显示集成组件进行计数显示。
二、实验原理该实验电路由计数、译码、显示三部分构成。
计数单元是集成电路74LS192,它的引脚排列如图1。
74LS192是由四组触发器按8421BCD 码形式构成的十进制计数器,它具有双时钟输入,可进行加法和减法计数。
此外,还具有异步清零、异步置数和状态保持的功能。
它的功能真值表如表1所示。
译码电路采用集成电路74LS248,它是七段LED 字符显示译码器,其引脚排列如图2所示,输入的BCD 码由A 0、A 1、A 2、A 3输入,然后按字形规则译码后从Y 输出,输出端Y a 、Y b …..Y g 对CR VCC D 0D 1D 2D 3Q 0Q 2Q 1Q 3GNDCP D CP U BO CO LD图1. 74LS192引脚图表1. 74LS192功能表应于图3所示数码字形的a 、b 、……g 段。
本实验选用的显示器为共阴极型七段LED 显示器,七段中的每一段(取名为a 、b 、c 、d 、e 、f 、g )均是一个发光二极管,当显示某一数字,例如显示“4”时,输入端f 、g 、b 、c 必须是高电平使相应字段发光。
74LS248的输入BCD 码与输出译码之间的对应关系如表2所示。
74LS192、74LS248及数码管相应端口的连接关系如图4所示。
在计数状态下,74LS192的输出端Q 3、Q 2、Q 1、Q 0有相应的计数输出传送到译码器74LS248的输入端,经74LS248译码后的输出传送到数码管的对应输入,即可显示输入的计数脉冲数。
图2. 74LS248引脚图图3. 数码管表2. 74LS248的输入BCD 码与输出译码之间的对应关系图4. 74LS192、74LS248及数码管相应端口的连接关系三、实验内容及实验报告要求1、首先根据图4在实验板上将74LS192、74LS248及数码管的相应端口连接好。
实验9、计数译码显示电路
为了不断提高自己的实践能力和创新能力,我们将尝试设计更加复杂、 具有挑战性的数字电路实验项目,如高性能计数器、可编程逻辑器件等。
THANKS FOR WATCHING
感谢您的观看
实验过程
在实验过程中,我们按照实验指导书 的要求,逐步完成了电路的搭建和调 试。首先,我们设计了计数器电路, 实现了对输入信号的计数功能。然后 ,我们设计了译码器电路,将计数器 的输出信号转换为对应的数字显示信 号。最后,我们将计数器和译码器电 路连接起来,构成了完整的计数译码 显示电路。
实验结果
经过反复的调试和优化,我们成功实 现了计数译码显示电路的功能。该电 路能够准确地对输入信号进行计数, 并将计数结果以数字形式显示出来。 同时,我们还对电路的性能进行了测 试和分析,验证了电路的稳定性和可 靠性。
实验背景
计数译码显示电路是数字系统中常用的电路之一,用于将数字信号转换为可视化的数字显示。
计数译码显示电路通常由计数器、译码器和显示器等部分组成,其中计数器用于对输入信号 进行计数,译码器用于将计数器的输出信号转换为对应的数字显示信号,显示器则用于显示 数字信号。
在实际应用中,计数译码显示电路被广泛应用于各种数字仪表、控制器和智能终端等领域。
对未来实验的展望
01
深入研究数字电路
在今后的实验中,我们将进一步深入研究数字电路的基本原理和设计方
法,探索更加高效、稳定的电路设计方案。
02 03
拓展应用领域
除了计数译码显示电路外,我们还可以将数字电路应用于其他领域,如 通信、控制、数据处理等。因此,我们将积极拓展数字电路的应用范围, 探索其在不同领域中的应用潜力。
03 实验步骤与操作
搭建计数译码显示电路
二十四进制计数器设计
目录摘要 (1)1. 设计任务 (2)1.1 设计目的 (2)1.2 设计指标 (2)1.3 设计要求 (2)2.设计思路与总体框图 (3)3.系统硬件电路的设计 (3)3.1 555多谐荡电路 (3)3.2 计数器电路 (5)3.3 译码和显示电路 (6)4.系统设计仿真 (6)4.1各功能元件的选用与分析 (6)一.74LS48译码器 (6)二. 74LS08芯片 (7)三. 计数及译码显示 (8)四. 共阴极七段数码管显示器 (10)五.电阻 (11)六.电容 (15)4.2仿真原理总设计图 (17)5. 系统硬件焊接与调试 (18)5.1焊接步骤 (18)5.2元件清单 (18)5. 3实物图 (19)5.2硬件电路测试 (20)总结 (21)致谢 (22)参考文献 (23)二十四进制计数器设计摘要:24进制数字钟是一种用数字电路技术实现时计时的装置,与机械式时钟相比具有更高的准确性和直观性。
此次设计与制作24进制电子数字钟时计数、译码、显示电路需要了解组合逻辑电路和时序逻辑电路;了解集成电路的引脚安排;了解各种时计数、译码芯片的逻辑功能及使用方法;了解数字钟的原理。
本次设计是基于24进制电子数字钟的原理,实现具有24进制清零功能的电子钟,它主要由脉冲、二-五-十进制加法器74LS90、译码器74LS48、共阴极LED数码管等四个模块构成。
脉冲利用555设计一个多谐振荡器。
各功能模块multisim 软件中描述出,然后将其打包成可调用的元件,再利用原理图输入法将各模块按功能连接起来就得到顶层文件的原理图。
这时,再进行时序仿真、引脚锁定和嵌入逻辑分析仪之后,就编译下载至硬件中,选择正确的模式和各种设置后即可实现这次设计所要求的功能。
关键词:加法器;译码器;显示数码管1. 设计任务1.1 设计目的1. 了解计数器的组成及工作原理。
2. 进一步掌握计数器的设计方法和计数器相互级联的方法。
3. 进一步掌握各芯片的逻辑功能及使用方法。
计数译码显示电路常见故障诊断与排除王瑞峰
January 2013 No. 1 Total No. 275
计数译码显示电路常见故障诊断与排除
王瑞峰1,朱 彪2
( 1. 内蒙古化工职业学院 测控与机电工程系; 2. 呼和浩特市金山特种水泥有限责任公司,内蒙古 呼和浩特 010080)
表2 故障现象
计数器故障检查与排除 原因诊断
查找排除
74LS90 实 现 的 十 进 制计数器变成了二进 制
74LS90 计数器的二进制进位信号与五进 制计数器的 CP 端连线断开。
用逻辑电平显示器检测五进制计数器 CP 端是否有低 频方波信号
74LS90 计 数 器 状 态 始终为“0”或始终为 “9”
计数译码显示电路模块在现代电子产品中应用 非常广泛,如数字钟显示、交通信号灯指示、电机转速 测量、产品数量计量等电子系统中都会用到。它是由 计数器、译码器和显示器三个部分组成,包含了数字 电子系统的组合逻辑电路和时序逻辑电路两大类电 路,是学习数字电子技术课程所必须掌握的一个综合 电路。但其中电路故障情况较为复杂,诊断与排除是 一个难点问题。因此,笔者对该模块电路常见故障提 出了现象分析、原因诊断、查找排除等实操方法。 1 计数译码显示电路结构
74LS90 计数器的异步置 0 端( 或异步置 9 端) 功能有效( 即该端输入端信号全为 高电平或全悬空)
1. 先检查 74LS90 计数器的异步置 0 端( 或置 9 端) 的 连线是否正确( 应接地或接某信号的输出端) ; 2. 若接线正确,再用逻辑电平显示器检测该端输出状 态,若一直为高电平,则表示计数器处于置 0 或置 9 状 态。
译码器及数码显示电路
4.1 概述
常用组合逻辑电路模块的品种很多, 主要有全加器、编码器、译码器、数据 分配器、数据选择器、数值比较器等。 对逻辑电路的学习主要掌握电路的端 子名称、作用以及有效控制电平。
4.2
编码器
编码:用文字、符号或数码表示特定的对象。
二进制编码:输入M位代码 ,输出N位二 进制代码 M≤2N
4.2 编码器
据3个二进制数相加及加法规则,不难列出全加器的真值表。表 中Ai、Bi为两个1位二进制数,Ci是低位的进位数,Si为全加和, Ci+1是向相邻高位的进位数。
据表可得Si和Ci+1的逻辑表达式:
Si Ai B i Ci Ai Bi C i Ai B i C i Ai Bi Ci Ci ( Ai B i Ai Bi ) C i ( Ai Bi Ai B i ) Ai Bi Ci Ci 1 Ai Bi Ci Ai B i Ci Ai Bi C i Ai Bi Ci Ci ( Ai Bi Ai B i ) Ai Bi (C i Ci ) Ci ( A B ) Ai Bi
(4).集成加法器的应用。
(1)加法器级联实现多位二进制数加法运算 图(a)所示74283是一种典型的集成加法器。一片74283只 能进行4位二进制数的加法运算,将多片74283进行级联, 就可扩展加法运算的位数。
(2)用74283构成一位8421BCD码加法器。
本单元学习指导
编码器、译码器、数据选择器、数据分配器加法 器、数值比较器等是常用的组合电路器件。 编码器主要是实现把一些数字、符号、文字等用 二进制代码表示的器件。译码器相当于是编码器的逆 过程。数据选择器、数据分配器主要用于数据的传送 ,从而实现数据点对点的传送和数据传送的并行-串 行的转换。数值比较器由于其可以比较数值的大小从 而应用于一些判断电路。加法器是CPU的核心器件, 可以完成加法和减法的运算。
基于SIMULINK的计数译码显示电路的仿真
基于SIMULINK的计数译码显示电路的仿真甘庆玉【摘要】Simulation modules related to digital circuit are offered in Simulink.In this paper,at first,counter is designed by using triggers according to its logic function,and packaged into a module.Then,the decoder module is built by using combinational logic circuit,and the LED displaying circuit also. Finally all three circuits are combined into a count-decode-display system.The simulation results verify the correctness and reliability of the design,and also show that the design or analysis of digital circuits can be carried out conveniently and effectively by using software of Simulink to simulate the circuit.%在Simulink环境下包含着许多典型的数字电路仿真模块。
本文先以计数器为例,根据其逻辑功能,采用触发器来实现,并封装成模块。
然后利用组合逻辑电路设计出译码电路模块,接着设计了LED数码管显示电路,并将三者组合成计数译码显示系统仿真模型。
设计与仿真结果验证了此设计的正确性和可靠性,同时也表明,运用Simulink进行对电路虚拟仿真,可以方便、有效地进行数字电子电路的设计和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1、掌握中规模集成电路计数器的逻辑功能 及使用方法。 2、学习使用74LS47(七段显示译码器)和 共阳极七段显示器。 3、掌握用计数器设计简单时序逻辑电路的 方法。
二、实验设备
1.数字实验箱(型号)
2 .数字万用表 3 .数字示波器 4.集成电路:74LS161,74LS47, 74LS00, 74LS90,共阳七段数码管 。
2、任意进制计数器的设计与实验
(1)、利用清零端的反馈式 1 十进制计数器,并通过七段 1 译码器,在数码管上显示 CP 计数状态。 (2)用预置数端的反馈式十 二进制计数器,其预置数 为2。
EP × ET RD A × B × C × D RCO 74161 QB QC QD LD
>CP QA
三、实验内容及步骤:
3、用74LS161设计一个广告灯控制电路,该电路在CP脉
冲作用下,3个灯的亮暗按图所示顺序进行。
三、实验内容及步骤: 4 测试74LS290的逻辑功能
四、实验告要求
本次实验属设计性实验,用设计性实验报告纸写。
1、整理实验内容1,4项的表格,说明计数器的功能。
2、画出实验内容2的电路(包括计数、译码、显示电
三、实验内容及步骤:
1、验证74LS161功能表
74LS161管脚图
Vcc RCO Q0 Q1 Q2 Q3 ET LD
16 15 14 13 12 11 10 9
74161
1
2
3
4
5
6
7
8
RD CP D0 D1 D2 D EP GND 3
CP选单脉冲,Q0-Q3接发光二极管显示器。
三、实验内容及步骤:
路),并绘出十进制计数CP与输出Q0、Q1、Q2、Q3
的时序波形图。注意各波形间的相位关系。
3、详细写出实验内容3的设计过程 。