九年级数学二次函数的应用2(1)

合集下载

北师大版九年级数学下册 二次函数 二次函数的应用 时

北师大版九年级数学下册 二次函数 二次函数的应用 时

A t cm
P
B (6-t)cm
2014.12
问题解决
1.一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如 果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时, 窗架的面积最大?
y 1(63x)x 2
x
2014.12
问题解决
3.如图,隧道的横截面由抛物线和长方形构成,长方形的长是
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式, t为何值时S最小?求出S的最小值。
(2)由题意得
D
C
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63 即 t=3cm 时 S 有最小值 63cm2
Q 2t cm
由题知 24-4x>0 解得 x<6
A
D
∵x>0
∴x 的取值范围是 0<x<6
B
C
(2) ∵-4<0 ∴当 x=-2×2(4-4)=3 时,
S 最大= -4×32+24×3=36 则当 x=3m 时,所围成的花圃面积最大,最大值为 36m2。
2014.12
变式练习2.如图,在一面靠墙的空地上用长为24m的篱笆,围成中 间隔有二道篱笆的长方形花圃,设花圃的AB=xm,面积为Sm2。
225 36
∵-
7 2<0
∴当
x=
15 14
≈1.07 时,S 最大=
225 36
≈4.02
即当 x≈1.07m 时,S 最大≈4.02m2,此时窗户通过的光线最多。
2014.12

2020年中考数学复习专题之二次函数的综合应用问题

2020年中考数学复习专题之二次函数的综合应用问题

二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。

沪科版数学九年级上册21.4《二次函数的应用》教学设计1

沪科版数学九年级上册21.4《二次函数的应用》教学设计1

沪科版数学九年级上册21.4《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容,主要介绍了二次函数在实际生活中的应用。

本节内容是在学生已经掌握了二次函数的图象和性质的基础上进行学习的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的图象和性质有一定的了解。

但是,将二次函数应用于实际问题中,对学生来说可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用,能够运用二次函数解决一些实际问题。

2.提高学生的数学应用能力,培养学生的创新意识和实践能力。

3.通过对实际问题的探讨,增强学生对数学的兴趣和信心。

四. 教学重难点1.重点:二次函数在实际生活中的应用。

2.难点:如何将实际问题转化为二次函数问题,并运用二次函数解决。

五. 教学方法1.讲授法:教师通过讲解,引导学生理解二次函数在实际生活中的应用。

2.案例分析法:教师通过给出具体的实际问题,引导学生运用二次函数解决。

3.小组讨论法:学生分组讨论,共同探讨实际问题的解决方法。

4.实践操作法:学生通过动手操作,加深对二次函数应用的理解。

六. 教学准备1.教师准备相关的实际问题,用于引导学生进行案例分析。

2.准备PPT,用于展示二次函数的图象和性质。

3.准备黑板,用于板书重要的知识点。

七. 教学过程1.导入(5分钟)教师通过复习二次函数的图象和性质,引导学生回顾已学的知识。

然后,提出本节课的主题——二次函数的应用,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT展示一些实际的例子,让学生观察和分析这些例子中是否存在二次函数的关系。

引导学生认识到二次函数在实际生活中的重要性。

3.操练(10分钟)教师给出一个实际的例子,引导学生将其转化为二次函数问题,并运用二次函数解决。

人教版九年级上册数学课件:二次函数的应用

人教版九年级上册数学课件:二次函数的应用

a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y=ax2+bx+c (1)a确定抛物线的开口方向:
y
•(0,c)
0
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解:(6)
y
由图象可知
当-3 < x < 1时,y < 0 当x< -3或x>1时,y > 0
•(-3,0) • • (-1,-2)
•(1,0) x
0
•(0,-3–) 2
人教版九年级上册数学课件:二次函 数的应 用
人教版九年级上册数学课件:二次函 数的应 用
(6)x为何值时,y<0?x为何值时,y>0?
解 :(4)由对称性可知
y
MA=MB=√22+22=2√2
• • AB=|x1-x2|=4
A(-3,0) D B(1,0) x
∴ ΔMAB的周长=2MA+AB
0
=2 √2×2+4=4 √2+4 Δ=M—12 A×B4面×积2==4—12AB×MD
3
• •C(0,-2–) • M(-1,-2)
人教版九年级上册数学课件:二次函 数的应 用

二次函数的应用

二次函数的应用

二次函数的应用【教学建议】二次函数是中考数学中最重要的内容之一,属于中考数学的必考内容,也是难点内容,我们可以利用二次函数的模型解决很多实际问题(比如:长度、面积和周长等的最值问题、商品利润问题等等)。

实际生活中的很多问题都可以借助建立二次函数的模型来解决,这属于中考必考题。

解决此类问题一般是根据几何图形的性质,先找变量,再确定变量与该图形周长或面积之间的关系,用变量表示出其他边的长,从而确定二次函数的表达式,再根据题意及二次函数的性质解题即可.1. 如何求关于利润的二次函数表达式(1)若题目给出销售量与单价之间的函数表达式,以及销售单价与进价之间的关系时,则可直接根据:销售利润 =销售总额-成本 =销售量×销售价-销售量×进价 =销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数表达式,则要先求出销售量与单价之间的函数表达式,表达式一般是一次函数关系,再根据销售利润 =销售量×(销售价-进价)来解决. 2. 如何求二次函数的最值(1)可直接利用公式法求顶点的纵坐标,即y =ax 2+bx +c 的最大值为244ac b a−(a <0)或最小值为244ac b a−(a >0);(2)若顶点在已知给定的自变量取值范围内,则函数在顶点处取得最大值或最小值;若顶点不在已知给定的自变量取值范围内,则根据二次函数的性质判断所给自变量取值范围的两端点处对应的函数值大小,从而确定最值.3.解决最值应用题要注意两点(1)设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要讲义一、导入 二、知识讲解知识点1 利用二次函数求图形的最大面积知识点2 销售中的最大利润设为函数;(2)求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.知识点3 抛物线形问题常见设问形式和解题策略:(1)抛球运动判断球是否过网:即判断此点的坐标是否在抛物线上方;(2)投篮判断是否能投中:即判断篮网是否在球的运动轨迹所在的抛物线图象上;(3)判断货车是否能通过隧道:即判断两端点的坐标是否在抛物线的下方;(4)判断船是否能通过拱桥:即判断船的高度是否比桥的最高点到水面的距离小;(5)判断人是否会被喷泉淋湿:即判断人所处位置的水的高度是否比人的身高大.解题步骤:1.据题意,结合函数图象求出函数解析式;2.确定自变量的取值范围;3.根据图象,结合所求解析式解决问题.注意事项:若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;②使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数表达式和之后的计算求解.知识点4 二次函数中的实际应用综合复习回顾:1.二次函数如何配成顶点式?2.如何根据实际问题情境确定自变量的取值范围?三、例题精析例题1【题干】1.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)在(1)的条件下,求S 与x 的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米? 【答案】(1)y=-2x+44,3445<x ≤(2)2244S x x =−+,AD=6米,AB=32米. 【解析】(1)由34米的墙,及2米宽的小门,得到平行与墙的边,以及垂直于墙的两条边之和,由AD =x ,AB =y ,所用铁栅栏的长为40米,根据求出的之和表示出y 与x 的关系式;(2)由(1)表示出的y 与x 的关系式,列出S 与x 的函数关系式,根据矩形场地的面积为192平方米,求出AD 与AB 的长即可.试题解析:解:(1)∵y +2x -2×2=40, ∴y =-2x +44, ∴5≤x <443; (2)∵y =-2x +44,∴S =xy =x (-2x +44)=-2x 2+44x ; ∵矩形场地的面积为192平方米, ∴-2x 2+44x =192,∴x =6或x =16(不合题意), ∴AB =y =-2x +44=-2×6+44=32.答:AD =6米,AB =32米才能使矩形场地的面积为192平方米.【题干】2.有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.【答案】见解析【解析】解:(1)截法一:如答图①,S 四边形ABCF =AB ·BC =6×5=30. 截法二:如答图②.过点C 作CH ⊥FG 于点H . 则四边形BCHG 为矩形,△CHF 为等腰直角三角形, ∴HG =BC =5,BG =CH ,FH =CH ,∴BG =CH =FH =FG -HG =AE -HG =6-5=1, ∴AG =AB -BG =6-1=5. ∴S 四边形AGFE =AE ·AG =6×5=30.(2)如答图③,在CD 上取点F ,过点F 作FM ⊥AB 于点M ,FN ⊥AE 于点N ,过点C 作CG ⊥FM 于点G . 则四边形AMFN ,BCGM 为矩形, △CGF 为等腰直角三角形, ∴MG =BC =5,BM =CG ,FG =CG . 设AM =x ,则BM =6-x ,∴FM =GM +FG =GM +CG =BC +MB =11-x , ∴S 四边形AMFN =AM ·FM =x (11-x )=-(x -5.5)2+30.25, ∴当x =5.5时,S 的最大值为30.25. ∵30.25>30,∴能截出此(1)中面积更大的矩形材料.图①图②图③【题干】如图,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值,最大值是多少?【答案】252【解析】∵矩形MFGN ∽矩形ABCD ,∴MN :AD =MF :AB . ∵AB =2AD ,MN =x , ∴MF =2x .(2分)∴EM =EF −MF =10−2x (0<x <5). ∴S =x (10−2x )(5分)=−2x 2+10x =−2(x −52)2+252 ∴当x =52时,S 有最大值为252。

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容。

这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生了解二次函数在实际生活中的应用,培养学生的数学应用能力。

本节内容主要包括二次函数在几何中的应用和二次函数在实际生活中的应用。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,对于二次函数在实际生活中的应用,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际应用结合起来,提高学生的数学应用能力。

三. 教学目标1.了解二次函数在几何中的应用,提高学生的数学思维能力。

2.培养学生将二次函数应用于实际生活中的能力,提高学生的数学应用能力。

3.培养学生合作学习、积极探究的学习习惯,提高学生的自主学习能力。

四. 教学重难点1.二次函数在几何中的应用。

2.二次函数在实际生活中的应用。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法,引导学生主动探究,提高学生的数学应用能力。

六. 教学准备1.准备相关的教学案例和素材,以便进行案例分析。

2.准备几何画图工具,以便进行二次函数在几何中的应用的演示。

七. 教学过程1.导入(5分钟)通过复习二次函数的图像和性质,引导学生回忆起已学的知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍二次函数在几何中的应用,例如求解二次函数图形的交点、对称轴等问题。

通过具体的案例,让学生了解二次函数在几何中的重要作用。

3.操练(10分钟)让学生利用二次函数解决一些几何问题,例如求解二次函数图形的交点、对称轴等问题。

通过实际操作,让学生加深对二次函数在几何中应用的理解。

4.巩固(10分钟)通过一些练习题,让学生巩固二次函数在几何中的应用。

教师可以给予学生一定的指导,帮助学生解决问题。

5.拓展(10分钟)介绍二次函数在实际生活中的应用,例如最大值和最小值的求解、物体的运动轨迹等。

九年级数学下册 第1章 二次函数 课题 二次函数的应用(

九年级数学下册 第1章 二次函数 课题 二次函数的应用(

课题:二次函数的应用(2)——建立二次函数模型解决最大面积或最大利润问题【学习目标】1.分析题目条件,列出解析式,并根据自变量取值范围求最大面积.2.理解销售利润类二次函数解析式列法,并求出最大利润.【学习重点】根据题目条件求出自变量取值范围,并求最大面积或最大利润.【学习难点】根据条件求最大、最小值.情景导入 生成问题情景导入:1.小敏用一根长为8cm 的细铁丝围成矩形,设一边长__x__cm ,则另一边为__(4-x)__cm ,面积为__x(4-x)__cm 2,所围矩形最大面积为__4__cm 2.2.如图,已知平行四边形ABCD 的周长为8cm ,∠B =30°.若设边长AB =x cm .(1)▱ABCD 的面积y(cm 2)与x(cm )的函数关系式为__y =-12x 2+2x__,自变量x 的取值范围为__0<x<4__; (2)当x 取__2__时,y 的值最大,最大值为__2__.自学互研 生成能力知识模块一 最大面积问题阅读教材P 30~P 31,完成下列问题:1.如何利用二次函数求最大面积?答:(1)分析题中的数量关系;(2)找出等量关系,根据面积公式建立函数模型;(3)结合函数图象及性质,考虑实际问题中自变量取值范围,求出面积的最大或最小值.2.(包头中考)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__12.5__cm 2.【例1】 如图,利用一面墙(墙长不超过45m ),用80m 长的篱笆围一个矩形场地,当AD =__20__m 时,矩形场地面积最大,最大值是__800__m 2.【变例1】 如图所示,是用9m 长的塑钢制作的窗户的窗框,设窗宽为x m ,窗的面积为y m 2,用x 表示y 的函数关系式为__y =-32x 2+92x__,要使制作的窗户面积最大,那么窗户的宽是__32__m ,窗户的最大面积是__278__m 2.【变例2】 (聊城中考)已知△ABC 中,边BC 的长与BC 边上的高的和为20.(1)写出△ABC 的面积y 与BC 的长x 之间的函数关系式,并求出面积为48时BC 的长;(2)当BC 多长时,△ABC 的面积最大?最大面积是多少?解:(1)y =-12x 2+10x ,解方程48=-12x 2+10x ,得x 1=12,x 2=8. ∴△ABC 的面积为48时,BC 的长为12或8;(2)将y =-12x 2+10x 配方变形为y =-12(x -10)2+50, ∴当BC =10时,△ABC 的面积最大,最大面积为50.知识模块二 最大利润问题求最大利润问题常用公式是什么?答:利润=销售总金额-总成本=(售价-进价)×销售量-其他支出.【例2】 某单位商品利润y 元与变化的单价x 之间的关系式为:y =-5x 2+10x ,当0.5≤x≤2时,最大利润是__5元__.【变例1】 某产品每件的成本是120元,试销阶段每件产品的售价x(元)与产品的月销售量y(件)满足当x =130时,y =70;当x =150时,y =50,且y 是x 的一次函数,为获得最大销售利润,每件产品的售价应定为__160元__.【变例2】 大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电,通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)则y 与x 的函数关系式为__y =-4x +360(40≤x≤90)__;(2)设王强每月获得的利润为P(元),求P 与x 之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?解:P =(x -40)(-4x +360)=-4x 2+520x -14400(40≤x≤90),当P =2400时,-4x 2+520x -14400=2400,解得x 1=60,x 2=70,∴销售单价应定为60元或70元.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 最大面积问题知识模块二 最大利润问题检测反馈 达成目标1.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富.经调查得知,若我们把每日租金定为160元,则可客满;而租金每涨20元,就会失去3位客人.每间住了人的客房每日所需服务、维修等各项支出共计40元.要想赚最多的钱,定价应该为( C )A .160元B .240元C .360元D .450元2.如图,有长为24m 的围栏,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道栅栏的长方形鸡舍.设鸡舍的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式;(2)能围成面积比45m 2更大的鸡舍吗?如果能,请求出最大面积;如果不能,请说明理由.解:(1)S =-3x 2+24x(143≤x <8);(2)S =-3x 2+24x =-3(x -4)2+48,∵143≤x <8,当x =143时,S 最大值=1403m 2,∴能围成比45m 2更大鸡舍,最大面积为1403m 2.课后反思 查漏补缺1.收获:___________________________________________________________________2.存在困惑:_____________________________________________________________。

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计一. 教材分析沪科版数学九年级上册第21.4节《二次函数的应用》(第2课时)的内容,主要围绕二次函数在实际问题中的应用进行展开。

本节课的内容是在学生已经掌握了二次函数的图像和性质的基础上进行的,旨在培养学生运用数学知识解决实际问题的能力。

教材通过丰富的例题和练习题,引导学生学会如何将实际问题转化为二次函数模型,并利用二次函数的性质解决问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有了初步的了解。

但是,学生在应用二次函数解决实际问题时,往往会因为对实际问题理解不深、对二次函数模型掌握不牢固而遇到困难。

因此,在教学过程中,教师需要注重引导学生深入理解实际问题,将实际问题转化为二次函数模型,并巩固学生对二次函数性质的掌握。

三. 教学目标1.理解二次函数在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。

2.巩固学生对二次函数图像和性质的理解,提高学生对二次函数模型的掌握程度。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.重点:二次函数在实际问题中的应用,如何将实际问题转化为二次函数模型。

2.难点:对实际问题进行合理建模,灵活运用二次函数的性质解决问题。

五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生主动探究二次函数的应用。

2.案例分析法:分析典型例题,让学生学会如何将实际问题转化为二次函数模型。

3.小组讨论法:引导学生进行团队协作,共同解决问题,提高学生的团队协作能力。

六. 教学准备1.教学PPT:制作包含实际问题、例题和练习题的PPT,方便学生直观地理解和学习。

2.教学素材:准备一些与生活相关的实际问题,作为教学案例。

3.练习题:准备一些针对本节课内容的练习题,帮助学生巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生回顾二次函数的图像和性质,为新课的学习做好铺垫。

九年级下册二次函数知识点讲解

九年级下册二次函数知识点讲解

九年级下册二次函数知识点讲解二次函数是我们在数学学习中经常会遇到的一个重要概念。

它是一种代数函数,具有形如f(x) = ax² + bx + c的表达式,其中a、b、c是实数,且a不等于0。

而九年级下册中,我们将进一步学习和探索二次函数的性质和应用。

本文将对九年级下册二次函数的知识点进行讲解。

一、二次函数的图像和性质在学习二次函数的知识时,首先我们需要了解二次函数的图像和性质。

二次函数的图像是一个抛物线,其开口的方向取决于二次项的系数a的正负。

当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。

在解析式f(x) = ax² + bx + c中,常数c表示抛物线在y轴上的截距,而常数b则与抛物线的轴对称线有关。

二、二次函数的顶点和轴对称线二次函数的顶点是抛物线的最高点或最低点,这里也是抛物线的转折点。

顶点的坐标可以通过计算得到,设顶点坐标为(h,k),则h = -b / (2a),k = f(h) = f(-b / (2a))。

而二次函数的轴对称线则是垂直于x轴的一条直线,过抛物线的顶点。

轴对称线的方程可以通过计算得到,一般形式为x = -b / (2a)。

三、二次函数的零点和解析式二次函数的零点,即函数图像与x轴交点的横坐标。

通过求解二次函数的零点,我们可以得到方程ax² + bx + c = 0的解析式。

一般来说,我们可以使用因式分解、求根公式以及配方法等多种方法来求解二次方程,具体方法根据具体情况选择。

四、二次函数的最值和范围二次函数的最值是指函数的最大值或最小值,也就是抛物线的顶点坐标中的纵坐标。

当二次项系数a大于0时,二次函数的最值为最小值;当二次项系数a小于0时,二次函数的最值为最大值。

而二次函数的取值范围受限于抛物线的开口方向和最值,当a 大于0时,函数的取值范围为(最小值,正无穷);当a小于0时,函数的取值范围为(负无穷,最大值)。

五、二次函数的应用除了了解二次函数的基本知识和性质外,我们还需要学习和掌握二次函数在实际问题中的应用。

浙教版数学九年级上册2.4《二次函数的应用》教案

浙教版数学九年级上册2.4《二次函数的应用》教案

浙教版数学九年级上册2.4《二次函数的应用》教案一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容,主要目的是让学生掌握二次函数在实际问题中的应用。

本节内容是在学生已经学习了二次函数的图象和性质的基础上进行的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,提高他们的数学应用能力。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象和性质有一定的了解。

但是,将二次函数应用于实际问题中,解决实际问题,对他们来说还是一个新的领域。

因此,在教学过程中,教师需要引导学生将已知的二次函数知识与实际问题相结合,通过解决实际问题,提高他们的数学应用能力。

三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的应用,能够将实际问题转化为二次函数问题,并通过二次函数解决实际问题。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高他们的数学素养。

3.情感态度与价值观:使学生能够体验到数学在生活中的应用,增强他们对数学的兴趣和信心。

四. 教学重难点1.重点:使学生能够理解二次函数在实际问题中的应用。

2.难点:如何将实际问题转化为二次函数问题,并通过二次函数解决实际问题。

五. 教学方法采用问题驱动的教学法,通过解决实际问题,引导学生运用二次函数知识,提高他们的数学应用能力。

同时,采用小组合作学习的方式,培养学生的合作精神和团队意识。

六. 教学准备1.教师准备:教师需要准备一些实际问题,用于引导学生运用二次函数知识解决实际问题。

2.学生准备:学生需要复习二次函数的基本知识,对二次函数的图象和性质有一定的了解。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何利用二次函数知识解决这些问题。

2.呈现(10分钟)教师呈现一些实际问题,并与学生一起分析这些问题,将实际问题转化为二次函数问题。

3.操练(10分钟)教师引导学生运用二次函数知识解决呈现的实际问题,学生进行练习,巩固所学知识。

沪科版-数学-九年级上册-21.4 二次函数的应用教案

沪科版-数学-九年级上册-21.4 二次函数的应用教案

21.4 二次函数的应用┃教学整体设计┃第1课时二次函数的应用(1)┃教学过程设计┃例2(教材第37页例2)如图1,悬索桥两端主塔塔顶之间的主悬钢索,其形状可近似地看作抛物线,水平桥面与主悬索之间用垂直钢索连接.若两端主塔之间的水平距离为900 m,两主塔塔顶距桥面的高度为81.5 m,主悬钢索最低点离桥面的高度为0.5 m.(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图2,求这条抛物线对应的函数表达式;(2)计算距离桥两端主塔分别为100 m,50 m处垂直钢索的长.教师引导学生(1)这个抛物线的顶点坐标是什么?对称轴是什么?你还能写出这个抛物线上哪几个点的坐标?(2)这个抛物线对应的函数表达式可设什么形式?(3)第(2)题中离两端主塔分别为100 m,50m的点的横坐标各是多少?(4)第(2)题转化为数学语言是什么?思考:如果本题不给出坐标系,你还有没有其他方法建立坐标系,从而解决问题?初步了解建立平面直角坐标系解决实际问题.三、运用新知,解决问题 1.教材第38页练习第1题.2.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水.连喷头在内,柱高为0.8 m.水流在各个方向上沿形状相同的抛物线路径落下,如图1所示.根据设计图纸已知:如图2所示的平面直角坐标系中,水流喷出的高度y (m)与水平距离x (m)之间的函数表达式是y =-x 2+2x +45.(1)喷出的水流距水平面的最大高度是多少? (2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内? 教师板演,纠错,巡视指导,讲评. 及时巩固所学知识.四、课堂小结,提炼观点1.通过学习本节,你有哪些收获?2.对本节课你还有什么疑惑? 总结回顾学习的重点、难点内容,巩固所学知识.五、布置作业,巩固提升 1.教材第42页习题21.4第1、2题. 2.(选做题)教材第42页习题21.4第5题. 体现分层,加深认识,深化提高.┃教学小结┃【板书设计】二次函数的应用(1)例1 S =x (20-x ),配方,得S =-(x -10)2+100.因为a =-1<0,所以当x =10时,S 取得最大值,最大值为100.21.4二次函数的应用┃教学整体设计┃第2课时二次函数的应用(2)┃教学过程设计┃┃教学小结┃。

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计
一、教学内容及内容解析
分析实际变量中的二次函数的关系,运用二次函数求出最大(小)值问题.二、教学目标
1.知识与技能:经历探索销售中最大利润等问题的过程,体会用二次函数解决最优化问题的过程,并感受数学的应用价值.
2.过程与方法:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
3.情感、态度与价值观:经历销售中最大利润问题的探究过程,发展学生运用数学知识解决实际问题的能力,培养不怕困难的品质,发展合作意识和科学精神.三、教学问题诊断分析
根据教学目标确定重难点如下:
重点:探索销售中最大利润问题,能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.
难点:能正确理解题意,找准数量关系,运用二次函数的知识解决实际问题.四、教学过程设计(脚本)。

沪科版数学九年级上册21.4《二次函数的应用》(第1课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第1课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第1课时)教学设计一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容,本节课主要让学生了解二次函数在实际生活中的应用,学会用二次函数解决实际问题。

教材通过具体的例子,引导学生理解二次函数在几何、物理、化学等学科中的应用,培养学生的应用意识。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此在教学过程中,需要帮助学生建立实际问题与二次函数之间的联系。

三. 教学目标1.让学生掌握二次函数在实际生活中的应用,能将实际问题转化为二次函数问题。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对数学的兴趣,培养学生的应用意识。

四. 教学重难点1.教学重点:二次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为二次函数问题。

五. 教学方法1.采用案例教学法,通过具体的例子引导学生理解二次函数在实际中的应用。

2.采用问题驱动法,让学生在解决问题的过程中,掌握二次函数的应用方法。

3.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关的案例材料,用于讲解二次函数在实际中的应用。

2.准备一些实际问题,用于让学生练习转化和解决。

3.准备多媒体教学设备,用于展示案例和问题。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何用数学知识解决实际问题。

例如:一个物体从静止开始做直线运动,已知加速度为常数,求物体在任意时刻的速度。

2.呈现(15分钟)呈现教材中的案例,让学生了解二次函数在实际中的应用。

通过案例分析,引导学生理解二次函数的图像和性质,以及如何将实际问题转化为二次函数问题。

3.操练(20分钟)让学生分组讨论,将呈现的案例中的实际问题转化为二次函数问题,并求解。

教师巡回指导,为学生提供帮助。

九年级数学下册《二次函数的应用》教案、教学设计

九年级数学下册《二次函数的应用》教案、教学设计
(2)设计一些综合性的题目,让学生运用二次函数的顶点式、交点式进行求解,提高学生的问题解决能力。
3.拓展作业:
(1)针对优秀生,布置一些具有挑战性的题目,如研究二次函数图像的变换规律、探讨二次方程与二次不等式之间的关系等。
(2)鼓励学生利用网络、书籍等资源,了解二次函数在其他学科领域的应用,拓宽知识视野。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情,增强自信心和自主学习的意识。
2.通过解决实际生活中的问题,使学生感受到数学与现实生活的紧密联系,认识数学的价值,提高学习的积极性。
3.培养学生的团队合作意识,让他们在交流、互助中学会尊重他人,培养良好的人际沟通能力。
2.运用问题驱动法,设计具有挑战性的问题和实际案例,激发学生的兴趣和求知欲,培养其独立思考、合作交流的能力。
3.利用数形结合的方法,结合图像和解析式,帮助学生形象地理解二次函数的几何意义,提高解决问题的直观感知能力。
4.通过分类讨论、逐步推进的解题策略,培养学生的逻辑思维和条理性。
5.组织课堂讨论和小组活动,鼓励学生分享解题心得,提高表达和沟通能力。
九年级数学下册《二次函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《二次函数的应用》的教学中,学生将掌握以下知识与技能:
1.理解二次函数的定义及其图像特点,能够识别并写出一般形式的二次函数表达式。
2.学会运用二次函数的顶点式、交点式等不同形式进行问题求解,掌握求解二次方程的方法。
3.能够利用二次函数解决实际生活中的问题,如最值问题、范围问题等,并能够解释其几何意义。
4.掌握二次函数与一元二次方程、不等式之间的关系,能够进行简单的综合应用。

中考数学复习 二次函数 第19讲 二次函数的应用(2)试题(含解析)

 中考数学复习 二次函数 第19讲 二次函数的应用(2)试题(含解析)

—————————— 教育资源共享 步入知识海洋 ————————第19讲 二次函数的应用(2)1. (2012,河北,导学号5892921)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1)(2)已知出厂一张边长为40 cm 的薄板,获得的利润是26元(利润=出厂价-成本价). ①求一张薄板的利润与边长之间满足的函数解析式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?【思路分析】 (1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .利用待定系数法求一次函数的解析式即可.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2,进而得出m 的值,求出函数解析式即可.②利用二次函数的最值公式求出二次函数的最值即可.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .由表格中的数据,得⎩⎪⎨⎪⎧50=20k +n ,70=30k +n .解得⎩⎪⎨⎪⎧k =2,n =10.所以一张薄板的出厂价与边长之间满足的函数解析式为y =2x +10.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2=2x +10-mx 2.将x =40,p =26代入p =2x +10-mx 2,得26=2×40+10-m ·402. 解得m =125.所以一张薄板的利润与边长之间满足的函数解析式为p =-125x 2+2x +10.②因为a =-125<0,所以当x =-b 2a=-22×⎝ ⎛⎭⎪⎫-125=25(在5~50之间)时,p 最大=4ac -b 24a =4×⎝ ⎛⎭⎪⎫-125×10-224×⎝ ⎛⎭⎪⎫-125=35.所以出厂一张边长为25 cm 的薄板,获得的利润最大,最大利润是35元.利润问题例 1 (2018,扬州节选,导学号5892921)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?例1题图【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)先由题意得出x 的取值范围,再根据总利润=销售量×单件的利润,将(1)中的函数关系式代入,得到总利润与销售单价之间的函数关系式,最后根据其性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧40k +b =300,55k +b =150.解得⎩⎪⎨⎪⎧k =-10,b =700.故y 与x 之间的函数关系式为y =-10x +700.(2)由题意,得-10x +700≥240. 解得x ≤46.设每天获取的利润为w 元, 则w =(x -30)·y=(x -30)(-10x +700)=-10x 2+1 000x -21 000=-10(x -50)2+4 000. ∵-10<0,∴当x <50时,w 随x 的增大而增大.∴当x =46时,w 最大,w 最大=-10×(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840元.针对训练1 (2018,深圳模拟)某商场试销一种成本为50元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于50%.经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数关系,试销数据如下表:(1)求y 与x 之间的函数关系式;(2)若该商场获得的利润为w 元,试写出利润w 与销售单价x 之间的函数关系式.当销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)根据利润=销售量×(销售单价-单件成本),将(1)中的函数关系式代入,得到利润w 与销售单价x 之间的函数关系式,再根据x 的取值范围和二次函数的性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧55k +b =75,60k +b =70.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y =-x +130.(2)w =(x -50)(130-x )=-x 2+180x -6 500=-(x -90)2+1 600.由题意,得x ≤50×(1+50%),即x ≤75. ∴50≤x ≤75.∵当x <90时,w 随x 的增大而增大, ∴当x =75时,w 取得最大值,为1 375.所以当销售单价定为75元时,商场可以获得最大利润,最大利润是1 375元.二次函数与几何图形的综合例2 (2018,保定模拟)如图,已知矩形ABCD 的边AB =2,BC =3,P 是AD 边上的一动点(点P 异于点A ,D ),Q 是BC 边上的任意一点,连接AQ ,DQ ,过点P 作PE ∥DQ 交AQ 于点E ,作PF ∥AQ 交DQ 于点F .(1)求证:△APE ∽△PDF ;(2)设AP =x ,求四边形EQDP 的面积S (用含x 的代数式表示出来);当四边形EQDP 的面积等于214时,说明PE 与DQ 的数量关系.例2题图【思路分析】 (1)根据PE ∥DQ ,PF ∥AQ 得出同位角相等即可证得两三角形相似.(2)由PE ∥DQ ,得到△APE ∽△ADQ .根据相似三角形的性质得到S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29.求出S △ADQ =12S 矩形ABCD =3,于是得到S =S △ADQ -S △APE =-13x 2+3.根据四边形EQDP 的面积等于214,列方程即可得到结论.(1)证明:∵PE ∥DQ , ∴∠APE =∠PDF . ∵PF ∥AQ ,∴∠DPF =∠PAE . ∴△APE ∽△PDF . (2)解:∵PE ∥DQ , ∴△APE ∽△ADQ .∴S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29,AP AD =PE DQ. ∵S △ADQ =12S 矩形ABCD =3,∴S △APE =13x 2.∴S =S △ADQ -S △APE =-13x 2+3.当四边形EQDP 的面积等于214时,214=-13x 2+3.解得x =32.∴AP =32=12AD .∴PE =12DQ .针对训练2(2018,揭阳一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,动点P 在AD 上,从点A 出发,沿A →D 方向运动.设AP =x ,△ABP 的面积为S 1,矩形PDFE 的面积为S 2,y =S 1+S 2,则y 与x 之间的关系式是 y =-x 2+3x .训练2题图【解析】 ∵在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°.∴BD =AD =2.∴PE =AP =x ,PD =AD -AP =2-x .∴y =S 1+S 2=x ·22+(2-x )·x =-x 2+3x .一、 选择题1. (2018,马鞍山二模)某农产品市场经销一种成本为每千克40元的农产品.据市场分析,若按每千克50元销售,一个月能售出500 kg ;销售单价每涨1元,月销售量就减少10 kg.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 之间的函数关系式为(C )A. y =(x -40)(500-10x )B. y =(x -40)(10x -500)C. y =(x -40)[500-10(x -50)]D. y =(x -40)[500-10(50-x )]【解析】 因为销售单价为每千克x 元,月销售利润为y 元,所以y 与x 之间的函数关系式为y =(x -40)[500-10(x -50)].2. (2018,芜湖繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y =-4x +440,要使销售该商品获得的月利润最大,该商品的售价应定为(C )A. 60元/件B. 70元/件C. 80元/件D. 90元/件【解析】 设销售该商品每月所获总利润为w 元,则w =(x -50)(-4x +440)=-4x 2+640x-22 000=-4(x -80)2+3 600.∴当x =80时,w 取得最大值,最大值为3 600.所以当售价为80元/件时,销售该商品所获月利润最大.3. 如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与点B ,C 不重合),连接AP ,作PE ⊥AP 交外角∠DCF 的平分线于点E .设BP =x ,△PCE 的面积为y ,则y 与x 之间的函数关系式是(C )第3题图A. y =2x +1B. y =12x -2x 2C. y =2x -12x 2D. y =2x【解析】 如答图,过点E 作EH ⊥BC 于点H .∵四边形ABCD 是正方形,∴∠DCH = 90°.∵CE 平分∠DCH ,∴∠ECH =12∠DCH =45°.∵∠CHE =90°,∴∠CEH =∠ECH =45°.∴EH =CH .∵四边形ABCD 是正方形,AP ⊥EP ,∴∠B =∠CHE =∠APE =90°.∴∠BAP +∠APB =90°,∠APB +∠EPH =90°.∴∠BAP =∠EPH .∴△BAP ∽△HPE .∴AB PH=BP EH .∴44-x +EH =x EH .∴EH =x .∴y =12·CP ·EH =12·(4-x )·x =2x -12x 2.第3题答图4. (2018,淄博模拟)如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果点P ,Q 分别从点A ,B 同时出发,那么四边形APQC 的面积最小时,经过(C )第4题图A. 1 sB. 2 sC. 3 sD. 4 s【解析】 设点P ,Q 同时出发t s 时,四边形APQC 的面积为S mm 2,则S =S △ABC -S △PBQ =12×12×24-12·4t ·(12-2t )=4t 2-24t +144=4(t -3)2+108.∵4>0,∴当t =3时,S 取得最小值.5. (2018,天津武清区模拟)某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800,要想获得日最大利润,则销售单价为(B )A. 30元B. 35元C. 40元D. 45元【解析】 ∵y =-x 2+70x -800=-(x -35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,日销售利润最大.6. (2018,广州南沙区模拟)如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm.点P 从点A 出发,沿AB 方向以2 cm/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ 的面积最大是(C )第6题图A. 10 cm 2B. 8 cm 2C. 16 cm 2D. 24 cm 2【解析】 设运动时间为t s .根据题意,得AP =2t ,AQ =t ,∴S △APQ =t 2.易知0<t ≤4,∴△APQ 的面积最大是16 cm 2.7. 如图,正方形ABCD 的边长为1,E ,F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管点E ,F 怎样运动,始终保持AE ⊥EF .设BE =x ,DF =y ,则y 关于x 的函数解析式是(C )第7题图A. y =x +1B. y =x -1C. y =x 2-x +1D. y =x 2-x -1【解析】 ∵四边形ABCD 为正方形,∴∠B =∠C =90°.∴∠BAE +∠AEB =90°.∵AE ⊥EF ,∴∠AEB +∠FEC =90°.∴∠BAE =∠FEC .∴△ABE ∽△ECF .∴AB ∶EC =BE ∶CF .∴AB ·CF=EC ·BE .∵AB =1,BE =x ,EC =1-x ,CF =1-y ,∴1·(1-y )=(1-x )·x .化简得y =x 2-x +1.二、 填空题8. (导学号5892921)如图,在矩形ABCD 中,AD =16,AB =12,E ,F 分别是边BC ,DC 上的点,且EC +CF =8.设BE 的长为x ,△AEF 的面积为y ,则y 关于x 的函数解析式是( y =12x 2-10x +96 ).第8题图【解析】 ∵BE =x ,∴CE =16-x .∵CE +CF =8,∴CF =x -8.∴DF =20-x .∴y =S 矩形ABCD-S △ABE -S △CEF -S △ADF =12x 2-10x +96.9. (2018,天津和平区一模)某旅行社组团去外地旅游,30人起组团,每人的费用是800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加1人,每人的费用就降低10元.当一个旅行团有 55 人时,这个旅行社可以获得最大的营业额.【解析】设一个旅行团有x人,营业额为y元.根据题意,得y=x[800-10(x-30)]=-10x2+1 100x=-10(x-55)2+30 250.故当一个旅行团有55人时,这个旅行社可以获得最大的营业额.三、解答题10. (2018,盘锦节选)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本为30元.设该款童装每件售价为x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(不求自变量的取值范围)(2)当每件童装售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)当每件童装售价定为多少元时,该店销售该款童装一星期可获得3 910元的利润?【思路分析】 (1)每星期的销售量等于100件加上因降价而多销售的销售量,由此得到函数关系式.(2)设每星期的销售利润为W元,构建二次函数,利用二次函数的性质解决问题.(3)根据题意列方程即可解决问题.解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元.根据题意,得W=(x-30)(-10x+700)=-10x2+1 000x-21 000=-10(x-50)2+4 000.∴当x=50时,W最大,W最大=4 000.所以当每件童装售价定为50元时,每星期的销售利润最大,最大利润是4 000元.(3)由题意,得-10(x-50)2+4 000=3 910.解得x=53或x=47.所以当每件童装售价定为53元或47元时,该店销售该款童装一星期可获得3 910元的利润.11. (2018,承德一模,导学号5892921)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y1与y2关于投资成本的函数解析式;(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利润W万元,求出W关于m的函数解析式,并求他至少获得多少利润,他能获取的最大利润是多少.【思路分析】 (1)根据题意设y1=kx,y2=px2,将表格中的数据分别代入求解可得.(2)由投入种植花卉金额m万元,则投入种植树木金额(8-m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可.解:(1)设y1=kx.由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2.解得k=2.故种植树木的利润y1关于投资成本x的函数解析式是y1=2x(x≥0).设y2=px2.由表格数据可知,函数y2=px2的图象过(2,2).∴2=p ·22. 解得p =12.故种植花卉的利润y 2关于投资成本x 的函数解析式是y 2=12x 2(x ≥0).(2)因为投入种植花卉金额m 万元,则投入种植树木金额(8-m )万元. 根据题意,得W =2(8-m )+12m 2=12m 2-2m +16 =12(m -2)2+14. ∵a =12>0,0≤m ≤8,∴当m =2时,W 取得最小值,为14. ∵a =12>0,∴当0≤m <2时,W 随m 的增大而减小;当2<m ≤8时,W 随m 的增大而增大. 在对称轴左侧,当m =0时,W 取得最大值,为16. 在对称轴右侧,当m =8时,W 取得最大值,为32. ∵16<32,∴当m =8时,W 取得最大值,为32.故他至少获得14万元的利润,他能获取的最大利润是32万元.12. 如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从点A ,B 同时出发,点P 在边AB 上沿AB 方向以2 cm/s 的速度匀速运动,点Q 在边BC 上沿BC 方向以1 cm/s 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.第12题图【思路分析】 (1)用x 分别表示出PB ,BQ 的长,然后根据三角形的面积公式列式整理即可得解.(2)把函数解析式整理成顶点式,然后结合实际求二次函数的最值即可.解:(1)∵S △PBQ =12PB ·BQ ,BQ =x ,PB =AB -AP =18-2x ,∴y =12(18-2x )x ,即y =-x 2+9x (0≤x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-⎝ ⎛⎭⎪⎫x -922+814.∵当x ≤92时,y 随x 的增大而增大,而0≤x ≤4,∴当x =4时,y 最大,y 最大=20.所以△PBQ 的面积的最大值是20 cm 2.1. 某旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则会相应地减少10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是(C )A. 140元B. 150元C. 160元D. 180元【解析】 设每张床位收费提高x 个20元,每天收入为y 元.根据题意,得y =(100+20x )(100-10x )=-200x 2+1 000x +10 000.当x =-b 2a =1 000200×2=2.5时,可使y 有最大值.又x 为整数,则x =2时,y =11 200;x =3时,y =11 200.所以为使租出的床位少且租金高,每张床位每天最合适的收费是100+3×20=160(元).2. (2017,湖州,导学号5892921)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20 000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值; (2)设这批淡水鱼放养t 天后的质量为m kg ,销售单价为y 元/kg.根据以往经验可知m 与t 的函数关系为m =⎩⎪⎨⎪⎧20 000(0≤t ≤50),100t +15 000(50<t ≤100),y 与t 之间的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 关于t 的函数解析式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大,并求出最大值.(利润=销售总额-总成本)第2题图【思路分析】 (1)由放养10天的总成本为30.4万元,放养20天的总成本为30.8万元可列出方程组进而求得答案.(2)①分0≤t ≤50,50<t ≤100两种情况,结合函数图象利用待定系数法求解可得.②就以上两种情况,根据“利润=销售总额-总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.解:(1)由题意,得⎩⎪⎨⎪⎧10a +b =30.4,20a +b =30.8.解得⎩⎪⎨⎪⎧a =0.04,b =30.(2)①当0≤t ≤50时,设y 关于t 的函数解析式为y =k 1t +n 1.将(0,15),(50,25)分别代入,得⎩⎪⎨⎪⎧n 1=15,50k 1+n 1=25.解得⎩⎪⎨⎪⎧k 1=15,n 1=15.∴此时y 关于t 的函数解析式为y =15t +15.当50<t ≤100时,设y 关于t 的函数解析式为y =k 2t +n 2.将(50,25),(100,20)分别代入,得⎩⎪⎨⎪⎧50k 2+n 2=25,100k 2+n 2=20.解得⎩⎪⎨⎪⎧k 2=-110,n 2=30.∴此时y 关于t 的函数解析式为y =-110t +30.②当0≤t ≤50时,W =20 000⎝ ⎛⎭⎪⎫15t +15-(400t +300 000)=3 600t .∵3 600>0,∴当t =50时,W 最大,W 最大=180 000. 当50<t ≤100时,W =(100t +15 000)⎝ ⎛⎭⎪⎫-110t +30-(400t +300 000)=-10t 2+1 100t +150 000 =-10(t -55)2+180 250. ∵-10<0,∴当t =55时,W 最大,W 最大=180 250.综上所述,当t =55时,W 最大,最大值为180 250.。

九年级数学上册第二十二章二次函数专题15二次函数的实际应用—抛物线型问题

九年级数学上册第二十二章二次函数专题15二次函数的实际应用—抛物线型问题
第二十二章 二次函数
专题15 二次函数实际应用(二)— —“抛物线型”问题
武汉专版ቤተ መጻሕፍቲ ባይዱ九年级上册
第1页
1.(武汉中考)如图,小河上有一拱桥,拱桥及河道截面轮廓线由抛物线一部分ACB和矩形三边AE,ED, DB组成,已知河底ED是水平,ED=16 m,AE=8 m,抛物线顶点C到ED距离是11 m,以ED所在直线为x 轴,抛物线对称轴为y轴建立平面直角坐标系. (1)求抛物线解析式; (2)已知从某时刻开始40小时内,水面与河底ED距离h(单位:m)随时间t(单位:h)改变满足函数关系h =- (t-191)2+8(0≤t≤40),且当水面到顶点C距离小于5 m时,需禁止船只通行,请经过计算说
第3页
128
明:在这一时段内,需多少小时禁止船只通行?
第2页
2.(武汉模拟)一座拱桥轮廓是抛物线形(如图①),拱高6 m,跨度20 m,相邻两支柱间距离均为5 m. (1)将抛物线放在所给平面直角坐标系中(如图②),求抛物线解析式; (2)求支柱EF长度; (3)拱桥下地平面是双向行车道(正中间是一条宽2 m隔离带),其中一条行车道能否并排行驶宽2 m、 高3 m三辆汽车(汽车间间隔忽略不计)?请说明你理由.

【精编】九年级上册数学 人教版 二次函数的应用

【精编】九年级上册数学 人教版 二次函数的应用

二次函数的应用教学目标:1.掌握二次函数解析式的应用;2.学会建立二次函数模型解决问题;3.掌握二次函数中动点综合问题。

教学重难点:建立二次函数模型解决问题、二次函数中动点综合问题一、销售问题例1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?例2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例3.(山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:=-+.y x10500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)针对练习11.(四川南充,18,8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?元/件)2.(本题9分)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的投放市场进行试销.经过调查,y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能..超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?二、抛物线型问题例4.某校九年级的一场篮球比赛中,如图所示,队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7 m ,当球出手后水平距离为4 m 时到达最大高度4 m .设篮球的运动轨迹为抛物线,篮圈距地面3 m .(1)请你建立适当的平面直角坐标系,并判定此球能否准确投中? (2)此时,若对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的 最大摸高为2.9 m ,那么他能否获得成功?例5.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4 m 加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b 所示的坐标系进行计算.(1)求该抛物线的函数关系式; (2)计算所需不锈钢管立柱的总长度.针对练习2.1.某跳水运动员在进行10 m 跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210m ,入水处距池边的距离为4 m ,同时运动员在距水面高度5 m 以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线, 且运动员在空中调整好入水姿势时,距池边的水平距离为533m , 问此次跳水会不会失误?并通过计算说明理由.2.如图所示,某隧道设计为双向回车道,车道宽22 m ,要求通过车辆限高4.5 m ,隧道全长2.5 km ,隧道的拱线近似地看成是抛物线形状,若最大拱高为6 m ,求隧道应设计的拱长是多少.三、简单的几何问题例 6. 如图,在矩形ABCD 中,6cm AB =,12cm BC =,点P 从A 出发沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边以2cm/s 的速度移动,分别到达B ,C 两点后就停止运动. (1)设运动开始后第s t 时,五边形APQCD 的面积为2cm S ,试写出S 与t 的函数关系式,并指出自变量t 的取值范围.(2)第几秒五边形APQCD 的面积最小?是多少?23例7.Rt△ABC以1m/s的速度沿BC方向从矩形移出,直到AB与CD重合,AB=32m,∠ACB=30°,设x s时,三角形与矩形重合部分面积为y2m.(1) 经过多少秒,AB与CD重合?;(2) 写出y与x之间的函数关系式(3)经过多少秒,阴影部分的面积S最大,最大面积是多少?巩固练习1.用8m长木条,做成如图的窗框(包括中间棱),若不计损耗,窗户的最大面积为2m.2. 用长8m的铝合金条制成如图形状的矩形窗框,为了使窗户的透光面积最大,那么这个窗户的最大透光面积是()A.264m25B.24m3C.28m3D.24m3.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行预测,提供了两个方面的信息,如图1,图2.注:图1、图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低;图1的图像是线段,图2的图像是抛物线.请你根据图像提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由.4.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支 (不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值; (3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?5.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB =4 m ,顶部C 离地面高度为4.4 m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8 m ,装货宽度为2.4 m .请判断这辆汽车能否顺利通过大门.6.如图所示,一位篮球运动员在离篮圈水平距离为4 m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05 m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手.问:球出手时,他跳离地面多高?尝试中考1.(沈阳)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为,其中自变量x的取值范围是;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.思维拓展有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在池塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在池塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1 000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?。

初中数学九年级下册第二章 二次函数二次函数的实际应用

初中数学九年级下册第二章 二次函数二次函数的实际应用

二次函数的实际应用1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?2.某超市销售一种商品,其成本是每千克40元,并且规定每千克的售价不得低于成本价,且不高于100元经市场调查,每天的销售量y(千克)与每千克的售价x(元)满足一次函数关系,其中部分数据如表:售价x(元/千克)405060销售量y(千克)180150120(1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),求W与x 之间的函数表达式(利润=收入﹣成本),并指出每千克的售价为多少元时可获得最大利润?最大利润是多少?3.如图,小明用铁栅栏及一面墙(墙足够长)围成一个形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏),小明共用铁栅栏40米,设矩形ABCD的边AD长为x米,矩形的面积为S 平方米.(1)写出S与x的函数关系式;(2)如果要围成192平方米的场地,AD的长是6米或16米.(3)当x取何值时,S有最大值?并求出最大值.4.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?5.某商店销售一种成本为20元的商品,经调研,当该商品每件售价为30元时,每天可销售200件:当每件的售价每增加1元,每天的销量将减少5件.(1)求销量y(件)与售价x(元)之间的函数表达式;(2)如果每天的销量不低于150件,那么,当售价为多少元时,每天获取的利润最大,最大利润是多少?(3)该商店老板热心公益事业,决定从每天的销售利润中捐出100元给希望工程,为保证捐款后每天剩余利润不低于2900元,请直接写出该商品售价的范围.6.某企业接到一批酸奶生产任务,按要求在16天内完成,规定这批酸奶的出厂价为每瓶8元,为按时完成任务,该企业招收了新工人小孙,设小孙第x 天生产的酸奶数量为y瓶,y与x满足下列关系式:y=(1)小孙第几天生产的酸奶数量为520瓶?(2)如图,设第x天每瓶酸奶的成本是p元,已知p与x之间的关系可以用图中的函数图象来刻画.写出p与x的函数关系式.(3)若小孙第x天创造的利润为w元,求w与x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价一成本)7.某兴趣小组想借助如图所示的直角墙角(两边足够长),用20m长的篱笆围成一个矩形ABCD(篱笆只围AB,BC两边),设AB=xm时,花园的面积为ym2.(1)求y关于x的函数关系式;(2)若在P处有一棵树与墙CD,AD的距离分别是12m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积y的最大值.8.金秋时节,硕果飘香,某精准扶贫项目果园上市一种有机生态水果.为帮助果园拓宽销路,欣欣超市对这种水果进行代销,进价为5元/千克,售价为6元/千克时,当天的销售量为100千克;在销售过程中发现:销售单价每上涨元,当天的销售量就减少5千克.设当天销售单价统一为x元/千克(x≥6,且x是按元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若该种水果每千克的利润不超过80%,要想当天获得利润最大,每千克售价为多少元?并求出最大利润.9.合肥某商场购进一批新型网红玩具.已知这种玩具进价为17元/件,且该玩具的月销售量y(件)与销售单价x(元)之间满足一次函数关系,下表是月销售量与销售单价的几组对应关系:销售单价x/元20253035月销售量y/件3300280023001800(1)求y关于x的函数关系式;(2)当销售单价为多少元时,月销售利润最大,最大利润是多少?10.某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=,日销售量y(千克)与时间第t(天)之间的函数关系如图所示.(1)求日销售量y与时间t的函数解析式;(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B′
B
例2:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12 km /h 的速度朝正北方向行 驶,B船以5 km /h的速度朝正西方向行驶,何时两船相 距最近?最近距离是多少? ①设经过t时后,A、B两 船分别到达A′B′(如图),则 两船的距离S应为多少 ?
②如何求出S的最小值?? A’
北京网站设计 北京网站设计
清连原因都没什么询问就默默地听从咯他の安排/那各结果/既让他欣慰/也令他心酸/他们那么理智地分咯手/却又都是那么全心全意、竭尽全力地为对方着想/他撒下竹墨要去十六小格府上の弥天大谎/别就是别想让她晓得曾经被最信 任の人出卖而伤心难过吗?而她对他の决定没什么说壹各/别/字/别就是别想让他为难/相信他那么做壹定是有道理の吗?从前他们也经常分分和和、吵吵闹闹/然后是相互怨恨对方/可是现在/当他们如此理智地分手之后/却在彼此心 中都将对方最美好の壹面留在心间/即使他们别能在相爱の道路上走下去咯/三年の美好时光令他们都学会理智地对待问题の同时/也分外地成熟咯起来/爱是心中の思念与牵挂/别论时间、空间如何转化/无论时势、风云如何突变/无论 在或别在壹起/心若在/爱就在/永别变/第1470章/帮忙刚刚从苏培盛那里咯解到の情况以及他所布下の眼线汇报上来の情况都充分说明竹墨那大半年以来壹直遵从他の吩咐/别敢越雷池壹步/鉴于对竹墨の长期考察顺利通过/更是担心 水清晓得咯事情の真相而伤心难过/最终促使王爷决定改变对竹墨の处罚/否则依他の脾气/宁可再编造壹各更加能够自圆其说の谎言去安慰水清/也别会便宜咯竹墨/第二天/王爷特意派小苏拉寻咯壹趟十六小格/于是两各人响午の时候 在壹间酒肆见咯面/十六小格对于他四哥特意单独约他在外面见面很是别解/但仍是按时约如前往//给四哥请安///快起来吧/来来/坐下/上咯六安瓜片/您最喜欢の///四哥真是客气咯/愚弟真是受CHONG若惊呢///您就别耍嘴皮子咯/四 哥今天找您/也就别兜圈子咯/确实是有件事情想请您给帮各忙///四哥/您确实是太客气咯/您有啥啊事情吩咐愚弟去做就是咯/怎么还说上帮忙别帮忙の事情上来咯///好/四哥也别跟您拐弯抹角咯/是那样/您小四嫂/嗯/就是年四嫂/她 有壹各丫环/四哥想安排到您の府上/嗯/安排到您の书院当差/怎么样?/十六小格壹听那件事情/当即惊咯壹跳/年四嫂の丫环需要四哥亲自出面安排到自己府上の书院当差/那事儿怎么听着那么蹊跷呢/难道说/四哥看上咯那各丫环/想 收咯房/结果年四嫂别答应/四哥拗别过年四嫂/却又舍别下那各丫环/以至于现在连王府里容别下/偷偷安排到自己府上避风头来咯?可是/四哥应该别是那种人呢/那么多年也别曾见有过那种事情/怎么突然间冒出来那么匪夷所思の情 况?如若别是那各原因/怎么也解释别通那件事情呢/但是那件事情是王爷の私事/他没什么主动提及原因/十六小格断然别能开口去询问/但是别管原因是啥啊/王爷能求到十六小格而别是十三小格の头上/那是给咯他多么大の信任/十 六小格当然是受CHONG若惊/想都别用想都要无条件地帮那各忙/于是赶快说道:/原来是那么壹桩小事/那有何难/愚弟随时恭候//壹听十六小格那么痛快地答应咯/王爷心里の那壹块大石头终于踏实落下咯/于是又叮嘱咯壹句:/那各/ 那各/假设有人问起来/您就说/您の书院里正好缺壹各使唤丫头/想找壹各知根知底の奴才/就管四哥提咯出来/可巧您年四嫂院子里の那各丫头正合您の要求/于是四哥就应允咯//至此/十六小格终于完完全全地确信/果然是他四哥看上 咯年四嫂の小丫环/为咯掩人耳目/竟要他当幌子/否则他四哥绝对别会平白无故地让他帮忙塞进府里壹各小丫环/来别及多想/十六小格赶快表态道:/四哥/您就放心吧/老十六完全按照您刚才说の办/那件事情只有您知/愚弟知/就连对 您弟妹都是那么各说法///多谢/多谢咯//第1471章/避嫌两天之后/十六小格派府里の大管家亲自出面来到王府/将竹墨接到咯自己の府上/临去接人之前/十六小格特意吩咐咯大管家/那各竹墨姑娘到咯书院之后/别要安排啥啊差事/顶 多就是负责调---教壹下丫环、嬷嬷们/十六小格如此安排当然是因为竹墨是王爷の诸人/现在只是拗别过年四嫂/别得已而暂时安排到他の府上避壹避风头/他四哥又别是始乱终弃の那种人/早早晚晚有壹天得给咯那各诸人名分/那 各时候他十六小格可是要对那各竹墨姑娘改口称壹句小四嫂/此次王爷将竹墨送到他の府上/还特意点明是在书院/分明是担心无论在哪各院子当差都会或多或少受主子の气/只有在书院才能得到他十六小格の亲自关照/别会让她有任何 委屈/既然将来总有壹天他们要从主仆关系变成叔嫂关系/那么十六小格断然别会让竹墨真の当啥啊差/既是对未来の小四嫂以示恭敬/也是为咯叔嫂避嫌/可是现在竹墨仍是壹各丫环の身份/只要是当差/总会避免别咯两人相见の场合/ 所以十六小格精心安排竹墨当壹名管教/没什么具体差事就基本阻断咯他与竹墨碰面の机会/同样是为咯避嫌/十六小格并没什么按照府里往常の惯例/对于新进书院の奴才亲自过目训话/而是直接交代给书院の总管太监/于是他の书院 里就那么稀里糊涂地迎来咯壹位管教丫环/虽然表现上十六小格做得滴水别漏/但是私底下他又是忍别住地好奇:连年四嫂那么美貌の诸人都笼别住四哥の心/那竹墨姑娘还别得是长得比天仙还要天仙?虽然心中格外地好奇/但最终他 还是忍住咯没什么见竹墨/原因当然还是为咯那各叔嫂避嫌/别管怎么壹各天仙法儿/礼义廉耻永远是第壹位/十六小格在心中暗暗告诫自己/壹直当真正到咯十六府之后竹墨才恍然大悟/原来王爷并没什么诳她/真の是将她送到十六府の 书院当差/可是即使人已经实实在在地呆在十六府の书院里/竹墨仍是没能相信王爷会大发善心/对她网开壹面/那他为啥啊还会真の将她送到那里来呢?当然是担心他自己出面惩处会伤咯水清の心/毕竟直到现在她家主子都别晓得曾经 被她出卖の事情/别想让她家主子伤心/可是别对她严加惩处又咽别下那口恶气/于是王爷就把她那各烫手の山芋给咯他最亲厚の十六弟/由十六小格替他出面惩处她/神别知鬼别觉/果真是手段高强/特别是到咯十六府之后/十六小格并 没什么给她安排具体差事/更是印证咯竹墨此前の判断:看来那两位爷真是亲兄弟/办事手法壹样の老辣/十六爷打の啥啊主意她还能别明白?先是别给她安排差事/让她成为壹各无所事事の大闲人/然后过些日子再寻各借口/以游手好 闲、偷奸耍滑等等治下她七七四十九桩大罪/到那各时候/她可就真真の成咯冤死鬼咯/第1472章/醉酒竹墨哪里晓得十六小格の苦心安排是为咯叔嫂避嫌/她只晓得再别努力拼命地找差事做/小命休矣/为咯避免给人落下口实/竹墨整天 起早贪黑/觉别敢多睡/话别敢多说/事儿要多做/可是那各大忙人别是她想当就能当上の/书院里每各人都有自己の差事/众人眼见着自家爷都没什么安排她差事做/谁还敢将自己の差事交给竹墨去做?借他(她)好些各胆子也别敢/所 以竹墨越是拼命找差事/越是没什么差事/众人全都躲得她远远の/以为她大有来头/既然惹别起还躲别起?十六小格再是竭力避嫌/但那书院是他自己の地界/抬头别见低头见/早早晚晚主仆两人有见面の那壹天/那壹天没什么等多久/就 是竹墨到咯书院の第八天/那天十六小格由于参加宴席回来得晚咯壹些/酒也喝得也多咯壹些/壹路上胃里难受得别行/好别容易挨到进咯院子/身子壹放松就想要呕出来/十六小格の贴身奴才旺忠见状大事别好/壹各劲儿央告:/爷/您再 忍壹忍/马上就进咯房里咯/那寒冬腊月の/吐在外面可是要伤咯身子/着咯凉那就更别好办呢//有些事情可以忍/但是吐酒那种事情别是想忍就能忍得下/十六小格虽然强忍咯半天/终是没能忍到走进后院卧室/当主仆两人踉踉跄跄地才 挪到前厅/他就翻江倒海起来/主子喝坏咯身子/奴才们全都别得安生/于是安静咯壹晚上の院子登时乱乱哄哄起来/所有の人全都紧张有序地忙活着/端茶の/熬醒酒汤の/换衣裳の/收拾残局の/忙得别可开交/众人都在忙而别乱地紧张忙 碌/竹墨却尴尬地别晓得如何行事才好/跟着大家壹起忙活吧?各人有各人の差事/而且大家都躲着她/她就是想找点儿事儿做却根本插别上手/继续闲呆着吧?大家都在忙碌/只她壹各人袖手旁观/更是显得格格别入/弄得她上前也别是/ 后退也别是/如此尴尬の情况持续咯好长壹阵子/竹墨终于下定咯决心/别管别人怎么看她/她自己可是要趁着那各大好机会好好表现壹下/否则平时更是没什么插手の机会咯/于是她趁着满院子奴才们全都行动起来/忙东忙西之际/脏活 儿累活儿全都抢着干/而众人由于手忙脚乱/也无暇顾及许多/多壹各人干活儿还多壹份力量/于是也没什么再刻意躲避竹墨/也算是变相默许她加入到他们の队伍中/可巧那各时候醒酒汤熬好咯/负责端汤の丫环本是要将那汤碗端给旺忠 来喂他们主子爷/谁想到旺忠刚才壹通忙活之际别小心将手戳到咯椅子背上の透雕花窟窿里/正哎哟哎哟地壹边往外拿壹边痛得呲牙咧嘴/竹墨见状/晓得那是自己在十六爷面前好好表现の机会来咯/于是赶快接过小丫环手中の醒酒汤端 向十六小格/第1473章/四嫂十六小格此时正吐得昏天暗地/本是自顾别暇/压根儿就没什么注意到是谁在给他端汤递水/只当还是旺忠在服侍他/由于醉酒又吐得壹塌糊涂/浑身壹点儿力气也没什么/所以他并没什么将碗接过自己の手上 来/而就着竹墨端过来の碗晕晕乎乎地壹口气喝咯下去/自家爷喝多咯/奴才们手忙脚乱地服侍左右/女眷们当然更是关心十六小格の身体情况/别の诸人碍于面子虽然心中惦记却也别敢表现出来/只能是偷偷地打发自己院子の奴才去打 探情况/但是十六福晋朱赫就别壹样咯/她是正房嫡妻/无论怎样关心都是天经地义、理所当然/所以当她壹听说自家爷喝得别醒人事回到府里/又是担心又是着急/壹得到口信儿就立即赶到书院来服侍/十六小格向他四哥保证咯/关于竹 墨の事情/就是对他十六弟妹都别会说/所以朱赫哪里晓得她家爷の书院又新来咯壹各小丫环/当她心急如焚地来到书院の时候/眼前正是十六小格就着竹墨手中端过来の那碗醒酒汤壹饮而尽の那壹幕/惊得朱赫当场极为失态地/啊/の壹 声喊咯出来/朱赫那壹声尖叫别但将所有奴才の目光都吸引到她の身上/而且连醉得昏昏沉沉の十六小格也被那壹声惊得猛然间酒醒咯壹大半/当他努力咯半天终于将目光定格在自家福晋那张惊恐万状の脸庞之上/很是费解/看咯看朱赫 /又看咯看身边の竹墨/然后再转回头来/口齿别清地向朱赫问道:/您/您/喊啥啊?///爷/请爷恕罪/妾身晓得失礼咯/请您恕罪/可是/可是/那各诸人是谁?//您说/说/说哪各/哪各诸人?//就是那各诸人啊//朱赫见竹墨穿着丫环の服 饰/晓得她是奴才/所以根本没什么把竹墨放在眼里/上前壹把揪住竹墨の胳膊/推推搡搡到十六小格の面前/然后说道:/她是谁?/啥啊时候进の府里来の?您怎么都没跟妾身说壹声呢?她是做啥啊の?/朱赫似连珠炮般壹口气发出咯 那么多の质疑/可是十六小格却跟没事儿人似の/朝她先是摇咯摇头/然后又点咯点头/弄得朱赫更是莫名其妙//爷啊/您那是啥啊意思?又摇头又点头/再说咯/那诸人是谁也别是摇头还是点头就能说得清楚の啊//十六小格本就因为醉酒 而头痛别已/现在被朱赫の那壹通发难搞得更是头痛欲裂/为咯镇住朱赫别再胡搅蛮缠/他伸出壹根手指头在嘴上比划咯壹下子:/嘘/别大喊大叫の/您各妇道人家懂啥啊/那是小四嫂/还别赶快过来见礼//十六小格此话壹出/刚刚还闹闹 哄哄の屋子登时唰地壹下子就静咯下来/众人惊得差点儿将手中の活计掉到咯地上/他们实在是别敢相信自家爷那话是真の/竹墨姑娘竟然是小四嫂?能被称为四嫂/那壹定是王爷の女眷/可是她别是奴才吗?怎么变成王爷の女眷咯?难 道说真是应咯那句老话/真人别露相/露相非真人?第1474章/求饶朱赫壹听自家爷居然将那各毫无半点姿色可言の小丫环称为小四嫂/当即气炸咯肺/原来爷是看上咯那各别晓得啥啊来路出身の小丫头/别但偷偷摸摸地弄到书院里金屋 藏娇/还跟四哥串通壹气/说是四哥看上の诸人/爷那谎话编得也太假咯/四哥啥啊眼光?能看上那种诸人?别要说年四嫂美得跟天仙似の/李四嫂仍是风韵犹存/就是那耿四嫂都要比那小贱人好看别晓得好些呢/就那种诸人能入得咯四哥 の眼?爷可真是の/连各谎话都编别妥当/以为我是那么好哄骗の呢/再说咯/别要说四哥の眼光有多高/爷您自己の眼光也别差呢/怎么就看上那各诸人呢/就那种货色还能当狐狸精?朱赫越想越是伤心/越想越是愤怒/两只眼睛几乎要喷 出火光来/她最气恼の别是十六小格四处沾花惹草/乱搞诸人/而是那么大の事情居然没什么事先告诉她/还偷偷地养在书院里/连奴才们都比她那各正经主子晓得得早/暗地里被众人指指点点笑话死咯/而她那各嫡福晋竟然还被蒙在鼓里 /让她那张脸没处搁没处放/竹墨壹听十六小格管自己称作小四嫂/当即吓得腿都软咯/天啊/原来以为十六爷是打算用游手好闲、好吃懒做、偷奸耍滑の罪名来治自己の罪/现在才晓得/自己竟然是要被凭白地安上GOU引王爷の罪名来治 罪/那壹招实在是太过毒辣咯/别看十六爷年纪轻经、心慈面善の模样/若论起心机和手段来/壹点儿也别比王爷差好些/天啊/那壹回自己可真是跳进黄河也洗别清咯/小命
相关文档
最新文档