高中数学必修二第一章空间几何体的结构练习题

合集下载

高中数学必修二第一章 空间几何体测试5 空间几何体的结构

高中数学必修二第一章 空间几何体测试5 空间几何体的结构

高中数学必修二第一章 空间几何体测试5 空间几何体的结构一、选择题1.正四棱锥的侧棱长和底面边长都是2,则它的体积是 ( ) A .24B .324 C .34D .334 2.如图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为 ( )A .模块①,②,⑤B .模块①,③,⑤C .模块②,④,⑥D .模块③,④,⑤3.将正三棱柱截去三个角(A ,B ,C 分别是△GHI 三边的中点)得到一个几何体,则该几何体按图中所示方向的侧视图(或称左视图)为 ( )4.如果圆柱轴截面(经过上、下底面圆心的平面与圆柱相交所得的截面)的周长为6,那么圆柱体积的最大值是 ( ) A .π3227 B .8π C .π827 D .π二、填空题5.用一个平面去截体积为43π的球,所得截面的面积为π,则球心到截面的距离是________. 6.在正四棱柱ABCD -A 1B 1C 1D 1中,AB =a ,AA 1=b ,P 为上底面中心,则四棱锥P -ABCD 的体积是________;当a ,b 满足条件________时,四棱锥P -ABCD 的侧面积比正四棱柱ABCD -A 1B 1C 1D 1的侧面积小.7.已知正方形ABCD 的边长是a ,E ,F 分别是AD ,CD 的中点,将正方形沿BE ,BF ,EF 折起,使得A ,D ,C 三点重合于一点,记该点为P ,则三棱锥P -BEF 的体积是________. 8.若两个长方体的长、宽、高分别为5cm ,4cm ,3cm .把它们两个全等的面重合在一起构成一个大长方体,则大长方体的对角线最长为________. 三、解答题9.如图,在四棱锥S -ABCD 中,SD ⊥平面ABCD ,底面ABCD 是正方形,且SD =a ,AB =3a .(1)求证:CD ⊥AS ;(2)求三棱锥D -SBC 的体积.10.如图,斜三棱柱ABC -A 1B 1C 1的底面是边长为4的正三角形,D 是BC 的中点,A 1D ⊥平面ABC .(1)求证:BC ⊥A 1A ;(2)若A 1A =6,求三棱柱ABC -A 1B 1C 1的体积.11.如图,已知△ABC 中,∠BAC =90°,AB =m ,AC =n .将△ABC 以BC 边为轴旋转一周,得到一个几何体.(1)求此几何体的体积;(2)设△ABC 的面积为21,求该几何体体积的最大值.12.如图,在三棱锥P -ABC 中,PC ⊥底面ABC ,AC ⊥BC ,D 是AB 的中点,且AC =BC=1,)2π0(<<=∠θθPDC . (1)求证:平面P AB ⊥平面PCD ; (2)记三棱锥P -ABC 的体积为V ,当⎥⎦⎤⎢⎣⎡∈126,122V 时,求θ的取值范围.参考答案测试5 空间几何体的结构一、选择题1.C 2.A 3.A 4.D 提示:4.设圆柱的底面半径为r ,高为h ,则4r +2h =6,即h =3-2r . 圆柱的体积V =πr 2h =πr 2(3-2r )=π(-2r 3+3r 2),则V '=π(-6r 2+6r ),令V '=0,注意到r >0,解得r =1. 当r ∈(0,1)时,V ′>0;当r ∈(1,+∞)时,V ′<0. 从而当r =1时,V 取得最大值π. 二、填空题 5.2 6.b a 231 b a 32< 7.3241a 8.cm 55 三、解答题9.(1)证明:∵SD ⊥平面ABCD ,∴CD ⊥SD . 又四边形ABCD 是正方形,∴CD ⊥AD . ∴CD ⊥平面SAD ,∴CD ⊥AS . (2)解:三棱锥D -SBC 的体积3221)3(2131a a a V V BCD S SBC D =⨯⨯==--. 10.(1)证明:连接AD .∵A 1D ⊥平面ABC ,∴BC ⊥A 1D .∵D 是正三角形ABC 的边BC 的中点, ∴BC ⊥AD ,∴BC ⊥平面A 1AD ,∴BC ⊥A 1A .(2)解:∵A 1D ⊥平面ABC ,∴A 1D ⊥AD . 在Rt △A 1DA 中,AD =AB sin60°=23, ∴622211=-=AD A A D A .∴三棱柱ABC -A 1B 1C 1的体积224624432=⨯⨯=V . 11.(1)解:作AD ⊥BC 于D .依题意,所得几何体为两个共底面的圆锥. 在Rt △ABC 中,∵2222n m AC AB BC +=+=,∴22nm mnBC AC AB AD +=⋅=.∴该几何体的体积为 2222223ππ31)(π31n m n m BC AD DC BD AD V +=⋅=+⋅=. (2)解:∵△ABC 的面积为21,∴mn =1. ∵m 2+n 2≥2mn =2,∴,π62213π3π2222=≤+=n m n m V∴当且仅当m =n =1时,该几何体的体积取得最大值π62. 12.(1)∵AC =BC ,∴△ACB 是等腰三角形, 又D 是AB 的中点,∴CD ⊥AB ,又PC ⊥底面ABC ,∴PC ⊥AB , ∴AB ⊥平面PCD . 又AB ⊂平面P AB ,∴平面P AB ⊥平面PCD . (2)在Rt △PCD 中,,22=CD θθtan 22tan =⋅=CD PC ∴三棱锥P -ABC 的体积PC S V ABC ⋅=∆31,tan 122tan 222131θθ=⨯⨯=令,126tan 122122≤≤θ得,3tan 1≤≤θ ∵2π0<<θ,∴3π4π≤≤θ.。

人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构习题

人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构习题

1.1空间几何体的结构一.判断正误(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;()(2)圆锥顶点与底面圆周上任意一点的线段是圆锥的母线;(对)(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;()(4)圆柱的任意两条母线所在的直线是互相平行的.(对)(5)棱垂直于底面的棱柱是直棱柱(对)(6)底面是正多边形的棱柱是正棱柱(7)棱柱的侧面都是平行四边形.(对)(8)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(9)有一个面是多边形,其余各面都是三角形的几何体叫棱锥(10)由五个面围成的多面体一定是四棱锥(11)棱台各侧棱的延长线交于一点(对)(12)棱柱的侧棱都相等,侧面都是全等的平行四边形;(13)存在每个面都是直角三角形的四面体;(对)(14)棱台的侧棱延长后交于一点.(对)(15)棱柱的侧面可以是三角形(16)正方体和长方体都是特殊的四棱柱(对)(17)棱柱的各条棱都相等(18)所有的几何体的表面都展成平面图形(19)有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;(20)有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;(21)用一个面去截棱锥,底面与截面之间的部分叫棱台;(22)侧面都是长方形的棱柱叫长方体.(23)多面体至少有四个面(对)(24)有两个侧面是矩形的棱柱是直棱柱;(25)各侧面都是正方形的棱柱一定是正棱柱;(26)一个三棱锥四个面可以都为直角三角形.(对)(27)有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱(对)(28)直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(29)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(30)一个平面截圆锥,得到一个圆锥和一个圆台.(31)两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台(对)(32)如图,在透明塑料制成的长方体ABCD﹣A1B1C1D1容器内装进一些水,将容器底面一边BC固定于底面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终是棱柱形状;②水面形成的四边形EFGH的面积不改变;③当E∈AA1时,AE+BF是定值.其中正确说法是.(写出所以正确说法的序号)【答案】①③(33)若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥【答案】D二.多面体和旋转体表面上的最短距离问题1.已知侧棱长为2的正三棱锥S﹣ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行两周后又回到点A,则蚂蚁爬行的最短路程为.【答案】2.如图所示,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面A 1B 1C 1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC 1=,P 是BC 1上一动点,则A 1P+PC 的最小值是 .【答案】3.如图:已知正三棱锥P ﹣ABC ,侧棱PA ,PB ,PC 的长为2,且∠APB=30°,E ,F 分别是侧棱PC ,PA 上的动点,则△BEF 的周长的最小值为( )【答案】C .224.如图,直三棱柱111C B A ABC -中,1=AB ,2=BC ,5=AC ,31=AA ,M 为线段1BB 上的一动点,则当1MC AM +最小时,△1AMC 的面积为______。

高中数学必修二第一章《空间几何体》单元练习题(含答案)

高中数学必修二第一章《空间几何体》单元练习题(含答案)

高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成3.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.24.圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是 ( )A.B.C.1D.6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是 ( )二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.8.在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个【解析】选C.根据棱柱的结构特征不可能有奇数个,因此最多2个.2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成【解析】选A.由三视图可知此组合体的上方是圆柱,下方是圆锥,故选A.3.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.2【解析】选B.由该四面体的三视图可知,该四面体的直观图如图所示:其中侧面PAC⊥底面ABC,且△PAC≌△BAC,由三视图中所给数据可知PA=PC=AB=BC=,取AC的中点O,连接PO,BO,则在Rt△POB中,PO=BO=1,可得PB=,所以S=2××2+×2×2=2+.4.(2015·西安高一检测)圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS【解析】选B.设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A. B. C.1 D.【解析】选D.设上、下底半径分别为r1,r2,过高中点的圆面半径为r0,由题意得r2=4r1,r0=r1,所以==.6.(2015·威海高一检测)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【解析】选C.当俯视图为A中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D 中扇形时,几何体为圆柱的,且体积为. 二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.【解析】设球的半径为rcm,则πr 2×8+πr 3×3=πr 2×6r.解得r=4. 答案:48.(2015·四川高考)在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .【解析】V=××=.答案:9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.【解析】以4为高卷起,则2πr=8,所以2r=,所以轴截面面积为cm 2;若以8为高卷起,则2πR=4,所以2R=,所以轴截面面积为cm 2.答案:三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.【解析】由三视图知底面ABCD为矩形,AB=2,BC=4.顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P-ABCD=S ABCD×PE=×2×4×2=.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?【解析】设球半径为Rcm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面的距离为(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=πR3=π×53=(cm3).。

高中数学必修2第一章空间几何体常识点习题

高中数学必修2第一章空间几何体常识点习题

4.在区间 [-1, 1]上随机取一个数
1
2
1
A.
B.
C.
3
2
x, cos x 的值介于 0 到 1 之间的概率为
2
2
2
D.
3
()
5. 如右图,某几何体的正视图与侧视图都是边长为




1 的正方形,且体积为 可
1 。则该集合体 2


()
6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现有沿该正方体
4. 圆柱与圆锥:圆柱的轴
圆柱的底面 圆柱的侧面 圆柱侧面的母线
5. 棱台与圆台:统称为台体 (1) 棱台的性质: 两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧
面是梯形;侧棱的延长线相交于一点 .
(2) 圆台的性质: 两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长
线交于一点;母线长都相等 .

()
A.9 π
B.10 π
C.11
π
D.12
π
例 3. 一个多面体的直观图及三视图如图所示(其中
E、F 分别是 PB、 AD的
中点) .
(Ⅰ)求证: EF⊥平面 PBC;
(Ⅱ)求三棱锥 B— AEF的体积。
例 4. 如图,在斜坡的顶部有一铁塔 AB, B 是 CD的中点, CD是水平的,在阳光的
照射下,塔影 DE留在坡面上. 已知铁塔底座宽 CD=12m,塔影长 DE=18 m,小明和小华的身高都是 1.6m,同一时刻, 小明站在点 E 处,影子 在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为 2m和 1m,求塔高 AB

高中数学必修2第一章空间几何体综合练习题及答案

高中数学必修2第一章空间几何体综合练习题及答案

AB D E F第一章 空间几何体综合型训练一、选择题1. 如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . 22+B . 221+ C . 222+ D . 21+ 2. 半径为R 的半圆卷成一个圆锥,则它的体积为( )A . 33RB . 33RC . 35RD . 35R 3. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A. 28cm π B. 212cmπ C. 216cm π D. 220cm π 4. 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 35. 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A . 1:7 B. 2:7 C. 7:19 D. 5:166. 如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ) A . 92B. 5 C. 6 D. 152 二、填空题1. 圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________.2. Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________.3. 等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4. 若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________.5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________.6. 若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.三、解答题1. 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?2. 已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.参考答案图(1) 图(2)一、选择题1. A恢复后的原图形为一直角梯形1(11)222S =⨯=+ 2. A2312,,,22324R r R r h V r h R πππ===== 3. B正方体的顶点都在球面上,则球为正方体的外接球,则2R =,2412R S R ππ===4. A (3)84,7S r r l r ππ=+==侧面积5. C 中截面的面积为4个单位, 12124746919V V ++==++ 6. D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯= 二、填空题1. 6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2. 16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥,2211431633V r h πππ==⨯⨯= 3. <设334,3V R a a R π====2264S a S R π=====<正球4.从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案==5. (1)4 (2)圆锥6.设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =, 而22S r r r a ππ=+⋅=圆锥表,即23,r a r π===,即直径为3π三、解答题1.解:'1(),3V S S h h =+= 319000075360024001600h ⨯==++数学试卷及试题2.解:2229(25)(25),7l lππ+=+=。

高中数学必修2第一章空间几何体练习

高中数学必修2第一章空间几何体练习

高中数学必修2第一章空间几何体练习___班___号 姓名__________一、选择题(本大题共12小题,每小题5分,共60分)1.表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A .π32 B .π31 C .π32 D .π322 2.如图所示是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 为( )A .1800B .1200C .600D .4503.已知三棱锥S -ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,r AC 2=,则球的体积与三棱锥体积之比是( )A .πB .π2C .π3D .π44.如图所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1B .21C .31D .61 5.一平面截球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33100cm πB .33208cm πC .33500cm πD .33416cm π 6.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( )A .6:5πB .2:6πC .2:πD .12:5π7.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h 1、h 2、h 3,则h 1:h 2:h 3等于( )A .1:1:3B .2:2:3C .2:2:3D .3:2:38.如图所示的一个5×4×4的长方体,阴影所示为穿透的三个洞,那么剩下的部分的体积是( )A .50B .54C .56D .589.一个正三棱锥的四个顶是半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .123B .43C .33D .433 10.如图用□表示1个正方体,用□(浅黑)表示两个正方体叠加,用□(深黑)表示三个立方体叠加,那么右图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )11.如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为600的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,P 为三角板与球的切点,如果测得PA =5,则球的表面积为( )A .π200B .π300C .π3200D .π330012.一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ;且知SD :DA =SE :EB =CF :FS =2:1,若仍用这个容器盛水,则最多可盛原来水的( )A .2923B .2723C .2719D .3531 二、填空题(本大题共4小题,每小题4分,共16分)13.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为__________。

人教版高中数学必修2第一章空间几何体练习题及答案全

人教版高中数学必修2第一章空间几何体练习题及答案全

第一章空间几何体1.1 空间几何体的构造一、选择题1、以下各组几何体中是多面体的一组是〔〕A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、以下说法正确的选项是〔〕A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面相互平行,其余各面均为梯形的多面体是棱台C 有两个面相互平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面相互平行,侧面均为平行四边形3、下面多面体是五面体的是〔〕A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、以下说法错误的选项是〔〕A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是〔〕A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个〔〕A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

8、一个棱柱有10个顶点,全部侧棱长的和为60,那么每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、程度放置的正方体分别用“前面、后面、上面、下面、左面、右面〞表示。

图中是一个正方体的平面绽开图,假设图中的“似〞表示正方体的前面,“锦〞表示右面,“程〞表示下面。

那么“祝〞“你〞“前〞分别表示正方体的—————三、解答题:祝你前程似锦11、长方体—A 1B 1C 1D 1中,=3,=2,1=1,由A 到C 1在长方体外表上的最短间隔 为多少?12、说出以下几何体的主要构造特征 〔1〕 〔2〕 〔3〕 一、选择题1、两条相交直线的平行投影是〔 〕A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是〔 〕① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱A ②①③B ①②③C ③②④D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图侧视图 俯视图甲 乙 丙3、假如一个几何体的正视图和侧视图都是长方形,那么这个几何体可能是〔 〕A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥A A 1B 1BC C 1D 1 D4、以下说法正确的选项是〔 〕A 程度放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍旧是平行四边形D 相互垂直的两条直线的直观图仍旧相互垂直5、假设一个三角形,采纳斜二测画法作出其直观图,其直观图面积是原三角形面积的〔 〕 A 21倍 B 42倍 C 2倍 D 2倍6、如图〔1〕所示的一个几何体,,在图中是该几何体的俯视图的是〔 〕二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图及俯视图是两个全等的———————三角形。

高中数学必修2教学同步讲练第一章《圆柱、圆锥、圆台、球、简单组合体的结构特征》练习题(含答案)

高中数学必修2教学同步讲练第一章《圆柱、圆锥、圆台、球、简单组合体的结构特征》练习题(含答案)

第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4;π同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2.所以选C.π答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l -12l =25,所以l =20 cm. 故截得此圆台的圆锥的母线长为20 cm.B 级 能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为__________cm 2.解析:如图所示,过球心O 作轴截面,设截面圆的圆心为O 1,其半径为r .由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.。

高一数学必修二第一章空间几何形状练习题及答案

高一数学必修二第一章空间几何形状练习题及答案

高一数学必修二第一章空间几何形状练习题及答案练题1. 已知立方体$ABCD-A_1B_1C_1D_1$的棱长为$6\text{cm}$ ,点$E$恰好在 $BC$ 上,在 $DE$ 上取点 $F$,试求:(1) $\angle A_1FB_1$ 的大小;(2) $EF$ 的长度。

2. 已知底面为等腰直角梯形的四面体$S-ABC$,$AB=AC=\sqrt{3}\text{cm}$,$BC=2\text{cm}$,$SA\perp AB$,$SA=2\text{cm}$,$M$ 为 $BC$ 中点,过点 $M$ 作 $SA$ 的垂线$MH$,交 $BC$ 于点 $H$。

(1)求 $SA$ 与面 $ABC$ 的夹角;(2) 求 $MH$ 的长度。

3. 在正四面体$S-ABC$中,$M$ 为 $BC$ 中点,过 $S$,$M$ 的平面与直线 $AB$ 交于点 $E$,过 $S$,$M$ 的平面与直线$BC$ 交于点 $F$。

(1) 求 $EF$ 的长;(2) 设 $SE$ 交 $AF$ 于 $N$,求 $SN$ 的长。

4. 已知棱长为 $5\text{cm}$ 的正四棱锥 $S-ABCD$,平面$ABCD$ 与平面 $SAB$ 的夹角为 $60^{\circ}$。

设 $AD$ 与平面$SBC$ 相交于 $E$,$BE$ 交平面 $SAD$ 于点 $F$。

(1) 求过顶点 $S$ 的平面与平面 $ABCD$ 的交线段的长度;(2) 过顶点 $S$ 且垂直于平面 $ABCD$ 的直线交 $EF$ 于点$G$,求 $SG$ 的长度。

答案1.(1) $\angle A_1FB_1=45^{\circ}$(2) $EF=3\sqrt{2}\text{cm}$2.(1) $\cos \angle BSA=\dfrac{\sqrt{2}}{2}$, 则 $\angle BSA=45^{\circ}$。

(2) $MH=\dfrac{\sqrt{2}}{2}\text{cm}$3.(1) $EF= \dfrac{5\sqrt{3}}{3}$(2) $SN=\dfrac{5\sqrt{2}}{6}$4.(1) $SB=\dfrac{5\sqrt{3}}{2}$(2) $SG=\dfrac{5\sqrt{3}}{6}$以上答案仅供参考,具体求解过程需要参考相关知识点及公式计算。

高中数学必修2第一章课后习题解答

高中数学必修2第一章课后习题解答

新课程标准数学必修2第一章课后习题解答第一章空间几何体1.1空间几何体的结构练习(P7)1、(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;(4)由一个六棱柱挖去一个圆柱体得到的组合体2、(1)五棱柱(2)圆锥3、略习题1.1 A组(P8)1、(1)C;(2)C;(3)D;(4)C;2、(1)不是台体,因为几何体的“侧棱”不相交于一点。

(2)(3)也不是台体,因为不是由平行于棱锥和圆锥的底面的平面截得的几何体。

3、(1)由圆锥和圆台组合而成的简单组合体。

(2)由四棱柱和四棱锥组合而成的简单组合体。

4、两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球体得到的简单组合体)。

5、制作过程略。

制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。

B组1、剩下的几何体是棱柱,截去的几何体也是棱柱;他们分别是五棱柱和三棱柱。

2、左侧几何体的主要结构特征:圆柱和棱柱组成的简单组合体;中间几何体的主要结构特征:下部是一个圆柱截去一个圆柱组成的简单组合体,上部也是一个圆柱截去一个圆柱组成的简单组合体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱和一个棱柱的简单组合体。

1.2空间几何体的三视图和直观图练习(P15)1、(1)俯视图侧视图正视图(2)俯视图侧视图正视图2、(1)四棱柱,示意图为:(2)圆锥于半球组成的简单组合体,示意图为:(3)四棱柱与球组成的简单组合体,示意图为:(4)两个圆台组合而成的简单组合体,示意图为:3、(1)五棱柱,三视图为:俯视图侧视图正视图(2)四个圆柱组成的简单几何体,三视图为:俯视图侧视图正视图4、三棱柱练习(P19)1、略2、(1)√; (2)×; (3)×; (4)√;3、A4、先画出正五边形ABCDE 的直观图,再确定P 的位置。

如图:ECBNA D OP5、直观图如图:习题1.2 A 组(P20)1、(1) (2)俯视图侧视图正视图(3)俯视图侧视图正视图2、(1)三棱柱,示意图为:;(2)圆台,示意图为:(3)四棱柱 (4)四棱柱与圆柱组合而成的简单组合体3、略4、略5、略 B 组:略 1.3空间几何体的表面积和体积 练习(P27)1、233a ππm 2、1.74千克 练习(P28)1、8倍2、332a π 3cm 3、104 2cm习题1.3 A 组(P28)1、解:由题意知:五棱台的侧面是由五个等腰梯形所构成的。

《1.1 空间几何体的结构》(同步训练)高中数学必修2_人教A版_2024-2025学年

《1.1 空间几何体的结构》(同步训练)高中数学必修2_人教A版_2024-2025学年

《1.1 空间几何体的结构》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列几何体中,哪一个是多面体?A、球体B、圆柱C、正方体D、圆锥2、在正方体的一个顶点上,有一个顶点到该顶点所在面的相邻三面的交线所形成的三角形,其内角和是多少?A. 180°B. 270°C. 360°D. 540°3、在长方体的长、宽、高分别为2cm、3cm、4cm的情况下,该长方体的对角线长度是:A. 5cmB. 7cmC. 9cmD. 10cm4、一个圆锥的底面半径为3cm,高为4cm,则其体积为()。

A、12π cm³B、24π cm³C、36π cm³D、48π cm³5、已知正方体ABCD-A1B1C1D1中,点E为棱CC1的中点,点F为棱A1B1上的一点,且BF=BB1,如果AE与EF垂直,则∠EFB=()A.30°B.45°C.60°D.90°6、已知正方体ABCD-A1B1C1D1的棱长为a,则体对角线A1D的长度为:A、√3aB、2√3aC、√6aD、√2a7、一个直三棱柱的底面是一个直角三角形,其中两个直角边的长度分别为3和4,斜边为5。

该直三棱柱的体积是多少?A. 6B. 12C. 18D. 248、正方体的所有棱长均为2厘米,该正方体的对角线长为()A、2√3 厘米B、4√2 厘米C、4√3 厘米D、6√3 厘米二、多选题(本大题有3小题,每小题6分,共18分)1、下列关于空间几何体的说法正确的是()A. 圆柱是由两个平行的圆形底面和一个曲面侧面组成的立体图形。

B. 棱锥的所有侧棱相交于一点,这一点叫做顶点。

C. 球体可以看作是一个半圆绕着它的直径所在的直线旋转一周形成的立体图形。

D. 棱台的上下底面不一定平行。

2、在下列各对几何体中,哪些是全等的关系?A. 正方体和长方体B. 正四面体和正六面体C. 球和圆柱D. 正方体和正方体的一个面E. 正四面体和正方体的一个面3、一个圆柱的底面半径为2,高为4,则该圆柱的侧面积和体积分别为()。

高中数学必修2第一章空间几何体试题(含答案)

高中数学必修2第一章空间几何体试题(含答案)

必修2第一章一、选择题:1. 下图中的几何体是由哪个平面图形旋转得到的( )A B C D2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是( )A .圆锥B .正四棱锥C .正三棱锥D .正三棱台3.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( )A. 1:3B. 1:1C. 2:1D. 3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A.1:2:3B.1:3:5C.1:2:4D.1:3:95.棱长都是1的三棱锥的表面积为( )A. 3B. 32C. 33D. 346.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A.8:27B. 2:3C.4:9D. 2:97.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( )俯视图 主视图 侧视图A.24πcm 2,12πcm 3B.15πcm 2,12πcm 3C.24πcm 2,36πcm 3D.以上都不正确8.下列几种说法正确的个数是( )①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A .1B .2C .3D .49.正方体的内切球和外接球的半径之比为( )A .B 2C . D10.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧面,则两圆锥的高之比为( )A .3∶4B .9∶16C .27∶64D .都不对二、填空题:(每小题6分,共30分)11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。

12.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。

人教版高中数学必修二专题01空间几何体的结构A卷含解析

人教版高中数学必修二专题01空间几何体的结构A卷含解析

(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.6.观察如图的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B7.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 514.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________ cm.答案:1315.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.18.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底. 19.按下列条件分割三棱台ABC-A 1B 1C 1(不需要画图,各写出一种分割方法即可). (1)一个三棱柱和一个多面体; (2)三个三棱锥.20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少? 解析:如图,MF=OF-O'E=. 在Rt △EMF 中,∵EM=2, ∴EF=.所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

(数学必修2)第一章 空间几何体练习题

(数学必修2)第一章 空间几何体练习题

(数学必修2)第一章 空间几何体练习题一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.下图是由哪个平面图形旋转得到的( )A B C D3.利用斜二测画法叙述准确的是( ).A.正三角形的直观图是正三角形B.平行四边形的直观图是平行四边形C.矩形的直观图是矩形D.圆的直观图一定是圆4.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . 22+B . 221+C . 222+ D . 21+ 5.棱长都是1的三棱锥的表面积为( )6.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对7.正方体的内切球和外接球的半径之比为( )A B 2 C .主视图 左视图 俯视图8.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32π 9.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .16010.半径为R 的半圆卷成一个圆锥,则它的体积为( )A .324R B .38R C .324R D .38R 11.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π12.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:913.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( ) A. 23 B. 76 C. 45 D. 5614.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A. 8:27B. 2:3C. 4:9D. 2:915.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图是( )二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。

(完整word版)高中数学必修二第一章空间几何体的结构练习题

(完整word版)高中数学必修二第一章空间几何体的结构练习题

必修二第一章空间几何体的结构1.以下几何体中棱柱有()A. 5 个B. 4 个C.3 个 D . 2 个2.有两个面平行的多面体不可以能是()A.棱柱B.棱锥C.棱台 D .以上都错3.一棱柱有10 个极点,且所有侧棱长之和为100,则其侧棱长为()A. 10B. 20C.5 D . 154.以下命题中正确的选项是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其他各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点5.面数最少的棱柱为________棱柱,共由 ________个面围成.剖析:棱柱有相互平行的两个底面,其侧面最少有 3 个,故面数最少的棱柱为三棱柱,共有五个面围成.6.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是 ______________.7.如图,这是一个正方体的表面张开图,把它再折成正方体.有以下命题:①点 H 与点 C 重合;②点 D 与点 M、点 R 重合;③点 B 与点 Q 重合;④点 A 与点 S重合.其中 ,正确命题的序号是________.(注:把你以为正确的命题的序号都填上)8.在一个长方体的容器中,装有少量水.现将容器绕着其底部的一条棱倾斜,在倾斜的过程中 ,(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变成棱台或棱锥,对吗?(3)若是倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个极点,上面的第(1)题和第 (2)题对不对?9.关于周围体ABCD,以下命题正确的选项是________(写出所有正确命题的编号).①相对棱AB与CD 所在的直线是异面直线;②由极点A作周围体的高,其垂足是△BCD三条高线的交点;③若分别作△ ABC 和△ ABD 的边 AB 上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段订交于一点.10.右图是由哪个平面图形旋转获取的()11.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所获取的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥12.给出以下命题:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的极点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是()A.①②C.①③B.②③D .②④13.给出以下列图的几何体,关于其结构特色,以下说法不.正确的选项是() A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12 条棱、 6 个极点C.该几何体有8 个面,并且各面均为三角形D .该几何体有9 个面,其中一个面是四边形,其他均为三角形14.给出以下7 种几何体:(1)柱体有 ________;(2)锥体有 ________;(3)球有 ________;(4)棱柱有 ________;(5)圆柱有 ________;(6)棱锥有 ________;(7)圆锥有 ________.15.已知ABCD为等腰梯形,两底边为AB,CD,且AB>CD,绕AB所在直线旋转一周,所形成的几何体是由 ________和 ________组成的组合体.斜二测画法1.关于斜二测画法,以下说法不.正确的选项是 ()A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于1y′轴,长度变成原来的2C.在画与直角坐标系xOy 对应的坐标系 x′ O′ y′时,∠ x′O′ y′必定是45°D.在画直观图时,由于选轴的不相同,所得的直观图可能不相同2.以下列图为某一平面图形的直观图,则此平面图形可能是以下列图中的()3.建立坐标系,获取两个正三角形ABC 的直观图不是全等三角形的一组是()4.以下列图的正方形O′A′ B′C′,其边长为 1 cm,它是一个水平放置的平面图形的直观图,则原图形的周长是 ()A. 6 cmB. 8 cmC.(2+ 3 2) cmD . (2+ 2 3) cm5.如图,△A′B′C′是水平放置的△ABC的斜二测直观图,已知A′C′=6,B′C′=4,则AB边的实质长度是 ________.6.以下列图,一个水平放置的正方形ABCO,在直角坐标系xOy中,点 B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,极点B′到 x′轴的距离为________.7.以下列图,△ABC 中, AC=10 cm,边 AC 上的高 BD =10 cm,求其水平放置的直观图的面积.8.用斜二测画法画出底面边长为 4 cm,高为 3 cm 的正四棱锥 (底面是正方形,并且极点在底面的正射影是底面中心的棱锥 )的直观图.三视图1.以下列图物体的三视图是()2.如图,几何体的正视图和侧视图都正确的选项是()3.(2011·新课标全国高考)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()4.以下列图,在这 4 个几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④ D .②④5.以下列图中三视图所表示几何体的名称为________.第 5 题图第4题图6.以下列图,点O 为正方体 ABCD-A ′ B′ C′D′的中心,点 E 为面 B′ BCC′的中心,点 F 为 B′ C′的中点,则空间四边形D′ OEF 在该正方体的面上的正投影可能是________(填出所有可能的序号).7.说出图中的三视图表示的几何体,并画出它的表示图.8.以下列图的几何体是由一个长方体木块锯成的.(1)判断该几何体可否为棱柱;(2)画出它的三视图.9.(2011 ·广东高考)如图,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为()A. 183B. 123C.93 D . 6310. (2011·辽宁高考)一个正三棱柱的侧棱长和底面边长相等,体积为 2 3,它的三视图中的俯视图如图所示.左视图是一个矩形.则这个矩形的面积是________.A. 4B. 2 3C.2 D. 3立体几何三视图体积表面积一、选择题1.一个棱锥的三视图如图,则该棱锥的表面积为()222(A )48122( B)48242(C)72122( D )72242正视侧视2.某几何体的三视图以下列图,则该几何体的体积为()俯视(A )2 2( B)4( C)8( D )4 333.一个几何体的三视图如图,则其体积为()A.20B. 6C.16D . 5 334.一个四棱锥的三视图以下列图,其侧视图是等边三角形.该四棱锥的体积等于()A. 3B. 2 3C.3 3 D . 6 3正视图侧视图俯视图5.某周围体的三视图以下列图,正视图、侧视图、俯视图都是边长为 1 的正方形,则此周围体的外接球的体积为()4B.3D.3A.C.326.某三棱锥的三视图以下列图,该三棱锥的体积是为()A.80B.408040 C. D .337.某几何体的三视图以以下列图所示,则该几何体的体积为(A ) 200+9 π(B) 200+18 π(C) 140+9 π(D ) 140+18 π8.若某几何体的三视图以下列图,则此几何体的直观图是()A B112正视图11俯视图2侧(左)视图C D9.某几何体的三视图以下列图,则该几何体的体积为A.2B. 22C. D .23310.以下列图是一个几何体的三视图,则这个几何体外接球的表面积为()A. 8B. 16C. 32 D . 64二、填空题11.一个四棱柱的三视图以下列图,则其体积为_______.12.若某几何体的三视图如右图所示,则此几何体的体积是 ______.13.若某多面体的三视图如右图所示,则此多面体的体积为,外接球的表面积为.14.一个正三棱柱的三视图以下列图(单位: cm),求这个正三棱柱的表面积与体积.15..如图,已知六棱锥P-ABC 其中底面 ABCDEF 是正六边形,点P 在底面的投影是正六边形的中心,底面边长为 2 cm,侧棱长为 3 cm,求六棱锥P-ABCDEF 的表面积和体积.球1.长方体的一个极点上三条棱的长分别是3、 4、 5,且它的八个极点都在同一个球面上,则这个球的表面积为 ()A. 22πB. 25 2πC. 50 π D . 200 π2.两个球的体积之比为8∶ 27,那么这两个球的表面积之比为()A. 2∶ 3B. 4∶ 9C. 2∶ 3D. 8∶ 273. (2011 ·湖南高考)设以下列图是某几何体的三视图,则该几何体的体积为()A. 9π+42B. 36 π+1899C. π+12D. π+18224.若是一个球的外切圆锥的高是这个球的半径的 3 倍,则圆锥的侧面面积和球的表面积之比为()A. 4∶ 3B. 3∶ 1C.3∶ 2 D . 9∶45.已知OA为球O的半径,过OA的中点M,且垂直于OA的平面截球面获取圆M.若圆M的面积为3π,则球O 的表面积等于________.R 的圆柱形量杯中装有适合的水.放入一个半径为r 的实心铁球,球被水淹没,6.以以下列图,一个底面半径为R高度恰好高升r,则r =________.7.某几何体的三视图以下列图(单位: m).(1)求该几何体的表面积;(2)求该几何体的体积.8.圆锥的底面半径为 3,母线长为 5,求它的内切球的表面积与体积.9. (2011 ·重庆高考)高为 2的四棱锥 S-ABCD 的底面是边长为 1 的正方形,点S , A , B , C , D 均在半径为 1 的同一球面上,则底面 ABCD 的中心与极点 S 之间的距离为 ()A.10 2+ 3 2 B.23C.2D. 210.如图,半径为 2 的球 O 中有一内接圆柱,当圆柱的轴截面为正方形时球的表面积与圆柱的侧面积之差为 ________.。

最新人教版高中数学必修2第一章《空间几何体的结构》典型例题2

最新人教版高中数学必修2第一章《空间几何体的结构》典型例题2

拓展延伸应用点一概念的理解【例1】(1)给出下列说法:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点.其中,错误的个数是().A.0 B.1 C.2 D.3(2)下列说法中错误的是().A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的顶点与底面圆周上任一点的连线都是母线C.圆台中所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形解析:从棱柱、棱锥、棱台及圆柱、圆锥、圆台的定义及结构特征逐个判断.(1)由棱柱、棱锥、棱台的定义及特征可知这4个命题都正确;(2)中A,B,D显然是正确的,C选项中因为圆台是几何体,包括其内部,所以截面应为圆面.答案:(1)A(2)C如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体是().A.棱柱B.棱台C.棱柱与棱锥组合体D.不能确定应用点二多面体的计算【例2】已知上下底面均为正方形,各侧面为全等的等腰梯形的四棱台AC1的高是17 cm,两底面的边长分别是4 cm和16 cm,求这个棱台的侧棱的长和侧面等腰梯形的高.思路分析:求棱台的侧棱的长和侧面等腰梯形的高的关键是找到相关的直角梯形,然后构造直角三角形,使问题得到解决.解:如图所示,设棱台的两底面的中心分别是O 1和O ,B 1C 1和BC 的中点分别是E 1和E ,连接O 1O 、E 1E 、O 1B 1、OB 、O 1E 1、OE ,则OBB 1O 1和OEE 1O 1都是直角梯形.∵A 1B 1=4 cm ,AB =16 cm ,∴O 1E 1=2 cm ,OE =8 cm ,O 1B 1=22cm ,OB =82cm. ∴B 1B 2=O 1O 2+(OB -O 1B 1)2=361(cm 2), E 1E 2=O 1O 2+(OE -O 1E 1)2=325(cm 2). ∴B 1B =19 cm ,E 1E =513cm.答:这个棱台的侧棱长为19 cm ,侧面等腰梯形的高为513cm.底面是正方形,侧棱都相等的棱锥的高为3,侧棱长为7,求侧面等腰三角形底边上的高.应用点三 旋转体的计算【例3】圆台侧面的母线长为2a ,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的半径与两底面面积之和.思路分析:将圆台还原为圆锥,研究圆锥的轴截面,结合题中所给条件可求得上、下底面圆的半径与母线的关系,从而求得上、下底面圆的半径及面积.解:设圆台上底面半径为r ,则下底面半径为2r , 如图,∠ASO =30°,在Rt △SO ′A ′中,rSA ′=sin 30°,∴SA ′=2r . 在Rt △SOA 中,2rSA =sin 30°,∴SA =4r .又SA -SA ′=AA ′,即4r -2r =2a ,∴r =a . ∴S =S 1+S 2=πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.应用点四几何体的截面【例4】在半径为25 cm的球内有一个截面,它的面积是49πcm2,求球心到这个截面的距离.思路分析:球的截面是一个圆面,由已知截面面积可求得截面圆的半径,然后通过球心到截面的距离、截面圆的半径和球的半径之间的勾股关系可求得球心到截面的距离.解:设球半径为R,截面圆的半径为r,球心到截面的距离为d,如图所示,∵S=πr2=49π(cm2),∴r=7(cm),∴d=R2-r2=252-72=24(cm),即球心到这个截面的距离为24 cm.用一个平面截半径为5 cm的球,球心到截面距离为4 cm,求截面圆的面积.应用点五几何体的展开图【例5】下图是三个几何体的表面展开图,请问各是什么几何体?思路分析:想象折起后形状,显然各几何体都是多面体;(1)中的折痕是平行线,是棱柱;(2)中折痕交于一点,是棱锥;(3)中侧面是梯形,是棱台.根据各种几何体的结构特征进行判断.解:(1)五棱柱(2)五棱锥(3)三棱台如图所示,小明设计了某个产品的包装盒,他少设计了其中的一部分,请你把它补上,使其成为两边均有盖的正方体盒子.你有几种弥补的办法?任意画出一种成功的设计图.应用点六组合体【例6】如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?思路分析:解答本题应先看图形结构,再与柱、锥、台、球的基本结构相联系,把组合体分解成柱、锥、台、球.解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.如图所示组合体是由哪些几何体组成的?迁移1.A 点拨:将水槽倾斜后,水形成的几何体是以现在位置中前侧面为底面的三棱柱或四棱柱.迁移2.解:如图,棱锥S -ABCD 中高OS =3,侧棱SA =SB =SC =SD =7,解Rt △SOA ,则OA =2,则AC =4,∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为所求,由SO ⊥OE . 解Rt △SOE ,∵OE =12BC =2,SO =3,∴SE = 5.∴棱锥侧面三角形底边上的高为 5.迁移3.解:圆台的轴截面如图,设圆台上、下底面半径分别为x (cm),3x (cm),延长AA 1交OO 1的延长线于S .在Rt △SOA 中,∠ASO =45°, 则∠SAO =45°, ∴SO =AO =3x ,∴OO 1=2x .又S 轴截面=12(6x +2x )·2x =392,∴x =7.∴圆台的高OO 1=14 cm ,母线长l =2OO 1=142cm ,两底面半径分别为7 cm,21 cm. 迁移4.解:设AK 为截面圆的半径, 则OK ⊥AK .如图所示.在Rt △OAK 中,OA =5 cm ,OK =4 cm , ∴AK =OA 2-OK 2 =52-42=3(cm),∴截面圆的面积为π·AK 2=9π(cm 2).迁移5.解:共有4种,设计如图(画出其中一种即可).迁移6.解:(1)此几何体由一个三棱柱和一个圆柱组合而成. (2)此几何体由一个圆柱、一个圆锥和一个四棱柱组合而成. (3)此几何体由一个三棱锥和一个球组合而成.。

高中数学必修二第一章 空间几何体课后作业(含答案)

高中数学必修二第一章  空间几何体课后作业(含答案)

第一章 空间几何体 第1课时 多面体的结构特征一、基础过关1.下列说法中正确的是( )A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体的各条棱长都相等D .棱柱的各条棱长都相等 2.棱台不具备的特点是( )A .两底面相似B .侧面都是梯形C .侧棱都相等D .侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A .棱柱B .棱台C .棱柱与棱锥的组合体D .不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A .1∶2B .1∶4C .2∶1D .4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD —A ′B ′C ′D ′,当用平面BCFE 把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8.如图所示的是一个三棱台ABC —A 1B 1C 1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形; ②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形; (2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?第二课时 旋转体与简单组合体的结构特征一、基础过关 1.下列说法正确的是( )A .直角三角形绕一边旋转得到的旋转体是圆锥B .夹在圆柱的两个截面间的几何体还是一个旋转体C .圆锥截去一个小圆锥后剩余部分是圆台D .通过圆台侧面上一点,有无数条母线 2.下列说法正确的是( )A .直线绕定直线旋转形成柱面B .半圆绕定直线旋转形成球体C .有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D .圆柱的任意两条母线所在的直线是相互平行的3.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5) 4.观察如图所示的四个几何体,其中判断正确的是()A .a 是棱台B .b 是圆台C .c 是棱锥D .d 不是棱柱5.将等边三角形绕它的一条中线旋转180°,形成的几何体是________. 6.请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等 的矩形;(2)如右图,一个圆环面绕着过圆心的直线l 旋转180°.7. 如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.二、能力提升8.下列说法正确的个数是( )①长方形绕一条直线旋转一周所形成的几何体是圆柱;②过圆锥侧面上一点有无数条母线;③圆锥的母线互相平行. A .0B .1C .2D .39.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()10.已知球O 是棱长为1的正方体ABCD —A 1B 1C 1D 1的内切球,则平面ACD 1截球O 所得的截面面积为________.11.以直角三角形的一条边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体有哪些?三、探究与拓展12.如图所示,圆台母线AB 长为20 cm ,上、下底面半径分别为5 cm 和10 cm ,从母线AB 的中点M 拉一条绳子绕圆台侧面转到B 点,求这条绳长的最小值.§1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图一、基础过关 1.下列命题正确的是( )A .矩形的平行投影一定是矩形B .梯形的平行投影一定是梯形C .两条相交直线的投影可能平行D .一条线段中点的平行投影仍是这条线段投影的中点 2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A .①②B .①③C .①④D .②④4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图()5.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是______和________.7.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).8.画出如图所示的四棱锥和三棱柱的三视图.二、能力提升9.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱11.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是________.12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.三、探究与拓展13.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?1.2.3空间几何体的直观图一、基础过关1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有()A.①②B.①④C.③④D.①③④2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于()A.45°B.135°C.90°D.45°或135°3.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.7.如图是一梯形OABC的直观图,其直观图面积为S.求梯形OABC的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( )A .8 cmB .6 cmC .2(1+3) cmD .2(1+2) cm10.如图所示的是水平放置的△ABC 在直角坐标系的直观图,其中D ′是A ′C ′的中点,且∠A ′C ′B ′≠30°,则原图形中与线段BD 的长相等的线段有________条. 11.如图所示,为一个水平放置的正方形ABCO ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.12.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm ,CD =2 cm ,∠DAB =30°,AD =3 cm ,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A ′B ′C ′D ′,如图,其中的对角线A ′C ′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.§1.3 空间几何体的表面积与体积第一课时 柱体、锥体、台体的表面积一、基础过关1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为 ( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.若一个圆台的正视图如图所示,则其侧面积等于()A .6B .6πC .35πD .65π 4.三视图如图所示的几何体的全面积是()A .7+ 2B .112+2C .7+ 3D .325.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________. 6.一简单组合体的三视图及尺寸如下图所示(单位:cm),则该组合体的表面积为________cm 2.7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.长方体ABCD —A 1B 1C 1D 1中,宽、长、高分别为3、4、5,现有一个小虫从A 出发沿长方体表面爬行到C 1来获取食物,求其路程的最小值.二、能力提升9.已知由半圆的四分之三截成的扇形的面积为B ,由这个扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8B .3∶8C .8∶3D .13∶8 10.一个几何体的三视图如图,该几何体的表面积为()A .372B .360C .292D .28011.一个几何体的三视图如图所示,则该几何体的表面积为________.12.有一根长为3π cm ,底面半径为1 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.三、探究与拓展13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).第二课时 柱体、锥体、台体、球的体积与球的表面积一、基础过关1.一个三棱锥的高和底面边长都缩小为原来的12时,它的体积是原来的( )A .12B .14C .18D .242.两个球的半径之比为1∶3,那么两个球的表面积之比为 ( )A .1∶9B .1∶27C .1∶3D .1∶1 3.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 24.若球的体积与表面积相等,则球的半径是( )A .1B .2C .3D .45.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________ cm. 6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为______ cm 3.7.(1)表面积相等的正方体和球中,体积较大的几何体是______;(2)体积相等的正方体和球中,表面积较小的几何体是______.8.在球面上有四个点P 、A 、B 、C ,如果P A 、PB 、PC 两两垂直且P A =PB =PC =a ,求这个球的体积.二、能力提升9.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确10.圆柱的底面半径为1,母线长为2,则它的体积和表面积分别为( )A .2π,6πB .3π,5πC .4π,6πD .2π,4π11.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m 3.12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.三、探究与拓展13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是 ( ) A .棱柱B .棱台C .棱柱与棱锥组合体D .无法确定1题图 2题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能...为:①长方形;②正方形;③圆.其中正确的是()A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中()A.最长的是AB,最短的是AC B.最长的是AC,最短的是ABC.最长的是AB,最短的是AD D.最长的是AD,最短的是AC4题图5题图5.具有如图所示直观图的平面图形ABCD是()A.等腰梯形B.直角梯形C.任意四边形 D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是()A.1 B.2 C.3 D.47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π9.如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.1210.将正三棱柱截去三个角(如图1所示,A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为选项图中的()11.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A.120°B.150°C.180°D.240°12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26B.36C.23D.22二、填空题13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________ cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的14,则油桶直立时,油的高度与桶的高度的比值是________.三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积.19.如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD 绕AD旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD的长;(2)容器的容积.第一章空间几何体参考答案第1课时多面体的结构特征参考答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例第二课时旋转体与简单组合体的结构特征参考答案1.C 2.D 3.D 4.C 5.圆锥6.解(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.7.解如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.8.A9.B10.π611.解 假设直角三角形ABC 中,∠C =90°.以AC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(1)所示.当以BC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(2)所示. 当以AB 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(3)所示.12.解 作出圆台的侧面展开图,如图所示,由其轴截面中Rt △OP A 与Rt △OQB 相似,得OA OA +AB =510,可Q 的周长相等,求得OA =20 cm.设∠BOB ′=α,由于扇形弧BB ′的长与底面圆而底面圆Q 的周长为2π×10 cm.扇形OBB ′的半径为OA +AB =20+20=40 cm ,扇度20π为所在圆形OBB ′所在圆的周长为2π×40=80π cm.所以扇形弧BB ′的长周长的14.所以OB ⊥OB ′.所以在Rt △B ′OM 中,B ′M 2=402+302,所以B ′M =50 cm ,即所求绳长的最小值为50 cm.1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图参考答案1.D 2.C 3.D 4.C5.(1)D (2)A (3)E (4)C (5)B 6.2 47.解 图(a)是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.8.解 三视图如图所示:9.A 10.D 11.612.解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解 由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.1.2.3 空间几何体的直观图参考答案1.B 2.D 3.C 4.C 5.①② 6.2.57.解 设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .过C ′作C ′D ′⊥O ′A ′于D ′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ; (3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.13.解 四边形ABCD 的真实图形如图所示,∵A ′C ′在水平位置,A ′B ′C ′D ′为正方形, ∴∠D ′A ′C ′=∠A ′C ′B ′ =45°,∴在原四边形ABCD 中, DA ⊥AC ,AC ⊥BC , ∵DA =2D ′A ′=2, AC =A ′C ′=2,∴S 四边形ABCD =AC ·AD =2 2.第一课时 柱体、锥体、台体的表面积参考答案1.B 2.A 3.C 4.A 5.60° 6.12 800 7.28.解 把长方体含AC 1的面作展开图,有三种情形如图所示:利用勾股定理可得AC 1的长分别为90、74、80.由此可见图②是最短路线,其路程的最小值为74. 9.A 10.B 11.3812.解 把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图所示),由题意知BC =3π cm ,AB =4π cm ,点A 与点C 分别是铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度. AC =AB 2+BC 2=5π cm , 故铁丝的最短长度为5π cm.13.解 易知由下向上三个正方体的棱长依次为2,2,1.考虑该几何体在水平面的投影,可知其水平面的面积之和为下底面积最大正方体的底面面积的二倍. ∴S 表=2S 下+S 侧=2×22+4×[22+(2)2+12]=36. ∴该几何体的表面积为36.第二课时 柱体、锥体、台体、球的体积与球的表面积参考答案1.C 2.A 3.B 4.C 5.3 6.6 7.(1)球 (2)球8.解 ∵P A 、PB 、PC 两两垂直,P A =PB =PC =a .∴以P A 、PB 、PC 为相邻三条棱可以构造正方体. 又∵P 、A 、B 、C 四点是球面上四点,∴球是正方体的外接球,正方体的对角线是球的直径.∴2R =3a ,R =32a ,∴V =43πR 3=43π(32a )3=32πa 3.9.A 10.A 11.9π+1812.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .13.解 设正方体的棱长为a .如图所示.(1)中正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面, 所以有2r 1=a ,r 1=a 2,所以S 1=4πr21=πa 2.(2)中球与正方体的各棱的切点在每条棱的中点, 过球心作正方体的对角面得截面,2r 2=2a ,r 2=22a ,所以S 2=4πr 22=2πa 2.(3)中正方体的各个顶点在球面上, 过球心作正方体的对角面得截面,所以有2r 3=3a ,r 3=32a ,所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.章末检测答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π16.14-12π17.解 由三视图可知:该几何体的下半部分是棱长为2 m 的正方体,上半部分是半径为1 m 的半球.(1)几何体的表面积为S =12×4π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为V =23+12×43×π×13=8+2π3(m 3).18.解 (1)直观图如图.(2)这个几何体是一个四棱锥. 它的底面边长为2,高为3,所以体积V =13×22×3=433.19.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2 =(42+60)π.V =V 圆台-V 圆锥=13π(r 21+r 1r 2+r 22)h -13πr 21h ′ =13π(25+10+4)×4-13π×4×2 =1483π. 20.解 (1)设圆台上、下底面半径分别为r 、R ,AD =x ,则OD =72-x ,由题意得⎩⎪⎨⎪⎧2πR =60·π180×7272-x =3R,∴⎩⎪⎨⎪⎧R =12x =36.即AD 应取36 cm.(2)∵2πr =π3·OD =π3·36,∴r =6 cm ,圆台的高h =x 2-(R -r )2=362-(12-6)2=635. ∴V =13πh (R 2+Rr +r 2)=13π·635·(122+12×6+62)=50435π(cm 3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修二第一章空间几何体的结构1.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个2.有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台D.以上都错3.一棱柱有10个顶点,且所有侧棱长之和为100,则其侧棱长为( )A.10 B.20C.5 D.154.下列命题中正确的是( )A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点5.面数最少的棱柱为________棱柱,共由________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.6.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是______________.7.如图,这是一个正方体的表面展开图,把它再折成正方体.有下列命题:①点H与点C重合;②点D与点M、点R重合;③点B与点Q重合;④点A与点S重合.其中,正确命题的序号是________.(注:把你认为正确的命题的序号都填上)8.在一个长方体的容器中,装有少量水.现将容器绕着其底部的一条棱倾斜,在倾斜的过程中,(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?9.对于四面体ABCD,下列命题正确的是________(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.10.右图是由哪个平面图形旋转得到的( )11.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( ) A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥12.给出下列命题:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是( )A.①②B.②③C.①③D.②④13.给出如图所示的几何体,关于其结构特征,下列说法不.正确的是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形14.给出下列7种几何体:(1)柱体有________; (2)锥体有________; (3)球有________; (4)棱柱有________; (5)圆柱有________; (6)棱锥有________; (7)圆锥有________.15.已知ABCD 为等腰梯形,两底边为AB ,CD ,且AB >CD ,绕AB 所在直线旋转一周,所形成的几何体是由________和________构成的组合体.斜二测画法1.关于斜二测画法,下列说法不.正确的是( ) A .原图形中平行于x 轴的线段,其对应线段平行于x ′轴,长度不变B .原图形中平行于y 轴的线段,其对应线段平行于y ′轴,长度变为原来的12C .在画与直角坐标系xOy 对应的坐标系x ′O ′y ′时,∠x ′O ′y ′必须是45°D .在画直观图时,由于选轴的不同,所得的直观图可能不同2.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的( )3.建立坐标系,得到两个正三角形ABC 的直观图不是全等三角形的一组是( )4.如图所示的正方形O ′A ′B ′C ′,其边长为1 cm ,它是一个水平放置的平面图形的直观图,则原图形的周长是( ) A .6 cm B .8 cm C .(2+32) cm D .(2+23) cm5.如图,△A ′B ′C ′是水平放置的△ABC 的斜二测直观图,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.6.如图所示,一个水平放置的正方形ABCO,在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.7.如图所示,△ABC中,AC=10 cm,边AC上的高BD=10 cm,求其水平放置的直观图的面积.8.用斜二测画法画出底面边长为4 cm,高为3 cm的正四棱锥(底面是正方形,并且顶点在底面的正射影是底面中心的棱锥)的直观图.三视图1.如图所示物体的三视图是( )2.如图,几何体的正视图和侧视图都正确的是( )3.(2011·新课标全国高考)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )4.如图所示,在这4个几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④5.下图中三视图所表示几何体的名称为________.第5题图第4题图6.如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).7.说出图中的三视图表示的几何体,并画出它的示意图.8.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.9.(2011·广东高考)如图,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为( )A.18 3 B.12 3C.9 3 D.6 310.(2011·辽宁高考)一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图所示.左视图是一个矩形.则这个矩形的面积是________. A .4 B .2 3 C .2D. 3立体几何三视图体积表面积一、选择题1.一个棱锥的三视图如图,则该棱锥的表面积为( )(A )48122+ (B )48242+ (C )72122+ (D )72242+2.某几何体的三视图如图所示,则该几何体的体积为( )(A )22 (B )43 (C )83(D )4 3.一个几何体的三视图如图,则其体积为( )A .203 B .6 C .163D .5 4.一个四棱锥的三视图如图所示,其侧视图是等边三角形.该四棱锥的体积等于 ( ) A . 3 B .2 3 C .3 3 D .6 35.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的侧视正视俯视222正视图侧视图俯视图体积为 ( )A .B .C .D . 6.某三棱锥的三视图如图所示,该三棱锥的体积是为( )A .B .C .D .7.某几何体的三视图如下图所示, 则该几何体的体积为(A )200+9π (B )200+18π (C )140+9π (D )140+18π8.若某几何体的三视图如图所示,则此几何体的直观图是( )9.某几何体的三视图如图所示,则该几何体的体积为A .π2B .2π2C .3πD .23π10.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π34π23πππ38040803403ABCD侧(左)视图俯视图正视图111122二、填空题11.一个四棱柱的三视图如图所示,则其体积为_______.12.若某几何体的三视图如右图所示,则此几何体的体积是______.13.若某多面体的三视图如右图所示,则此多面体的体积为,外接球的表面积为.14.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.15..如图,已知六棱锥P-ABC其中底面ABCDEF是正六边形,点P在底面的投影是正六边形的中心,底面边长为2 cm,侧棱长为3 cm,求六棱锥P-ABCDEF的表面积和体积.球1.长方体的一个顶点上三条棱的长分别是3、4、5,且它的八个顶点都在同一个球面上,则这个球的表面积为( )A.22π B .252π C .50πD .200π2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3B .4∶9 C.2∶ 3D.8∶273.(2011·湖南高考)设下图是某几何体的三视图,则该几何体的体积为( ) A .9π+42B .36π+18 C.92π+12D.92π+184.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面面积和球的表面积之比为( ) A .4∶3 B .3∶1 C .3∶2D .9∶45.已知OA 为球O 的半径,过OA 的中点M ,且垂直于OA 的平面截球面得到圆M .若圆M 的面积为3π,则球O 的表面积等于________.6.如下图,一个底面半径为R 的圆柱形量杯中装有适量的水.放入一个半径为r 的实心铁球,球被水淹没,高度恰好升高r ,则R r=________.7.某几何体的三视图如图所示(单位:m). (1)求该几何体的表面积; (2)求该几何体的体积.8.圆锥的底面半径为3,母线长为5,求它的内切球的表面积与体积.9.(2011·重庆高考)高为2的四棱锥S-ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A.102B.2+32C.32D. 210.如图,半径为2的球O 中有一内接圆柱,当圆柱的轴截面为正方形时球的表面积与圆柱的侧面积之差为________.。

相关文档
最新文档