高等数学二答案

合集下载

高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。

解:选A 。

23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。

2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。

x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。

解:选D 。

()⎰⎰+-=202220412rdr r r d I πθ 。

4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。

高等数学二(含答案)

高等数学二(含答案)

高等数学(二)一、选择题1函数1ln xy x-=的定义域是 ( D ) ](0,1) B (0,1)(1,4)C (0,4) D (0,1)(1,4A ⋃⋃2 设2,0,(x)sin ,0a bx x f bx x x ⎧+≤⎪=⎨>⎪⎩ 在x=0处连续,则常数a ,b 应满足的关系是 ( C )A a<bB a>bC a=bD a ≠b3 设(sin )cos 21f x x =+ 则(sin )(cos )f x f x += ( D ) A 1 B -1 C -2 D 24 若(x)xln(2x)f = 在0x 处可导,且'00()2,()f x f x ==则 ( B )221 B C D e 2e A e5 设(x)f 的一个原函数为xlnx ,则(x)dx xf =⎰ ( B )22221111x (lnx)C B x (lnx)C24421111C x (lnx)CD x (lnx)C4224A ++++-+-+6 设'(x)(x 1)(2x 1),x (,)f =-+∈-∞+∞ ,则在(12,1)内,f (x )单调( B ) A 增加,曲线y=f (x )为凹的 B 减少,曲线y=f (x )为凹的 C 减少,曲线y=f (x )为凸的 D 增加,曲线y=f (x )为凸的 7 设(0,0)z(x y)e ,xy z y ∂=+=∂则( C ) A -1 B 1 C 0 D 2 8 设2239k x dx =⎰ ,则k= ( 0 )9 011lim sin sin x x x x x →⎛⎫+= ⎪⎝⎭( B ) A 0 B 1 C 2 D +∞ 10 {A ,B ,C 三个事件中至少有一个发生}这一事件可以用事件的关系表示为( A )A A ⋃B ⋃C B A ⋂B ⋃C C A ⋃B ⋂CD A ⋂B ⋂C 二 填空题11 设21(x)x f x=+ 则"(1)f =____4_____12 与曲线3235y x x =+- 相切且与直线6x+2y-1=0平行的直线方程__y=-3x-6__ 13()sin x x dx +=⎰21cos 2x x C -+ 14 设ln ,z y x dz ==则 _y/x*dx+lnxdy_________ 15 0sin 2lim3x xx→= __2/3_______16函数z = 的定义域为__{(x,y)|x 2+y 2≤1}______ 17 设函数y=xcosx ,则y ’=_cosx-xsinx____18 设函数332,0(x),0x x f x x +≤⎧=⎨>⎩ 则f (0)=____2__________19 曲线32113y x x =-+ 的拐点是__(1,1/3)_________20 若2n x y x e =+ 则(n)y = ___22n n x n A e + _____ 三、计算题 21 求极限02sin 2lim sin 3x x xx x→+-解:原式=00224lim lim 232x x x x xx x x→→+==---22计算lim x x →+∞22 lim limlimx x x x →+∞====解:原式 1=23 计算sin x xdx ⎰cos cos cos cosx sinx xd x x x xdx x =-=-+=-+⎰⎰解:原式24 计算4211xdx xπ++⎰442200424021=dx dx 1+x 1+x 1 =arctan ln(1x )21 =arctan ln(1)4216x x ππππππ+++++⎰⎰解:原式25 设z (x ,y )是由方程2224x y z z ++= 所确定的隐函数,求dz222(x,y,z)x 42,2,242242224222F y z z F F Fx y z x y z F z x x x F x z z z F z x y y F y z z z z z x y dz dx dy dx dyx y z z=++-∂∂∂===-∂∂∂∂∂∂=-=-=∂∂--∂∂∂∂=-=-=∂∂--∂∂∂∴=+=+∂∂--解:设则有:26 设sin x y e x =,证明"'220y y y -+='""'sin cos sin cos cos sin 2cos 222cos 2(sin cos )2sin =0x x x x x x x xxxxy e x e xy e x e x e x e x e x y y y e x e x e x e x =+=++-=∴-+=-++解:27 (1)求曲线x y e = 及直线x=1,x=0,y=0所围成的图形D 的面积S (2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V110011222001e e 1e =ee 222xx x xx x dx ee y e dx ππππ===-==-⎰⎰解:由题知曲线直线的交点:(1,) 则(1) (2))和(28 讨论函数21x y x=+ 的单调区间和凹凸区间,并求出极值和拐点的坐标。

高等数学2-习题集(含答案)

高等数学2-习题集(含答案)

《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。

一、计算题11. 计算 行列式6142302151032121----=D 的值。

2. 计算行列式5241421318320521------=D 的值。

3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。

4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。

5.计算行列式 0111101111011110=D 的值。

6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。

9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。

11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。

12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。

14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。

15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。

16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。

17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。

18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。

高等数学基础教材答案第二版

高等数学基础教材答案第二版

高等数学基础教材答案第二版《高等数学基础教材答案第二版》第一章导数与微分1.1 导数的定义与计算方法导数的定义:对于函数f(x),在点x处的导数表示为f'(x),可以用以下公式计算:f'(x) = lim(h→0) [(f(x+h) - f(x))/h]1.2 导数的几何意义与物理应用通过导数的计算,我们可以得到函数在某一点处的切线斜率,进而了解函数的增减性和凸凹性。

在物理学中,导数也可以表示速度、加速度等物理量。

第二章不定积分与定积分2.1 不定积分不定积分,又称原函数或反导数,可以通过求导数的逆运算得到。

不定积分的符号表示为∫f(x)dx。

2.2 定积分定积分是用来计算曲线下的面积或求解物理问题的有效工具。

定积分的符号表示为∫[a, b] f(x)dx,表示函数f(x)在区间[a, b]上的面积。

第三章一元函数的应用3.1 曲线的切线与法线曲线的切线可以通过求导数得到切线的斜率,进而确定切线方程。

法线垂直于切线,并且切线和法线的斜率乘积为-1。

3.2 最值与最值问题通过求导数可以找到函数的极值点,进而确定函数的最大值和最小值。

在实际问题中,最值问题经常出现,如求解最优化问题等。

第四章多元函数与偏导数4.1 多元函数的概念多元函数是指依赖于多个变量的函数,如f(x, y)。

多元函数的图像可以用三维坐标系表示。

4.2 偏导数的定义与计算偏导数表示多元函数对某个变量的导数,其他变量视为常数。

偏导数的符号表示为∂f/∂x。

第五章重积分与曲线积分5.1 二重积分二重积分是对平面区域上的函数进行求和。

可以通过迭代积分或转换为极坐标系下的积分进行计算。

5.2 曲线积分曲线积分是沿曲线对函数进行积分的操作。

根据曲线的参数方程或者标量函数方程进行计算。

第六章数项级数6.1 数列与数列的极限数列是指一系列按照一定顺序排列的数,可以通过递推公式给出。

数列的极限是指当n趋向于无穷大时,数列的变化趋势。

2021年成人高考(专科起点升本科) 高等数学(二)试题及参考答案

2021年成人高考(专科起点升本科) 高等数学(二)试题及参考答案

2021年成人高等学校专升本招生全国统一考试高等数学(二)一㊁选择题:1~10小题,每小题4分,共40分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀1.设lim xң0tan mx x=2,则m=A.0B.12C.1D.22.设y=e x+cos x,则yᶄ=A.e x+cos xB.e x-cos xC.e x-sin xD.e x+sin x3.设y=x tan x,则yᶄ=A.tan x+x cos2xB.x cos2xC.tan x+x1+xD.tan x+x1+x224.设y=11+x,则yᵡ=A.-2(1+x)3B.-1(1+x)3C.1(1+x)3D.2(1+x)35.曲线y=x3+1的拐点为A.(0,0)B.(0,1)C.(-1,0)D.(1,1)6.设f(x)的一个原函数为cos2x,则f(x)=A.-sin2xB.sin2xC.-2sin2xD.2sin2x7.设ʏa-a(x2+x3)d x=23,则a=A.-2B.-1C.1D.28.设z=sin(x-3y2),则∂z∂y=A.-6y cos(x-3y2)B.-6y sin(x-3y2)C.6y cos(x-3y2)D.6y sin(x-3y2)9.设z=f(x2+y),其中f具有二阶导数,则∂2z∂x∂y=A.xfᵡ(x2+y)B.2xfᵡ(x2+y)C.yfᵡ(x2+y)D.2xyfᵡ(x2+y)10.已知事件A与B互斥,且P(A)=0.5,P(B)=0.4,则P(A+B)=A.0.4B.0.5C.0.7D.0.9二㊁填空题:11~20小题,每小题4分,共40分㊂11.limx ң0sin 3x2x=.12.已知函数f (x )=(1+x )1x,x ʂ0,a ,x =0{在x =0处连续,则a =.13.limx ң+ɕ2x 2-1x 2+x +2=.14.设y =cos x +1x(),则y ᶄ(1)=.15.设f1x()=x 2+1x+1,则f ᶄ(x )=.16.曲线y =2x 3+x -1在点(0,-1)处法线的斜率为.17.ʏ14+x 2d x =.18.ʏx (x 2-1)d x =.19.ʏ10(x +e x)d x =.20.设函数f (x ,y )=x +y ,则f (x +y ,x -y )=.三㊁解答题:21~28小题,共70分㊂解答应写出文字说明㊁证明过程或演算步骤㊂21.(8分)计算limx ң0cos x -1x 2.22.(8分)求函数f (x )=e-x 2的单调区间和极值.23.(8分)求ʏ(2arcsin x+1)d x.24.(8分)计算ʏ411x+x d x.25.(8分)设离散型随机变量X的概率分布为X0123P a3a4a2a其中a为常数.(1)求a;(2)求EX.26.(10分)设y=y(x)是由方程e y=x2+y所确定的隐函数,求d y d x.27.(10分)设D为由直线x+y-4=0与曲线y=3x所围成的闭区域.(1)求D的面积;(2)求D绕x轴旋转一周所得旋转体的体积.28.(10分)求函数f(x,y)=x2+y2在条件x2+y2-xy-1=0下的最大值和最小值.2021年成人高等学校专升本招生全国统一考试高等数学(二)试题参考答案一㊁选择题1.D㊀㊀㊀㊀㊀2.C㊀㊀㊀㊀㊀3.A㊀㊀㊀㊀㊀4.D㊀㊀㊀㊀㊀5.B6.C7.C8.A9.B10.D二㊁填空题11.3212.e13.214.015.-2x3+1 16.-117.12arctan x2+C18.x44-x22+C19.e-1220.2x三㊁解答题21.解:lim xң0cos x-1x2=lim xң0-sin x2x=-1222.解:函数f(x)的定义域为(-ɕ,+ɕ),fᶄ(x)=-2x e-x2.令fᶄ(x)=0,得x=0.当x<0时,fᶄ(x)>0;当x>0时,fᶄ(x)<0.所以f(x)的单调递增区间为(-ɕ,0),单调递减区间为(0,+ɕ).f(x)的极大值为f(0)=1.23.解:ʏ(2arcsin x+1)d x=2x arcsin x-2ʏx d(arcsin x)+x=2x arcsin x-ʏ2x1-x2d x+x=2x arcsin x+21-x2+x+C.24.解:令t=x,则x=t2,d x=2t d t.当x=1时,t=1;当x=4时,t=2.因此ʏ411x+x d x=ʏ212t t2+t d t=2ʏ211t+1d t=2ln(t+1)21=2ln32.25.解:(1)由概率分布的性质知a +3a +4a +2a =1.所以a =0.1.(2)EX =0ˑ0.1+1ˑ0.3+2ˑ0.4+3ˑ0.2=1.7.26.解:方程两边对x 求导,得e y d y d x =2x +d y d x.所以d y d x =2xe y -1.27.解:由x +y -4=0,y =3x ìîíïïïï解得交点坐标为(1,3),(3,1).(1)D 的面积S =ʏ314-x -3x ()d x =4x -x 22-3ln x()31=4-3ln 3.(2)D 绕x 轴旋转一周所得旋转体的体积V x =πʏ31(4-x )2-3x ()2éëêêùûúúd x =π-13(4-x )3+9x éëêêùûúú31=8π3.28.解:设F (x ,y ,λ)=x 2+y 2+λ(x 2+y 2-xy -1),则∂F ∂x=2x +λ(2x -y ),㊀∂F ∂y =2y +λ(2y -x ),㊀∂F ∂λ=x 2+y 2-xy -1.由∂F ∂x =0与∂F ∂y =0解得x =y 或x =-y ,代入∂F ∂λ=0得f (x ,y )在条件x 2+y 2-xy -1=0下可能的极值点为(1,1),㊀(-1,-1),㊀33,-33(),㊀-33,33().因为由题设可知最大值和最小值一定存在,所以最大值和最小值就在这些可能的极值点处取得.又f (1,1)=f (-1,-1)=2,f33,-33()=f -33,33()=23,所以所求的最大值为2,最小值为23.。

专升本考试:2022高等数学二真题及答案(6)

专升本考试:2022高等数学二真题及答案(6)

专升本考试:2022高等数学二真题及答案(6)1、()(单选题)A. yx y-1B. yx y+1C. x y lnxD. x y试题答案:A2、 ( ) (单选题)A. 1B. 3C. 5D. 7试题答案:B3、二元函数z=x 2+y 2-3x-2y的驻点坐标是()(单选题)A.B.C.D.试题答案:D4、()(单选题)A. (3,-1,2)B. (1,-2,3)C. (1,1,-1)D. (1,-1,-1)试题答案:A5、()(单选题)A. 0B. 1C. 2D. +∞试题答案:B6、 ( ) (单选题)A. cosxB. -cosXC. 2+cosXD. 2-cosx试题答案:A7、函数ƒ(x)=ln(x 2+2x+2)的单调递减区间是()(单选题)A. (-∞,-1)B. (-1,0)C. (0,1)D. (1,+∞)试题答案:A8、(单选题)A. 2B. 1C. 1/2试题答案:C9、PowerPoint 2010在幻灯片浏览视图下,不能进行的操作是()。

(单选题)A. 排列幻灯片B. 删除幻灯片C. 编辑单张幻灯片的具体内容D. 改变幻灯片的版式试题答案:C10、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:B11、()(单选题)A. yx y-1B. yx y+1C. x y lnxD. x y试题答案:A12、 ( ) (单选题)A. -lB. 0C. 1试题答案:C13、()(单选题)A. 0B. 1C. 2D. 4试题答案:A14、 ( ) (单选题)A. 1B. 3C. 5D. 7试题答案:B15、方程x 2+y 2-2z=0表示的二次曲面是()(单选题)A. 柱面B. 球面C. 旋转抛物面D. 椭球面试题答案:C16、()(单选题)A. 一lB. 0C. 1试题答案:C17、 ( ) (单选题)A. 0B. 1C. 2D. 3试题答案:C18、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:B19、()(单选题)A. y 2sin(xy)B. y 2cos(xy)C. -y 2sin(xy)D. -y 2cos(xy)试题答案:D20、设区域D={(x,y)(0≤y≤x 2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()(单选题)A.B.D. π试题答案:A21、()(单选题)A. 0B.C.D.试题答案:B22、若y=1+cosx,则dy=()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D23、 ( )(单选题)A.B.C.D.试题答案:B24、 ( ) (单选题)A. -lB. 0D. 2试题答案:C25、()(单选题)A.B.C.D.试题答案:B26、()(单选题)A. 0B. 1C. 2D. 4试题答案:A27、(单选题)A. -lB. 0C. 1D. 2试题答案:C28、下列函数中,在x=0处不可导的是()(单选题)A.B.C. y=sinxD. y=x 2试题答案:B29、设区域D={(x,y)(0≤y≤x 2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()(单选题)A.B.C.D. π试题答案:A30、当x→0时,下列各无穷小量中与x 2等价的是()(单选题)A. xsin 2xB. xcos 2xC. xsinxD. xcosx试题答案:C31、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C32、()(单选题)A. y 2sin(xy)B. y 2cos(xy)C. -y 2sin(xy)D. -y 2cos(xy)试题答案:D33、()(单选题)A.B.C.D.试题答案:C34、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A35、()(单选题)A. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A36、()(单选题)A.B.C.D.试题答案:D37、在Word 2010中,插入分节符,应该选择()下的“分隔符”命令。

《高等数学(二)》 作业及参考答案

《高等数学(二)》 作业及参考答案

《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 卦限。

2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 .3。

4.设25(,),ff x y x y y x y∂=-=∂则。

5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。

6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。

7.平面2250x y z -++=的法向量是 。

8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。

9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。

10.函数z =的定义域为 。

11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。

12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。

13.已知两点12(1,3,1)(2,1,3)M M 和。

向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。

14.点M (4,-3,5)到x 轴的距离为 。

15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。

16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。

17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。

18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。

19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。

2021年成人高等《高等数学(二)》(专升本)真题及答案

2021年成人高等《高等数学(二)》(专升本)真题及答案

2021年成人高等《高等数学(二)》(专升本)真题及答案1.选择题(江南博哥)A. 0B.C. 1D. 2正确答案:D参考解析:2.选择题设y=ex+cosx,则y'=A. ex+cosxB. ex-cosxC. ex-sinxD. ex+sinx正确答案:C参考解析:3.选择题设y=xtanx,则y'=A.B.C.D.正确答案:A参考解析:4.选择题A.B.C.D.正确答案:D参考解析:5.选择题曲线y=x3+1的拐点为A. (0,0)B. (0。

1)C. (-1,0)D. (1,1)正确答案:B参考解析:的拐点为(0,1).6.选择题设f(x)的一个原函数为cos2x,则f(x)=A. -sin2xB. sin2xC. -2sin2xD. 2sin2x正确答案:C参考解析:由题可知f(x)=(cos2x)'=-2sin2x.7.选择题A. -2B. -lC. 1D. 2正确答案:C参考解析:8.选择题A. -6ycos(x-3y2)B. -6ysin(x-3y2)C. 6ycos(x-3y2)D. 6ysin(x-3y2)正确答案:A参考解析:9.选择题A. xf”(x2+y)B. 2xf”(x2+y)C. yf”(x2+y)D. 2xyf”(x2+y)正确答案:B参考解析:10.选择题已知事件A与B互斥,且P(A)=0.5,P(B)=0.4,则P(A+B)=A. 0.4B. 0.5C. 0.7D. 0.9正确答案:D参考解析:事件A与B互斥,故P(AB)=0,因此P(A+B)=P(A)+P(B)=0.5+0.4=0.9.11.填空题正确答案:参考解析:【答案】12.填空题正确答案:参考解析:【答案】e13.填空题正确答案:参考解析:【答案】214.填空题正确答案:参考解析:【答案】o15.填空题正确答案:参考解析:【答案】16.填空题曲线y=2x3+x-1在点(0,-1)处法线的斜率为_____.正确答案:参考解析:【答案】-1y'=6x2+1,故y'(0)=1,因此曲线在点(0,-1)处的法线的斜率为-1.17.填空题正确答案:参考解析:【答案】18.填空题正确答案:参考解析:【答案】19.填空题正确答案:参考解析:【答案】20.填空题设函数f(x,y)=x+y,则f(x+y,x—y)=_____.正确答案:参考解析:【答案】2xf(x+y,x—y)=x+y+x—y=2x.21.解答题参考解析:22.解答题求函数f(x)=e-x2的单调区间和极值.参考解析:23.解答题参考解析:24.解答题参考解析:25.解答题设离散型随机变量X的概率分布为其中“为常数.(1)求a;(2)求E(X).参考解析:(1)由概率分布的性质知a+3a+4a+2a=1,所以a=0.1.(2)E(X)=0×0.1+1×0.3+2×0.4+3×0.2 =1.7.26.解答题参考解析:27.解答题(1)求D的面积;(2)求D绕x轴旋转-周所得旋转体的体积.参考解析:(1)(2)28.解答题求函数f(x,y)=x2+y2在条件x2+y2-xy-1=0下的最大值和最小值.参考解析:。

2023年成人高考专升本高等数学(二)真题+参考答案解析

2023年成人高考专升本高等数学(二)真题+参考答案解析

2023年成人高等学校招生全国统一考试专升本高等数学(二)真题一、选择题(1~10小题,每题4分,共40分。

在每小给出的四个选项中,只有一是符合题目要求的)1.x→∞x2+1 x2+xlim=()A.-1B.0C.12D.12.设f(x)=x3+5sin x,f'(0)=()A.5B.3C.1D.03.设f(x)=ln x-x,f'(x)=()A.xB.x-1C.1x D.1x-14.f(x)=2x3-9x2+3的单调递减区间为()A.(3,+∞)B.(-∞,+∞)C.(-∞,0)D.(0,3)5.x23dx=()A.x32+CB.35x53+C C.x53+C D.x13+C6.设函数f(x)=x ,则1-1f(x)dx=()A.-2B.0C.1D.27.连续函数f(x)满足x0f(t)dt=e x-1,求f'(x)=()A.e xB.e x-1C.e x+1D.x+18.设z=e xy,dz=()A.e xy dx+e xy dyB.e x dx+e y dyC.ye xy dx+xe xy dyD.e y dx+e x dy9.设z=14(x2+y2),∂2z∂x∂y=()A.x2B.0 C.y2D.x+y10.扔硬币5次,3次正面朝上的概率是()A. B. C. D.二、填空题(11~20小题,每题4分,共40分)11.x→31+x-2x-3=lim。

12.x→∞(x+1 x-1)lim x=。

13.f(x)=e2x,则f(n)(0)=。

14.f(x)=x2-2x+4在(x0,f(x))处切线与直线y=x-1平行,x=。

15.曲线y=xe x的拐点坐标为。

16.y=2x1+x2的垂直渐近线是。

17.xx2+4dx=。

18.曲线y=x2与x=y2所围成图形的面积是。

19.+∞0xe-x2dx=。

20.z=x2+y2-x-y-xy的驻点为。

三、解答题(21~28小题,共70分。

2022年成人高等《高等数学(二)》(专升本)真题及答案

2022年成人高等《高等数学(二)》(专升本)真题及答案

2022年成人高等《高等数学(二)》(专升本)真题及答案1.选择题(江南博哥)设函数f(x)=sinx, g(x)=x'时,则f(g(x)()。

A. 是奇函数但不是周期函数B. 是偶函数但不是周期函数C. 既是奇函数也是周期函数D. 既是偶函数也是周期函数正确答案:B参考解析:2.选择题()A. 1B. 2C. 3D. 4正确答案:A参考解析:3.选择题设函数f(x)在x=0处连续,g(x)在x=0处不连续; 则x=0处()A. f(x)g(x) 连续B. f(x)g(x)不连续C. f(x)+ g(x)连续D. f(x)+g(x)不连续正确答案:D参考解析:此题暂无解析4.选择题函数y= arccosx,则y'=()A.B.C.D.正确答案:B参考解析:此题暂无解析5.选择题函数y=ln(x+e-x),则y'=()A.B.C.D.正确答案:B参考解析:此题暂无解析6.选择题设函数y(n-2)=x2 +sinx,则y(n)=()A. 2- sinxB. -cosxC. 2- cosxD. 2 + cosx正确答案:A参考解析:7.选择题设函数f(x)的导函数f"(x)=-x+1,则A. f(x)在(-∞,+∞)单调递增B. f(x)在(-∞,+∞)单调递减C. f(x)在( -∞,1)单调递增D. f(x) 在(1,+∞)单调递减正确答案:C参考解析:此题暂无解析8.选择题()A. y=0B. y=1C. y=2D. y=3正确答案:C参考解析:9.选择题函数f(x)= arctanx, 则()A. arctanx + CB. -arctanx+C'C.D.正确答案:A参考解析:此题暂无解析10.选择题设z=ex+y;则dz|(1,1)=()A. dx+dyB. dx + edyC. edx + dyD. e2dx +e2dy正确答案:D参考解析:11.填空题_____正确答案:参考解析:【答案】-1【解析】12.填空题当x→0时,函数f(x)是x高阶无穷小量,则极限______ 正确答案:参考解析:【答案】013.填空题设函数y=3x2 +In3,则y'=正确答案:参考解析:【答案】bx14.填空题曲线y=x+在点(1,2)处的切线方程为_______正确答案:参考解析:【答案】15.填空题正确答案:参考解析:【答案】016.填空题正确答案:参考解析:【答案】17.填空题正确答案:参考解析:【答案】π/418.填空题设z=x3y+xy3,则正确答案:参考解析:【答案】3x2+3y219.填空题设z= f(u,v)的具有连续偏导数,其中u=x+y,v=xy;则正确答案:参考解析:【答案】f’(u)+yf’v20.填空题设两个随机事件A,B, P(4)=0.5,P(AB)=0.4; 计算P(B|A)= 正确答案:参考解析:【答案】0.8【解析】21.解答题求a参考解析:22.解答题参考解析:23.解答题参考解析:24.解答题参考解析:25.解答题 (本题8分)设离散型随机变量X的概率分布如下表:(1) 求x的分布函数F(x)(2) 求E(X);参考解析:E(x)=XIP(Xi)=0.926.解答题 (本题10分)设函数z=z(x,y)由方程2y2 +2xz+z2=1所确定,求参考解析:27.解答题 (本题10分)设D为曲线y=x2与直线y=0, x=2所围成的平面图形;(1) 求D所围成图形的面积。

《高等数学(二)》题库及答案

《高等数学(二)》题库及答案

《高等数学(二)》题库及答案一、填空题1.点A (2,3,-4)在第 卦限。

2.设22(,)sin ,(,)yf x y x xy y f tx ty x=--=则 .3的定义域为 。

4.设25(,),ff x y x y y x y∂=-=∂则。

5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。

6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。

7.平面2250x y z -++=的法向量是 。

8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。

9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。

10.函数z =的定义域为 。

11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。

12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。

13.已知两点12(1,3,1)(2,1,3)M M 和。

向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。

14.点M (4,-3,5)到x 轴的距离为 。

15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。

16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。

17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。

18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。

19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。

陕西师范大学 网络教育 《高等数学(二)》作业及参考答案

陕西师范大学 网络教育 《高等数学(二)》作业及参考答案

《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 VIII 卦限。

2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 2(,)t f x y .3x y y-的定义域为 {}(,)0x y x y ≥> 。

4.设25(,),f f x y x y y x y∂=-=∂则245x x y - 。

5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得111(,)(,)xydx f x y dy dy f x y dx ⎰⎰⎰⎰或。

6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰=2 。

7.平面2250x y z -++=的法向量是 (2,-2,1) 。

8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为{222(1)90x y x z ++-== 。

9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x-4y 。

10.函数z x y =-的定义域为 }{2(,)0,0,x y x y x y ≥≥> 。

11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到222211111(,,)x x x y dx f x y z dz ---+⎰⎰ 。

12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰ 5615-。

13.已知两点12(1,3,1)(2,1,3)M M 和。

向量1212M M M M =的模 3 ;向量12M M 的方向余弦cos α=1/3 ,cos β= -2/3 ,cos γ= 2/3 。

14.点M (4,-3,5)到x 轴的距离为 34 。

高等数学题目2(带答案)

高等数学题目2(带答案)

1、直线53702370x y z x y z +--=+--=⎧⎨⎩( )(A )垂直yoz 平面(B )在yoz 平面内 (C )平行x 轴(D )在xoy 平面内2、极限lim x y x yx y →→+00242=( )(A)等于0 (B)不存在(C)等于12(D)存在且不等于0或123、设u x bxy cy =-+222,∂∂∂∂uxu y(,)(,),212160==,则∂∂22uy=( )(A) 4(B) -4(C) 2(D) -24、设函数z x y =-+122,则点(,)00是函数z 的( )(A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 5、)(arctan arctan )(11)(arctan )()(d arctan d d 2. .. .D a b C xB x A x x x ba-+=⎰6、函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0=( )(A)不存在 (B)等于1(C)等于零 (D)等于2二、填空题(本题共6小题,满分18分)1、已知点A (,,)312-和向量{}1,3,4-=→AB ,则B 点的坐标为_____ _.2、x y z 222441+-=是由yoz 平面上曲线⎽⎽⎽⎽⎽⎽ 绕⎽⎽⎽轴旋转而产生的. 3、曲线x t y t t z t t =+=++=-+311122,,在对应于t =-1点处的法平面方程是_________________.4、设f (x ,y )是连续函数,交换积分次序为.5、.计算积分dx x ⎰-5426、设f x y x y (,)=+22,则f y (,)01=⎽⎽⎽⎽⎽⎽.三、计算题(本题共8小题,满分64分)1、动点P 到M 0434(,,)-距离等于P 到xoy 平面的距离,求动点P 的轨迹方程。

高等数学Ⅱ答案 同济大学第三版

高等数学Ⅱ答案 同济大学第三版
解所求平面的法线向量可设为 n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,
所以向量n =(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的, 即 1
b+9c=0, b=−9c , 于是 n=(0, −9c, c)=−c(0, 9, −1). 所求平面的方程为
4. 自点P0(x0, y0, z0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.
解在xOy面、yOz面和zOx面上, 垂足的坐标分别为(x , y , 0)、(0, y , z )和(x , 0, z ).
00
00
0
0
在x轴、y轴和z轴上, 垂足的坐标分别为(x , 0, 0), (0, y , 0)和(0, 0, z ).
3
.
3
(5)y+z=1; 解y+z=1是平行于x轴的平面, 它在y轴、z轴上的截距均为1. (6)x−2z=0; 解x−2z=0是通过y轴的平面. (7)6x+5−z=0.
解 6x+5−z=0 是通过原点的平面. 求平面2x−2y+z+5=0与各坐标面的夹角的余弦. 解此平面的法线向量为n=(2, −2, 1).
0
0
0
5. 过点P (x , y , z )分别作平行于z轴的直线和平行于xOy面的平面, 问在它们上面的点的坐 00 0 0
标各有什么特点? 解在所作的平行于 z 轴的直线上, 点的坐标为(x , y , z); 在所作的平行于 xOy 面的平面上,
00
点的坐标为(x, y, z ). 0
6. 一边长为 a 的立方体放置在 xOy 面上, 其底面的中心在坐标原点, 底面的顶点在 x 轴和 y 轴上, 求它各顶点的坐标.

高等数学第二册教材答案

高等数学第二册教材答案

高等数学第二册教材答案解答:第一章:函数与极限1.1 函数的基本概念和性质1.2 极限的定义和性质1.3 极限的运算法则1.4 函数的连续性第二章:导数与微分2.1 导数的定义2.2 函数的导数与可导性2.3 常用函数的导数2.4 高阶导数与高阶微分2.5 隐函数的导数与高阶导数第三章:微分中值定理与导数的应用3.1 罗尔中值定理3.2 拉格朗日中值定理3.3 柯西中值定理3.4 导数的应用:函数的单调性与极值第四章:不定积分4.1 不定积分的定义4.2 基本积分公式与换元积分法4.3 分部积分法4.4 有理函数的积分4.5 特殊函数的积分第五章:定积分5.1 定积分的概念与性质5.2 反常积分5.3 微积分基本定理5.4 定积分的换元法5.5 定积分的分部积分法5.6 定积分的应用:几何应用与物理应用第六章:定积分的几何应用6.1 曲线的弧长与曲面的面积6.2 平面区域的面积第七章:多元函数微分学7.1 多元函数的定义与极限7.2 偏导数与全微分7.3 隐函数的偏导数与全微分7.4 多元函数的极值与条件极值第八章:多元函数积分学8.1 重积分的概念与性质8.2 二重积分的计算8.3 三重积分的计算8.4 曲线积分和曲面积分第九章:无穷级数9.1 数项级数的概念与性质9.2 收敛级数的性质9.3 幂级数与函数展开9.4 函数的傅里叶级数展开第十章:常微分方程10.1 微分方程的基本概念与解的存在唯一性10.2 一阶线性微分方程10.3 可降阶的高阶微分方程10.4 齐次线性微分方程与常系数齐次线性微分方程10.5 非齐次线性微分方程与常系数非齐次线性微分方程以上是高等数学第二册教材各章节的答案。

希望能帮助你更好地理解和应用数学知识。

2022年浙江成人高考专升本高等数学(二)真题及答案

2022年浙江成人高考专升本高等数学(二)真题及答案

2022年浙江成人高考专升本高等数学(二)真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数2()sin ,(),f x x g x x ==则(())f g x =( )A .是奇函数但不是周期函数B .是偶函数但不是周期函数C .既是奇函数又是周期函数D. 既是偶函数又是周期函数2. 若20(1)1lim 2x ax x →+-=,则a =( )A. 1B. 2C. 3D. 43.设函数()f x 在0x =处连续,()g x 在0x =处不连续,则在0x =处() A. ()()f x g x 连续 B. ()()f x g x 不连续C. ()()f x g x +连续D. ()()f x g x +不连续4. 设arccos y x =,则'y =( )A.B. C. D.5.设ln()x y x e -=+,则'y =( ) A. 1x x e x e --++ B. 1xx e x e ---+ C. 11x e -- D. 1x x e -+6.设(2)2sin n y x x -=+,则()n y =( )A. 2sin x -B. 2cos x -C. 2sin x +D. 2cos x +7.若函数()f x 的导数'()1f x x =-+,则( )A. ()f x 在(,)-∞+∞单调递减B. ()f x 在(,)-∞+∞单调递增C. ()f x 在(,1)-∞单调递增D. ()f x 在(1,)+∞单调递增8.曲线21x y x =-的水平渐近线方程为( ) A. 0y = B. 1y = C. 2y = D. 3y =9.设函数()arctan f x x =,则'()f x dx =⎰( )A. arctan x C +B. arctan x C -+C. 211C x ++D. 211C x-++ 10.设x y z e +=,则(1,1)dz = ( )A. dx dy +B. dx edy +C. edx dy +D. 22e dx e dy +第II 卷(非选择题,共110分)二、填空题(11-20小题,每题4分,共40分) 11. lim 2x x x e x e x→-∞+=- .12.当0x → 时,函数()f x 是x 的高阶无穷小量,则0()lim x f x x→= . 13. 设23ln 3y x =+,则'y = . 14.曲线y x x =1,2)处的法线方程为 .15. 2cos 1x x dx x ππ-=+⎰ . 16. 1201dx x =+⎰ .17. 设函数0()tan x f x u udu =⎰,则'4f π⎛⎫= ⎪⎝⎭ . 18.设33,z x y xy =+则2z x y ∂=∂∂ . 19.设函数(,)z f u v =具有连续偏导数,,,u x y v xy =+=则z x∂=∂ . 20.设A ,B 为两个随机事件,且()0.5,()0.4,P A P AB ==则(|)P B A = .三、解答题(21-28题,共70分。

高等数学第二章习题详细解答答案

高等数学第二章习题详细解答答案

1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时

高等数学二答案

高等数学二答案

《高等数学(二)》练习题一答案一、是非题1、⨯;2、⨯;3、∨;4、∨;5、∨。

6、∨;7、∨;8、⨯;二、单项选择题1B 2C 3C 4A 5C 6A 7B 8B 三、填空题1、常数;2、减少;3、0;4、13ln 3x; 5、,,2y x 6、0; 7、(0,0); 8、(4)80y =; 四、解答题1.先求函数()f x 。

因为2(1)35f x x x +=++,令221,1,()(1)3(1)53t x x t f t t t t t =+⇒=-=-+-+=++,故2()3f x x x =++。

再来求函数()f x 的单调区间与极值。

令1()2102f x x x '=+=⇒=-为唯一的驻点。

又()20f x ''=>,故函数有唯一的极小值111()24f -=,从而得单调减少区间为1(,)2-∞-,单调增加区间1(,)2-+∞。

2.00sin 33cos333lim lim 4ln(14)4414x x x x x x→→===-----。

3.设两个直角边长分别是,(,0)x y x y >,则有222x y l y +=⇒=从而周长函数为(0)y x l x l =<<。

令10,y x '==⇒=由此可知,斜边之长为l 的一切直角三角形中,有最大周长的直角三角形是等腰直角三角形。

4.利用换元积分法,有5422sin sin (sin )(1cos )(cos )xdx x xdx x d x ==--⎰⎰⎰, 令cos u x =,就有55222432s i n (1)(12)35u xdx u du u u du u u C =--=--+=-+-+⎰⎰⎰,将cos u x =代入即可得到5532cos sin cos cos 35x xdx C x x =-+-⎰。

5.变形得2dy ydx x y =+, 这是非线性方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(二)答案
二. 填空题:(每小题4分,共40分)
(1). 1, (2).
41, (3). 2, (4). 2, (5). x
1, (6). x
e , (7). ()x
f -, (8).1, (9). 33
2π, (10). 1。

三.计算题:(每小题6分,共60分) 1.解.
()()()()(
)()()()()()()()()
x b x a x b x a x b x a x b x a x b x a x b x a x x --+++---++=---+++∞→+∞
→(lim
lim
….3分
()
b a x b x a x b x a b a x +=⎪


⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=+∞
→11112lim
. ……….6分
2.解.()17517372lim 75732lim +⎪⎭
⎫ ⎝⎛-+⎪⎭⎫
⎝⎛+⎪⎭⎫ ⎝⎛=+-++∞
→∞→n n
n
n n n n
n n n . ……..3分 =1. ……6分
3.解法一.()
dx e dy b ax '
sin += ……..3分
dx e b ax a b ax )sin()cos(++= ………6分
解法二.()
()()b ax d e
dy b ax +=+sin sin ………3分
dx e b ax a b ax )sin()cos(++=. ………6分
4.解.,2,22
x x x x xe e dx
y d xe e dx dy +=+= …….4分 所以
20
2
2==x dx y
d . ……….6分
5.解.(1)
()11sin 0
0=--
==x x x
y xy ,故10-==x y , …..3分
(2)()()01
cos 2=--+⎪⎭
⎫ ⎝⎛+x y dx dy xy dx dy x y , ……..4分 于是()()
01cos 0
20=--+⎪⎭

⎝⎛
+==x x x y dx dy xy dx dy x
y ,即
20
==x dx
dy . ……..6分
6.解.()
⎰⎰
++=
+113
113
332
x d x dx x x
……3分 ()
C x ++=233
19
2 . ……6分 7.解.
()()()⎰⎰⎰⎰⎰+=+=2
1
10
2
21
10
20
2xdx dx x
dx x f dx x f dx x f ……….3分
3
10
3313
21
2
1
3=+=
+=x x . ……….6分 8.解.x
e e x
dt e e x x x x t t x sin 2lim
cos 1)2(lim
00
-+=--+-→-→⎰
………3分
0cos lim
0=-=-→x
e e x
x x . …….6分
9解.特征方程02
=+k k ,特征值为1,021-==k k , 2分 故通解为 x
e
c c y -+=21,其中21,c c 为任意数. ………6分
10.解. 因为()())11(114321ln 1432≤<-++-++-+-=++x n x x x x x x n n ΛΛ, ……3分 所以,()2
2
1ln x x x =+())1
1432(1
432ΛΛ++-++-+-+n x x x x x n n =())11(114323
6543
≤<-++-++-+-+x n x x x x x n n ΛΛ …….6分
四.综合题.(共30分,其中第1题12分,第2题12分,第3题6分) 1.解法一. (1).()⎰-=
1
dx e e S x
……….4分
()
1110
=+-=-=e e e ex x
. ………..6分
(2).()⎰-=1
22
dx e e
V x π
………..9分
()()
12
121212221
022+=⎥⎦⎤⎢⎣⎡--=⎪⎭⎫ ⎝⎛-=e e e e x e x π
ππ ………..12分
.解法二.(1)⎰
-=1
0dx e e S x
……….3分
110
=-=x e e . ………..6分
(2). ⎰
-=1
22
dx e e V x
ππ (9)
()
12
2
2
1
22
+=
-
=e
e
e x π
π
π. …………12分
2.解
()x e dx
dy
x -=-1,得到驻点11=x , ………1分 令()022
2=-=-x e dx y d x
,得到22=x , ……2分
…….7分
由此求得曲线上极大值点),1(1
-e A 及拐点)2,2(2
-e B , .9分
于是直线AB 的中点)2
,23(21
--+e e P , …….10分
故所求的直线方程为21
2
--+=e e y . ……..12分 3.证明.因()x f y =在点0x 处可导,所以 ()0'0lim
x f x
y
x =∆∆→∆,
从而()00lim lim lim lim 0'0
000=⋅=∆∆∆=∆∆∆=∆→∆→∆→∆→∆x f x x y
x x y y x x x x , ……3分
即()x f y =在点0x 处连续. …….4分 反例,如x y =在点0x 处连续,但不可导. ……..6分。

相关文档
最新文档