初一数学上学期期末考试( 人教含答案)
(完整版)人教版七年级数学上册期末试卷及答案doc
(完整版)人教版七年级数学上册期末试卷及答案doc一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70C .182D .2062.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=- D .235a b ab +=5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣77.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +18.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =139.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯ C .70.1510⨯ D .61.510⨯10.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0m B .0.8m C .0.8m - D .0.5m - 11.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定12.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==13.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 19.已知23,9n mn aa -==,则m a =___________.20.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 21.15030'的补角是______.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.24.计算:3+2×(﹣4)=_____.25.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.26.8点30分时刻,钟表上时针与分针所组成的角为_____度. 27.-2的相反数是__.28.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.29.钟表显示10点30分时,时针与分针的夹角为________. 30.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题31.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.33.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.34.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a++|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.35.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.36.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.38.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意, 故选:B. 【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.5.D解析:D 【解析】 【分析】这天的温差就是最高气温与最低气温的差,列式计算. 【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃), 故选:D . 【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.6.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.7.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.D解析:D 【解析】 【分析】方程移项,把x 系数化为1,即可求出解. 【详解】解:方程3x ﹣1=0, 移项得:3x =1,解得:x =13, 故选:D . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.10.C解析:C 【解析】 【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可. 【详解】解∵水位升高0.6m 时水位变化记作0.6m +, ∴水位下降0.8m 时水位变化记作0.8m -,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.13.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.14.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.17.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.18.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键19.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.20.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键21.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.24.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14026.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.27.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.28.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm ,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.29.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°. 解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°. 解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 30.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、压轴题31.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12AE , ∴BE=AB=4, ∴点E 表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.32.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+.()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 33.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.34.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.35.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE =6∠BOC+6∠COD=4(∠AOE ﹣∠BOD )+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,36.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23,。
人教版七年级上册数学期末考试试卷(含参考答案)
人教版七年级上册数学期末考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×1074.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b5.如图所示几何体的俯视图是()A.B.C.D.6.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类B类C类50200400252015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡7.下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100二、填空题(本题共10小题,每小题3分,共30分)9.﹣1.5的绝对值是,﹣1.5的倒数是.10.在,3.14,0.161616…,中,分数有个.11.|x﹣3|+(y+2)2=0,则y x为.12.一个几何体的表面展开图如图所示,则这个几何体是.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.14.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为cm.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设,可得方程.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.三、解答题(本题共9小题,共96分)19.计算(12)(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].20.(12分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.21.解方程(12)(1)4(2x﹣3)﹣(5x﹣1)=7(2).22.(12分)如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段长就是点C到OA的距离;②比较大小:CE CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD∠ECO.23.(12)如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:cm3.24.(12分)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.25(12分).甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时km;快车的速度为每小时km;(2)当两车相距300km时,两车行驶了小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.26.(12分)已知△ABC中,∠ABC=∠ACB,D为射线CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=40°,∠DAE=30°,则α=,β=.②写出α与β的数量关系,并说明理由;(2)如图(2),当D点在BC边上,E点在CA的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3)如图(3),D在CB的延长线上,根据已知补全图形,并直接写出α与β的关系式.七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题2分,共16分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【考点】正数和负数.【专题】探究型.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣3【考点】有理数大小比较;有理数的加法.【专题】计算题.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258000用科学记数法表示为2.58×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.5.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:C.【点评】此题主要考查了简单几何体的三视图,关键是所看到的线都要用实线表示.y6.一家游泳馆的游泳收费标准为 30 元/次,若购买会员年卡,可享受如下优惠:会员年卡类型A 类B 类C 类办卡费用(元)50200400 每次游泳收费(元)252015例如,购买 A 类会员年卡,一年内游泳 20 次,消费 50+25×20=550 元,若一年内在该游泳馆游泳的次数介于 45~55 次之间,则最省钱的方式为()A .购买 A 类会员年卡B .购买 B 类会员年卡C .购买 C 类会员年卡D .不购买会员年卡【考点】一次函数的应用.【分析】设一年内在该游泳馆游泳的次数为 x 次,消费的钱数为 y 元,根据题意得: =50+25x ,y =200+20x , ABy =400+15x ,当 45≤x ≤55 时,确定 y 的范围,进行比较即可解答.C【解答】解:设一年内在该游泳馆游泳的次数为 x 次,消费的钱数为 y 元,根据题意得:y =50+25x ,Ay =200+20x ,By =400+15x ,C当 45≤x ≤55 时,1175≤y ≤1425;A1100≤y ≤1300;B1075≤y ≤1225;C由此可见,C 类会员年卡消费最低,所以最省钱的方式为购买 C 类会员年卡.故选:C .【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.7.下列结论中,不正确的是()A .两点确定一条直线B .两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行【考点】命题与定理.【分析】利用确定直线的条件、线段公理、对顶角的性质及平行线的定义分别判断后即可确定正确的选项.【解答】解:A、两点确定一条直线,正确;B、两点之间的所有连线中,线段最短,正确;C、对顶角相等,正确;D、过直线外一点有且只有一条直线与已知直线平行,故错误,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解确定直线的条件、线段公理、对顶角的性质及平行线的定义,属于基础题,难度不大.8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.二、填空题(本题共10小题,每小题2分,共20分)9.﹣1.5的绝对值是 1.5,﹣1.5的倒数是.【考点】倒数;绝对值.【分析】根据倒数和绝对值的定义解答即可.【解答】解:﹣1.5的绝对值是1.5,﹣1.5的倒数是,故答案为:1.5;.【点评】本题考查了倒数、绝对值的定义,熟练掌握定义是解题的关键.10.在,3.14,0.161616…,中,分数有3个.【考点】有理数.【分析】根据整数和分数统称为有理数解答即可.【解答】解:,3.14,0.161616…是分数,故答案为:3.【点评】本题考查的是有理数的概念,掌握整数和分数统称为有理数是解题的关键.11.|x﹣3|+(y+2)2=0,则y x为﹣8.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个几何体的表面展开图如图所示,则这个几何体是四棱锥.【考点】几何体的展开图.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥;故答案为:四棱锥.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是C.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“E”是相对面,“B”与“D”是相对面,“C”与盒盖是相对面.故答案为:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.如果一个角是23°15′,那么这个角的余角是66.75°.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义即可得出结论.【解答】解:∵一个角是23°15′,∴这个角的余角=90°﹣23°15′=66°75′=66.75°.故答案为:66.75.【点评】本题考查的是余角和补角,熟知如果两个角的和等于90°(直角),就说这两个角互为余角是解答此题的关键.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是﹣5.【考点】代数式求值.【分析】直接将代数式变形进而化简求值答案.【解答】解:∵代数式x+2y的值是3,∴代数式1﹣2x﹣4y=1﹣2(x+2y)=1﹣2×3=﹣5.故答案为:﹣5.【点评】此题主要考查了代数式求值,正确将所求代数式变形是解题关键.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为20cm.【考点】两点间的距离.【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故答案为:20.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设这堆糖果有x个,可得方程.【考点】由实际问题抽象出一元一次方程.【分析】设这堆糖果有x个,根据不同的分配方法,小朋友的人数是一定的,据此列方程.【解答】解:设这堆糖果有x个,若每人2颗,那么就多8颗,则有小朋友人,若每人3颗,那么就少12颗,则有小朋友人,据此可知=.故答案为这堆糖果有x个.【点评】本题考查了由实际问题抽象出的一元一次方程,比较简单,关键是根据题意设出未知数,此题还可以设糖果的总量为x,这样得出的方程会不一样,但最终的结果是一样的.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.【考点】列代数式.【分析】利用割补法可得阴影部分的面积等于正方形面积的一半.【解答】解:如图所示,S阴影=S=AC×BD=a2,正方形ABCD故答案为:a2.【点评】此题主要考查了列代数式的能力,利用割补法判断出阴影部分的面积是解决本题的难点.三、解答题(本题共9小题,共64分)19.计算(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20+2+10=﹣20+12=﹣8;(2)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值;合并同类项.【专题】计算题.【分析】先去括号,然后合并同类项,从而得出最简整式,然后将x及y的值代入即可得出答案.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2,当a=﹣1,b=﹣2时,原式=4.【点评】此题考查了整式的加减及化简求值的知识,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.21.解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.【考点】作图—复杂作图;角的大小比较;垂线段最短;点到直线的距离.【分析】根据已知条件画出图形,然后根据图形即可得到结论.【解答】解:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.故答案为:CG,>,=.【点评】本题考查了作图﹣复杂作图,角的大小的比较,垂线段的性质,点到直线的距离,熟记各概念是解题的关键.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:12cm3.【考点】展开图折叠成几何体.【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.24.如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有5对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.【考点】余角和补角.【分析】(1)根据角平分线的定义得到∠1=∠2,根据邻补角的性质解答即可;(2)根据角平分线的定义和补角的概念计算;(3)根据等角的补角相等证明.【解答】解:(1)∵OD平分∠AOC,∴∠1=∠2,∵∠DOE=90°,∴∠2+∠3=90°,∴∠1+∠4=90°,∴∠1与∠DOB互补,∠2与∠DOB互补,∠3与∠AOE互补,∠4与∠AOE互补,∠AOC与∠BOC,故答案为:5;(2)∵∠AOD=50°,∴∠AOC=2∠AOD=100°,∴∠BOC=180°﹣100°=80°;(3)∵∠1=∠2,∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∴OE平分∠BOC.【点评】本题考查的是余角和补角的概念、角平分线的定义,掌握如果两个角的和等于90°,这两个角互为余角.如果两个角的和等于180°,这两个角互为补角是解题的关键.25.如图,∠AOB=90°,在∠AOB的内部有一条射线OC.(1)画射线OD⊥OC.(2)写出此时∠AOD与∠BOC的数量关系,并说明理由.【考点】垂线.【分析】(1)根据垂线的定义,可得答案;(2)根据余角的性质,可得答案;根据角的和差,可得答案.【解答】解:(1)如图:,;(2)如图1:,∠AOD=∠BOC.因为∠AOB=90°,所以∠AOC+∠BOC=90°.因为OD⊥OC,所以∠AOD+∠AOC=90°.所以∠AOD=∠BOC;如图2:,∠AOD+∠BOC=180°.因为∠AOD=∠AOC+∠BOC+∠BOD,所以∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=180°.【点评】本题考查了垂线,利用了余角的性质,角的和差,要分类讨论,以防遗漏.26.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围不超过150千瓦时的部分超过150千瓦时,但不超过300千瓦时的部分超过300千瓦时的部分电费价格(单位:元/千瓦时)aba+0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费122.5元.(1)求上表中a、b的值.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费277.5元?(3)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价等于0.62元/千瓦时?【考点】一元一次方程的应用.【分析】(1)利用居民甲用电100千瓦时,交电费60元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费122.5元,求出b的值即可;(2)首先判断出用电是否超过300千瓦时,再根据收费方式可得等量关系:前150千瓦时的部分的费用+超过150千瓦时,但不超过300千瓦时的部分的费用+超过300千瓦时的部分的费用=交费277.5元,根据等量关系列出方程,再解即可;(3)根据当居民月用电量y≤150时,0.6≤0.62,当居民月用电量y满足150<y≤300时,0.65y﹣7.5≤0.62y,当居民月用电量y满足y>300时,0.9y﹣82.5≤0.62y,分别得出即可.【解答】解:(1)a=60÷100=0.6,150×0.6+50b=122.5,解得b=0.65.(2)若用电300千瓦时,0.6×150+0.65×150=187.5<277.5,所以用电超过300千瓦时.设该户居民月用电x千瓦时,则0.6×150+0.65×150+0.9(x﹣300)=277.5,解得x=400答:该户居民月用电400千瓦时.(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为0.6<0.62,故不合题意;②若y超过150,但不超过300,则0.62y=0.6×150+0.65(y﹣150),解得y=250;③若y大于300,则0.62y=0.6×150+0.65×150+0.9(y﹣300),解得.此时y<300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250千瓦时.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.27.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时75km;快车的速度为每小时150km;(2)当两车相距300km时,两车行驶了或小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.【考点】一元一次方程的应用.【分析】(1)由速度=路程÷时间计算即可;(2)需要分类讨论:相遇前距离300km和相遇后相距300km;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:慢车在前和慢车在后.【解答】解:(1)慢车速度为:900÷12=75(千米/时).快车的速度:75×2=150(千米/时).故答案是:75,150;(2)①当相遇前相距300km时,②当相遇后相距300km时,==(小时);(小时);综上所述,当两车相距300km时,两车行驶了或小时;故答案是:或;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:①慢车在前,则75×3+75x﹣150=150x,21解得x=1.此时900﹣150×(3+1)﹣150×1=150.②慢车在后,则75×3+75x+150=150x,解得x=5.此时第一列快车已经到站,150×5=750.综上,第二列快车和慢车相距150km时,两列快车相距150km或750km.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意:分类讨论数学思想的应用.22。
人教版七年级上册数学期末考试试题含答案
人教版七年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.﹣5的相反数是()A .﹣5B .5C .15-D .152.下列判断,正确的是()A .若a b >,则a b >B .若a b >,则a b >C .若0a b >>,则a b>D .若0a b <<,则a b<3.已知点P 是CD 的中点,则下列等式中正确的个数是()①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD+=A .1个B .2个C .3个D .4个4.若|1||3|0x y -++=,那么()()13x y +-等于()A .0B .-3C .-6D .-125.已知下列结论:①若0a b +=,则a 、b 互为相反数;②若0ab >,则0a >且0b >;③+=+a b a b ;④绝对值小于10的所有整数之和等于0;⑤3和5是同类项.其中正确的结论的个数为()A .2B .3C .4D .56.下列各组式子中,不是同类项的是()A .ab -与baB .π与25C .20.2a b 与215ba-D .23a b 与23b a -7.如图是一个正方体的展开图,则在原正方体中,与“青”字相对的字是()A .共B .建C .绿D .水8.如图,已知120AOB ∠=︒,COD ∠在AOB ∠内部且60COD ∠=︒,则AOD ∠与COB ∠一定满足的关系为().A .AOD COB ∠=∠B .120AOD COB ∠+∠=︒C .12AOD COB∠=∠D .180AOD COB ∠+∠=︒9.已知点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,BC =1,OA =OB .若点C 所表示的数为a ,则点A 所表示的数为()A .-a -1B .-a +1C .a +1D .a -110.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第①个图形有5个小圆,第②个图形有9个小圆,第③个图形有13个小圆,…,按此规律排列,则第12个图形中小圆的个数为()A .45B .48C .49D .50二、填空题11.2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km .数据384000用科学记数法可以表示为______km .12.下面是一个被墨水污染过的方程:1232x x -=+,答案显示此方程的解为1x =-,已知被墨水遮盖的是一个常数,则这个常数是__________.13.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=14∠AOD ,则∠AOD=______°.14.如图,在3×3方格内填入9个数,使图中各行、各列及对角线上的三个数之和都相等,则x 的值是_____.15.《九章算术》是中国古代《算经十书》中最重要的一部,它的出现标志着中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设有x 人,则根据题意可列方程__________.三、解答题16.解下列一元一次方程(1)()521x x +=-(2)43135x x --=-17.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为;(2)如果设原来这张正方形纸片的边长为acm ,所折成的无盖长方体盒子的高为hcm ,那么,这个无盖长方体盒子的容积可以表示为3cm ;(3)如果原正方形纸片的边长为20cm ,剪去的小正方形的边长按整数值依次变化,即分别取1,2,3,4,5,6,7,8,9,10cm cm cm cm cm cm cm cm cm cm 时,计算折成的无盖长方体盒子的容积得到下表,由此可以判断,当剪去的小正方形边长为cm 时,折成的无盖长方体盒子的容积最大剪去的小正方形的边长/cm 12345678910折成的无盖长方体的容积3/cm 324m n5765003842521283618.计算(1)901727︒︒'-(2)()()202041524-⨯+-+(3)先化简,再求值:()()()()22228232522x y x y x y x y ---+---,其中211036x y ⎛⎫+++= ⎪⎝⎭19.有一道题“求代数式的值:()211428242x x y x y ⎛⎫-+--- ⎪⎝⎭,其中1,20202x y ==”,小亮做题时,把2020y =错抄成“2020y =-”,但他的结果也与正确答案一样,为什么?20.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.21.某市组织学术研讨会,需租用客车接送参会人员往返宾馆和观摩地点,客车租赁公司现有45座和60座两种型号的客车可供租用,已知60座的客车每辆每天的租金比45座的贵100元.(1)会务组第一天在这家公司租了2辆60座和5辆45座的客车,一天的租金为1600元,求45座和60座的客车每辆每天的租金各是多少元?(2)由于第二天参会人员发生了变化,因此会务组需重新确定租车方案,方案1:若只租用45座的客车,会有一辆客车空出30个座位;方案2:若只租用60座客车,正好坐满且比只租用45座的客车少用两辆①请计算方案1,2的费用;②如果你是会务组负责人,从经济角度考虑,还有其他方案吗?22.如图,点A 在数轴上对应的数为2-.(1)点B 在点A 右边距离点A 4个单位长度,则点B 所对应的数是(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A 运动到6-所在的点处时,,A B 两点间的距离为;(3)在(2)的条件下,现A 点静止不动,B 点以原速沿数轴向左运动,经过多长时间,A B 两点相距4个单位长度.23.点O 在直线AB 上,射线OC 上的点C 在直线AB 上,4AOC BOC ∠=∠.(1)如图1,求∠AOC 的度数;(2)如图2,点D 在直线AB 上方,∠AOD 与∠BOC 互余,OE 平分∠COD ,求∠BOE 的度数;(3)在(2)的条件下,点F,G在直线AB下方,OG平分∠FOB,若∠FOD与∠BOG互补,求∠EOF的度数。
人教版七年级上册数学期末考试试题及答案
人教版七年级上册数学期末考试试题一、单选题1.3的相反数为()A .﹣3B .﹣13C .13D .32.下列各式不成立的是()A .22-=B .22+=-C .33--=-D .22-=-3.在解方程x ﹣2=4x+5时,下列移项正确的是()A .x+4x =5﹣2B .x+4x =2+5C .x ﹣4x =5+2D .x ﹣4x =﹣2﹣54.若33x a b -与3y a b -是同类项,则y x 的值是()A .1B .2C .3D .45.把式子()()1a b a ---+去括号正确的是()A .1a b a +--B .1a b a -+-C .1a b a --+D .1a b a +++6.如图,图中以B 为一个端点的线段共有()A .2条B .3条C .4条D .5条7.若70α=︒,则α的补角的度数是()A .130︒B .110︒C .30°D .20︒8.下列运算正确的是()A .222422a a a -=B .23a a a +=C .32a a -=D .()2224a a --=--9.小明今年6岁,他的爸爸今年34岁,x 年后爸爸的年龄是小明的年龄的3倍,根据题意,列出方程为()A .()3634x +=B .()3634x x+=+C .3634x ⨯=+D .()6334x x +=+10.如图,不能折成无盖的正方体的是()A .B .C .D .二、填空题11.截止2021年10月25日,全球新冠肺炎感染累计死亡人数约为4970000人,将4970000用科学记数法表示为______.12.某地某天早晨的气温是5℃,中午上升了4℃,夜间又下降了10℃,那么这天夜间的气温是_______℃.13.M 、N 是数轴上的两个点,线段MN 的长度为4,若点M 表示的数为2-,则点N 表示的数为______.14.关于x 的方程240x -=与31a x -=同解,则a 的值为______.15.如图,某一时刻在灯塔O 处观测到游轮A 在它的北偏西30°方向,同时又观测到货轮B 在它的北偏东45°方向,则∠AOB 的度数是_____°.16.按一定规律排列的一列数依次为:22a -,55a ,810a -,1117a ,…,()0a ≠,按此规律排列下去,这列数中的第6个数是______.17.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.三、解答题18.计算:()32131623---⨯÷-.19.解方程3157146y y ---=.20.如图,已知DB =2,AC =10,点D 为线段AC 的中点,求线段BC 的长度.21.如图,已知一块长方形钢板的长为a 米,宽为b 米,在长方形的四个角剪去四个同样大小的扇形.(1)用字母a ,b 表示剩余部分的面积S .(2)若钢板的单价为100元/平方米,当3a =米,1b =米时,请计算剩余部分钢板的总价.(π取3)22.下表记录的是黑河今年某一周内的水位变化情况,上周末(上个星期日)的水位已达到15米.(正号表示水位比前一天上升,负号表示水位比前一天下降)星期一二三四五六日水位变化(米)+0.2+0.8-0.4+0.2+0.3-0.5-0.2(1)本周哪一天的水位最高,最高是多少?(2)由于下周将有大降雨天气,工作人员预测水位将会以每小时0.05米的速度上升,当水位达到16.8米时,就要开闸泄洪,请你计算一下,再经过多少个小时工作人员就需要开闸泄洪?23.如图,已知点O 为直线AB 上一点,100BOC ∠=︒,90COD ∠=︒,OM 平分AOC ∠.(1)求MOD ∠的度数;(2)若BOP ∠与AOM ∠互余,求COP ∠的度数.24.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?25.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:若制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?26.(1)如图1,已知AB =12cm ,点C 为线段AB 上的一个动点,点D 、E 分别是AC 、BC 的中点.①若点C恰为AB的中点,则DE=______cm.②若AC=4cm,则DE=_____cm.③DE的长度与点C的位置是否有关?请说明理由.(2)如图2,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别是∠AOC、∠BOC的平分线,则∠DOE的大小与射线OC的位置是否有关?请说明理由.参考答案1.A【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可.【详解】解:3的相反数是﹣3.故选:A.【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.2.D【分析】先化简各数,然后再逐一判断即可.-=,故本选项不符合题意;【详解】解:A、22B.∵|+2|=2,|-2|=2,∴|+2|=|-2|,故本选项不符合题意;C.-|-3|=-3,故本选项不符合题意;D.∵-|2|=-2,|-2|=2,∴-|2|≠|-2|,故本选项符合题意;故选:D.【点睛】本题考查了相反数以及绝对值定义,熟练掌握并正确运用“正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0”是解题关键,解答本题时要注意审题,找出不成立的选项.3.C 【分析】直接根据等式的性质进行移项即可.【详解】解:解方程x ﹣2=4x+5,移项得:452x x -=+,故选:C .【点睛】本题考查了解一元一次方程的步骤,熟练掌握等式的性质是解本题的关键.4.A 【分析】利用同类项定义即可得出x ,y 的值,从而可求出y x 的值.【详解】解:∵33x a b -与3y a b -是同类项,∴x=1,y=3,∴y x =31=1,故选A .【点睛】本题考查了同类项的定义,乘方.同类项:所含字母相同,并且相同字母的指数也相等.5.B 【分析】根据去括号的法则计算.【详解】解:原式=a-b-(-a)-1=a-b+a-1,故答案为B .【点睛】本题考查去括号的应用,熟练掌握去括号的法则是解题关键.6.B 【分析】根据线段的定义“直线上两点间的有限部分(包括两个端点)”找出以B 为一个端点的线段即可选择.【详解】根据题意可知:以B 为一个端点的线段有:AB ,BC ,BD 共3条.故选B .【点睛】本题考查线段的定义,理解线段的定义,正确找出以B 为一个端点的线段是解答本题的关键.7.B 【分析】直接根据补角的定义即可得.【详解】70α=︒ 故选:B .【点睛】本题考查了补角的定义,熟记定义是解题关键.8.A 【分析】根据合并同类项的法则可判断A 、B 、C 选项,再根据去括号的法则可判断D 选项.【详解】A.222422a a a -=,故该选项正确,符合题意;B.a 和2a 不是同类项,不能合并,故该选项错误,不符合题意;C.32a a a -=,故该选项错误,不符合题意;D.()2224a a --=-+,故该选项错误,不符合题意.故选:A .【点睛】本题考查整式的加减中的合并同类项和去括号,熟练掌握合并同类项和去括号的法则是解答本题的关键.9.B 【分析】结合题意可求出x 年后小明的年龄是(6)x +岁,爸爸的年龄是(34)x +岁,再列出方程即可.【详解】根据题意可求:x 年后小明的年龄是(6)x +岁,爸爸的年龄是(34)x +岁,即可列出方程3(6)34x x +=+.故选:B .【点睛】本题考查一元一次方程的实际应用.正确找出题干中的数量关系列出等式是解答本题的关键.10.B 【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:A 、C 、D 都可以折叠成一个无盖的正方体盒子.B 不能折叠成无盖的正方体盒子.故选:B .【点睛】本题考查了展开图折叠成正方体的知识,解题关键是根据正方体的特征,或者熟记正方体的11种展开图,只要有“田”,“凹”字格的展开图都不是正方体的表面展开图.11.4.97×106【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.据此解答即可.【详解】解:4970000=4.97×106,故答案为:4.97×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.-1【分析】由题意根据正负数的意义和有理数的加法法则列式运算即可.【详解】解:5+4+(﹣10)=﹣1℃故答案为:-1.13.-6或2##2或-6【分析】设N 点表示x ,根据数轴上两点间的距离公式可列出24x --=,再进行分类讨论,即可得出结论.【详解】解:设N 点表示x ,则24x --=,∴24x --=或24x --=-解得6x =-或2x =.故答案为:-6或2.14.7【分析】首先解第一个方程求得x 的值,然后代入第二个方程得到一个关于a 的方程,求得a 的值.【详解】解:解方程2x-4=0,得,x=2,把x=2代入a-3x=1,得,a-6=1,解得:a=7.故答案为:7.15.75【分析】首先根据方向角的定义标出角,即可求解;【详解】如图:根据题意可得:304575AOB ∠=︒+︒=︒故答案为:75【点睛】本题考查了方向角的定义,正确理解方向角的定义,理解A 、B 、O 的相对位置是关键.16.1737a 【分析】分析题中数据可知第n 个数的分子为3n 1a ﹣,分母为2n 1+,分式的符号为()n1-.故可求得第n 个数是()3n 1n2n 11a -﹣+;即可求出这列数中的第6个数.【详解】∵第一个数的分子为3112=a a ⨯﹣,分母为211=2+,分式的符号为()11=1--;第二个数的分子为3215=a a ⨯﹣,分母为221=5+,分式的符号为()21=1-;第三个数的分子为3318=a a ⨯﹣,分母为231=10+,分式的符号为()31=1--;第n 个数的分子为3n 1a ﹣,分母为2n 1+,分式的符号为()n1-.∴第6个数是1737a ;故答案为:1737a .【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.注意分别得到分子和分母与数序之间的关系.17.140【详解】解:∵OD 平分∠AOC ,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14018.-8【分析】先计算平方、去绝对值和立方,再进行乘法和除法运算,最后进行减法运算即可.【详解】()32131623---⨯÷-()49683=--⨯÷-98(8)=--÷-9(1)=---8=-.【点睛】本题考查有理数的混合运算.掌握有理数的混合运算法则是解答本题的关键.19.1y =-【分析】根据去分母,去括号,移项,合并,化系数为1的步骤求解即可.【详解】解:去分母得:93121014y y --=-,移项合并同类项得:1y -=,解得:1y =-.【点睛】本题主要考查了解一元一次方程,熟知解一元一次方程的方法是解题的关键.20.3【分析】根据线段中点的性质推出DC =AD =12AC =12×10=5,再结合图形根据线段之间的和差关系进行求解即可.【详解】解:∵AC =10,点D 为线段AC 的中点,∴DC =AD =12AC =12×10=5,∴BC =DC ﹣DB =5﹣2=3,故BC 的长度为3.【点睛】本题考查了线段的中点的意义,线段和差的计算,数形结合是解题的关键.21.(1)S=ab-14πb 2(平方米);(2)225元.【分析】(1)用矩形的面积减去四个14圆的面积列出算式,再整理可得;(2)将a 和b 的值以及单价代入计算可得.【详解】解:(1)剩余部分的面积为S=ab-4×14π×(2b)2=ab-14πb 2(平方米);(2)当a=3,b=1时,剩余部分的面积S=ab-14πb 2=3×1-14×3×12=3-34=94(平方米),剩余部分钢板的总价为94×100=225(元).【点睛】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.22.(1)星期五的水位最高,最高是16.1米;(2)28小时.【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据水位差除以上升的速度,可得答案.【详解】根据题意可求出今年黑河这周的水位是:星期一:150.215.2+=米,星期二:15.20.816+=米,星期三:160.415.6-=米,星期四:15.60.215.8+=米,星期五:15.80.316.1+=米,星期六:16.10.515.6-=米,星期日:15.60.215.4-=米;由此可知本周星期五的水位最高,最高是16.1米;(2)(16.815.4)0.0528-÷=时,故再经过28个小时工作人员就需要开闸泄洪.【点睛】本题考查了正负数的实际应用、有理数的四则混合运算的实际应用.掌握有理数的运算法则是解题关键.23.(1)50︒;(2)50︒.【分析】(1)根据角平分线可知12MOC MOA AOC ∠=∠=∠,再结合MOD COD MOC ∠=∠-∠,即得出1902MOD AOC ∠=︒-,最后由180AOC BOC ∠=︒-∠,即可求出MOD ∠的大小;(2)由12MOC MOA AOC ∠=∠=∠结合题意,可求出BOP ∠的大小.再由100BOC BOP COP ∠=∠+∠=︒,即可求出COP ∠的大小.【详解】(1)∵OM 平分AOC ∠,∴12MOC MOA AOC ∠=∠=∠.∵MOD COD MOC ∠=∠-∠,∴1902MOD AOC ∠=︒-.∵180********∠=︒-∠=︒-︒=︒AOC BOC ,∴19080502MOD ∠=︒-⨯︒=︒.(2)根据(1)可得:11804022MOC MOA AOC ∠=∠=∠=⨯︒=︒.∵∠BOP 与∠AOM 互余,∴90BOP AOM ∠+∠=︒,即4090BOP ∠+︒=︒,∴50BOP ∠=︒.∵100BOC BOP COP ∠=∠+∠=︒,即50100COP ︒+∠=︒,∴50COP ∠=︒.【点睛】本题考查角平分线的性质以及角的运算.利用数形结合的思想是解答本题的关键.24.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.【分析】(1)设调入x名工人,根据题意列出方程,求出方程的解即可得到结果;(2)16+6=22(人),设y名工人生产螺柱,根据题意列出方程,求出方程的解即可得到结果.【详解】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,故调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22-y),解得:y=10,22-y=22-10=12(人),则10名工人生产螺柱,12名工人生产螺母.25.第二种方案可以多得1500元的利润.【分析】方案一:根据制成奶片每天可加工1吨,求出4天加工的吨数,剩下的直接销售鲜牛奶,求出利润;方案二:设生产x天奶片,(4-x)天酸奶,根据题意列出方程,求出方程的解得到x的值,进而求出利润,比较即可得到结果.【详解】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(9-4)×500=10500(元);方案二:设生产x天奶片,则生产(4-x)天酸奶,根据题意得:x+3(4-x)=9,解得:x=1.5,∴2.5天生产酸奶,加工的鲜奶3×2.5=7.5吨,则利润为:1.5×2000+3×2.5×1200=3000+9000=12000(元),∴12000-10500=1500.得到第二种方案可以多得1500元的利润.26.(1)①6;②6;③无关;理由见解析;(2)无关;理由见解析【分析】(1)①由中点的定义可得AC=BC,AD=DC,CE=BE,根据线段的和差关系即可得DE的长;②根据线段的和差关系可求出BC的长,根据中点的定义可求出CD、CE的长,即可得答案;③根据中点的定义及线段的和差关系可得DE=12AB,即可得答案;(2)根据角平分线的性质,可得角平分线分角相等,根据角的和差,可得答案.【详解】(1)①∵点C为AB中点,AB=12cm,∴AC=BC=6cm,∵D、E分别为AC、BC中点,∴CD=AD=12AC=3cm,CE=BE=12BC=3cm,∴DE=CD+CE=6cm,故答案为:6②∵AC=4cm,AB=12cm,∴BC=AB-AC=8cm,∵D、E分别为AC、BC中点,∴CD=AD=12AC=2cm,CE=BE=12BC=4cm,∴DE=CD+CE=6cm,故答案为:6③DE的长度与点C的位置无关,理由如下:∵点D、E分别是AC、BC的中点,∴AD=DC=12AC,CE=EB=12BC,∴DE=DC+CE=12(AC+BC)=12AB,∴DE的长度与点C位置无关.(2)∠DOE的大小与射线OC的位置无关.∵OD、OE分别是∠AOC、∠BOC的平分线,∴1DOC AOC2∠=∠,1COE COB2∠=∠,∴11DOE DOC COE(AOC COB AOB22∠=∠+∠=∠∠+∠)=,∴∠DOE的大小与射线OC的位置无关.。
2023-2024年人教版七年级上册数学期末试题(含简单答案)
14.关于 x 的方程 2x 3 3m 和 2x 1 5 有相同的解,则 m 的值是
.
15.某车间有 22 名工人,每人每天可以生产 12 个螺钉或 20 个螺母,1 个螺钉需要配 2
个螺母,为使每天生产的螺钉和螺母刚好配套,应安排
人生产螺钉.
16.一个小正方体的六个面分别标有数字1, 2 , 3 , 4 , 5 , 6 .将它按如图所示的方 式顺时针滚动,每滚动 90 算一次,则滚动第 2023次时,小正方体朝下一面标有的数字
1 A.
4
B. 1 4
C.4
D. 4
5.小明同学在解方程 5x 1 mx 3 时,把数字 m 看错了,解得 x 4 ,则该同学把 m 3
看成了( )
A.3
B. 128 9
C.8
D. 8
6.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最
小值是( )
A.5
B.6
C.7
9.计算: 3 2 2 .
C.170
D.189
10.若 a 2 b 32 0 ,则 ba 的值为 .
11.多项式 x2 y 2x4 y xy3 2 y 是
次
项式.
12.若 x 2 , y 8 ,且 x y 则 x y =
13.规定如下两种运算: x y 2xy 1; x y x 2 y 1.例如: 2 3 2 2 3 1 13; 2 3 2 2 3 1 7 .若 a (4 5) 的值为 79,则 a
22.已知: A x 1 y 2 , B x y 1 . 2
(1)化简 2A B ; (2)若 3y 4x 的值为 4,求 A B 的值;
(3)当 y 3 时, 4A 2 A B 5 ,求 x 的值.
人教版七年级上册数学期末考试及答案
人教版七年级上册数学期末考试及答案work Information Technology Company.2020YEAR人教版七年级上册数学期末考试及答案————————————————————————————————作者:————————————————————————————————日期:人教版七年级第一学期期末数学试卷(满分100分,考试时间100分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有..一项..是符合题目要求的,请将正确选项的代号填入题后括号内. 1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( ) A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104 5.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6.如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( ) A .a <ab <2abB .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2m D .2n图1 图2 从正南方向看 从正西方向看 第7题 第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)mnn n17.有理数a、b、c在数轴上的位置如图所示,化简cbcaba-+--+的结果是________________.18.一个角的余角比它的补角的32还少40°,则这个角为度.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
人教版七年级上册数学期末考试(参考答案)
人教版七年级上册数学期末考试(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x--=的解互为相反数,则a 的值为( ) A .-13B .13C .73D .-12.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y == 4381524,…,其中第6个数为( ) A .377 B .355 C .356 D .335.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab<6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.点()1,3M m m ++在y 轴上,则点M 的坐标为( ) A .()0,4-B .()4,0C .()2,0-D .()0,28.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6669.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.已知M=x2-3x-2,N=2x2-3x-1,则M______N.(填“<”“>”或“=”)4.若+x x-有意义,则+1x=___________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解不等式组513(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.2.已知关于x的不等式21122m mxx->-.(1)当m=1时,求该不等式的非负整数解;(2)m取何值时,该不等式有解,并求出其解集.3.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、D6、A7、D8、B9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、40°3、<4、15、16、76.510⨯三、解答题(本大题共6小题,共72分)1、24x -<≤,数轴见解析.2、(1)0,1;(2)当m ≠-1时,不等式有解;当m> -1时,原不等式的解集为x<2;当m< -1时,原不等式的解集为x>2.3、(1)(﹣4,﹣4),D (1,2),面积为30;(2)∠MPO=∠AMP+∠PON 或∠MPO=∠AMP ﹣∠PON ;(3)存在,t=10, P 点坐标为(﹣4,﹣3).4、略5、解:(1)200. (2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
(完整版)人教版七年级数学上册期末试卷及答案doc
(完整版)人教版七年级数学上册期末试卷及答案doc一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元 2.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90° 3.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b4.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .5.4 =( )A .1B .2C .3D .46.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 7.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+8.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°10.下列方程变形正确的是()A.方程110.20.5x x--=化成1010101025x x--=B.方程 3﹣x=2﹣5(x﹣1),去括号,得 3﹣x=2﹣5x﹣1 C.方程 3x﹣2=2x+1 移项得 3x﹣2x=1+2D.方程23t=32,未知数系数化为 1,得t=111.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④12.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.1202013.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查14.当x=3,y=2时,代数式23x y-的值是()A.43B.2 C.0 D.315.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题16.把53°24′用度表示为_____.17.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.18.9的算术平方根是________19.化简:2xy xy +=__________.20.已知23,9n m n a a -==,则m a =___________.21.计算:()222a -=____;()2323x x ⋅-=_____.22.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;23.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 24.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.25.化简:2x+1﹣(x+1)=_____.26.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.27.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.28.钟表显示10点30分时,时针与分针的夹角为________.29.用度、分、秒表示24.29°=_____.30.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.36.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?37.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.4.B解析:B【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.5.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.6.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.解析:D【解析】【分析】方程两边同乘以6即可求解.【详解】12132x x +-=, 方程两边同乘以6可得,2x-6=3(1+2x ).故选D.【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.8.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.9.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.10.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.11.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.12.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.13.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.14.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.15.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.二、填空题16.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.17.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;18.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.19..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.20.27【解析】【分析】首先根据an =9,求出a2n =81,然后用它除以a2n−m ,即可求出am 的值.【详解】解:∵an =9,∴a2n =92=81,∴am =a2n÷a2n−m =81÷3=2解析:27【解析】【分析】首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.【详解】解:∵a n =9,∴a 2n =92=81,∴a m =a 2n ÷a 2n−m =81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键22.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大23.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.24.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.26.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14027.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.28.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.29.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.30.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.33.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.34.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11,∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.35.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速。
2023—2024学年最新人教新版七年级上学期数学期末考试试卷(人教版含答卷)
2023—2024学年最新人教新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、﹣8的相反数是()A.8B.﹣8C.±8D.2、北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED 灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城.将数据21000用科学记数法表示为()A.21×103B.2.1×104C.2.1×105D.0.21×1063、下列是根据等式的性质进行变形,正确的是()A.若ax=ay,则x=y B.若a﹣x=b+x,则a=bC.若x=y,则x﹣5=y+5D.若,则x=y4、将一副三角板按如图所示的位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.5、已知x﹣3y=,则1﹣2x+6y的值是()A.B.C.D.26、如图是一个正方体的展开图,其中每个面上都标注了字母,则展开前与面C相对的是()A.D面B.E面C.F面D.A面7、已知∠A是锐角,∠A与∠B互补,∠A与∠C互余,则∠B﹣∠C等于()A.45°B.60°C.90°D.180°8、如图,C、D是线段AB上两点,若AD=8,DB=17,且D是AC的中点,则BC的长是()A.8B.9C.10D.119、《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱多出3钱;每人出7钱,还差4钱.问:人数、物价各是多少?若设物价是x钱,根据题意列一元一次方程,正确的是()A.B.C.D.10、用木棒按如图所示的规律摆放图形,第100个图形需要木棒根数是()A.501B.502C.503D.504二、填空题(每小题3分,满分18分)11、在数轴上与2距离为2个单位的点所表示的数是.12、武汉冬季一天的温差是12℃,这天最低气温是﹣3℃,最高气温是℃.13、9点30分时,钟表上时针与分针所组成的角为度.14、比较大小:(填“<”、“>”或“=”)15、某种商品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为元.16、对于有理数x,y,若,则的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.19、关于x的方程3x+2m=﹣1与方程x+2=2x+1的解相同,求m的值.20、已知多项式A=3x2﹣mx+6,B=2nx2﹣4x﹣1(1)若与2a3bc n的和为单项式,试求2A﹣B的值.(2)若式子2A+B的值与x无关,求5m﹣2n的值.21、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.22、某校篮球社团决定购买运动装备,经了解,甲、乙两家运动产品经销店以同样的价格出售某种品牌的队服和篮球,已知每套队服比每个篮球多50元,两套队服与三个篮球的费用相等.经洽谈,甲店的优惠方案是:每购买十套队服,送一个篮球,乙店的优惠方案是:若购买队服超过80套,则购买篮球打八折.(1)求每套队服和每个篮球的价格是多少?(2)若篮球社团购买100套队服和m个篮球(m是大于10的整数),请用含m的式子分别表示出到甲经销店和乙经销店购买装备所花的费用;(3)在(2)的条件下,若m=60,通过计算判断到甲、乙哪家经销店购买更划算.23、如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a,b满足(a﹣3)2+|b﹣2|=0时,求矩形中空白部分的面积.24、如图所示,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=28°,求∠DOE的度数;(2)在图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,满足∠AOC﹣4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.25、数轴上有A、B、C三点,如图1,点A、B表示的数分别为m、n(m<n),点C在点B的右侧,AC﹣AB=2.(1)若m=﹣8,n=2,点D是AC的中点.①则点D表示的数为.②如图2,线段EF=a(E在F的左侧,a>0),线段EF从A点出发,以1个单位每秒的速度向B点运动(点F不与B点重合),点M是EC的中点,N 是BF的中点,在EF运动过程中,MN的长度始终为1,求a的值;(2)若n﹣m>2,点D是AC的中点,若AD+3BD=4,试求线段AB的长.。
新人教版七年级数学上册期末考试(参考答案)
新人教版七年级数学上册期末考试(参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若方程: 与的解互为相反数, 则a的值为()A. -B.C.D. -12. 如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A. 48B. 60C. 76D. 803. 按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.4.将一副三角板和一张对边平行的纸条按如图摆放, 两个三角板的一直角边重合, 含30°角的直角三角板的斜边与纸条一边重合, 含45°角的三角板的一个顶点在纸条的另一边上, 则∠1的度数是()A. 15°B. 22.5°C. 30°D. 45°5.实效m, n在数轴上的对应点如图所示, 则下列各式子正确的是()A. B. C. D.6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7. 把根号外的因式移入根号内的结果是()A. B. C. D.8. 的计算结果的个位数字是()A. 8B. 6C. 2D. 09.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 若则的值是()A. 2B. 1C. 0D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, DA⊥CE于点A, CD∥AB, ∠1=30°, 则∠D=________.3. 正五边形的内角和等于______度.4. 若有意义,则___________.5.若, 则________.6. 如图,AB∥CD,直线EF分别交AB.CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. (1)若a2=16, |b|=3, 且ab<0, 求a+b的值.(2)已知a、b互为相反数且a≠0, c、d互为倒数, m的绝对值是3, 且m位于原点左侧, 求的值.3. 小玲和弟弟小东分别从家和图书馆同时出发, 沿同一条路相向而行, 小玲开始跑步中途改为步行, 到达图书馆恰好用30min. 小东骑自行车以300m/min的速度直接回家, 两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m, 小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式, 并写出自变量的取值范围;(3)求两人相遇的时间.4. 如图, 已知为直线上一点, 过点向直线上方引三条射线、、, 且平分, , , 求的度数5. 育人中学开展课外体育活动, 决定开设A: 篮球、B: 乒乓球、C: 踢毽子、D: 跑步四种活动项目. 为了解学生最喜欢哪一种活动项目(每人只选取一种), 随机抽取了部分学生进行调查, 并将调查结果绘成如甲、乙所示的统计图, 请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ , 其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人, 请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6. 重百江津商场销售AB两种商品, 售出1件A种商品和4件B种商品所得利润为600元, 售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完, 重百商场决定再次购进A、B两种商品共34件, 如果将这34件商品全部售完后所得利润不低于4000元, 那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.C3.C4.A5.C6.C7、B8、D9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.22.60°3.5404.15.±26.54°三、解答题(本大题共6小题, 共72分)1.原方程组的解为2.(1);(2)9.3、(1)家与图书馆之间路程为4000m, 小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.4.∠BOE的度数为60°5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6.(1)200元和100元(2)至少6件。
人教版七年级上册数学期末考试【及参考答案】
人教版七年级上册数学期末考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<< 9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.27的立方根为________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程3157146x x ---=2.求不等式213x +≤325x -+1的非负整数解.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE=;(2)试说明:M N∠=∠.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、A7、C8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、55°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、35、AC=DF(答案不唯一)6、±3三、解答题(本大题共6小题,共72分)1、x=﹣12、不等式的非负整数解为0、1、2、3、4.3、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、(1)略;(2)略.5、()117、20;()22次、2次;()372;()4120人.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。
人教版初一上册数学期末试卷及答案
人教版初一上册数学期末试卷及答案考点】去括号法则.分析】去括号法则:①正数前的括号去掉不变;②负数前的括号去掉变号;③括号前有加号或减号时,括号里的符号不变,括号外的符号加上或减去括号里的符号.解答】解:A、2x2﹣(x﹣3y)=2x2﹣x+3y,正确;B、x2+(3y2﹣2xy)=x2+3y2﹣2xy,正确;C、a2﹣(﹣a+1)=a2﹣a﹣1,错误.去括号时,﹣(﹣a)=a。
所以,a2﹣(﹣a+1)=a2+a﹣1。
故选:C.点评】此题考查了去括号法则,理解和掌握去括号法则是解题的关键.6.下列各式中,正确的是()A.﹣2﹣(﹣3)=1B.﹣2﹣3=﹣5C.3﹣﹣2=5D.﹣4﹣(﹣3)=﹣1考点】运算法则.分析】根据加减法的运算法则,计算每个式子的结果,判断哪个式子正确.解答】解:A、﹣2﹣(﹣3)=﹣2+3=1,正确;B、﹣2﹣3=﹣5,正确;C、3﹣﹣2=3+2=5,正确;D、﹣4﹣(﹣3)=﹣4+3=﹣1,正确.故选:ABCD.点评】此题考查了加减法的运算法则,掌握加减法的运算法则是解题的关键.7.下列各式中,正确的是()A.﹣3×(﹣5)=15B.﹣3×5=﹣15C.(﹣3)×5=﹣15D.3×﹣5=﹣15考点】运算法则.分析】根据乘法的运算法则,计算每个式子的结果,判断哪个式子正确.解答】解:A、﹣3×(﹣5)=15,正确;B、﹣3×5=﹣15,正确;C、(﹣3)×5=﹣15,正确;D、3×﹣5=﹣15,正确.故选:ABCD.点评】此题考查了乘法的运算法则,掌握乘法的运算法则是解题的关键.8.下列各式中,正确的是()A.﹣2÷3=﹣6B.﹣6÷﹣2=3C.3÷﹣2=﹣1.5D.﹣3÷﹣2=1.5考点】运算法则.分析】根据除法的运算法则,计算每个式子的结果,判断哪个式子正确.解答】解:A、﹣2÷3=﹣2/3,正确;B、﹣6÷﹣2=3,正确;C、3÷﹣2=﹣1.5,正确;D、﹣3÷﹣2=1.5,正确.故选:ABCD.点评】此题考查了除法的运算法则,掌握除法的运算法则是解题的关键.9.下列各式中,正确的是()A.﹣2+3×5=13B.﹣2﹣3×5=﹣17C.(﹣2+3)×5=5D.﹣2+(3﹣5)=﹣4考点】运算法则.分析】根据运算的优先级,计算每个式子的结果,判断哪个式子正确.解答】解:A、﹣2+3×5=13,正确;B、﹣2﹣3×5=﹣17,正确;C、(﹣2+3)×5=5,正确;D、﹣2+(3﹣5)=﹣4,正确.故选:ABCD.点评】此题考查了运算的优先级,掌握运算的优先级是解题的关键.10.下列各式中,正确的是()A.3(﹣2+5)=﹣9B.(﹣3+5)×2=4C.(﹣2﹣5)×3=﹣21D.﹣(2﹣5)×3=9考点】运算法则.分析】根据运算的优先级,计算每个式子的结果,判断哪个式子正确.解答】解:A、3(﹣2+5)=3×3=﹣9,正确;B、(﹣3+5)×2=4,正确;C、(﹣2﹣5)×3=﹣21,正确;D、﹣(2﹣5)×3=9,正确.故选:ABCD.点评】此题考查了运算的优先级,掌握运算的优先级是解题的关键.二、填空题(共10小题,每小题3分,满分30分)11.2的相反数是______.解答】解:2的相反数是﹣2.点评】此题考查了相反数的知识,比较简单,注意掌握相反数的定义和性质.12.﹣3的绝对值是______.解答】解:﹣3的绝对值是3.点评】此题考查了绝对值的知识,掌握绝对值的定义和性质是解题的关键.13.﹣2×3×﹣4=______.解答】解:﹣2×3×﹣4=24.点评】此题考查了乘法的运算法则,掌握乘法的运算法则是解题的关键.14.﹣3﹣(﹣2﹣4)=______.解答】解:﹣3﹣(﹣2﹣4)=﹣3+2+4=3.点评】此题考查了加减法的运算法则,掌握加减法的运算法则是解题的关键.15.3÷﹣4=______.解答】解:3÷﹣4=﹣3/4.点评】此题考查了除法的运算法则,掌握除法的运算法则是解题的关键.16.﹣5÷(﹣2)=______.解答】解:﹣5÷(﹣2)=2.5.点评】此题考查了除法的运算法则,掌握除法的运算法则是解题的关键.17.﹣3×(﹣2+5)=______.解答】解:﹣3×(﹣2+5)=9.点评】此题考查了乘法的运算法则,掌握乘法的运算法则是解题的关键.18.(﹣2)2=______.解答】解:(﹣2)2=4.点评】此题考查了指数的知识,掌握指数的定义和性质是解题的关键.19.3的相反数是______.解答】解:3的相反数是﹣3.点评】此题考查了相反数的知识,比较简单,注意掌握相反数的定义和性质.20.﹣4的绝对值是______.解答】解:﹣4的绝对值是4.点评】此题考查了绝对值的知识,掌握绝对值的定义和性质是解题的关键.三、解答题(共5小题,每小题6分,满分30分)21.(12分)XXX家有一块长方形的草坪,长为12米,宽为8米,他要用砖头把草坪围起来,砖头的长和宽都是20厘米,问他最少要用多少块砖头?解答】解:长方形草坪周长为2(12+8)=40米。
新人教版七年级数学(上册)期末试卷及答案(完美版)
新人教版七年级数学(上册)期末试卷及答案(完美版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180° 3.若229x kxy y -+是一个完全平方式,则常数k 的值为( ) A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2xx y+-B .22y xC .3223y xD .222()y x y -5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.若|abc |=-abc ,且abc ≠0,则||||b ac a b c++=( )A .1或-3B .-1或-3C .±1或±3D .无法判断10.计算()233a a ⋅的结果是( ) A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x y x y -=-⎧⎨+=⎩ (2)4(1)3(2)833634x y x y --+=⎧⎪++⎨=⎪⎩2.先化简,再求值(1)2229x 6x 3x x 3⎛⎫+-- ⎪⎝⎭,其中x 2=-;(2)()()()22222a b ab 2a b 12ab 1+---+,其中a 2=-,b 2=.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;x 时,求S的值.(3)当2004.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、B6、C7、C8、A9、A 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、105°3、70.4、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、(1)21x y =⎧⎨=⎩;(2)62x y =⎧⎨=⎩2、(1)26x 8x +;20;(2)0;0;3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、60°5、(1)20%;(2)6006、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
2023-2024年人教版七年级上册数学期末测试题(含简单答案)
2023-2024年人教版七年级上册数学期末测试题
一、单选题(每题3分,共24分). . .
.
.南朝宋•范晔在《后汉书将军前在南阳,建此大策,常以为落落A .有4.在多项式A .3,2
5.已知,则2218x x ++21x y -=-
A .
B .
C .
D .二、填空题(每题3分,共24分)
14.若关于的方程和三、计算题(共72分)
27︒57︒58︒60︒
x ()23a x -=2
(1)求线段的长度;
AM
.
(1)求的度数;
(2)若与互余,求的度数.
26
.如图,已知数轴上点
A 表示的数为,点
B 表示的数为5,点
C 到点A ,点B 的距离相等.作答下列问题:
(1)点C 表示的数是______.
(2)若点A 以每秒2个单位长度的速度沿数轴向右匀速运动,点B 以每秒1个单位长度沿数轴向左匀速移动,两点同时移动,当点A 运动到所在的点处时,求A ,B 两点间的距离.
(3)若点B 静止不动,点A 以每秒2个单位长度沿数轴向右匀速移动,求经过多长时间A ,B 两点距离为4个单位长度.
AOC ∠MOD ∠BOP ∠AOM ∠COP ∠7-3-
参考答案:。
人教版七年级上学期数学《期末考试卷》含答案解析
(1)5(2﹣x)=﹣(2x﹣7);
(2)
[答案](1)x=1;(2)x=
[解析]
[分析]
(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
[详解](1)去括号得:10﹣5x=7﹣2x,
移项得:﹣5x+2x=7﹣10,
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-2020的相反数是()
A.-2020B.2020C. D.
13.计算:3+2×(﹣4)=_____.
14.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.
15.方程x+5= (x+3)的解是________.
16.若x、y为有理数,且|x+2|+(y﹣2)2=0,则( )2019的值为_____.
17.若代数式x2+3x﹣5 值为2,则代数式2x2+6x﹣3的值为_____.
A.1个B.2个C.3个D.4个
9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
(2)(﹣34)× +(﹣16)
人教版七年级上册数学期末测试卷及含答案(完整版)
人教版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为A.14×10 6B.1.4×10 7C.1.4×10 8D.0.14×10 82、一个正方体的表面展开图如图所示,把它折成正方体后,与“我"字相对的字是()A.“细”B.“心”C.“检”D.“查”3、下列运算正确的是()A. B. C. D.4、甲‚乙‚丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高 ( )A.5米B.10米C.25米D.35米5、在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A. 亿次/秒B. 亿次/秒C. 亿次/秒 D. 亿次/秒6、在北京筹办2022年冬奥会期间,原首钢西十筒仓一片1130000平方米的区域被改建为北京冬奥组委办公区,将130000用科学记数法表条是应为()A.13×10 4B.1.3X10 7C.013x10 6D.1.3x10 57、若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.-1B.0C.1D.8、化简5(2x-3)-4(3-2x)之后,可得下列哪一个结果()A.2x-27B.8x-15C.12x-15D.18x-279、近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×10 8B.6.5×10 7C.6.5×10 8D.65×10 610、如果有理数a和它的倒数及相反数比较,其大小关系为﹣a<<a,那么有()A.a<﹣1B.﹣1<a<0C.0<a<1D.a>111、从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60B.﹣36C.﹣90D.﹣3012、下列各数|-2|,-|2|,-(-2),-|-2|中,负数的个数有( )A.1个B.2个C.3个D.4个13、如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是()A.∠BCD和∠ACFB.∠ACD和∠ACFC.∠ACB和∠DCBD.∠BCF 和∠ACF14、下列说法正确的是( )A.正整数和负整数统称为整数B.互为相反数的两个数的绝对值相等 C.-a一定是负数 D.绝对值等于它本身的数一定是正数15、比-1小2的数是( )A.-3B.-2C.-1D.-二、填空题(共10题,共计30分)16、比较大小:________ .17、有下列各题:①由x=,得x=1;②由=2,得x﹣7=10,解得x=17;③由6x﹣3=x+3,得5x=0;④由2﹣=,得12﹣x﹣5=3(x+3).其中出现错误的是________ .(填序号)18、用“<”连接与:________19、观察下列图形,若将一个正方形平均分成n2个小正方形,则一条直线最多可穿过________个小正方形.20、按如下规律摆放三角形:则第(4)堆三角形的个数为________;第(n)堆三角形的个数为________.21、如果∠1+∠2=90°,而∠2与∠3互余,那么∠1与∠3的数量关系是________.22、00:12:14,天猫双十一总成交额超36200000000元,已超过双十一全天的成交额,其中36200000000用科学记数法表示为:________.23、绝对值大于2且不大于5的所有负整数的和是________,绝对值不大于5的所有整数的积是________.24、猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是________.25、一个数的倒数是它本身,这个数是________.三、解答题(共5题,共计25分)26、计算:27、先化简,再求值:,其中28、在数轴上,点A到原点的距离为3,点B到原点的距离为5,如果点A表示的有理数为a,点B表示的有理数为b,求a与b的乘积.29、如图,平分,求的度数.30、两条平行线上共有k个点,用这k个点恰可以连接1309个三角形,那么k 是多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、D5、B6、D7、A8、D9、B11、B12、B13、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
人教版七年级上册数学期末考试试题含答案
人教版七年级上册数学期末考试试卷一、单选题1.下列各组数中,相等的是()A .()22-与22-B .22-与22-C .()32-与32-D .32-与32-2.若()1220a a x ---=是关于x 的一元一次方程,则a =()A .±2B .2C .0D .-23.下列各组单项式中,为同类项的是()A .a 3与a 2B .212a b 与2ba 2C .2xy 与2xD .﹣3与a4.我国国土面积约为960万平方千米,用科学记数法可表示为()平方千米.A .59610⨯B .496010⨯C .79.610⨯D .69.610⨯5.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有()A .1个B .2个C .3个D .4个6.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有()A .一个B .两个C .三个D .四个7.下列各图中,可以是一个正方体的平面展开图的是()A .B .C .D .8.已知a ,b 在数轴上的位置如图所示,则化简|a ﹣b|+|a+b|的结果是()A .2aB .﹣2aC .0D .2b9.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,……,按此规律,图形⑦中星星的颗数是()A .43B .45C .41D .5310.A 、B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,2h 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发x 小时后追上甲车,根据题意可列方程为()A .60(x +2)=100xB .60x =100(x -2)C .60x +100(x -2)=600D .60(x +2)+100x =600二、填空题11.关于单项式3223a b π-,系数为_______.12.若x=2是方程8﹣2x=ax 的解,则a=.13.已知代数式2−3的值为−7,则代数式6−9+8的值为______.14.已知线段AB 10cm =,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC 2=cm ,则线段DC =______.15.钟表在3点30分时,它的时针与分针所夹的角是_____度.16.一种商品零售价为600元,为适应竞争,商店按零售价的八折销售,则销售价______元.17.按下面的程序计算:若输入x =100,则输出结果是501;若输入x =25,则输出结果是631;若开始输入的数x 为正整数,最后输出结果为781,则开始输入的数x 的所有可能的值为_____.三、解答题18.计算:32112(3)4⎡⎤--⨯--⎣⎦19.计算:()()2222533a b ab ab a b --+20.5121136x x +--=.21.一个角的补角比这个角的余角3倍还多10︒,求这个角的度数.22.先化简,后求值:已知()21302x y -++=求代数式()222642129xy x x xy ⎡⎤----+⎣⎦的值23.探索规律:观察下面算式,并解答问题:213=4=2+2135=9=3++21357=16=4+++213579=25=5++++(1)试猜想135791113151719+++++++++=_________;(2)试猜想()()()135********n n n ++++++-++++……=________;(3)请用上述规律计算:10011003100520152017+++++…….(请算出最后数值哦!并写出计算过程)24.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA+PN 的值不变,选择一个正确的结论,并求出其值.26.如图,射线OC 、OD 在∠AOB 内部,∠AOB =α,∠COD =β,分别作∠AOC 和∠BOD 的平分线OM 、ON ,(1)当α=130°,β=40°时,请你填空:∠1+∠3=______°,∠MON =______°;(2)聪明的小芳通过探究发现,当射线OC 、OD 的位置在∠AOB 内变化时,∠MON 与α、β之间总满足∠MON =+2αβ,你是否认同她的这一结论?请说明理由;参考答案1.C【分析】根据有理数乘方的意义逐一计算并判断即可.【详解】解:A .()224-=,22-=-4,所以()22-≠22-,故本选项不符合题意;B .224-=,22-=-4,所以22-≠22-,故本选项不符合题意;C .()328-=-,328-=-,所以()32-=32-,故本选项符合题意;D .382-=,328-=-,所以32-≠32-,故本选项不符合题意.故选C .【点睛】此题考查的是有理数乘方的运算,掌握有理数乘方的意义是解决此题的关键.2.D【分析】根据一元一次方程的定义即可求出结论.【详解】解:∵()1220a a x ---=是关于x 的一元一次方程,∴1120a a ⎧-=⎨-≠⎩解得:a =-2故选D .【点睛】此题考查的是根据一元一次方程的定义求参数的值,掌握一元一次方程的定义是解决此题的关键.3.B【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.4.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:960万平方千米=9600000平方千米=69.610 平方千米故选D .【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.5.D【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D6.C【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A 、B 两点间的距离是指A 、B 两点间的线段的长度,原来的说法是错误的.故选C .【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.7.C【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图,故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.8.B【详解】解:由数轴可知a <0<b ,|a |>|b |,所以a -b <0,a +b <0,所以|a ﹣b |=b -a ,|a +b |=-(a +b ),所以|a ﹣b |+|a +b |=(b -a )-(a +b )=b -a -a -b=-2a .故选B .9.C【分析】设图形n 中星星的颗数是a n (n 为正整数),列出各图形中星星的个数,根据数据的变化找出变化规律“215122n n +-”,依此规律即可得出结论.【详解】解:设图形n 中星星的颗数是a n (n 为正整数),∵a 1=2=1+1,a 2=6=(1+2)+3,a 3=11=(1+2+3)+5,a 4=17=(1+2+3+4)+7,∴a n =1+2+…+n+(2n-1)=(1)2n n ++(2n-1)=215122n n +-,∴a 7=21577122⨯+⨯-=41.故选:C .【点睛】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.10.A【详解】设乙车出发x 小时后追上甲车,根据等量关系“乙车x 小时走的路程=甲车(x+2)小时走的路程”,据此列方程100x=60(x+2).故选A .11.23π-【分析】根据单项式系数的定义:单项式中的数字因数叫做单项式的系数,即可得出结论.【详解】解:单项式3223a b π-的系数为:23π-故答案为:23π-.【点睛】此题考查的是单项式系数,掌握单项式系数的定义是解决此题的关键,需注意π是数字.12.2【详解】试题分析:把x=2,代入方程得到一个关于a 的方程,即可求解.解:把x=2代入方程,得:8﹣4=2a ,解得:a=2.故答案是:2.考点:一元一次方程的解.13.-13【解析】【分析】观察题中两个代数式,利用整体求值即可.【详解】解:6−9+8=3(2−3)+8=-13.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.14.7cm或3cm【分析】分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.【详解】解:∵点D是线段AB的中点,∴BD=0.5AB=0.5×10=5cm,(1)C在线段AB延长线上,如图.DC=DB+BC=5+2=7cm;(2)C在线段AB上,如图.DC=DB-BC=5-2=3cm.则线段DC=7cm或3cm.15.75【分析】根据时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,每一格之间的夹角为30 ,可得出结果.【详解】解: 钟表上从1到12一共有12格,每个大格30 ,∴时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,∴分针与时针的夹角是2.53075⨯= .故答案为75 .【点睛】本题考查了钟面角的有关知识,解题关键是得出钟表上从1到12一共有12格,每个大格30 .16.480【分析】用600乘折扣数即可得出结论.【详解】解:销售价为600×80%=480元故答案为:480.【点睛】此题考查的是有理数乘法的应用,掌握实际问题中各个量之间的关系是解决此题的关键.17.1或6或31或156【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为1或6或31或156.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.18.3.4【解析】【分析】先算乘方,再算括号里面的减法,再算乘法,最后算减法.【详解】原式()1129,4=--⨯-()1129,4=--⨯-()117,4=--⨯-71,4=-+3.4=【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.19.22126a b ab -【分析】先去括号,再合并同类项即可.【详解】()()2222533a b ab ab a b --+22221553a b ab ab a b=---22126a b ab =-.【点睛】本题考查了整式的加减运算,熟练掌握去括号的法则是解题的关键.20.38x =【分析】去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:5121136x x+--=去分母,得()()251216x x +--=去括号,得102216x x +-+=移项,得102612x x -=--合并同类项,得83x =系数化1,得38 x=【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.21.这个角的度数为50︒【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】解:设这个角的度数是x︒,则()18039010x x-=-+50x=答:这个角的度数为50︒【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.22.14【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.【详解】由题意得,x-3=0,y+12=0,解得,x=3,y=-1 2,则2xy2-[6x-4(2x-1)-2xy2]+9 =2xy2-6x+4(2x-1)+2xy2+9 =2xy2-6x+8x-4+2xy2+9=4xy2+2x+5=4×3×(-12)2+2×3+5=14.【点睛】本题考查的是整式的加减混合运算、非负数的性质,掌握整式的加减混合运算法则是解题的关键.23.(1)100;(2)()22n +;(3)768081,过程见解析【分析】(1)根据已知等式,找出运算规律即可得出结论;(2)根据(1)所找规律即可得出结论;(3)根据(1)所找规律求出135999……++++的值,再求出135999100110032017…………++++++++,然后两式相减即可求出结论.【详解】解:(1)221313=4=22+⎛⎫+= ⎪⎝⎭2215135=9=32+⎛⎫++= ⎪⎝⎭22171357=16=42+⎛⎫+++= ⎪⎝⎭221913579=25=52+⎛⎫++++= ⎪⎝⎭∴135791113151719+++++++++=21192+⎛⎫= ⎪⎝⎭100故答案为:100;(2)()()()135********n n n ++++++-++++……=()21232n ++⎡⎤⎢⎥⎣⎦=()22n +故答案为:()22n +;(3)135999……++++=219992500002+⎛⎫= ⎪⎝⎭135999100110032017…………++++++++=21201710180812+⎛⎫= ⎝⎭∴10011003100520152017+++++……=()135999100110032017…………++++++++-()135999……++++=1018081250000-=768081【点睛】此题考查的是有理数运算的探索规律题,找出运算规律是解决此题的关键.24.(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【分析】(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件,根据题意列出方程即可求出x 的值,然后根据“获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y 折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件由题意可得:22x +30(12x +15)=6000解得:x=150∴购进乙商品12×150+15=90件∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y 折销售由题意可得:(29-22)×150+(40×10y -30)×90×3-1950=180解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.25.(1)3秒;(2)当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①.【分析】(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24-x,PB=24-2x,表示出2BM-BP后,化简即可得出结论.(3)PA=2x,AM=PM=x,PB=2x-12,PN=12PB=x-6,分别表示出MN,MA+PN的长度即可作出判断.【详解】解:(1)设出发x秒后PB=2AM,当点P在点B左边时,AM=x,PA=2x,PB=12−2x 由题意得,12−2x=2x,解得:x=3;当点P在点B右边时,PA=2x,PB=2x−12,AM=x,由题意得:2x−12=2x,方程无解;综上可得:出发3秒后PB=2AM.(2)∵AM=x,BM=12−x,PB=12−2x,∴2BM−BP=2(12−x)−(12−2x)=12;(3)选①;∵PA=2x,AM=PM=x,PB=2x−12,PN=12PB=x−6,∴①MN=PM−PN=x−(x−6)=6(定值);②MA+PN=x+x−6=2x−6(变化).点睛:本题考查了两点间的距离,解答本题的关键是用含有时间的式子表示出各线段的长度. 26.(1)45°;85°;(2)是,理由见解析【分析】(1)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠3=∠4=12∠BOD,∠1=∠2=12∠AOC,从而求出∠1+∠3和∠2+∠4,即可求出∠MON;(2)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠4=12∠BOD,∠2=12∠AOC,从而求出∠2+∠4,即可求出∠MON;【详解】解:(1)∵∠AOB =α=130°,∠COD =β=40°∴∠BOD +∠AOC=∠AOB -∠COD=90°∵ON 、OM 分别平分∠BOD 和∠AOC∴∠3=∠4=12∠BOD ,∠1=∠2=12∠AOC∴∠1+∠3=∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD )=12×90°=45°∴∠MON =∠2+∠4+∠COD=45°+40°=85°故答案为:45°;85°;(2)是,理由如下:∵∠AOB =α,∠COD =β∴∠BOD +∠AOC=∠AOB -∠COD=α-β∵ON 、OM 分别平分∠BOD 和∠AOC∴∠4=12∠BOD ,∠2=12∠AOC∴∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD )=2αβ-∴∠MON =∠2+∠4+∠COD =2αβ-+β=2αβ+【点睛】此题考查的是角的和与差,掌握各个角之间的关系是解决此题的关键.。
人教版七年级数学上册期末考试试卷(含答案)
人教版七年级数学上册期末考试试卷(含答案)人教版七年级数学上册期末考试试卷(含答案)第一部分选择题(每小题2分,共40分)1.若a=2,b=-3,则下列哪个式子的值最小?A。
a+b B。
a-b C。
-a-b D。
-a+b2.下列各组数中,哪一组数的平均数最大?A。
3,4,5 B。
0,1,2 C。
-2,-1,0 D。
-5,-4,-33.若a:b=3:4,b:c=5:6,则a:b:c=()A。
3:4:5 B。
5:6:4 C。
9:12:10 D。
15:20:244.已知正方形的周长为20cm,则它的面积是()A。
25cm² B。
50cm² C。
100cm² D。
400cm²5.已知一扇形的半径为5cm,圆心角为60°,则该扇形的面积是()A。
5πcm² B。
12.5πcm² C。
25πcm² D。
30πcm²6.已知一个角的补角是30°,则这个角的大小是()A。
30° B。
60° C。
90° D。
120°7.下列各组数中,哪一组数的方差最小?A。
1,2,3 B。
2,5,8 C。
0,5,10 D。
-1,0,18.已知一条边长为5cm的正方形,它的面积是()A。
5cm² B。
10cm² C。
15cm² D。
25cm²9.已知一个角的余角是45°,则这个角的大小是()A。
45° B。
90° C。
135° D。
180°10.若a:b=2:3,b:c=4:5,则a:b:c=()A。
2:3:4 B。
4:6:5 C。
8:12:15 D。
16:24:2011.下列各组数中,哪一组数的中位数最大?A。
1,2,3 B。
2,5,8 C。
0,5,10 D。
-1,0,112.若一个角的补角比它的三倍还小18°,则这个角的大小是()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D CBA 2011初一数学上学期期末考试精品复习资料二一、选择题(本题共8个小题,每小题3分,共24分)说明:下列各题都给出A 、B 、C 、D 四个结论,把唯一正确结论的代号填在下面的表格中1、下列四组变形中,属于移项变形的是 A 、由5100x +=,得510x =- B 、由43x=,得12x = C 、由34y =-,得43y =-D 、由2(3)6x x --=,得236x x -+=2、已知x y 、是有理数且21210x y +++=(),那么x y -的值为A 、32 B 、32- C 、12 D 、12- 3、已知x y >,0a <,下列结论正确的是A 、ax ay ≥B 、ax ay ≤C 、ax ay >D 、ax ay <4、如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是5、若铺满地面的瓷砖每一个顶点处由6块相同的正多边形组成,此时的正多边形只能是A 、正三角形B 、正四边形C 、正六边形D 、正八边形 6、若一个三角形是轴对称图形,且有一个内角等于︒60,那么这个三角形是A 、直角三角形B 、等边三角形C 、等腰直角三角形D 、含︒30角的直角三角形 7、下列说法中正确的是 A 、不太可能是指发生的机会很小很小,甚至机会是0B 、 小芳同学一次同时掷三个骰子,共掷了20次,但没有掷出三个骰子的点数都是6,说明此事件不可能发生C 、 很有可能发生与必然发生是有区别的D 、 小王运气好,他买了5注体育彩票就中了特等奖,说明习彩票中特等奖是必然事件8、等腰三角形中有一个角为50°,它的一条腰上的高与底边的夹角为 A 、25° B 、25°或40° C 、40° D 、90° 二、填空题(本题共8个小题,每小题3分,共24分) 9、若2x =是方程20x a +=的解,则a = .10、已知方程324x y +=,用含x 的代数式表示y ,则y = .11、写出一个二元一次方程组,使它的解为21x y =⎧⎨=-⎩, .12、在△ABC 中,AD 是∠BAC 的平分线,若55C ∠=°,95ADB ∠=°,则BAC ∠= .13、若一个多边形的内角和为540°,则这个多边形的边数为 .14、若不等式23x m x +<-只有一个正整数解,则m 的取值范围是 . 15、若三角形两边长为4和5,则第三边长a 的取值范围是 .16、把三角板切去一个角,使它成为四边形,这件事是 事件(填“确定”或“随机”).三、解答题(本题共6小题,17~21题各6分,22题8分,共38分) 17、解方程212243x x -=-+ 18、解方程组19、解不等式,并把解集在数轴 20、解不等式组 上表示出来:62(31)216x x --≥-3(1)55(1)3(5)x y y x -=+⎧⎨-=+⎩532(3)2134x x x x ->-⎧⎪+⎨-<⎪⎩21、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,这三种洗衣机计划各生产多少台?22、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息税=利息金额 20%)四、作图与设计(本题共2小题,23题8分,24题6分,共14分)23、.在正方形网格上有一个△ABC.(1)作△ABC关于直线MN的轴对称图形;(2)在网格上最小正方形的边长为1,则△ABC的面积为.24、请你用3种方法,将如图所示的四块小正方形纸板拼成一个大的正方形,并且使拼成的大正方形是至少有两条对称轴的轴对称图案.FEBA五、解答题(本题共3小题,25、26题各7分,27题6分,共20分)25、如图,在△ABC 中,45B ∠=°,AD 是∠BAC 的角平分线,EF 垂直平分AD ,交BC 的延长线于点F .求∠FAC 的大小.26、阅读下面解方程组的方法,然后回答有关问题:解方程组 时,如果直接消元,那将是很繁琐的, 若采用下面的解法则会简便许多.解:①-②,得222x y += ,即1x y += ③ ③×16,得161616x y += ④②-④,得1x =-,从而2y = ∴方程组的解为请你采用上述方法解方程组:200620052004200420032002x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩2121a x a y a a b b x b y b +++=⎧≠⎨+++=⎩()() ()()()191817 17+1615 x y x y +=⎧⎨=⎩①②、的方程组并猜测关于x y的解是什么?并利用方程组的解加以验证.27、某商场为提高彩电销售人员的积极性,制定了新的工资分配方案,方案规定:每位销售人员的工资总额=基本工资+奖励工资。
每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资。
奖励工资发放比例如表1所示。
(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)依法纳税是我们每个工民应尽的义务根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”。
表2是缴纳个人所得税税率表。
若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后的实际得到的工资为1275元,又知A型彩电销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?参考答案一、选择题(3分×8=24分)二、填空题(3分×8=24分) 9、-4;10、x 232-;11、答案不唯一;12、80°;13、5;14、1<a <9;15、随机;16、-3≤m <0.三、解答题(共6小题,17~21题各6分,22题8分,共38分) 17、232412+-=-x x 解:方程变形得 3(2x-1)=-8x+24 6x-3= -8x+24 6x+8x=24+3 14x=27 x=1427 18、⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x解:原方程组化为⎩⎨⎧-=-=-②① 205383y x y x①-②,得4y=28 ∴y=7把y=7带入①得3x-7=8 ∴x=5∴原方程组的解为⎩⎨⎧==75y x19、6-2(3x-1)≥2x-16 解:6-6x+2≥2x-166x+2x ≤6+2+16 8x ≤24x ≤320、⎪⎩⎪⎨⎧⋯⋯+⋯⋯-②①41-32)3-(235x<x x >x 解:由不等式①得x >-1由不等式②得x <4∴不等式组的解集为-1<x <421、解:设生产Ⅰ型洗衣机x 台,则生产Ⅱ型、Ⅲ型洗衣机分别为2x 台和14x 台根据题意得:x+2x+14x=25500 17x=25500x=1500∴2x=3000,14x=21000答:略22、解:设2000元和1000元储蓄的年利率分别为x%和y%依题意得:⎩⎨⎧=⋅⋅+⋅⋅=+92.43%80%1000%80%2000%24.3%%y x y x即⎩⎨⎧=+=+92.4381624.3y x y x解这个方程组得⎩⎨⎧==99.025.2y x答:略四、作图与设计(23题8分,24题6分,共14分) 23、略24、略25、解:∵EF 垂直平分AD ∴FA=FD∴∠ADF=∠DAF又∵∠ADF=∠B+∠BAD ∠DAF=∠FAC+∠DAC ∠BAD=∠DAC∴∠FAC=∠B=45° 26、⎩⎨⎧=+=+②①200220032004200420052006y x y x解:①-②,得2x+2y=2即x+y=1③ ③×2003,得2003x+2003y=2003④ ②-④得x=-1从而y=2 ∴方程组得解为⎩⎨⎧=-=21y x猜想方程组⎩⎨⎧=+++=+++b y b x b a y a x a )1()2()1()2(的解为⎩⎨⎧=-=21y x检验略27、解:(1)当销售额为15000元时,工资总额=200+5000×5%=450元当销售额为20000元时,工资总额=200+5000×5%+5000×8%=850元∵450<800<850设甲该月的销售额为x 元,则200+5000×5%+(x-15000) ×8%=800解得x=19375 答略(2)设乙未交个人所得税前的工资未a 元,则 a-(a-800) ×5%=1275 解得a=1300∴超过20000元部分得销售额为(1300-850)÷10%=4500 ∴乙的销售额=20000+4500=24500设A 型彩电销售x 台,则B 型彩电销售了(21-x)台,则 1000x+(21-x)×1500=24500 ∴x=14 答:略。