汽车NVH分析一
汽车NVH介绍普及
NVH的分类
按照影响程度,NVH问题可以分为两类:一类是影响汽车驾 驶员和乘客舒适性的问题,如车内噪声过大、振动明显等; 另一类是影响汽车性能的问题,如发动机振动、传动系统异 响等。
按照产生机理,NVH问题可以分为空气动力性NVH问题、机 械性NVH问题和电磁性NVH问题三类。
车身振动是指汽车在行驶过程中, 由于路面不平、发动机运转等因
素引起的车身振动。
车身振动不仅影响乘坐舒适性, 还会影响汽车零部件的寿命。
降低车身振动的方法包括优化悬 挂系统设计、采用减震器等,以
提高汽车的稳定性。
声振耦合
声振耦合是指汽车在行驶过程中,由 于各种噪声和振动源的相互作用,使 得噪声和振动在车内传播和叠加的现 象。
03
在汽车研发和生产过程中,解决NVH问题需要投入大量 的人力和物力,因此,对于汽车企业和零部件供应商来 说,NVH性能的提升也是提高产品质量和降低成本的重 要途径之一。
02 NVH的主要影响因素
发动机噪音
发动机是汽车的主要噪声源之一,其产生的噪音包括燃烧噪音、机械运动噪音等。 发动机的转速、负荷和燃烧方式等因素都会影响发动机噪音的大小。
降低发动机噪音的方法包括优化设计、采用降噪技术等,以提高汽车的舒适性。
风噪和路噪
风噪是指汽车在高速行驶时, 空气与车身相互作用产生的噪 音。
路噪是指汽车轮胎与路面摩擦 产生的噪音,以及车身振动产 生的噪音。
降低风噪和路噪的方法包括优 化车身外形设计、采用隔音材 料等,以提高汽车的静谧性。
车身振动
汽车nvh介绍普及
目录
• 什么是NVH • NVH的主要影响因素 • NVH的改善措施 • NVH的未来发展趋势 • 案例分析
几种汽车NVH试验方法研究
几种汽车NVH试验方法研究一、本文概述随着汽车工业的迅速发展,消费者对汽车的要求已经不仅仅局限于外观、性能和价格等传统因素,汽车的乘坐舒适性和静谧性(NVH,即Noise、Vibration、Harshness)日益受到重视。
NVH性能是衡量汽车质量的重要指标之一,它直接关联到驾驶者和乘客的乘坐体验。
因此,研究和发展有效的汽车NVH试验方法,对于提升汽车品质和满足消费者需求具有重要意义。
本文旨在对几种常见的汽车NVH试验方法进行研究,分析各方法的优缺点,探讨其在汽车NVH性能评估中的应用。
我们将介绍NVH的基本概念和评估标准,明确试验的目的和重要性。
接着,我们将重点介绍几种常用的NVH试验方法,包括噪声测试、振动测试和冲击测试等,并分析这些方法的原理、操作步骤以及需要注意的事项。
本文还将探讨如何选择合适的试验方法,以提高试验的准确性和效率。
通过本文的研究,我们希望能够为汽车工程师和研发人员提供有益的参考,推动汽车NVH试验方法的不断改进和优化,为汽车工业的可持续发展做出贡献。
二、NVH试验方法的分类与特点NVH(Noise, Vibration, Harshness)试验是评估汽车乘坐舒适性和产品质量的重要手段。
根据不同的试验目的和测试环境,NVH试验方法可以分为多种类型,每种类型都有其独特的特点和应用场景。
道路试验是最直接反映车辆实际运行状况的NVH测试方法。
通过在真实道路环境中驾驶车辆,可以获取到最接近实际使用情况的噪声、振动和冲击数据。
这种方法的优点是结果真实可靠,能够反映车辆在各种路况和速度下的NVH性能。
然而,道路试验的成本较高,且受天气、路况等外部因素影响较大。
实验室试验通常在室内进行,可以控制试验条件,减少外部干扰。
常见的实验室试验包括:半消声室试验:在半消声室中模拟车辆运行环境,通过调整声源和反射面,可以精确测量车辆的噪声水平。
这种方法的优点是测量精度高,可以排除外部噪声的干扰。
整车NVH介绍(汽车资料汇编)
整车NVH介绍(汽车资料汇编)——姜——一、 NVH定义NVH是指Noise(噪声),Vibration(振动)和Harshness(声振粗糙度),由于以上三者在汽车等机械振动中是同时出现且密不可分,因此常把它们放在一起进行研究。
声振粗糙度是指噪声和振动的品质,是描述人体对振动和噪声的主观感觉,不能直接用客观测量方法来度量。
由于声振粗糙描述的是振动和噪声使人不舒适的感觉,因此有人称Har shness为不平顺性。
又因为声振粗糙度经常用来描述冲击激励产生的使人极不舒适的瞬态响应,因此也有人称Harshness为冲击特性。
二、噪声的种类产生汽车噪声的主要因素是空气动力、机械传动、电磁三部分。
从结构上可分为发动机(即燃烧噪声),底盘噪声(即传动系噪声、各部件的连接配合引起的噪声),电器设备噪声(冷却风扇噪声、汽车发电机噪声),车身噪声(如车身结构、造型及附件的安装不合理引起的噪声及噪声源通过各种声学途径传入车内的噪声及汽车各部分振动传递途径激发车身板件的结构振动向驾驶室内辐射的噪声组成车内噪声。
)。
其中发动机噪声占汽车噪声的二分之一以上,包括进气噪声和本体噪声(如发动机振动,配气轴的转动,进、排气门开关等引起的噪声)。
因此发动机的减振、降噪成为汽车噪声控制的关键。
此外,汽车轮胎在高速行驶时,也会引起较大的噪声。
这是由于轮胎在地面流动时,位于花纹槽中的空气被地面挤出与重新吸入过程所引起的泵气声,以及轮胎花纹与路面的撞击声。
三、噪声的抑制1、改进噪声源噪声源抑制主要为发动机减震、进气噪声抑制、排气噪声抑制及传动系噪声抑制,即优化前消声器、主消声器及降低排气吊挂刚度;改进空气滤清器;采用小动不平衡量传动轴(在动力线校核后基础上)。
1.1、发动机减震减震垫布置原则:动力总成悬置布置主要分为三点式、四点式两种,KZ218系列车型动力总成悬置采用三点式布置。
动力总成质心理论上应布置在三角形重心上,并发动机悬置平面法线交点应在动力总成惯性主轴上方。
汽车 车身NVH知识概述
车身NVH概述目录一:汽车车身NVH概述二:车身隔/吸振的技术要求三:车身隔/吸音的技术要求四:低风噪车身设计五:车身声品质控制一、车身NVH概述车辆的NVH是指在车辆工作条件下乘客感受到的噪声(noise)、振动(vibration)和声振粗糙度(harshness),NVH 是衡量汽车质量的一个综合性问题,给汽车乘客的感受是最直接和最表面的。
其中声振粗糙度指噪声和振动的品质,是描述人体对振动和噪声的主观感觉,不能直接用客观测量方法来度量。
车身NVH 开发的意义u车身NVH开发关键是平衡NVH与其他车身性能之间的关系,涉及到车身重量、成本、工艺等方面;u市场对整车舒适性的要求迅速提高,使得车身NVH的开发越来越重要;u先期的车身设计开发至关重要,可以避免后期“伤筋动骨”的修改。
车身NVH性能传递路径分析车身噪音传递路径车内噪声和振动往往多个激励,经由不同的传递抵达目标位置后叠加而成,车内噪声总体上可分为结构声和空气声两种。
结构声对车身的传递结构传递路径:外界激励源直接激励或传递到车身,引起车体及壁板件振动,并与车内声腔耦合而产生的车内噪声,简称为“结构声”。
“结构声”主要通过车身结构的模态匹配进行控制。
空气声对车身的传递空气传播路径:轮胎/路面、进排气、发动机本体等噪声源通过空气传播路径传递到车内引起的噪声,简称为“空气声”。
“空气声”主要通过声学包装技术来控制。
整车NVH技术要求噪声源/振动源的技术要求传递路径的技术要求底盘隔/吸振的技术要求车身隔/吸振的技术要求车身隔/吸音的技术要求噪声和振动的技术要求车身隔/吸振的技术要求(一)、车身模态匹配(二)、车身结构NVH控制车身隔/吸音的技术要求(一)、车身密封(二)、隔音与吸音材料的运用1、车身模态匹配在车身NVH开发过程中,模态匹配也即结构动态特性(振型和频率)匹配的目的是避免总成系统、子系统和部件之间的模态耦合,以及避免与主要激励源发生共振。
【干货】汽车NVH性能评估技术:主观评估全解析
【干货】汽车NVH性能评估技术:主观评估全解析—正文—1、汽车NVH性能的基本概念NVH是客户直接感受到的,通常指在某特定工况下对车子的主观感觉,如抖动和轰鸣噪声。
NVH特性是衡量汽车设计和制造质量的一个综合性能指标。
整车振动噪声也是国内客户买车时越来越关注的重点性能,更是自主品牌轿车要进入国际先进车辆行列从而打进国际市场的关键指标之一。
NVH是直接跟车辆的驾乘人员在下列各驾驶工况下对车内外振动噪声的主观感觉相关,简言之,就是对车辆的听觉、触觉和视觉。
1.发动机点火、熄火,起步和刹车时2.怠速,缓、中、急加速及滑行时3.在各种不同的匀驾驶速度下4.发动机低转速高扭矩下车内NVH:主要是指汽车的驾乘人员在车内对振动噪声的感觉车外NVH:主要是指车辆的辐射噪声,它由汽车通过噪声试验确定对振动噪声的识别:•对NVH研究:贯穿于新车的整个开发过程,现有车的改进工作,及客户车的估障诊断和估障排障•按NVH系统:车身NVH问题,底盘NVH问题,动力系统,制动系统,连接系统等•按NVH感受:驾乘人员听到的噪声,手脚触摸到的振动及来自座椅的振动,看到的抖动•按NVH源头:动力总成NVH,道路行驶NVH,空气动力NVH,通风空调NVH,异响等•按NVH形式:声,振动,转动==〉麦克风,加速度计,和转速计等•按NVH分析法:主观评价,客观分析==〉声振源,传递路径,NVH受体==〉找出主要影响因素,改善激励源振动噪声或控制激励源向车内的传递来解决问题。
对振动噪声的控制:•对振动噪声源的控制:改善产生振动噪声的零部件结构,避免产生共振;改进旋转元件平衡;提高零部件加工精度和装配质量,减小相对运动元件间的冲击与摩擦;改善气体或液体流动,避免形成涡流;改善车身结构,提高刚度。
•对振动噪声传递路径的控制:对结构振动噪声传递特性进行改进,使对振动噪声是衰减而不是放大;优化发动机悬置的设计,降低它向车身传递振动;采用合适的阻尼材料和适合于旋转轴的扭振减振器及针对线振动的减振器。
汽车(NVH)测试与分析
结构噪声控制—板件声贡献量分析
试验 顶棚 后背箱 高灵敏度频率
前围板
地板
车身主要板件示意图
板件声振频谱
验 证
板件结构优化和阻尼片布置 板件声振模态和贡献量分析
4. 声隔离测试分析
车内噪声 空气声(中高频)
结构声(低频)
密 封 是 关 键
相关实验方法
气密性实验
该装置用于轿车仓内漏气量测量,采用低噪声风机,抽取气 体,加注到轿车仓内,手动调节风机变频器改变空气流量, 保持一定的压力,通过空气流量计测量轿车仓内的正压泄露 量。
1)用实部和虚部表示;
2)用幅值和相位表示。
实频特性: C ( f ) 幅频特性:
虚频特性: D( f )
2 2
H( f ) C ( f ) D ( f )
相频特性: ( f
) tg [ D( f ) / C ( f )]
1
H 1、H 2、H 3、H 4 在实际计算中,传递函数有四种计算方法,称为 H1
估计方法,其中 H 1、H 2 估计是传递函数的有偏估计,H 3、H 4估计
是传递函数的无偏估计。实际使用中, 递函数计算方法。 估计是应用最广泛的传
传递函数的 H 1 估计算法:
Y ( f ) Y ( f ) X ( f ) Gxy ( f ) H1 ( f ) X ( f ) X ( f ) X ( f ) Gxx ( f )
原装车状态 油管连接拆除后
43.6 43.4 43.3 42.6
dB(A)
排气管连接拆除后 油管、排气管连接均拆 除后
驾驶员内耳
后排乘车内耳
排气管 采用消去法找到声 源后效果明显!
•消去法+频谱分析法
汽车(NVH)测试与分析ppt课件
55
相干函数(凝聚函数)定义为: 2
rxy
(
f
)
Gxy ( f ) Gxx ( f )Gyy
(
f
)
式中:Gxx ( f )、Gyy ( f ) 分别为输入和输出信号的自谱,
Gxy ( f ) 为输入信号与输出信号的互谱。
(2) 汽车的NVH性能已被越来越多的用户所重视,用户 需求是企业动力 ;
(3) 良好的NVH性能是汽车企业竞争力的体现,高档汽 车对NVH 性能要求很高;
(4) 噪音污染是三大污染之一,国家制定法规和标准来 控制噪声的污染和对人体的危害。
7
8
3. 汽车噪声法规和标准
GB1495-2002《汽车加速行驶车外噪声限值及测量方法》
33
94dB(A)
34
35
36
37
38
39
40
41
2. 测试中的信号处理
•频谱分析
频谱分析是现代信号处理技术最基本和最常用的方法之 一,在机械、电力、图像处理、电子对抗、仪器仪表等 许多领域的生产实践和科学研究中获得极为广泛的应用42 。
在时频域的转化关系中设:
fs
采样频率
N
采样点数,FFT和谱分析点数
汽车振动与噪声(NVH)测试与分析
华南理工大学 机械与汽车工程学院 丁 康 教授
2012年10பைடு நூலகம்9日
1
主要内容
第一部分:汽车NVH概述 第二部分:汽车NVH测试内容 第三部分:NVH测试实例
2
第一部分:汽车NVH概述
1. NVH的定义 2. 必要性和意义 3. 汽车噪声法规和标准 4. 汽车NVH的分类和控制方法 5. 我国汽车NVH研发设计水平 6. 国内外汽车噪声预测理论方法
汽车NVH常见问题分析及故障诊断思路(四)
检查项目1. 检査传动轴外观(损伤/ 变形/装配松动/平衡块脱 落等)2. 检査传动轴中央轴承装 配位置.(图A )3. 检査传动轴十字节(卡滞 /松动/相位角).4. 测量差速器法兰跳度. (图B )5. 检査传动轴动平衡,若无 动平衡测量仪,则与同型正 常车做替换实验.(图C )通过测量,发现在车速100km /h 、发动机转速3600r/min 时,异响最强,其峰值频率为60Hz 。
E /G 不平衡时的振动频率E/G 转速 r/m in 360060Hz" 60s "" 60 -传动轴不平衡时的振动频率E/G 转速 r /m in360060s X 变速器齿轮比” = 60Hz60X 1计算结果为:发 动机不平衡的振 动频率与传动轴 不平衡的振动频 率一样。
但是由 于异响在E /G 高 速空转时并不出 现,所以,判定 传动轴的不平衡 是振动力的来源。
(B o d y VIDTi症状描述车速100km /h 时,方向盘开始发抖:车速120km/h 时, 方向盘发抖现象最为严重。
VLateral shake(Body and seat vibrateright and left)通过测量,发现方向盘 在车速120k m /h 时振动最大,该峰值频率为18H z 。
轮胎不平衡时的振动频率_车速 <k m /h >x 1000m2tr X轮胎半径(m > X 3600<s e c .>120 X 1000代…0.3 X 3600注:设该车轮胎半径为0.3米因为计算得出的 频率与振动仪测 出的频率相吻合,故推测是轮胎相 关的因素引起了方向盘摆振。
检査项目1. 车辆状态检査(轮胎/轮毂/转向相关/悬架相关)2. 轮毂轴承和轮毂接续部位检査(间隙/装配不良等)3.测量轮胎圆跳度(纵向/横向跳度).(图A )4.测量轮毂偏摆.(图B )5.测量轮毂轴承偏摆.(图C )6.测量轮胎动平衡.(图D )7.检査四轮定位.高惠民(本刊编委会委员)曾任江苏省常州外汽丰田汽车销售服务有限公司技术总监,江苏技术师范学 院、常州机电职业技术学院汽车工程运用系专家委员,高级技师。
电动汽车动力总成NVH的分析与优化
电动汽车动力总成NVH的分析与优化电动汽车动力总成NVH的分析与优化摘要:随着电动汽车的快速发展,零排放、环保、低能耗的特点越来越受到消费者的青睐。
但是电动汽车在行驶过程中产生的噪音、振动、刺耳的电子噪声等问题也越来越显著,严重影响了乘坐舒适度和全车乘员声学环境。
本文使用有限元方法和数值模拟技术,对电动汽车动力总成的NVH(Noise,Vibration and Harshness,噪、震、刺)特性进行了分析研究,并针对诸如电驱动电机噪声、齿轮噪声、结构振动噪声等问题进行了优化设计。
研究结果表明,采用合适的NVH分析方法和优化设计手段能够有效地提高电动汽车的乘坐舒适度、降低NVH噪声水平,促进电动汽车技术的不断发展和普及。
关键词:电动汽车;动力总成;NVH;优化设计;有限元方法;数值模拟技术一、绪论随着环保意识的不断增强和新能源政策的不断推进,电动汽车作为一种具有广阔应用前景的新型交通工具已经逐渐进入人们的视野。
相较传统的燃油汽车,电动汽车具有零排放、环保、低能耗等优点,越来越受到消费者的青睐。
但是,随着电动汽车的不断推广和普及,越来越多的消费者开始对其所产生的噪音、振动、刺耳的电子噪声等问题提出异议。
因此,研究电动汽车的NVH特性,对于提高其乘坐舒适度和全车乘员声学环境,进而推动电动汽车技术的不断发展和普及具有重要意义。
本文旨在通过有限元方法和数值模拟技术的应用,对电动汽车动力总成NVH特性进行分析研究,并针对其中的若干关键问题进行优化设计。
首先,介绍有关NVH的定义和特点,接着分析电动汽车NVH问题的主要来源和表现,进而提出一套分析方法和优化策略,最后通过实例分析验证其可行性和有效性。
二、NVH问题分析噪声、振动和刺激性(Noise, Vibration and Harshness)是汽车行驶过程中最突出的质量问题之一。
NVH问题通过多种途径表现出来,不仅严重影响汽车的乘坐舒适度,还对车身材料、零部件滑动磨损、动力总成传动系统等构件产生负面影响。
汽车NVH常见问题分析及故障诊断思路(二)
◆文/江苏 高惠民汽车NVH常见问题分析及故障诊断思路(二)(接上期)风噪声是汽车在高速行驶时车身周围气流和车身台阶及突出物引起空气紊流而产生的。
空气紊流产生的气流噪声通过车门、密封条、车身板、门窗玻璃等传到乘员耳朵里。
风噪声随车速和风向而变化,车速越快,风噪声越大,顺风高速行驶时,风噪声较小。
产生风噪声的车身部位如图16所示。
风噪声可分为:紊流噪声、漏气噪声、簧片噪声、哨音噪声和风颤振噪声等,如图17所示。
图16 车身产生风噪声的部位示意图图17 风噪声的类型(1)紊流噪声如图18所示。
台阶使气流加速并产生紊流,引起空气振动。
此时,如果自然风变化,将产生紊流噪声。
空气与截面A的端部相撞产生涡流,对车身产生压力形成风噪声;涡流在截面B对车身产生压力形成风噪声。
图18 紊流噪声示意图(2)漏气噪声如图19所示。
车身气密性不好的部位或缝隙使车外部噪声进入车内或车内空气被吸到外部所产生漏气噪声。
图19 漏气噪声示意图栏目编辑:桂江一 guijy@ 维修技巧(3)簧片噪声如图20所示。
空气通过窄缝产生振动,又引发边缘振动而产生簧片噪声。
图20 簧片噪声示意图(4)哨音噪声如图21所示,空气通过狭缝引起空气加速形成的哨音噪声。
图21 哨音噪声示意图(5)风颤振噪声如图22所示,开天窗行驶时,由分离的气流产生紊流,该紊流又与进入车内的气流产生共振,形成风颤噪声。
图22 风颤噪声示意图(6)传递的噪声如23所示,车身表面突出物把沿车身表面流动的气流分离而产生紊流通过车身板等进入内部,这时乘员听到的风噪声。
图23 传递的风噪声示意图4.振动与噪声传递路径汽车是个复杂的系统组成,同时受到多个激振力(振源)激励,每种激振都可以通过不同的路径,经过衰减传递到多个响应点。
其传递路径如图24所示。
图24 振动和噪声传递路径示意图汽车振动与噪声按照传递路径可定性分成两大类:结构振动噪声与空气传音。
这两大类噪声的产生原理不同,故障排除的方法也不一样。
NVH材料在汽车方面的应用
NVH材料在汽车方面的应用NVH(Noise Vibration Harshness)是指噪音、振动和粗糙度,是评估汽车舒适性的重要指标。
在汽车制造中,NVH是一个关键问题,因为噪音和振动会影响驾驶体验、乘坐舒适性和车内声学效果。
为了减少噪音和振动,汽车制造商广泛采用了各种NVH材料。
下面是几种常见的NVH材料及其在汽车应用中的具体作用。
1.隔音材料:隔音材料用于吸收或隔离来自发动机、轮胎和道路的噪音。
例如,声学泡棉、陶瓷纤维和动态铅除噪片都是常见的隔音材料。
这些材料可以减少噪音的传播,使车内更加安静和舒适。
2.减振材料:减振材料用于减少汽车振动和震动。
例如,减震胶、阻尼板和隔振垫都是常见的减振材料。
这些材料可以吸收或分散振动能量,减少车内的振动感。
3.减少空腔材料:车身或内饰中的空腔会产生共振,导致噪音和振动的增加。
为了解决这个问题,汽车制造商使用减少空腔材料填充空腔。
这些材料可以防止共振效应,并减少噪音和振动的传播。
4.密封材料:密封材料用于填充车身和零部件之间的空隙,以减少外界噪音和震动的进入。
例如,橡胶密封条和防噪垫都是常见的密封材料。
这些材料不仅可以提高车内隔音效果,还可以防止水和灰尘进入车辆。
5.降噪材料:降噪材料是一种特殊的材料,可以有效吸收特定频率的噪音。
它通常被应用在车辆的前风挡、车顶和车门等位置。
降噪材料可以提供更好的声学效果,使乘客在车内更加安静。
6.抗磨损材料:抗磨损材料主要用于减少运动部件的摩擦噪音。
例如,发动机和制动系统中常使用的陶瓷复合材料可以减少噪音和振动的产生,提高驾驶的舒适性。
综上所述,NVH材料在汽车制造中起着至关重要的作用。
通过使用各类NVH材料,汽车制造商可以降低噪音和振动,提高驾驶体验和乘坐舒适性。
此外,NVH材料还可以改善车内声学效果,创造一个更加安静和舒适的驾驶环境。
随着技术的进步,预计未来会有更多创新的NVH材料应用于汽车制造中,进一步提高车辆的驾驶舒适性和乘坐体验。
汽车内饰材料NVH
提高内饰材料阻尼性能
高阻尼材料应用
复合阻尼技术
使用具有高阻尼性能的内饰材料,如 阻尼橡胶、阻尼涂料等,增加内饰材 料的耗能能力,降低振动幅度。
将多种阻尼材料或结构组合在一起, 形成复合阻尼系统,实现宽频带、高 效的减振降噪效果。
约束层阻尼技术
在内饰材料表面附加一层约束层,形 成约束层阻尼结构,提高内饰材料的 阻尼性能和减振效果。
减振性能
高密度材料通常具有更高的刚度 ,能更好地抵抗变形,从而提供 更好的减振效果。
材料阻尼特性对NVH性能影响
能量耗散
阻尼材料能有效地将振动能量转化为 热能并耗散掉,从而降低噪音和振动 。
减振降噪
通过选择合适的阻尼材料和结构,可 以实现减振降噪的目的,提高乘坐舒 适性。
不同材料组合对NVH性能影响
通过精确定位车内噪声源,对声源进行直接有效 的降噪处理,如改进发动机隔音设计、优化排气 系统消音器等。
隔声材料应用
在内饰材料中使用高效隔声材料,如多层复合隔 音棉、隔音毡等,实现减振降噪的目的。
3
吸声材料应用
针对特定频率的噪声,使用具有吸声性能的内饰 材料,如多孔吸声棉、纤维吸声板等,提高内饰 的吸声效果。
回收利用的环保内饰材料,降低了汽车对环境的污染。
未来研究方向展望
01
02
03
04
智能化内饰材料研究
随着汽车智能化的发展,未来 内饰材料将更加注重与智能系 统的融合,如具备温度、湿度 自动调节功能的智能内饰材料 。
轻量化内饰材料研究
为实现汽车轻量化目标,将进 一步研究轻质、高强度的内饰 材料,如碳纤维复合材料等, 以降低车重并提升燃油经济性 。
振动评价标准
整车NVH性能优化的研究与实践
整车NVH性能优化的研究与实践随着汽车产业的不断发展,消费者对汽车的需求也越来越高,除了舒适性和安全性,NVH(噪音、振动与硬度)成为了一种重要的衡量标准。
因此,汽车制造商不仅注重汽车的驾驶性能和外观设计,也注重车辆NVH性能的优化。
本文将重点介绍整车NVH性能优化的研究与实践。
一、整车NVH性能的定义NVH是乘坐汽车时会被感知到的噪声、振动和硬度,也是制约汽车舒适性和驾驶安全的重要因素之一。
因此,整车NVH性能通常指汽车在静止、行驶、高速运行等不同工况下的NVH性能评估指标。
一般包括噪声、振动、硬度等方面。
二、整车NVH性能的优化方法1. 传统NVH优化方法传统NVH优化方法主要包括质量控制、隔音措施、降振措施等。
其中,质量控制主要是通过优化零部件的加工工艺和材料选择等,确保零部件的制造精度和一致性,从而增强整车结构稳定性和NVH性能。
隔音措施主要包括在车辆结构内部和顶盖、底盘等外部部件加装吸音材料、隔音材料等,以减少内外部噪音的传播。
降振措施主要是通过优化车身结构设计、加装阻尼材料等措施,有效降低整车振动。
2. 基于CAE的NVH优化方法随着计算机辅助工程(CAE)技术的发展,基于CAE的NVH优化方法得到了广泛应用。
这种方法主要是通过建立仿真模型,并进行振动模拟分析、噪声辐射特性仿真等,以针对不同的在静止、行驶、高速运行等不同工况下的NVH问题,优化整车结构设计、零部件匹配和材料选择等,从而有效提升整车NVH性能。
3. 基于主动控制的NVH优化方法随着车载电子产品和智能控制技术的应用,基于主动控制的NVH优化方法也发展起来。
该方法主要是通过在车辆结构上加装振动传感器和执行器等装置,实现对车辆振动的主动控制。
例如,在车辆悬挂系统中集成主动隔振系统,通过实时调节阻尼和弹性,能有效减弱车体与路面的振动,增强整车NVH性能。
三、整车NVH性能优化的实践案例1. 宝马5系车型宝马5系车型在新一代产品设计中注重优化NVH性能,采用了多项技术改进,包括采用高强度材料,降低车身重量,加装降噪材料,精细调节车辆表面的风阻等,综合提升了整车的NVH性能表现。
汽车 车身NVH基本原理及方案资料
车身刚度主要分为整体刚度和局部刚度,而车身刚度设计是车身NVH性能的 基本要素。高刚度和轻量化指标成为车身开发中日益发展的趋势。
与整车动力学相关的车身结构基本性能指标是车身刚度,与整车NVH性能、 疲劳耐久和操稳性能密切相关。
一般,通过合理的整车模态匹配和车身振型调制等方法,设计开发车身结构 的整体和局部刚度,以达到良好的整车振动水平和操稳性能。
目前,车身NVH性能开发已广泛地利用CAE 工具,大大地降低了开发成 本,缩短开发周期,提高了车身NVH开发的精准性。对于车身低频NVH问题 (5~ 150Hz)主要利用有限元法(FEA) 和边界元 ,中频问题(150~ 400Hz) 可采用FEA与试验结合的混合模型法(Hybrid Model),利用统计能量分析 (SEA )可分析高频(>400Hz)的噪声问题。
目
录
第一部分:汽车车身NVH概述 第二部分:车身结构NVH控制 第三部分:车身声学包装 第四部分:车身NVH灵敏度控制 第五部分:低风噪车身设计 第六部分:车身声品质控制
1. 车身结构与NVH问题 2. 车身NVH性能的传递路径分析
• 结构声对车身的传递 • 空气声对车身的传递 3. 车身模态分离 4. 车身NVH的目标体系 5. 车身NVH研究的内容
车身的整体刚度指标是汽车开发中的基础指标,也是整车NVH性能、碰撞安全、 疲劳耐久和异响控制等性能的基础指标。对参考车型的车身刚度对标分析,可以为新 车型开发的车身指标设定提供参考。
通常,C级以上车型的静弯曲刚度指标:>11000 N/mm; 静扭转刚度指标:>1000 KNm/rad;
此外,整车与白车身的静弯曲/扭转刚度指标分别相差在10~20%和3~8%之间, 天窗结构会降低约11%左右的车身扭转刚度。
某混合动力汽车的NVH实验及分析
某混合动力汽车的NVH实验及分析NVHExperimentandAnalysisofaHybridElectricVehicle邱鹏飞 何东伟 崔明阳(同济大学浙江学院机械与汽车工程系,嘉兴 314000)摘 要牶随着新能源汽车的发展,混合动力汽车具有良好的节油环保优势以及驾乘体验,被广大客户所接受。
然而,混合动力汽车在不同车速、不同工况下,会表现出不同的NVH相关问题,对驾驶员主观感受有着不同的影响。
文章分析了混动汽车动力总成系统的NVH性能,针对某HEV汽车SOC工况下,由EV模式进入并联模式时存在明显的金属敲击声问题,分析了激励产生原因,并排除了故障。
关键词牶混合动力汽车 NVH 性能分析DOI牶10.16413/j.cnki.issn.1017080x.2022.06.009Abstract牶Withthedevelopmentofnewenergyvehicles,hybridvehicleshavegoodadvantagesoffuelsavingandenvironmentalprotection,aswellasdrivingexperience,andareacceptedbycustomers.However,hybridvehicleswillshowdifferentNVHrelatedproblemsunderdifferentspeedsandworkingconditions,whichwillhavedifferenteffectsonthedriver ssubjectivefeelings.TheNVHperformanceofhybridvehiclepowertrainsystemisresearchedinthispaper.UndertheSOCworkingconditionofaHEVvehicle,whentheengineintervenesfromEVmodetoparallelmode,thereisanoccasionalobviousmetalknockingsound.Thecauseofexcitationisanalyzed,andthefaultiseliminated,whichisverifiedbyexperiments.Keywords牶hybridelectricvehicle NVH performanceanalysis0 引 言随着双碳目标的推进,对汽车降低污染排放及减少能源消耗提出了很高的要求,油电混动汽车有着较好的燃油经济性,同时解决了续航焦虑,成为受欢迎的新能源车型。
新能源汽车NVH问题分析和探讨
新能源汽车NVH问题分析和探讨总结新能源汽车NVH 问题概述5 主要内容13 动力模式切换时的NVH 问题探讨 2 电动总成悬置的匹配设计4 电器附件的NVH 问题新能源汽车概述新能源汽车是应对能源和环境的挑战。
更低的油耗和更少的污染物排放。
混合动力系统纯电动汽车燃料电池汽车纯电动汽车的NVH 问题减速器啸叫和电机啸叫附件噪声 中低频路噪电池和冷却系统悬架的适应性调整动力系统的变化与动力相适应的电附件混合动力汽车构型和NVH问题P0 BSG电机P1 ISG电机P2 变速器内与发动机之间有离合器P3 变速器之后P4 驱动桥上200.000.00Hz14.000.00sTime50.000.00dB(A)Pa44.15AutoPower DR (A) WF 29 [0-14 s]100.000.00Hz14.000.00sTime-20.00-120.00dBgAutoPower Mount LF_act:-X WF 29 [0-14 s]混动模式纯电模式混动模式纯电模式纯电模式振动噪声纯电模式新能源汽车典型的NVH问题概述电机和减速器的啸叫2、模式转换带来的瞬态NVH问题1、激励源特性的改变、悬置系统改变3、电动化附件带来的噪声和振动问题增加的路噪和突出的风噪电动总成的外特性与内燃机对比转速力矩电机内燃机电机:重量轻,扭矩大 低速扭矩大;汽油机: 较电机重量大扭矩最大值在中速段;电动总成悬置刚度应考虑低速段电机扭矩大的问题二级往复惯性力燃烧力沿着曲轴扭矩波动Z向往复惯性力T平均扭矩rT波动扭矩旋转机械,平均扭矩大,但波动扭矩很小。
VS往复惯性力扭矩波动很小电动总成的激励特性与内燃机对比电动总成的质量特性与传统动力的比较MassJxx (kgm^2) Jyy (kgm^2) Jzz (kgm^2)185.96.914.112.9Jxy (kgm^2) Jyz (kgm^2) Jxz (kgm^2)1.60.71.4MassJxx (kgm^2) Jyy (kgm^2) Jzz (kgm^2)63.3kg'0.470.911.25Jxy (kgm^2) Jyz (kgm^2) Jxz (kgm^2)0.320.27-0.19电动总成传统动力电动总成悬置设计考虑的问题特征一、低速扭矩大:1、悬置器件刚度应具备抗冲击的要求;2、悬置的布局应适有利于控制电机扭矩突变;3、橡胶器件结构做相应的调整特征二、无惯性力、扭矩波动小、无怠速工况:4、对悬置系统的固有频率不做严格要求;5、对解耦度不严格要求;但仍要考虑支架强度和总成的工况特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • • • • • • • • • • • • • • • • • • • • • • • • • •
BEGIN BULK PARAM, COUPMASS, 1 PARAM, WTMASS, 0.00259 $ SPECIFY STRUCTURAL DAMPING PARAM, G, 0.06 PARAM, W3, 1571. $ APPLY EDGE CONSTRAINTS $ SPC1, 200, 12456, 1, 12, 23, 34, 45 $ $ PLACE BIG FOUNDATION MASS (BFM) AT BASE $ CMASS2, 100, 1000., 23, 3 $ $ RBE MASS TO REMAINING BASE POINTS $ RBE2, 101, 23, 3, 1, 12, 34, 45 $ $ APPLY LOADING TO FOUNDATION MASS $ TLOAD2, 500, 600, , 0, 0.0, 0.004, 250., -90. $ DAREA, 600, 23, 3, 2.588 $ $ SPECIFY INTEGRATION TIME STEPS $ TSTEP, 100, 200, 2.0E-4, 1 ENDDATA
G 1 1 B B1 B 2 K GEKE W3 W4
• G=整体结构的阻尼系数(PARAM,G) W3=感兴趣的整体结构阻尼转化频率-弧度/秒(PARAM, W3) W4感兴趣的单元结构阻尼转化频率-弧度/秒(PARAM, W4) KE=单元刚度矩阵 由于瞬态分析不允许出现复系数。所以,结构阻尼通过等 效的粘性阻尼来施加。即PARAM,G和PARAM,W3同 时定义。 模态法的特点:模态截断。一般模态法并不需要计算所有的 模态,对于动力响应计算,经常仅需要最低的几阶模态就 足够了。
• • • •
• • • • • • •
•
• •
SOL 109 TIME 30 CEND TITLE= TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS SUBTITLE= USE THE DIRECT METHOD ECHO= PUNCH SPC= 1 SET 1= 11, 33, 55 DISPLACEMENT= 1 SUBCASE 1 DLOAD= 700 $ SELECT TEMPORAL COMPONENT OF TRANSIENT LOADING (必须) LOADSET= 100 $ SELECT SPACIAL DISTRIBUTION OF TRANSIENT LOADING(可选) TSTEP= 100 $ SELECT INTEGRATION TIME STEPS (必须) $
三、瞬态响应分析
• 分析目的:计算时变激励载荷作用下结构的动力行为。 载荷的形式可以是外力或强迫运动。 • 两种数值方法:直接法和模态法。直接法对全部耦合的 运动方程进行直接数值积分来求解;而模态法则是利用 结构的振型来对耦合的运动方程进行缩减和解耦,然后 再由单个模态响应的叠加得到问题的最终解答。 • 求解器:直接法 SOL 109;模态法 SOL 112 • 直接瞬态响应中的阻尼
•
RANDT1(频率响应的自相关时间滞后卡)
• 例:对于板模型,在Z方向强加一个基础运动,该运动由 表中的功率谱密度来描述。使用在边界上附加大质量的模 态方法(通过RBE2卡) • 需要确定下列计算内容: • 在激励位置(大质量)处的响应位移及加速度的功率谱密 度。 • 在自由边的中心及拐角处的位移功率谱密度。(节点33和 35) • 假设在整个频率范围内的临界阻尼比率为固定值3%。
时间步数 作用时间
四、强迫运动
• 用于分析带有地基加速度、位移和速度的输入的受约束结 构。 • 直接指定法 • 例:一端固支的矩形结构,在地基上受到沿Z方向频率为 250HZ的单位正弦脉冲加速度作用,使用直接方法,确定 该结构的瞬态响应。在地基上施加1000lb的大质量,使用 的结构阻尼系数:g=0.06,并将此阻尼转化为在250HZ下 的等效粘性阻尼。
载荷作用的起止时间
频率
相位角
载荷集的组合-DLOAD卡
整体比例因子 第2个载荷的比例因子 及TLOAD标识号
• DAREA卡
Grid number Component号
比例因子
• LSEQ卡
定义作为动态载荷来应用的静态载荷。 通过LOADSET工况控制命令来选中LSEQ模型数据卡 包含一个DAREA卡,以表明是和TLOAD卡一起作用的载荷集。
Hale Waihona Puke • • • • • • • • • • • • • • • • • • • • • •
BEGIN BULK PARAM, COUPMASS, 1 PARAM, WTMASS, 0.00259 $(使用重量单位) $ $ SPECIFY STRUCTURAL DAMPING $ PARAM, G, 0.06 $ $ APPLY UNIT FORCE AT TIP POINT $ RLOAD2, 500, 600, , ,310 $ DAREA, 600, 11, 3, 1.0 $ TABLED1, 310, , 0., 1., 1000., 1., ENDT $ $ SPECIFY FREQUENCY STEPS $ FREQ1, 100, 20., 20., 49 $ ENDDATA
NVH分析培训一
动力学培训内容介绍
1.模态分析 2.频率响应分析 3.瞬态响应分析 4.强迫运动 5.随机响应分析
一、模态分析 • 求解器:103 • 质量矩阵形式:MSC认为耦合质量比集中质量更精确,在 动力分析里出于对计算速度的考虑,更倾向于使用集中质 量。 • 使用方法:用PARAM,COUPMASS,1选择耦合质量; 缺省为集中质量。 • 求解方法:推荐的Lanczos方法。 • EIGRL卡片
• 激励的定义:与瞬态响应中TLOAD对应,在频率响应中 为RLOAD。其中RLOAD1是按照实部与虚部的形式来定 义频变载荷;RLOAD2按幅值和相位的形式来定义频变载 荷。 • 几点考虑:如果激励的最高频率比系统的最低谐振频率小 得多,那么使用静态分析就足够了;阻尼很小的结构在激 励频率接近于谐振频率的时候,会表现出很大的动力响应。 在这样的问题中,模型上一个小的改动(或仅换一台电脑 来计算)都可能产生响应的明显变化;如果希望对峰值响 应进行充分的预测,必须使用足够好的频率步长(Δ f)。 对每个半能带宽至少使用5个点。
二、频率响应分析
• 频率响应分析是计算在稳态振动激励作用下结构动力响应 的一种方法(比如偏心旋转部件在一组转动频率下的旋转 分析)。 • 在频率响应分析中,激励载荷是在频域中明确定义的,所 有外力在每一个指定的频率上都是已知的。而力的形式可 以是外力、也可以是强迫运动。 • 与瞬态分析一样,也有两种方法供选用:直接法和模态法。 对应的求解器为SOL108、SOL111。
文件输出类型控制 param ,post ,-1 结果类型输出控制
ECHO=NONE
DISPLACEMENT=ALL ESE=ALL
其他控制命令
AUTOSPC=YES scr=yes init dball logi=(1(20GB),2(20GB),3(30GB)) DOMAINSOLVER=(PARTOPT=DOF)
• 频率响应分析中的定义卡 FREQ卡定义的是离散的激励频率。 FREQ1定义的是起始频率fstart,频率增量与增量的数量。 FREQ2定义的是起始频率fstart,终了频率和对数间隔的数 量。 FREQ3定义的是频率范围F1、F2和在两者之间使用线性 或对数插值的频率个数。 FREQ4在每个谐振频率处指定一个频率值,并在该值附近 指定等间距分布的激励频率的数量。 FREQ5指定的是一个频率范围以及此范围内自然频率的比 值。
• 例:在前一例子中的平板受不同频率激励载荷作用下的频 率响应。在20到1000HZ范围内使用20HZ的频率步长,并 取结构阻尼为g=0.06。
• • • • • • • • • • • •
SOL 108 TIME 30 CEND TITLE = FREQUENCY RESPONSE DUE TO UNIT FORCE AT TIP ECHO = UNSORTED SPC = 1 SET 111 = 11, 33, 55 DISPLACEMENT(SORT2, PHASE) = 111 SUBCASE 1 DLOAD = 500 FREQUENCY = 100 $
• • • • • • • • • • • • • • • • • • • • • • • • • •
BEGIN BULK PARAM, COUPMASS, 1 PARAM, WTMASS, 0.00259 $ 3 PERCENT AT 250 HZ. = 1571 RAD/SEC. PARAM, G, 0.06 PARAM, W3, 1571. $ APPLY UNIT PRESSURE LOAD TO PLATE $ LSEQ, 100, 300, 400 $ PLOAD2, 400, 1., 1, THRU, 40 $(静态载荷) $ VARY PRESSURE LOAD (250 HZ) TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90. $ APPLY POINT LOAD OUT OF PHASE WITH PRESSURE LOAD $ TLOAD2, 500, 600, , 0, 0., 8.E-3, 250., 90. $ DAREA, 600, 11, 3, 1. $ $ COMBINE LOADS $ DLOAD, 700, 1., 1., 200, 50., 500 $ $ SPECIFY INTERGRATION TIME STEPS TSTEP, 100, 100, 4.0E-4, 1 输出跳跃因子 ENDDATA