第十章原子吸收光谱法

合集下载

仪器分析-光谱分析法概论(第十章)

仪器分析-光谱分析法概论(第十章)

三个主要过程:(1)能源提供能量;(2)能量与被测物
质相互作用;(3)产生被检测信号。
第一节
电磁辐射及其物质的相互作用
一、电磁辐射和电磁波谱
1. 波动性(干涉、衍射、反射和折射) 用波长(nm)、波数(cm-1)和频率(Hz)表示。 =c/ = 1 / = /c
波长是在波的传播路线上具有相同振动相位的相邻两点间的线性距
光学分析法光谱分析法非光谱分析法原子光谱分析法分子光谱分析法原子吸收光谱原子发射光谱原子荧光光谱x射线荧光光谱折射法圆二色性法x射线衍射法干涉法旋光法紫外光谱法红外光谱法分子荧光光谱法分子磷光光谱法核磁共振波谱法光谱分析法吸收光谱法发射光谱法原子光谱法分子光谱法原子发射原子吸收原子荧光x射线荧光原子吸收紫外可见红外可见核磁共振紫外可见红外可见分子荧光分子磷光核磁共振化学发光原子发射原子荧光分子荧光分子磷光x射线荧光化学发光第三节光谱分析仪器光学分析法三个基本过程
原 子 发 射
原 子 吸 收
原 子 荧 光
X 射 线 荧 光
紫 外 可 见
红 外 可 见
分 子 荧 光
分 子 磷 光
核 磁 共 振
化 学 发 光
原子光谱法 光谱分析法 吸收光谱法 原 子 吸 收 紫 外 可 见 红 外 可 见 核 磁 共 振
分子光谱法
发射光谱法
原 子 发 射
原 子 荧 光
分 子 荧 光
离;波数是每厘米长度中波的数目; 频率是每秒内的波动次数。
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小
2. 微粒性(光电效应、光的吸收和发射) 用每个光子具有的能量E作为表征。 E = h =h c / = h c h (普朗克常数) , h=6.6262×10-34J•s ※ 光量子的能量(E)与波长成反比, 而与频率(或波数) 成正比.

原子吸收光谱法

原子吸收光谱法

原子吸收光谱法1、原子吸收光谱的基本原理是什么,为什么采用锐线光源?答:原子吸收法是基于物质所产生的原子蒸气对特征谱线的吸收作用来进行定量分析的一种方法。

任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。

能量最低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。

正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。

如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差ΔE时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。

核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。

由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。

对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。

若测定溶液中某金属的量,需先将金属离子化合物在高温下解离成原子蒸气,两种形态间存在定量关系。

光源发射出的特征波长光辐射通过原子蒸气时,原子中的外层电子吸收能量,使得特征谱线的光强度减弱。

光强度的变化符合朗伯-比耳定律,在此基础上再进行定量分析。

与分子光谱的带状光谱不同,原子吸收光谱理论上是线状光谱,但由于自然宽度、多普勒宽度、压力变宽、自吸变宽、场致变宽等,使得谱线具有一定的宽度。

从理论上来说,可以通过计算在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它表示吸收的全部能量。

但实际上,测定该值需要分辨率非常高的色散仪器,很难实现。

1955年澳大利亚学者沃尔森(Walsh) 提出,在温度不太高的稳定火焰条件下,峰值吸收系数与火焰中被测元素的原子浓度也正比。

因此,目前一般采用测量峰值吸收系数的方法代替测量积分吸收系数的方法。

原子吸收光谱法原理

原子吸收光谱法原理

原子吸收光谱法原理
原子吸收光谱法是一种常用的分析技术,用于确定物质中的元素含量。

该方法基于原子在特定波长的光照射下发生能级跃迁的现象,利用元素特征波长的吸收峰的强度来测量样品中元素的浓度。

以下是原子吸收光谱法的原理。

1. 原子的能级结构:原子由电子围绕着原子核的轨道运动组成。

电子在这些轨道上具有不同的能量,称为电子能级。

当原子受到外部的能量激发时,电子会从低能级跳跃到高能级,形成激发态。

2. 能级跃迁:原子的电子在吸收能量后,会跃迁到高能级。

当电子从高能级返回到低能级时,必须释放出能量。

这个能量的差别可以以光子形式释放出来,其波长与能级差相关。

3. 吸收光谱:在原子吸收光谱实验中,使用的是特定波长的光源,通常为中性或离子化的金属蒸汽灯。

这些光源会发出特定波长的光,射入样品中。

4. 样品吸收:样品中的元素原子会吸收与其能级差相匹配的波长的光。

当光通过样品时,部分光会被吸收,其吸收强度与元素的浓度成比例。

5. 检测:通过测量样品吸收光的强度,可以确定元素的浓度。

一般使用光电器件来测量吸收光的强度。

可以采用单光束或双光束系统进行测量。

6. 标准曲线:为了确定未知样品中元素的浓度,常常使用标准曲线进行定量分析。

通过测量一系列已知浓度的标准溶液的吸收峰强度,可以绘制出吸收峰强度与浓度之间的关系曲线。

利用这个曲线,可以根据样品的吸光度值来确定其浓度。

总之,原子吸收光谱法利用原子能级跃迁的现象,通过测量样品对特定波长光的吸收来测量元素的浓度。

该技术广泛应用于元素分析和环境监测等领域。

水分析化学第十章

水分析化学第十章

一、原子吸收原理
在通常的原子吸收测定条件下,原子 蒸气中基态原子数近似等于总原子数。
一束频率、强度为I0的平行光通过厚 度为L的原子蒸气,一部分光被吸收,透过 光的强度I服从吸收定律 I = I0 exp(-kLc) 式中k是基态原子对频率为的光的吸收系 数。不同元素原子吸收不同频率的光
双光束型:来自光源的光束被分 成两束,一束作测量光束,通过 火焰;另一束作参比光束;交替 进入单色器到达光电倍增管检测 比较
– 特点:消除因光源波动造成的影响, 但不能抵消因火焰波动造成的影响
四、定量分析方法
1、标准曲线法:吸光度—浓度标准曲线
– 方法:
配制一组含有不同浓度被测元素的标准溶液 在与试样测定完全相同的条件下,按浓度由低到高的顺序测定吸 光度值 绘制吸光度对浓度的校准曲线。 测定试样的吸光度 查校准曲线上用内插法求出被测元素的含量。
I 与 的 关 系
0
I
二、原子吸收光谱仪
原子吸收光谱仪包括4部分:
– 光源 – 原子化器 – 波长选择 – 检测系统
光 源
光源的作用是发射被测元素的特征共振辐射 对光源的基本要求:
– 发射的共振辐射的半宽度要明显小于吸收线的半 宽度 – 辐射的强度大; – 辐射光强稳定, – 使用寿命长。
第10章
原子光谱法——
测定单独元素
1、原子吸收光谱法(atomic absorption spectrometry,简称AAS):基于被测元素基 态原子在蒸气状态对其原子特征谱线(紫外 区和可见区)的吸收 进行元素定量分析的方 法。 2、原子发射光谱法:基于元素获得外界能量跃 迁到激发态后,激发态原子不稳定,返回基 态时放出特征谱线(紫外区和可见区)进行 元素定性、定量分析的方法。

原子吸收光谱法(AAS)

原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。

原子吸收光谱法原理简述

原子吸收光谱法原理简述

原子吸收光谱法原理简述
原子吸收光谱法是一种用于分析物质中金属元素含量的方法。

它的原理简述如下:
当金属原子处于基态时,它们会吸收特定波长的光。

原子吸收光谱法利用这一特性来测量样品中金属元素的含量。

首先,样品被转化成气态原子或原子的气态化合物,然后通过光源发出的特定波长的光照射样品。

如果样品中含有被检测的金属元素,这些原子会吸收光,使得光源透过样品时的光强度减弱。

测量光源透过样品前后的光强度差异,就可以确定金属元素的含量。

原子吸收光谱法的原理基于不同金属元素吸收光的特性。

每种金属元素都有特定的吸收光谱线,这些谱线对应着特定波长的光。

因此,通过测量样品对不同波长光的吸收情况,可以确定样品中不同金属元素的含量。

此外,原子吸收光谱法还遵循比尔-朗伯定律,即吸收光强度与浓度成正比。

因此,可以通过测量吸收光强度的变化来确定金属元素的浓度。

总的来说,原子吸收光谱法利用金属原子对特定波长光的吸收特性,通过测量样品对光的吸收来确定其中金属元素的含量。

这一方法在分析化学和环境监测等领域有着广泛的应用。

原子吸收习题

原子吸收习题

1.分析化学何先莉、赵淑珍、武少华,北京工业大学出版社,1996年9月,(1997年9月第2次印刷)P323:第十章原子吸收光谱法习题1.原子核吸收分光光度计主要由哪几部分组成?每部分的作用是什么?在构造上与分光光度计有什么不同?为什么?2.什么是积分吸收?峰值吸收?实际分析中为什么可以用峰值吸收代替积分吸收?3.何为锐线光源?在原子吸收中为什么要用锐线光源?4.计算2000K和3000K时Cu324.75nm的多普勒宽度为多少?5.浓度为0.2μg/ml的镁溶液,在原子核吸收分光光度计测得吸光度为0.220,试计算镁元素的特征浓度。

(0.004μg/ml/1%)6.原子吸收光谱法测定某元素的特征浓度的0.1μg/ml/1%吸收,为使测量误差最小,需要得到0.436的吸收值,求在此情况下待测溶液的浓度应为多少?7.某原子吸收分光光度计测定某元素的光谱通带为 1.0nm,而该仪器的倒线色散率为2.0nm/mm,应选择的狭缝宽度为多少?8.使用取血清2ml用纯水稀释到50ml,测其吸光值为0.213,求血清中Mg的含量(以mg/L 表示)。

(13.5mg/L)9.用原子吸收法测某废液中Cd含量,从废液排放口准确量取水样100.0ml,经适当酸化处理后,准确加入10ml甲基异丁基酮(MIBK)溶液萃取浓缩,被测元素在波长228.8nm 下进行测定,测得吸光值为0.182,在同样条件下,测得Cd标准系列的吸光度如下:用作图法求该厂废液中Cd的含量(以mg/L表示),并判断是否超标(国家规定Cd的排放标准是0.1mg/L)?10.用原子吸收光谱法测某聚醚样品中K的含量,称取聚醚样10.0mg溶解后,转移至50ml 容量瓶中,稀释至刻度。

吸取相同体积的试液于25ml容量瓶中,分别加入不同体积的11.用原子吸收光谱法测定Cu的浓度,取10ml未知Cu试液,放入25ml容量瓶中,稀释至刻度,测得吸光度为0.302,另取10.0ml未知液和2.00ml、50μg/ml的Cu标准溶液,也放入25ml容量瓶中稀释至刻度,测得吸光度为0.760,求未知液中Cu的浓度。

原子吸收光谱法知识要点

原子吸收光谱法知识要点

第十章原子吸收光谱法知识要点1.基本概念及原理原子吸收光谱法是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法。

它具有灵敏度高、选择性好、测定范围广泛、操作简便和分析速度快的特点。

原子受到外界能量激发时,最外层电子可能跃迁到不同的能级,即不同的激发态。

电子在基态与激发态之间的跃迁称为共振跃迁。

电子吸收能量从基态跃迁到能量最低激发态(第一激发态)时所产生的谱线为主共振吸收线,电子从能量最低激发态跃迁回基态释放能量所产生的谱线为主共振发射线。

二者统称为主共振线,一般是元素的最易发生、吸收最强、最灵敏的谱线。

不同元素的主共振线不相同而各有其特征性,称其为元素的特征谱线。

原子吸收线并不是严格的几何线,而是具有一定宽度和轮廓的谱线。

吸收系数随波长(或频率)的分布曲线称为吸收谱线轮廓,通常用中心频率%和半宽度△v这两个物理量来描述。

中心频率v0是最大吸收系数所对应的频率,其能量等于产生吸收的两量子能级间真实的能量差,而该处的最大吸收系数又称为峰值吸收系数K。

;半宽度△v是指峰值吸收系数一半即K0/2处所对应的频率范围,它用以表征谱线轮廓变宽的程度。

2.要求掌握的重点及难点(1)原子吸收光谱仪的基本结构原子吸收光谱仪分单光束型和双光束型,由光源、原子化系统、分光系统和检测系统四大部分构成。

光源为锐线光源,多用空心阴极灯,要求其能发射待测元素的特征锐线光谱,同时强度要大、稳定性要好、寿命长。

原子化器分为火焰原子化器和非火焰原子化器。

火焰原子化器由雾化器、雾化室和燃烧器等部分组成,火焰原子化系统结构简单、操作方便,准确度和重现性较好,满足大多数元素的测定,应用较为广泛,但其原子化效率低,试样用量大;非火焰原子化器包括石墨炉原子化器,石墨炉原子化器由电源、炉体和石墨管组成,石墨炉原子化器的原子化效率和测定灵敏度比火焰原子化器高得多,试样用量少,特别适合试样量少,又需测定其中痕量元素的情况,但是其精密度不如火焰法,测定速度较火焰法慢,另外装置较复杂、费用较高。

第十章原子吸收光谱

第十章原子吸收光谱

原子吸收与分光光度法的比较
项目 原子吸收法 分光光度法
分析原理
相 同 能级
吸收原理
电子跃迁
吸收原理
电子跃迁
定量分析的依据
光谱
A=kbc
原子光谱
A=kNb(A=KC)
分子光谱
不 同
光源
单色器位置
锐线光源
原子化器和 检测器之间
连续光源
光源和吸收池 之间
光 谱 法
按能量交换方向分
按作用结果不同分
吸收光谱法 发射光谱法 原子光谱→线状光谱 分子光谱→带状光谱
电磁波谱区
波谱区
Γ射线区 X 射线区 远紫外区 近紫外区 可见光区 近红外区
波长范围
<0.005nm 0.005-10nm 10-200nm 200-400nm 400-780nm 0.78-2.5µ m
试 样 预混合室 废液排放口
雾化器
非火焰原子化装置 (1)石墨炉原子化器 测定过程:①干燥阶段,②灰化阶段, ③原子化阶段,④烧净阶段
(2)氢化物原子化器
分光系统
组成: 分光系统:由色散元件、凹面镜和狭缝组成 作用: 将待测元素的共振线与邻近谱线分开 单色器的位置: 放在原子化器后的光路中
检测系统
10-2原子吸收光谱法的基本原理
共振线和吸收线: 共振线吸收线:
电子从基态跃迁到能量最低的激发态为共振跃迁, 所产生的谱线
共振线发射线:
当电子从第一激发态跃会基态时,则发射出同 样频率的谱线
特征谱线:
各种元素的原子结构和外层电子排步不同,不同元素 的原子从基态 第一激发态时,吸收和发射的能量 不同,其共振线不同,各有其特征性.
D 7.162 10 0

第十章 原子吸收光谱法

第十章  原子吸收光谱法
20
二、原子化系统
作用是将试样中待测元素转变成原子蒸气。 1.火焰原子化法 (1)雾化器:作用是将试样溶液雾化。当助
燃气高速通过时,在毛细管外壁与喷嘴口构 成的环形间隙中,形成负压区,将试样溶液 吸入,并被高速气流分散成气溶胶,在出口 与撞击球碰撞,进一步分散成微米级的细雾。 (2)混合室:作用是将未被细微化的较大雾 滴在混合室内凝结为液珠,沿室壁流入泄漏 管排走;并让气溶胶在室内与燃气充分混匀。
第十章 原子吸收光谱法
§10-1 §10-2 §10-3 §10-4 §10-5 §10-6
试题
概述 原子吸收法的基本原理 原子吸收分光光度计 定量分析方法 干扰及其抑制方法 灵敏度与检出限
1
§10-1 概述
一、 原子吸收光谱法
原子吸收光谱是利用待测元素的原子蒸 气中基态原子对特征电磁辐射(共振线)的吸 收来测定的。
式中ν0为谱线中心频率;M 为吸光原子的相对 原子质量;T 为绝对温度。 ΔνD约10-3数量
级,是谱线变宽的主要原因。 3.碰撞变宽(压力变宽) 由于原子相互碰撞使能量发生轻微变化。
劳伦兹变宽ΔνL :待测原子和其他原子碰撞引
起的谱线变宽。
ΔνL约10-3数量级,是碰撞变宽的主要因素。
10
赫鲁兹马克变宽ΔνH :同种原子碰撞引起的
29
二、标准加入法
取若干份体积相同的试液(cX),依次按比 例加入不同量的待测物的标准溶液(cO), 定容后浓度依次为:cX、cX+cO、cX+2cO、 cX+3cO、cX+4cO,分别测得吸光度为:A0、 A1、A2、A3、A4。以A对浓度c做图得一直 线,图中cX点即待测溶液浓度。
30
注意: 1.本法只能消除基体效应带来的干扰,不能消

原子吸收光谱法

原子吸收光谱法
高温,热激发
特征 频率光
激发态原子
不希望发生的过程
在高温过程中,待测元素由分子离解成的原 子,不可能全部成为基态原子,必有部分为激 发态原子。
原子蒸气中基态原子与待测元素原子总数之间有什 么关系?
§10-2 原子吸收光谱法基本原理
②基态原子吸收光谱的特性
一、原子吸收光谱的产生 当有辐射通过自由原子蒸气,且辐射能量等于原子 中的电子由基态跃迁到较高能态(一般情况下都是第一 激发态)所需要的能量时,原子就从辐射场中吸收能量, 产生共振吸收,电子由基态跃迁到激发态,同时伴随着 原子吸收光谱的产生。
§10-2 原子吸收光谱法基本原理 3、原子吸收光谱法的定量依据
2 πln2 e I0 f • N •b A = lg = 0.434 k 0 b = 0.434 Δv D mc Iν
2
k
A= k• N •b
在一定实验条件下: N ∝ c
A = Kc
这是原子吸收光谱分析的基本关系式。
原子吸收光谱分析的基本关系式:
E h h
c

共振吸收 基态
第一激发态 共振发射
§10-2 原子吸收光谱法基本原理
二、原子吸收光谱与原子结构关系
(1) 各种元素的原子结构和外层电子排布不同 基态第一激发态: 跃迁吸收能量不同, ——具有特征性。 (2) 各种元素的基态第一激发态 最易发生,吸收最强,最灵敏线。特征谱线 (3) 利用特征谱线可以进行定量分析 原子吸收光谱位于光谱的紫外区和可见区。
赫鲁兹马克变宽:又称共振变宽,同种 原子之间发生碰撞而引起的谱线变宽。
§10-2 原子吸收光谱法基本原理 四、热激发时基态原子和激发态原子的关系 在高温过程中,待测元素由分子离解成的原 子,不可能全部成为基态原子,必有部分为激 发态原子。

仪器分析[第十章原子吸收光谱分析法]山东大学期末考试知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末考试知识点复习

第十章原子吸收光谱分析法1.共振线与元素的特征谱线基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。

激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。

元素的特征谱线:(1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。

(2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。

特征谱线。

(3)利用特征谱线可以进行定量分析。

2.吸收峰形状原子结构较分子结构简单,理论上应产生线状光谱吸收线。

实际上用特征吸收频率左右围的辐射光照射时,获得一峰形吸收(具有一定宽度)。

由 It =Ie-Kvb透射光强度It 和吸收系数及辐射频率有关。

以Kv与v作图得图10一1所示的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数(峰值频率):最大吸收系数对应的频率或波长;中心频率v中心波长:最大吸收系数对应的频率或波长λ(单位为nm);半宽度:△v0B4.吸收峰变宽原因(1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。

它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。

不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。

多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。

(3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v由于原子相互碰撞使能L量发生稍微变化。

劳伦兹变宽:待测原子和其他原子碰撞。

赫鲁兹马克变宽:同种原子碰撞。

(4)自吸变宽空心阴极灯光源发射的共振线被灯同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。

(5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。

为主。

在一般分析条件下△V5.积分吸收与峰值吸收光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。

原子吸收光谱法原理

原子吸收光谱法原理

原子吸收光谱法原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种广泛应用于化学分析领域的分光光度法。

它利用原子对特定波长的光的吸收来分析样品中的金属元素含量。

原子吸收光谱法具有灵敏度高、选择性好、准确度高等优点,因此在环境监测、食品安全、药品检测等领域得到了广泛应用。

原子吸收光谱法的原理基于原子的能级结构和光谱学的基本原理。

当原子处于基态时,它们吸收特定波长的光能量,使得电子跃迁到激发态。

而原子在激发态的寿命非常短暂,因此在光源关闭后,原子会迅速退回到基态,释放出与吸收时相同波长的光。

原子吸收光谱法利用这一原理来分析样品中的金属元素含量。

在原子吸收光谱法中,首先需要将样品转化为原子状态。

这一过程通常包括溶解、挥发、电离等步骤,以使得金属元素以原子形式存在。

接下来,样品原子被导入火焰或炉内,使得原子吸收特定波长的光。

通过测量样品吸收光的强度,可以推断出样品中金属元素的含量。

原子吸收光谱法的灵敏度主要取决于光源的选择和样品原子的浓度。

常用的光源包括空心阴极灯和电热原子化炉,它们能够提供高能量的特定波长光。

而样品中金属元素的浓度越高,吸收光的强度也越大,因此原子吸收光谱法对于微量金属元素的分析具有很高的灵敏度。

此外,原子吸收光谱法还具有很好的选择性。

由于每种金属元素都有特定的吸收波长,因此可以通过选择合适的光源波长来分析特定的金属元素。

这使得原子吸收光谱法能够对不同金属元素进行准确的定量分析。

总的来说,原子吸收光谱法是一种成熟、可靠的分析方法,它在化学分析领域发挥着重要作用。

通过深入理解原子的能级结构和光谱学原理,我们可以更好地理解原子吸收光谱法的工作原理,从而更好地应用于实际分析中。

希望本文的介绍能够帮助大家更好地理解原子吸收光谱法的原理,为相关领域的研究和实践提供一定的参考。

原子吸收光谱法

原子吸收光谱法

原子吸收光谱法原子吸收光谱,又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。

分析过程:用(锐线光源)同种原子发射的特征辐射照射试样溶液被雾化和原子化的原子蒸气层,测量(特征辐射)透过的光强或吸光度,根据吸光度对浓度的关系计算试样中被测元素的含量。

原子吸收分光光度计,物质产生原子蒸气对特定谱线的吸收作用进行定量分析的装置。

一、基本原理原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。

由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。

当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。

特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。

此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。

由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

该法主要适用样品中微量及痕量组分分析。

二、谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。

原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。

中心波长由原子能级决定。

半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类试样的测定 中药材及生物试样的测定
电 离干 扰
定义: 指待测元素在原子化过程中发生 电离而引起的干扰效应 消除办法: ➢ 低温火焰 ➢ 加入消电离剂
物理干扰
定义:指试样在转移、蒸发和原子化 过程中,由于试样任何物理特性(如密 度、粘度、表面张力)的变化而引起的 原子吸收强度下降的效应 消除办法:配制与被测试样组成相近 的标准溶液或采用标准加入法;或浓 度高,可稀释
标准曲线线性范围窄 每种元素一个灯,多元素同时测定 更换不同光源较烦
第二节 基 本 原 理
原子的吸收 原子吸收与原子浓度的
关系及其测量方法
原子的吸收
υ= ΔE /h
共振吸收线---原子的最外层电子从基 态跃到第一激发态所产生的吸收谱线, 最灵敏的谱线
通过测量原子对其共振线的吸收强度 而进行定量的分析方法
光 学干 扰
光谱线干扰 背景干扰
在光谱带内存在非吸收线
谱线重叠 分子吸收
光散射、折射
化学干扰
原因: 待测元素不能全部从它的化合物中解 离出来 消除办法: ➢ 选择合适的原子化条件 ➢ 加入释放剂 ➢ 加入保护剂
定量方法
标准曲线法---吸光度值 应在0.2-0.8之间 标准加入法 内标法
第六节 应用示例
空心阴极灯(HCL)的特点
优点: ➢ 辐射强度大 ➢ 稳定 ➢ 谱线宽度窄 ➢ 灯易于更换
缺点: ➢ 每测一个元素换一个相应元素的灯
原 子 化 器(一)
作用:原子化器的功能在于将试 样转化为所需的基态原子 要求: ➢ 原子化效率高记忆效应小 ➢ 背景影响和噪音低 ➢ 装置简单耐用,易清洗
原 子 化 器(二)
狭缝宽度---碱金属、碱土金属可较大,过渡 元素与稀土元素应较小
空心阴极灯的工作电流---在保证有稳定和足 够的辐射光通量情况下,尽量选用较低的 灯电流,灯需预热10-30分钟
原子化条件---火焰原子化法中,火焰类型和 特性应注意;石墨炉原子化中,合理选择 各阶段的温度与时间很重要
干扰及其抑制
电离干扰 物理干扰 光学干扰 化学干扰
第一节 概述
定义 特点 缺点
定义
基于蒸气相中被测元素的基 态原子对其原子共振辐射的 吸收来测定样品中该元素的 一种方法
UV与AAS比较
特点
检出限低,灵敏度高--- 10-9 g/ml 选择性好,准确度高---窄带吸收, 不同元素各自光源 分析速度快,测定范围广---可测 元素70多种
缺点
种类
全消耗型
火焰原子化器
预混合型
电热原子化(石墨炉)
非火焰原子化器
低温原子化
单色器
组成部件 :色散元件、准直镜、狭缝 作用:分离所需的共振线,防止来自 原子吸收池所有辐射不加选择地进入 检测器,避免光电 倍增管疲劳 配置位置:原子化器之后的光路中
检 测系统
组成部件:检测器、放大器、对数 变换器、指示仪表等 ➢ 检测器常采用光电倍增管
第四节 实验技术
样品的制备 测定条件的选择 定量方法
样品的制备
取样应有代表性 标准溶液的制备---其组成要尽可能接近未知试样 被 测试样的处理:
无机 浓→稀释 液体
有机 η→η水甲基异丁酮的石油醚作为溶剂 无机 溶解 待测元素完全转移 固体 有机 先消化再溶解
测定条件的选择
分析线---通常选择待测元素的共振线
原子吸收与原子浓度的 关系及其测量方法
A=K’C
峰值吸收测量法第三节 仪 器Fra bibliotek辐射源
原子化器
单色器
检测器
光源
对光源的基本要求: ➢ 发射辐射的波长半宽度要明
显小于吸收线的半宽度 ➢ 辐射强度足够大 ➢ 稳定性好 ➢ 使用寿命长
空心阴极灯(HCL)工作原理
阴极加压 释放电子 阳极 与载气 原子碰撞 载气电离 轰击阴极表 面 阴极材料的原子从晶格中溅 射出来 与电子等碰撞而激发 发出特征共振线
相关文档
最新文档