(江苏版)2018年高考数学一轮复习《2.12函数模型及其应用》讲+练+测(含答案)
2018年高考数学一轮复习(讲+练+测): 专题2.12 函数模型及其应用(讲)
专题2.12 函数模型及其应用【考纲解读】【直击考点】题组一常识题1.[教材改编] 函数模型:①y=1.002x,②y=0.25x,③y=log2x+1.随着x的增大,增长速度的大小关系是____________.【解析】根据指数函数、幂函数、对数函数的增长速度关系可得.①>②>③2.[教材改编] 某公司市场营销人员的个人月收入与其每月的销售量的关系满足一次函数,已知销售量为1000件时,收入为3000元,销售量为2000件时,收入为5000元,则营销人员没有销售量时的收入是________元.【解析】设收入y与销售量x的关系为y=kx+b,则有3000=1000k+b,5000=2000k +b,解得k=2,b=1000,所以y=2x+1000,故没有销售量时的收入y=2×0+1000=1000.3.[教材改编] 某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________元.【解析】设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.题组二常错题4.据调查,某自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是________.【解析】y =0.2x +(4000-x )×0.3=-0.1x +1200(0≤x ≤4000,x ∈N ),这里不能忽略x 的取值范围,否则函数解析式失去意义.5.等腰三角形的周长为20,腰长为x ,则其底边长y =f (x )=________________.题组三 常考题6.某市职工收入连续两年持续增加,第一年的增长率为a ,第二年的增长率为b ,则该市这两年职工收入的年平均增长率为______________.【解析】设年平均增长率为x ,则有(1+a )(1+b )=(1+x )2,解得x =(1+a )(1+b )-1.7.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e=2.718 28…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是240小时,在22 ℃的保鲜时间是60小时,则该食品在11℃的保鲜时间是________小时.【解析】由题意,⎩⎪⎨⎪⎧240=e b,60=e 22k +b , 得⎩⎪⎨⎪⎧240=e b,2-1=e 11k ,于是当x =11时,y =e 11k +b =e 11k ·e b =2-1×240=120.8.要制作一个容积为16 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.【解析】设长方体底面边长分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y )×10+20xy =20⎝⎛⎭⎪⎫x +16x +20×16,由基本不等式得,z =20⎝ ⎛⎭⎪⎫x +16x +20×16≥40x ·16x+320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.【知识清单】1.几种常见的函数模型函数模型函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图像的变化随x值增大,图像与y轴接近平行随x值增大,图像与x轴接近平行随n值变化而不同【考点深度剖析】解答应用问题的程序概括为“四步八字”,即①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;②建模:把自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;③求模:求解数学模型,得出数学结论;④还原:将数学结论还原为实际问题的意义.【重点难点突破】考点1 一次函数与二次函数模型【1-1】某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差_________元.【答案】10【解析】依题意可设s A(t)=20+kt,s B(t)=mt,又s A(100)=s B(100),∴100k+20=100m,得k-m=-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元.【1-2】将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_________元. 【答案】95【思想方法】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 【温馨提醒】1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 考点2 分段函数模型【2-1】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时). 【答案】(1) v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200.(2) 当x =100时,f (x )在区间(20,200]上取得最大值.【解析】(1)由题意:当0≤x ≤20时,v (x )=60;【2-2】某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f (t )与上市时间t 的关系及国内市场的日销售量g (t )与上市时间t 的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.【答案】(1) f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40. g (t )=-320t 2+6t (0≤t ≤40). (2) 上市后的第30天.【思想方法】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2) 分段函数的最值是各段的最大(最小)者的最大者(最小者).【温馨提醒】构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏. 考点3 指数函数模型【3-1】一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【答案】(1) x =1-⎝ ⎛⎭⎪⎫12110 (2) 5.(3)15.【3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),判定该股民这支股票的盈亏情况(不考虑其他费用). 【答案】略有亏损【解析】设该股民购这支股票的价格为a ,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n,经历n 次跌停后的价格为a ×1.1n×(1-10%)n=a ×1.1n×0.9n=a ×(1.1×0.9)n=0.99n·a <a ,故该股民这支股票略有亏损. 【思想方法】(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.(3)y =a (1+x )n通常利用指数运算与对数函数的性质求解.【温馨提醒】解指数不等式时,一定要化为同底,且注意对应函数的单调性.【易错试题常警惕】数学实际应用问题,一定要正确理解题意,选择适当的函数模型;合理确定实际问题中自变量的取值范围;必须验证答案对实际问题的合理性.如:如图所示,在矩形CD AB 中,已知a AB =,C b B =(a b >).在AB 、D A 、CD 、C B 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形FG E H 的面积最大?求出这个最大面积.【易错点】忽略实际问题中自变量的取值范围,造成与实际问题不相符合的错误结论.m的矩形蔬菜温室,在温室内,沿左、右两侧【练一练】某村计划建造一个室内面积为8002与后侧内墙各保留m宽的通道,沿前侧内墙保留m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?m.【答案】当矩形温室的边长各为40m,20m时,蔬菜的种植面积最大,最大面积是6482。
【高三数学试题精选】2018高考数学一轮复习2.12函数模型及其应用讲练测(江苏版有答案)
2018高考数学一轮复习2.12函数模型及其应用讲练测(江
苏版有答案)
5 专题212 函数模型及其应用
班级__________ 姓名_____________ 学号___________ 得分__________
(满分100分,测试时间50分钟)
一、填空题请把答案直接填写在答题卡相应的位置上(共10题,每小题6分,共计60分).
1 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________
【答案】30 000,此时最大值是当x=30时,Qax=1 800×30-30 000=24 000(元);
②当30<x≤75时,=1 800-2018学年度苏锡常镇四市高三教学情况调研(二)】某科研小组研究发现一棵水蜜桃树的产量(单位百千克)与肥料费用(单位百元)满足如下关系,且投入的肥料费用不超过5百元此外,还需要投入其他成本(如施肥的人工费等)百元已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求记该棵水蜜桃树获得的利润为(单位百元)(1)求利润函数的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
【答案】(1)见解析(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元
5。
2018高考(江苏专版)大一轮数学(文)复习检测:第14课 函数模型及其应用含答案
第14课函数模型及其应用A 应知应会1.某种商品的进价为100元/件,按进价增加25%出售,后因库存积压降价,按九折出售,那么每件还获利元.2.(2015·辽宁实验中学模拟)拟定从甲地到乙地通话m min的话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m〉0,[m]是不超过m的最大整数(如[3]=3,[3。
7]=3,[3。
1]=3),则从甲地到乙地通话6.5 min的话费为元。
3.已知产品生产件数x与成本y(单位:万元)之间的函数关系为y=3 000+20x-0.1x2。
若每件产品的成本不超过25元,且每件产品用料6 t。
现有库存原料30 t,旺季可进原料900 t,则旺季最高产量是.4.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为可食用率。
在特定条件下,可食用率p与加工时间t (单位:min)之间满足函数关系p=at2+bt+c(a,b,c是常数),如图,这是兴趣小组记录的三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为min.(第4题)5.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200 kg,配料的价格为1。
8元/kg,每次购买配料需支付运费236元。
每次买回的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,按每天0.03元/kg支付。
(1)当9天购买一次配料时,求该厂用于配料的保管费用P;(2)若该厂x天购买一次配料,求该厂在这x天中用于配料的总费用y(单位:元)关于x的函数关系式.6。
某种海洋生物的身长f(t)(单位:m)与生长年限t(单位:年)满足如下的函数关系:f(t)=(设该生物出生时的时刻t=0)。
(1)需经过多长时间,该生物的身长超过8 m?(2)该生物出生后第3年和第4年各长了多少米?并据此判断,这两年中哪一年长得更快.B 巩固提升1。
(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_9函数模型及其应用教师用书理苏教
第二章 函数概念与基本初等函数I 2.9 函数模型及其应用教师用书理 苏教版1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数且a ≠0) 反比例函数模型f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型f (x )=ax 2+bx +c(a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)2.三种函数模型的性质函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的单调递增单调递增单调递增【知识拓展】 1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +a x(a >0)的函数模型称为“对勾”函数模型: (1)该函数在(-∞,-a ]和[a ,+∞)上单调递增, 在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(2)幂函数增长比直线增长更快.( × ) (3)不存在x 0,使0x a <0nx <log a x 0.( × )(4)在(0,+∞)上,随着x 的增大,y =a x(a >1)的增长速度会超过并远远大于y =x a(a >0)的增长速度.( √ )(5)“指数爆炸”是指数型函数y =a ·b x+c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( × )1.(教材改编)某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚270元,那么每台彩电原价是________元. 答案 2 250解析 设每台原价是a 元,则a (1+40%)·80% =a +270,解得a =2 250.2.(教材改编)某汽车油箱中存油22千克,油从管道中匀速流出,200分钟流尽,油箱中剩油量y (千克)与流出时间x (分钟)之间的函数关系式为________. 答案 y =22-11100x (0≤x ≤200)解析 流速为22200=11100,x 分钟可流11100x ,则y =22-11100x (0≤x ≤200).3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________________. 答案p +1q +1-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =1+p1+q -1.4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________. 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x 2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.5.(教材改编)有两个相同的桶,由甲桶向乙桶输水,开始时,甲桶有a L 水,t min 后,剩余水y L 满足函数关系y =a e-nt,那么乙桶的水就是y =a -a e-nt,假设经过5 min ,甲桶和乙桶的水相等,则再过________ min ,甲桶中的水只有a8 L.答案 10解析 由题意可得,5 min 时,a e -5n=12a ,n =15ln 2, 那么ln 25et a =18a ,∴t =15,即再过10 min ,甲桶中的水只有a8L.题型一 用函数图象刻画变化过程例1 某民营企业生产A 、B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图①所示;B 产品的利润与投资的算术平方根成正比,其关系如图②所示(单位:万元).分别将A 、B 两种产品的利润表示为投资的函数关系式.解 设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题意设f (x )=k 1x (x ≥0),g (x )=k 2x (x ≥0). 由图①知f (1)=14,∴k 1=14.由图②知g (4)=52,∴k 2=54.∴f (x )=14x (x ≥0),g (x )=54x (x ≥0).思维升华 判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式.其中所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x (min)与通话费y (元)的关系如图所示.(1)分别求出通话费y 1、y 2与通话时间x 之间的函数关系式; (2)请帮助用户计算在一个月内使用哪种卡便宜.解 (1)设y 1=k 1x +29,y 2=k 2x ,把点B (300,35),C (300,15)分别代入得k 1=150,k 2=120.∴y 1=150x +29,y 2=120x .(2)令y 1=y 2,即150x +29=120x ,得x =96623.当x =96623时,两种卡收费一致;当x <96623时,y 1>y 2,即“如意卡”便宜;当x >96623时,y 1<y 2,即“便民卡”便宜.题型二 已知函数模型的实际问题例2 我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/米2(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10 lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:(1)树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?解 (1)由题意知树叶沙沙声的强度水平为L 2=10 lg I 2I 0=10 lg 1=0(分贝);耳语的强度水平为L 3=10 lg I 3I 0=10 lg102=20(分贝);恬静的无线电广播的强度水平为L 4=10 lg I 4I 0=10lg 104=40(分贝).(2)由题意知0≤L 1<50,即0≤10lg I I 0<50, 所以1≤I I 0<105,即1×10-12≤I <1×10-7.所以新建的安静小区的声音强度I 大于等于1×10-12W/m 2,同时小于1×10-7 W/m 2.思维升华 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(1)某航空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x%),则每年销售量将减少10x万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x的最小值为________.答案(1)19 (2)2解析(1)由图象可求得一次函数的解析式为y=30x-570,令30x-570=0,解得x=19.(2)由分析可知,每年此项经营中所收取的附加税额为104·(100-10x)·70·x100,令104·(100-10x)·70·x100≥112×104,解得2≤x≤8.故x的最小值为2. 题型三构造函数模型的实际问题命题点1 构造二次函数模型例3 将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定________元. 答案 95解析 设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].∴当x =95时,y 最大.命题点2 构造指数函数、对数函数模型例4 光线通过一块玻璃,强度要损失10%.设光线原来的强度为k ,通过x 块这样的玻璃以后强度为y .(1)写出y 关于x 的函数解析式;(2)至少通过多少块这样的玻璃,光线强度能减弱到原来的14以下?(参考数据:lg 2≈0.301 0,lg 3≈0.477 1)解 (1)光线通过1块玻璃后,强度y =(1-10%)k =0.9k ; 光线通过2块玻璃后,强度y =(1-10%)·0.9k =0.92k ; 光线通过3块玻璃后,强度y =(1-10%)·0.92k =0.93k ; ……光线通过x 块玻璃后,强度y =0.9xk . 故y 关于x 的函数解析式为y =0.9x k (x ∈N *). (2)由题意,得0.9xk <k4,即0.9x <14,两边取对数,得x lg 0.9<lg 14.因为lg 0.9<0,所以x >lg 14lg 0.9.又lg 14lg 0.9=-2lg 22lg 3-1=-0.602 00.954 2-1=-0.602 0-0.045 8≈13.14, 且x ∈N *,所以x min =14.故至少通过14块这样的玻璃,光线强度能减弱到原来的14以下.命题点3 构造分段函数模型例 5 (2017·盐城质检)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)解 (1)由题意可知当0≤x <20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,显然v (x )=ax +b 在[20,200]上是减函数,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003,故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x <20,13200-x , 20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x <20,13x 200-x , 20≤x ≤200,当0≤x <20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20≤x ≤200时,f (x )=13x (200-x )≤13[x +200-x 2]2=10 0003,当且仅当x =200-x ,即x =100时,等号成立,所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约3 333辆/小时.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.(1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过________小时才能开车.(精确到1小时)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________. 答案 (1)5 (2)300解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3,x ≥log 0.750.3≈4.19.∴x 最小为5. (2)由题意,总利润y =⎩⎪⎨⎪⎧400x -12x 2-100x -20 0000≤x ≤400,60 000-100x x >400,当0≤x ≤400时,y =-12(x -300)2+25 000,所以x =300时,y max =25 000,当x >400时,y =60 000-100x <20 000,综上,当该门面经营的天数为300时,总利润最大为25 000元.2.函数应用问题典例 (14分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 思维点拨 根据题意,要利用分段函数求最大利润.列出解析式后,比较二次函数和“对勾”函数的最值的结论. 规范解答解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,[3分]当x >40时,W =xR (x )-(16x +40) =-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40. [5分](2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;[8分]②当x >40时,W =-40 000x-16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600,当且仅当40 000x=16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值为5 760. [12分] 综合①②知,当x =32时,W 取得最大值6 104万美元.[14分]解函数应用题的一般程序第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.1.某商品定价为每件60元,不加收附加税时年销售量约80万件,若征收附加税,税率为p ,且年销售量将减少203p 万件.则每年征收的税金y 关于税率p 的函数关系为________.答案 y =60(80-203p )p解析 征收附加税后年销售为(80-203p )万件,故每年征收的税金y =60(80-203p )p .2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是________.答案①解析前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变.3.(教材改编)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.答案9解析出租车行驶不超过3 km,付费9元;出租车行驶8 km,付费9+2.15×(8-3)=19.75元.现某人乘坐一次出租车付费22.6元,故出租车行驶里程超过8 km,且22.6-19.75=2.85,所以此次出租车行驶了8+1=9 km.4.(2017·盐城月考)某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为________ m 3. 答案 13解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx 0<x ≤10,10m +x -10·2mx >10,则10m +(x -10)·2m =16m , 解得x =13.5.(2016·北京朝阳区统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是________. 答案 16解析 由题意,分流前每年创造的产值为100t (万元), 分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,100-x1+1.2x %t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16.6.(2016·南通模拟)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元. 答案 43解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.7.(2016·四川改编)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是________年.(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) 答案 2019解析 设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x =log 1.12200130=lg 2-lg 1.3lg 1.12≈3.80,因资金需超过200万,则x 取4,即2019年.8.(2016·苏州模拟)某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =__________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=12e k ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,y =e10ln 2=210=1 024.9.(2016·淮安模拟)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 答案 20解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.*10.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________. 答案5-12解析 依题意得x =c -a b -a,(c -a )2=(b -c )(b -a ), ∵b -c =(b -a )-(c -a ),∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.∵0<x <1,∴x =5-12.11.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位. 12.经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ).前30天价格为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格为g (t )=45(31≤t ≤50,t ∈N ).(1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值. 解 (1)依题意得S =⎩⎪⎨⎪⎧-2t +200⎝ ⎛⎭⎪⎫12t +301≤t ≤30,t ∈N ,45-2t +20031≤t ≤50,t ∈N ,即S =⎩⎪⎨⎪⎧-t 2+40t +6 0001≤t ≤30,t ∈N ,-90t +9 00031≤t ≤50,t ∈N .(2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400, ∴当t =20时,S 取得最大值为6 400. ②当31≤t ≤50,t ∈N 时,S =-90t +9 000为递减函数,∴当t =31时,S 取得最大值为6 210.综上知,当t =20时,日销售额S 有最大值6 400.*13. (2016·常州模拟)某旅游景点2016年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x x ∈N *,且1≤x ≤6,160xx ∈N *,且7≤x ≤12.(1)写出2016年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2016年第几个月旅游消费总额最大?最大月旅游消费总额为多少万元? 解 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x ) =-3x 2+40x , 验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)第x 个月旅游消费总额为g (x )=⎩⎪⎨⎪⎧-3x 2+40x 35-2x x ∈N *,且1≤x ≤6,-3x 2+40x ·160x x ∈N *,且7≤x ≤12,即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x x ∈N *,且1≤x ≤6,-480x +6 400x ∈N *,且7≤x ≤12.①当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0, 当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(万元).②当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数, ∴当x =7时,g (x )max =g (7)=3 040(万元).综上,2016年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.14.(2016·江苏扬州中学质检)某环线地铁按内、外环线同时运行,内、外环线的长均为30 km(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min ,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25 km/h ,外环线列车平均速度为30 km/h.现内、外环线共有18列列车投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行?解 (1)设内环线列车运行的平均速度为v km/h ,由题意可知309v ×60≤10⇒v ≥20.所以,要使内环线乘客最长候车时间为10 min ,列车的最小平均速度是20 km/h.(2)设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,设内、外环线乘客最长候车时间分别为t 1 min 、t 2 min ,则t 1=3025x ×60=72x ,t 2=303018-x ×60=6018-x.设内、外环线乘客的候车时间之差为t min , 于是有t =|t 1-t 2|=⎪⎪⎪⎪⎪⎪72x -6018-x=⎩⎪⎨⎪⎧72x +60x -18,1≤x ≤9,x ∈N *,-72x +60x -18,10≤x ≤17,x ∈N *,该函数在(1,9)上递减,在(10,17)上递增.又t (9)>t (10),所以当内环线投入10列列车运行,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.。
(江苏专用)2018年高考数学一轮复习 第二章 函数 2.6 函数模型及其应用课件
|x-01|+
2
|1-y|
= 1 -1 (y-x),又y-x1> ,∴|f(x)-f(y1)|<1 -1 1× = .
22
2
22 2 4
综上所述,对所有x,y∈[0,1],都有|f(x)-f(y)|< 1 .因此,k≥1 ,即k的最小值为1 .
4
4
4
3.(2013课标全国Ⅰ理,21,12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过 点P(0,2),且在点P处有相同的切线y=4x+2. (1)求a,b,c,d的值; (2)若x≥-2时, f(x)≤kg(x),求k的取值范围.
t3
,B
3t 2
,.0
0,
3
000 t2
故f(t)=
32=t 2
3
,t0t20∈0 [52 ,2032].
t2
4 106 t4
②设g(t)=t2+ 41,则06 g'(t)=2t- .1令6g1'(0t6)=0,解得t=10 .
t4
t5
2
当t∈(5,10 2)时,g'(t)<0,g(t)是减函数;
解得n> 24 ,
5
又∵n∈N*, ∴n≥5, ∴该公司全年投入的研发资金开始超过200万元的年份是2019年.
5.(2015四川,13,5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e
=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜
推荐高考数学一轮复习讲练测江苏练专题2 函数模型及其应用解析含解析
1. 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).【答案】①【解析】前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.2. 某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.【答案】10.3. A ,B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 kmh ,经过________小时,AB间的距离最短.【答案】258【解析】设经过x h ,A ,B 相距为y km ,则y =(145-40x )2+(16x )2(0≤x ≤298),求得函数的最小值时x 的值为258.4. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是________(填序号).①消耗1升汽油,乙车最多可行驶5千米;②以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多;③甲车以80千米/时的速度行驶1小时,消耗10升汽油;④某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油. 【答案】 ④5.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图像,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为_________.【答案】下午4:006.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是________.【答案】9【解析】设所停的楼层为n层,则2≤n≤12,由题意得:S=2+4+…+2(12-n)+1+2+3+…+(n-2)=12-n26-2n2+n-2[1+n-2]2=32n2-532n+157,其对称轴为n =536∈(8,9),又n ∈N *且n 离9的距离较近,7.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为______.【答案】30 cm,20 cm【解析】设长为a cm ,宽为b cm ,则ab =600 cm ,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486 cm 2.8.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x 的最小值是______. 【答案】209.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资). 【答案】16【解析】:当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.10.据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系是________ 【答案】y =-0.1x +1 200(0≤x ≤4 000)【解析】y =0.2x +(4000-x )×0.3=-0.1x +1 200 (0≤x ≤4 000).11. 某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为________.【答案】x =15,y =1212.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是θ=m ·2t+21-t(t ≥0,并且m >0).(1)如果m =2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围.【答案】(1) 1分钟(2) ⎣⎢⎡⎭⎪⎫12,+∞【解析】(1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t+12t =52,令2t=x (x ≥1),则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.13.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系; (2)该地一家庭记录了去年12个月的月用水量(x ∈N *)如下表:月用水量x (吨) 3 4 5 6 7 频数13332请你计算该家庭去年支付水费的月平均费用(精确到1元);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:据此估计该地“节约用水家庭”的比例. 【答案】(1) y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2) 13(元) (3) 77%.【解析】(1)y 关于x 的函数关系式为 y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2)由(1)知:当x =3时,y =6; 当x =4时,y =8;当x =5时,y =12; 当x =6时,y =16;当x =7时,y =22. 所以该家庭去年支付水费的月平均费用为112(6×1+8×3+12×3+16×3+22×2)≈13(元). (3)由(1)和题意知:当y ≤12时,x ≤5,所以“节约用水家庭”的频率为77100=77%,据此估计该地“节约用水家庭”的比例为77%.14. 在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额; (2)企业乙只依靠该店,最早可望在几年后脱贫?【答案】(1) 当P =19.5元时,月利润余额最大,为450元. (2) 可望在20年后脱贫.故当P=19.5元时,月利润余额最大,为450元. (2)设可在n年后脱贫,依题意有12n×450-50 000-58 000≥0,解得n≥20.即最早可望在20年后脱贫.。
高考数学一轮总复习 第二章 函数、导数及其应用 课时作业12 函数模型及应用(含解析)苏教版-苏教版
课时作业12 函数模型及应用一、选择题1.下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是( A )x 4 5 6 7 8 9 10 y15171921232527A.C .指数函数模型D .对数函数模型解析:由表中数据知x ,y 满足关系y =13+2(x -3).故为一次函数模型.2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( D )A .不能确定B .①②同样省钱C .②省钱D .①省钱解析:方法①用款为4×20+26×5=80+130=210(元), 方法②用款为(4×20+30×5)×92%=211.6(元), 因为210<211.6,故方法①省钱.3.一个人以6 m/s 的速度去追停在交通灯前的汽车,当他离汽车25 m 时,交通灯由红变绿,汽车以1 m/s 2的加速度匀加速开走,那么( D )A .人可在7 s 内追上汽车B .人可在10 s 内追上汽车C .人追不上汽车,其间距最少为5 mD .人追不上汽车,其间距最少为7 m解析:设汽车经过t s 行驶的路程为s m ,则s =12t 2,车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7,当t =6时,d 取得最小值为7.4.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( D )A.p +q 2B .(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x )2=(p +1)(q +1),解得x =(p +1)(q +1)-1.故选D.5.(2019·全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( B )A .165 cmB .175 cmC .185 cmD .190 cm解析:不妨设此人咽喉至肚脐的长度为x cm ,则26x ≈0.618,得x ≈42,故某人身高大约为26+42+105=173(cm),考虑误差,故其身高可能是175 cm ,故选B.6.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln2(太贝克/年),则M (60)=( D )A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克解析:由题意M ′(t )=M 02-t 30⎝⎛⎭⎫-130ln2,M ′(30)=M 02-1×⎝⎛⎭⎫-130ln2=-10ln2,∴M 0=600,∴M (60)=600×2-2=150.故选D.二、填空题7.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是108元.解析:设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.8.某人根据经验绘制了2020年春节前后,从1月21日至2月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月26日大约卖出了西红柿1909千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.9.已知某驾驶员喝了m 升酒后,血液中酒精的含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎪⎨⎪⎧5x -2,0≤x ≤1,35·⎝⎛⎭⎫13x ,x >1,《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量应不超过0.02毫克/毫升.则此驾驶员至少要过4小时后才能开车.(精确到1小时)解析:驾驶员醉酒1小时血液中酒精含量为5-1=0.2毫克/毫升,要使酒精含量≤0.02毫克/毫升,则35⎝⎛⎭⎫13x≤0.02,∴x ≥log 330=1+log 310>1+log 39=3,故此驾驶员至少要过4个小时后才能开车.10.(2019·卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付130元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为15.解析:(1)顾客一次购买草莓和西瓜各1盒,总价为60+80=140(元),又140>120,所以优惠10元,顾客实际需要付款130元.(2)设顾客一次购买的水果总价为m 元.由题意易知,当0<m <120时,x =0,当m ≥120时,(m -x )×80%≥m ×70%,得x ≤m 8对任意m ≥120恒成立,又m8≥15,所以x 的最大值为15.三、解答题11.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为yx (万元).则y x =x 5+8 000x-48≥2x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.所以年产量为200吨时,每吨产品的平均成本最低,为32万元. (2)设年获得总利润为R (x )万元,则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).因为R (x )在[0,210]上是增函数,所以x =210时,R (x )有最大值,为-15(210-220)2+1 680=1 660.所以年产量为210吨时,可获得最大利润1 660万元.12.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超过4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系; (2)该地一家庭记录了去年12个月的月用水量(x ∈N *)如下表:(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:解:(1)y 关于x 的函数关系式为y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2)由(1)知:当x =3时,y =6; 当x =4时,y =8; 当x =5时,y =12;当x =6时,y =16; 当x =7时,y =22.所以该家庭去年支付水费的月平均费用为112×(6×1+8×3+12×3+16×3+22×2)≈13(元). (3)由(1)和题意知:当y ≤12时,x ≤5,所以“节约用水家庭”的频率为77100=77%,据此估计该地“节约用水家庭”的比例为77%.13.牛奶保鲜时间因储藏时温度的不同而不同.假定保鲜时间y (单位:h)与储藏温度x (单位:℃)间的关系为指数型函数y =k ·a x (k ≠0).若牛奶在0 ℃的冰箱中,保鲜时间约是192 h ,而在22 ℃的厨房中,保鲜时间约是42 h.(1)写出保鲜时间y 关于储藏温度x 的函数解析式.(2)如果把牛奶分别储藏在10 ℃和5 ℃的两台冰箱中,哪一台冰箱储藏牛奶保鲜时间较长?为什么?(参考数据:22732≈0.93)解:(1)保鲜时间y 与储藏温度x 间的关系符合指数型函数y =k ·a x (k ≠0),则⎩⎪⎨⎪⎧ka 0=192,ka 22=42,解得⎩⎨⎧k =192,a =22732≈0.93,故所求函数解析式为y =192×0.93x .(2)把牛奶储藏在5 ℃的冰箱中,牛奶保鲜时间较长.设f (x )=192×0.93x ,因为f (x )是减函数,且10>5,所以f (10)<f (5),所以把牛奶储藏在5 ℃的冰箱中,牛奶保鲜时间较长.14.(2019·全国卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1(R +r )2+M 2r 2=(R +r )M 1R 3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D ) A.M 2M 1R B.M 22M 1R C.33M 2M 1R D.3M 23M 1R 解析:由M 1(R +r )2+M 2r 2=(R +r )M 1R 3,得M 1(1+r R )2+M 2(r R )2=(1+r R )M 1.因为α=r R ,所以M 1(1+α)2+M 2α2=(1+α)M 1,得3α3+3α4+α5(1+α)2=M 2M 1.由3α3+3α4+α5(1+α)2≈3α3,得3α3≈M 2M 1,即3(r R )3≈M 2M 1,所以r ≈3M 23M 1·R ,故选D.15.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:根据上表数据,Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120; (2)最低种植成本是80(元/100 kg).解析:根据表中数据可知函数不单调,所以Q =at 2+bt +c ,且开口向上,对称轴t =-b 2a =60+1802=120,代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.。
(江苏版)2018年高考数学一轮复习(讲、练、测):_专题2.9_幂函数、指数函数与对数函数(讲)(有解析)
2.9 幂函数、指数函数与对数函数【考纲解读】内 容要 求备注A B C 函数概念与基本初等函数Ⅰ指数函数的图象与性质√1.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数的实际背景,理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像的特征,知道指数函数是一重要的函数模型.3.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.4.理解对数函数的概念;理解对数函数的单调性.5.了解幂函数的概念.6.结合函数y =x ,y =x2,y =x3,y =1x ,y =x 12的图像,了解它们的变化情况. 对数函数的图象与性质√幂函数√【直击考点】题组一 常识题1.[教材改编] 如果3x=4,则x =________.【解析】 由指数式与对数式的互化规则,得x =log 34. 2.[教材改编] 2log 510+log 50.25=________.【解析】 2log 510+log 50.25=log 5(102×0.25)=log 525=2. 3.[教材改编] 函数y =log 2(x 2-1)的单调递增区间是________.【解析】 由x 2-1>0得x <-1或x >1.又函数y =log 2x 在定义域内是增函数,所以原函数的单调递增区间是(1,+∞). 题组二 常错题4.函数y =log 12(2x 2-3x +1)的单调递减区间为________.【解析】 由2x 2-3x +1>0,得x >1或x <12,易知u =2x 2-3x +1⎝ ⎛⎭⎪⎫x >1或x <12在(1,+∞)上是增函数,所以原函数的单调递减区间为(1,+∞).5.设a =14,b =log 985,c =log 83,则a ,b ,c 的大小关系是________.【解析】 a =14=log 949=log 93<log 83=c ,a =log 93>log 985=b ,所以c >a >b .题组三 常考题6.lg 52+2lg 2+⎝ ⎛⎭⎪⎫15-1=________.【解析】 原式=lg 5-lg 2+2lg 2+5=lg 5+lg 2+5=1+5=6.7.设a =log 32,b =log 52,c =log 45,则a ,b ,c 的大小关系是________________.8. 设函数f (x )=ln(1+|x |)-1x 2+2,若f (x )>f (2x -1),则x 的取值范围为________. 【解析】 由f (x )=ln(1+|x |)-12+x2可知f (x )是偶函数,且在[0,+∞)上是增函数,所以f (x )>f (2x -1),即f (|x |)>f (|2x -1|),即|x |>|2x -1|,解得13<x <1.【知识清单】1 幂函数的概念、图象与性质 常用幂函数的图象与性质y =x y =x 2 y =x 3y =12xy =x -1图象定义域RRR[0,+∞){x |x ∈R 且x ≠0}值域 R [0,+∞) R [0,+∞) {y |y ∈R 且y ≠0}奇偶性 奇函数 偶函数 奇函数非奇非偶函数奇函数单调性增x ∈[0,+∞)时,增;x ∈(-∞,0]时,减增增x ∈(0,+∞)时,减;x ∈(-∞,0)时,减2y =a x a >10<a <1图像定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.与指数函数有关的试题,大都以其性质及图像为依托,结合推理、运算来解决,往往指数函数与其他函数进行复合,另外底数多含参数、考查分类讨论.2.关于对数的运算近两年高考卷没有单独命题考查,都是结合其他知识点进行.有关指数函数、对数函数的试题每年必考,有填空题,又有解答题,且综合能力较高.3.从近几年的新课标高考试题来看,幂函数的内容要求较低,只要求掌握简单幂函数的图像与性质.【重点难点突破】考点1 幂函数的概念、图象与性质【1-1】已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x)是幂函数,且在(0,+∞)上是增函数?【答案】1m=-【1-2】若幂函数y=(m2-3m+3)22m mx--的图象不经过原点,则实数m的值为________.【答案】1或2【解析】由⎩⎪⎨⎪⎧m2-3m+3=1m2-m-2≤0,解得m=1或2.经检验m=1或2都适合.【1-3】设424999244(),(),()999a b c===,则a,b,c的大小关系是________.【答案】b c a>>【解析】∵函数49(0)y x x=>是增函数,∴c a>,又∵函数4()9xy=是减函数,∴b c>,∴b c a>>. 【思想方法】1.判断一个函数是否为幂函数,只需判断该函数的解析式是否满足:(1)指数为常数;(2)底数为自变量;(3)幂系数为1.2..幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.【温馨提醒】在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键. 考点2 指数函数的概念、图象与性质【2-1】若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________. 【答案】 3【2-2】设f (x )=|3x-1|,c <b <a 且f (c )>f (a )>f (b ),由在关系式①3c>3b;②3b>3a;③3c+3a>2;④3c+3a<2中一定成立的是 . 【答案】④【解析】作f (x )=|3x -1|的图象如图所示,由图可知,要使c <b <a 且f (c )>f (a )>f (b )成立,需有c <0且a >0,所以3c<1<3a,所以f (c )=1-3c,f (a )=3a-1.又f (c )>f (a ),所以1-3c>3a-1,即3a+3c<2,故填④.【思想方法】指数函数的底数中若含有参数,一般需分类讨论.指数函数与其他函数构成的复合函数问题,讨论复合函数的单调性是解决这类问题的重要途径之一.求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.【温馨提醒】一些指数方程、不等式问题的求解,往往结合相应的指数型函数图象利用数形结合求解. 考点3 对数函数的概念、图象与性质【3-1】已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )在定义域上单调性是 . 【答案】增函数【解析】由于(1,0)x ∈-,即1(0,1)x +∈时()0f x <,所以1a >,因而()f x 在(1,)-+∞上是增函数. 【3-2】已知f (x )=log a (a x-1)(a >0且a ≠1).(1)求f (x )的定义域; (2)判断函数f (x )的单调性.【答案】(1)1a >时,定义域为(0,)+∞,01a <<时,定义域为(,0)-∞;(2)1a >时,增函数,01a << 时,减函数.【解析】(1)由a x -1>0得a x>1,当a >1时,x >0;当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2, 故0<ax 1-1<ax 2-1,∴log a (ax 1-1)<log a (ax 2-1). ∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数. 类似地,当0<a <1时,f (x )在(-∞,0)上为增函数. 【3-3】已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. 【答案】(1)单调递增区间是(-1,1),递减区间是(1,3);(2)存在,12a =.【基础知识】a>10<a<1图像定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>0利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.【温馨提醒】解决对数型函数、对数型不等式问题,一定要注意定义域优先原则.【易错试题常警惕】由幂函数的函数值大小求参数的范围问题,一般是借助幂函数的单调性进行求解,一定要具体问题具体分析,做到考虑问题全面周到. 如:若()()22132a a --+>-,则a 的取值范围是 .【分析】由2y x -=的图象关于y 轴对称知,函数2y x -=在()0,+∞上是减函数,在(),0-∞上是增函数.因为()()22132a a --+>-,所以32010321a a a a ->⎧⎪+>⎨⎪->+⎩或32010321a a a a -<⎧⎪+<⎨⎪-<+⎩或 ()32010321a a a a ⎧->⎪+<⎨⎪->-+⎩或()32010321a a a a ⎧-<⎪+>⎨⎪-->+⎩,解得213a -<<或a ∈∅或1a <-或4a >,所以a 的取值范围是()()2,11,4,3⎛⎫-∞--+∞ ⎪⎝⎭U U .【易错点】本题容易只考虑到1a +,32a -在同一单调区间的情况,不全面而致误. 【练一练】已知幂函数f (x )=x (m 2+m )-1(m ∈N +),经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围。
(江苏版)2018年高考数学一轮复习(讲、练、测):_专题4.5_函数y=Asin(ωx+φ)的图象及其应用(练)(有解析)
专题4.5 函数y =Asin (ωx +φ)的图象及其应用【基础巩固】一、填空题1.(2016·全国Ⅱ卷改编)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为________. 【答案】x =k π2+π6(k ∈Z )2.(2017·衡水中学金卷)若函数y =sin(ωx -φ)(ω>0,|φ|<π2)在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是________.【答案】2,π3【解析】由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2,又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k ∈Z ),而|φ|<π2,所以φ=π3.3.(2017·苏北四市调研)如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的周期是________.【答案】4【解析】设函数的周期为T ,由图象可得A ⎝ ⎛⎭⎪⎫T 4,3,B ⎝ ⎛⎭⎪⎫3T 4,-3,则OA →·OB →=3T 216-3=0,解得T =4.4.(2017·南京师大附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f (x )的图象,若函数f (x )的图象过原点,则φ=________.【答案】3π4【解析】将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f (x )的图象过原点,则f (0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z ,又0<φ<π,则φ=3π4.5.(2017·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))图象的一部分,则f (0)的值为________.【答案】3226.(2017·龙岩模拟)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6x -(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】20.5【解析】因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6x -, 所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4 =23-5×12=20.5.7.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝ ⎛⎭⎪⎫2,-12,则函数f (x )的解析式为________.【答案】f (x )=sin ⎝⎛⎭⎪⎫πx 2+π68.函数f (x )=3sin π2x -log 12x 的零点的个数是________.【答案】5【解析】函数y =3sin π2x 的周期T =2ππ2=4,由log 12x =3,可得x =18.由log 12x =-3,可得x =8.在同一平面直角坐标系中,作出函数y =3sin π2x 和y =log 12x 的图象(如图所示),易知有5个交点,故函数f (x )有5个零点.二、解答题9.已知函数f (x )=sin ωx +cos ⎝⎛⎭⎪⎫ωx +π6,其中x ∈R ,ω>0.(1)当ω=1时,求f ⎝ ⎛⎭⎪⎫π3的值;(2)当f (x )的最小正周期为π时,求f (x )在⎣⎢⎡⎦⎥⎤0,π4上取得最大值时x 的值.10.(2017·苏、锡、常、镇四市调研)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值; (2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.解 (1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0, 所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝ ⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎪⎫x -π12的图象,所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).【能力提升】11.(2017·南京模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,给出下列结论:①f (x )的图象关于直线x =π3对称;②f (x )的图象关于点⎝⎛⎭⎪⎫π6,0对称;③f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数;④把f (x )的图象向右平移π12个单位,得到一个偶函数的图象.其中正确的是________(填序号). 【答案】③12.(2017·泰州一模)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.【答案】(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞ 【解析】当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.13.(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 【答案】π214.(2017·扬州中学质检)如图,函数y =2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2的部分图象与y 轴交于点(0,3),最小正周期是π.(1)求ω,φ的值;(2)已知点A ⎝ ⎛⎭⎪⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈⎣⎢⎡⎦⎥⎤π2,π时,求x 0的值.解 (1)将点(0,3)代入y =2cos(ωx +φ), 得cos φ=32, ∵0≤φ≤π2,∴φ=π6.∵最小正周期T =π,且ω>0,∴ω=2πT=2.(2)由(1)知y =2cos ⎝⎛⎭⎪⎫2x +π6.∵A ⎝ ⎛⎭⎪⎫π2,0,Q (x 0,y 0)是PA 中点,y 0=32, ∴P ⎝ ⎛⎭⎪⎫2x 0-π2,3.。
江苏专版高考数学一轮复习课时跟踪检测十二函数模型及其应用理含解析.doc
课时追踪检测〔十二〕函数模型及其应用1.某种商品进价为4元/件,当天均零售价为6元/件,日均销售元,日均销量减少10件,试计算该商品在销售过程中,假定每日固定本钱为100件,当单价每增添1 20元,那么估计单价为________元/件时,收益最大.分析:设单价为6+x,日均销售量为100-10x,那么日收益y=(6+x-4)(100-10x)-20=-10x2+80x+180=-10(x-4)2+340(0<x<10).因此当x=4时,ymax=340.即单价为10元/件,收益最大.答案:102.(2021·盐城中学检测)“好酒也怕小巷深〞,很多有名品牌是经过广告宣传进入花费者视野的.某品牌商品靠广告销售的收入R与广告费A之间知足关系效应为D=R-A.那么聪明的商人为了获得最大广告效应,投入广告费应为R=a(a为常数),广告________.(用常数a表示)分析:D=R-A=a-A,令t=(t>0),那么A=t2,因此D=at-t2=-2+a2.因此当t=a,即A=a2时,D获得最大值.答案:a23.某市出租车收费标准以下:起步价为 8元,起步里程为3km(不超出3km按起步价付费);超出3km但不超出8km时,超出局部按每千米元收费;超出8km时,超出局部按每千米元收费,另每次乘坐需付燃油附带费1元.现某人乘坐一次出租车付费元,那么此次出租车行驶了________km.分析:设出租车行驶xkm时,付费y元,那么y=由y=,解得x=9.答案:94.(2021·盐城调研)一批货物随17列货车从A市以vkm/h匀速直抵B市,两地铁路线长400km,为了安全,两列货车间距离不得小于2km,那么这批物质所有运到B市,最快需要________h(不计货车的身长).分析:设这批物质所有运到B市用的时间为y,由于不计货车的身长,因此设列车为一个点,可知最前的点与最后的点之间距离最小值为16×2时,时间最快.那么y==+≥2=8,当且仅当=,即v=100时等号建立,ymin=8.答案:85.(2021·南通模拟)用长度为 24的资料围成一个矩形场所,中间有两道隔墙,要使矩形的面积最大,那么隔墙的长度为________.分析:设矩形场所的宽(即隔墙的长度)为x,那么长为,其面积S=·x=12x-2x2=-2(x-3)2+18,当x=3时,S有最大值18,因此隔墙的长度为3.答案:36 m f(m)(0.5[m] +1)(元)决定,此中m>0,[m]是大于或等于m的最小整数.那么从北京到上海通话时间为分钟的费为________元.分析:由于m=,因此[5.5] =6.代入函数分析式,得f(5.5) =××6+1)=4.24.答案:1.某电信企业推出两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的当地网内通话时间t(分钟)与费s(元)的函数关系以下列图,当通话150分钟时,这两种方式费相差________元.分析:依题意可设sA(t)=20+kt,sB(t)=mt,又sA(100)=sB(100),因此100k+20=100m,得k-m=-,于是sA(150)-sB(150)=20+150k-150m=20+150×(-0.2)=-10,即两种方式费相差10元.答案:102.某商铺已按每件80元的本钱购进某商品1000件,依据市场展望,销售价为每件100 元时可所有售完,订价每提升1元时销售量就减少5件,假定要获取最大收益,销售价应定为每件________元.分析:设售价提升x元,收益为y元,那么依题意得=-5x2+500x+20000=-5(x-50)2+32500,故当y=(1000-5x)×(100+x)-80×1000 x=50时,ymax=32500,此时售价为每件150元.答案:1503.(2021·海安中学检测)某企业为鼓舞创新,方案逐年加大研发资本投入.年整年投入研发资本130万元,在此根基上,每年投入的研发资本比上一年增添司整年投入的研发资本开始超出200万元的年份是________.(参照数据:lg ≈,lg ≈,lg2≈0.30)假定该企业2021 12%,那么该公分析:设2021年后的第n年,该企业整年投入的研发资本开始超出200万元,由130(1+12%)n>200,得>,两边取常用对数,得n>≈=,因此n≥4,因此从2021年开始,该企业整年投入的研发资本开始超出200万元.答案:2021年4.(2021·启东中学检测)某企业租地建库房,库房每个月占用费 y1与库房到车站的距离成反比,而每个月车载货物的运费y2与库房到车站的距离成正比.据测算,假如在距离车站10千米处建库房,这两项花费y1,y2分别是2万元和8万元,那么要使这两项花费之和最小,库房应建在离车站 ________千米处.分析:由题意设库房在离车站x千米处,那么y1=,y2=k2x,此中x>0,由得,即y1+y2=+x≥2=8,当且仅当=x,即x=5时等号建立.答案:55.将甲桶中的a升水迟缓注入空桶乙中,t分钟后甲桶中节余的水切合指数衰减曲线y=aent.假定过5分钟后甲桶和乙桶的水量相等,假定再过m分钟甲桶中的水只有,那么m=________.分析:依据题意知=e5n,令a=aent,即=ent,由于=e5n,故=e15n,比较知t=15,m=15-5=10.答案:106 v k除燃料费外其余花费为每小时96元.当速度为10海里/小不时,每小时的燃料费是6元.假定匀速行驶10海里,当这艘轮船的速度为________海里/小不时,总花费最小.分析:设每小时的总花费为y元,那么y=kv2+96,又当v=10时,k×102=6,解得k=,因此每小时的总花费y=+96,匀速行驶10海里所用的时间为小时,故总花费为W=y=+96)=+≥2=48,当且仅当=,即v=40时等号建立.故总花费最小时轮船的速度为40海里/小时.答案:407.某厂有很多形状为直角梯形的铁皮边角料 (如图),为降低耗费,开源节流,现要从这些边角料上截取矩形铁片(如图暗影局部)备用,那么截取的矩形面积的最大值为________.分析:依题意知:=,即x=(24-y),因此暗影局部的面积S=xy=(24-y)·y=(-y2+24y)=-(y-12)2+180.因此当y=12时,S有最大值为180.答案:1808.某企业为了业务展开拟订了一个鼓舞销售人员的奖赏方案,在销售额 x为8万元时,奖励1万元.销售额x为64万元时,奖赏4万元.假定企业制定的奖赏模型为y=alog4x+b.某业务员要获取8万元奖赏,那么他的销售额应为______(万元).分析:依题意得即解得a=2,b=-2.因此y=2log4x-2,当y=8时,即2log4x-2=8.x=1024(万元).答案:10249.某科研小组研究发现:一棵水蜜桃树的产量w(单位:百千克)与肥料花费x(单位:百元)知足以下关系:w=4-,且投入的肥料花费不超出5百元,别的,还需要投入其余本钱(如施肥的人工费等)2x百元.这类水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求一直求过于供.记该棵水蜜桃树获取的收益为L(x)(单位:百元).求L(x)的函数关系式,并写出定义域;当投入的肥料花费为多少时,该水蜜桃树获取的收益最大?最大收益是多少?解:(1)L(x) =16-x-2x=64--3x,x∈(0,5].法一:L(x)=64--3x=67-≤67-2=43,当且仅当=3(x+1),即x=3时取等号.故L(x)max=43.答:当投入的肥料花费为300元时,该水密桃树获取的收益最大,为4300元.法二:L′(x)=-3,令L′(x)=0,得x=3.故当x∈(0,3)时,L′(x)>0,L(x)在(0,3)上单一递加;当x∈(3,5]时,L′(x)<0,L(x)在(3,5]上单一递减.故L(x)max=L(3)=43.答:当投入的肥料花费为300元时,该水蜜桃树获取的收益最大,为4300元.10.(2021·镇江调研)如图,政府有一个边长为400m的正方形公园ABCD,在以四个角的极点为圆心,以150m为半径的四分之一圆内都栽种了花卉.此刻中间修筑一块长方形的活动广场PQMN,此中P,Q,M,N四点都在相应的圆弧上,而且活动广场界限与公园界限对应平行,记∠QBC=α,长方形活动广场的面积为S.请把S表示成对于α的函数关系式;求S的最小值.解:(1)过Q作QE⊥BC于E,连接BQ(图略).在Rt△BQE中,BE=150cosα,QE=150sinα,0≤α≤,可得矩形PQMN的PQ=400-300sinα,QM=400-300cosα,那么S=PQ·QM=(400-300sinα)(400-300cosα)=10000(4-3sin α)(4-3cosα),α∈.(2)由(1)知,S=10000[16-12(sin α+cosα)+9sin αcosα],设t=sin α+cos α=sin ,那么≤α+≤,可得1≤t≤,sin αcosα=,∴S=10000=5000.∴当t=时,S获得最小值5000×7=35000m2.某辆汽车以x千米/时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60≤x≤120)时,每小时的耗油量(所需要的汽油量)为升,此中k为常数,且60≤k≤100.(1)假定汽车以120千米/时的速度行驶时,每小时的耗油量为升,欲使每小时的耗油量不超出9升,求x的取值范围;(2)求该汽车行驶100千米的耗油量的最小值.解:(1)由题意知,当x=120时,,∴k=100,由≤9,得x2-145x+4500≤0,∴45≤x≤100.又60≤x≤120,∴60≤x≤100.故x的取值范围为[60,100].(2)设该汽车行驶100千米的耗油量为y升,那么y=·=20-+(60≤x≤120).令t=,那么t∈,∴y=90000t2-20kt+20=900002+20-,∴该函数图象的对称轴为直线t=.∵60≤k≤100,∴∈.①假定≥,即75≤k≤100,那么当t=,即x=时,ymin=20-.②假定<,即60≤k<75,那么当t=,即x=120时,ymin=-.答:当75≤k≤100时,该汽车行驶100千米的耗油量的最小值为升;60≤k<75时,该当汽车行驶100千米的耗油量的最小值为升.。
2018年江苏高考数学专题练习---函数(K12教育文档)
2018年江苏高考数学专题练习---函数(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年江苏高考数学专题练习---函数(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年江苏高考数学专题练习---函数(word版可编辑修改)的全部内容。
2018届江苏高考数学专题练习—-函数1。
已知函数2()||2x f x x +=+,x R ∈,则2(2)(34)f x x f x -<-的解集是 .2. 设函数⎩⎨⎧≥<-=1,21,13)(2x x x x x f ,则满足2))((2))((a f a f f =的的取值范围为 .3。
已知函数2()()()(0)f x x a x b b =--≠,不等式()()f x mxf x '≥对x R ∀∈恒成立,则2m a b +-= .*4. 已知函数f (x )=e x -1-tx ,x 0∈R ,f (x 0)≤0,则实数t 的取值范围 .5。
已知函数f (x )=错误!,x ∈0,4],则f (x )最大值是 .*6。
已知函数222101,()2 1,x mx x f x mx x ⎧+-=⎨+>⎩,,≤≤,若()f x 在区间[)0,+∞上有且只有2个零点,则实数m的取值范围是 。
7. 已知函数2()12f x x x =-的定义域为[]0m ,,值域为20am ⎡⎤⎣⎦,,则实数a 的取值范围是 . *8。
若存在实数,使不等式2e 2e 10x x a +≥-成立,则实数的取值范围为 .9. 设函数()33,2,x x x a f x x x a ⎧-<=⎨-≥⎩,,若关于的不等式()4f x a >在实数集R 上有解,则实数的取值范围是 .*10。
(江苏版)2018年高考数学一轮复习(讲+练+测): 专题2.2 函数定义域、值域(测)
专题2.2 函数定义域、值域班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 【2017山东改编,理1】设函数A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=【答案】[-2,1)2. 【2016-2017学年度江苏苏州市高三期中调研考试】函数y =___________.【答案】(]2,1-【解析】 102x x -≥+21x ⇒-<≤,故定义域为(2,1]-. 3. 【江苏省南通市如东县、徐州市丰县2017届高三10月联考】函数1()lg(1)1f x x x =++-的定义域是 ▲ .【答案】()()1,11,-⋃+∞【解析】试题分析:由题意得101110x x x x -≠⎧⇒>-≠⎨+>⎩且,所以定义域是()()1,11,-⋃+∞4. 【泰州中学2016-2017年度第一学期第一次质量检测】函数()f x =为 .【答案】【解析】 试题分析:由题意得1266112log 0log 062x x x -≥⇒≤⇒<≤,即定义域为5.函数y =(12)的值域为________.【答案】[12,1) 【解析】由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =(12)x 在(0,1]上的图像可知函数y =(12)1x 2+1的值域为[12,1). 6.若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 .【答案】[-5,-1]【解析】∵1≤f (x )≤3,∴1≤f (x +3)≤3.∴-6≤-2f (x +3)≤-2,∴-5≤F (x )≤-1.7.设函数f (x )=2x1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域为 . 【答案】{-1,0}8. 【泰州中学2016-2017年度第一学期第一次质量检测】已知函数ln 5,(01)()9,(1)1x x x f x x m x x ++<≤⎧⎪=⎨++>⎪+⎩的值域为R ,则实数m 的取值范围为 . 【答案】1m ≤【解析】试题分析:当01x <≤时()ln 5(,6]f x x x =++∈-∞ 当1x >时99()111511f x x m x m m m x x =++=+++-≥-=+++,当且仅当2x =时取等号,因此561m m +≤⇒≤9.函数y =10x +10-x10x -10-x 的值域为 . 【答案】(-∞,-1)∪(1,+∞).【解析】由y =10x +10-x 10x -10-x ,得y +1y -1=102x . ∵102x >0,∴y +1y -1>0. ∴y <-1或y >1.即函数值域为(-∞,-1)∪(1,+∞).10.若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于 . 【答案】 3 【解析】由题意得⎩⎪⎨⎪⎧ a >1,a 2-1=2,a 0-1=0或⎩⎪⎨⎪⎧ 0<a <1,a 2-1=0,a 0-1=2.解得a = 3. 二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指.定区域内....。
(江苏版)2018年高考数学一轮复习(讲、练、测):_专题4.5_函数y=Asin(ωx+φ)的图象及其应用(讲)(有解析)
专题4.5 函数y =Asin (ωx +φ)的图象及其应用【考纲解读】题组一 常识题1.把函数y =sin x 的图像上每个点的纵坐标不变,横坐标伸长为原来的2倍得到函数________的图像.2.某函数的图像向右平移π2个单位长度后得到的图像对应的函数解析式是y =sin ⎝ ⎛⎭⎪⎫x +π4,则原函数的解析式是____________.【解析】将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图像向左平移π2个单位长度得y =sin ⎝⎛⎭⎪⎫x +π2+π4的图像,即原函数为y=sin ⎝⎛⎭⎪⎫x +3π4.3.已知简谐运动f (x )=2sin π3x +φ|φ|<π2的图像经过点(0,1),则该简谐运动的初相φ为________.【解析】因为函数图像经过点(0,1),所以将点(0,1)的坐标代入函数解析式可得2sin φ=1,即sin φ=12.又因为|φ|<π2,所以φ=π6. 题组二 常错题4.为得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图像,只需将函数y =sin 2x 的图像向________平移________个单位长度.5.设ω>0,若函数f (x )=sin ωx 2cos ωx 2在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则ω的取值范围是____________. 【解析】f (x )=sin ωx 2cos ωx 2=12sin ωx ,若函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则T 2=πω≥π3+π3=2π3,故ω∈⎝ ⎛⎦⎥⎤0,32.6.若f (x )=2sin(ωx +φ)+m 对任意实数t 都有f ⎝⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,且f ⎝ ⎛⎭⎪⎫π8=-3,则实数m =________. 【解析】由f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,得函数图像的对称轴为直线x =π8.故当x =π8时,函数取得最大值或最小值,于是有-2+m =-3或2+m =-3,即m =-1或m =-5. 题组三 常考题7. 将函数y =2cos ⎝⎛⎭⎪⎫2x +π3的图像向左平移13个周期后,所得图像对应的函数为________.【解析】函数y =2cos ⎝ ⎛⎭⎪⎫2x +π3的周期为π,将函数y =2cos ⎝⎛⎭⎪⎫2x +π3的图像向左平移13个周期即π3个单位长度,所得图像对应的函数为y =2cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3+π3=2cos(2x +π)=-2cos 2x .8.已知函数f (x )=2sin ωx 2cos ωx2+cos ωx 的最小正周期为π,则ω的值是________.【解析】f (x )=2sin ωx 2cos ωx 2+cos ωx =sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,所以T =2π|ω|=π,得ω=±2.【知识清单】考点1 求三角函数解析式 1.()sin y A x ωϕ=+的有关概念2.用五点法画sin y A x =+一个周期内的简图用五点法画()sin y A x ωϕ=+一个周期内的简图时,要找五个关键点,如下表所示:3. 由sin y A x =+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置. 4.利用图象变换求解析式:由sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,,得到函数()sin y x ϕ=+,将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+,将图象上各点的纵坐标变为原来的A 倍(0A >),便得()sin y A x ωϕ=+. 考点2 三角函数图象的变换1.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数()y f x =向左平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图像; 把函数()y f x =向右平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图像; 把函数()y f x =向上平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图像; 把函数()y f x =向下平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图像. 伸缩变换:把函数()y f x =图像的纵坐标不变,横坐标伸长到原来的1ω,得到函数()()01y f x ωω=<<的图像; 把函数()y f x =图像的纵坐标不变,横坐标缩短到原来的1ω,得到函数()()1y f x ωω=>的图像; 把函数()y f x =图像的横坐标不变,纵坐标伸长到原来的A ,得到函数()()1y Af x A =>的图像; 把函数()y f x =图像的横坐标不变,纵坐标缩短到原来的A ,得到函数()()01y Af x A =<<的图像. 2.由sin y x =的图象变换出()sin y x ωϕ=+()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换)先将sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,再将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+的图象. 途径二:先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右(0ϕ<)平移ωϕ||个单位,便得()sin y x ωϕ=+的图象.注意:函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到. 考点3 函数()sin y A x ωϕ=+的图像与性质的综合应用 1. x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈. 2.对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈⎪⎝⎭. 3. )若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈.4. ()sin()f x A x ωϕ=+的最小正周期都是2||T πω=. 【考点深度剖析】本课时是高考热点之一,主要考查:①作函数图像,包括用五点法描图及图形变换作图;②由图像确定解析式;③考查三角函数图像变换;④图像的轴对称、中心对称.题型多是容易题.【重点难点突破】考点1 求三角函数解析式【1-1】已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ≤π2的部分图像如图所示,则φ的值为________.【答案】π3【1-2】如图,函数()sin()f x A x ωϕ=+(其中0A >,0ω>,||2πϕ≤)与坐标轴的三个交点P 、Q 、R满足(1,0)P ,4PQR π∠=,M 为QR 的中点,2PM =, 则A 的值为 .【答案】14【解析】由题意设(),0Q a 、()0,R a -,()0a >,则,22a a M ⎛⎫-⎪⎝⎭,有两点间距离公式得,【思想方法】1.根据()sin y A x h ωϕ=++()0,0A ω>>的图象求其解析式的问题,主要从以下四个方面来考虑: (1) A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;(2) h 的确定:根据图象的最高点和最低点,即h =最高点+最低点2;(3) ω的确定:结合图象,先求出周期T ,然后由2T πω= (0ω>)来确定ω;(4) 求ϕ,常用的方法有:①代入法:把图像上的一个已知点代入(此时,,A h ω已知)或代入图像与直线y h =的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定ϕ值时,由函数()sin y A x k ωϕ=++最开始与x 轴的交点的横坐标为ϕω-(即令0x ωϕ+=,x ϕω=-)确定ϕ.将点的坐标代入解析式时,要注意选择的点属于“五点法”中的哪一个点,“第一点”(即图象上升时与x 轴的交点)为002x k ωϕπ+=+,其他依次类推即可.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 【温馨提醒】求ϕ时一般把图像上的一个最值点代入. 考点2 三角函数图象的变换【2-1】函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图像如图所示,则将()y f x =的图象向右平移6π个单位后,得到的图像解析式为________.【答案】sin(2)6y x π=-【解析】【2-2】函数)sin()(ϕω+=x A x f (其中A >0,2||πω<)的图象如图所示,为得到x x g 3sin )(=的图象,则只要将)(x f 的图象向 平移 个单位.【答案】右,【解析】由图知,函数)(x f 的周期32)4125(4πππ=-=T ,1=A ,3=∴ω,)3sin()(ϕ+=∴x x f , 易求得点)0,12(π在函数)(x f 的图像上,0)123sin(=+⨯∴ϕπ,又2||πω<,4πϕ-=∴,)43sin()(π+=∴x x f ,将函数)43sin()(π+=x x f 的图象向右平移12π个单位长即得x x g 3sin )(=的图象.【思想方法】1. 在解决函数图像的变换问题时,要遵循“只能对函数关系式中的,x y 变换”的原则,写出每一次的变换所得图象对应的解析式,这样才能避免出错.2. 图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要第(9)题注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.4.特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.【温馨提醒】解决图象变换的关键是变换“只能对函数关系式中的,x y 变换”的原则即可,值得注意点是, 要得到函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到,而不是平行移动ϕ个单位. 考点3 函数()sin y A x ωϕ=+的图像与性质的综合应用 【 3-1】设()()()=sin cos 0,2f x x x πωϕωϕωϕ⎛⎫+++><⎪⎝⎭的最小正周期为π,且对任意实数x 都有()()4f x f π≤,则()f x 的单调减区间是 .【答案】)(],43,4[Z k k k ∈++ππππ【 3-2】若函数()2sin f x x ω=(0)ω>的图像在(0,2)π上恰有一个极大值和一个极小值,则ω的取值范围是 . 【答案】35(,]44【解析】∵函数()2sin f x x ω=(0)ω>的图像在(0,2)π上恰有一个极大值和一个极小值, ∴35222πππω<≤,∴3544ω<≤. 【思想方法】(1)奇偶性:()k k Z ϕπ=∈时,函数sin()y A x ωϕ=+为奇函数;()2k k Z πϕπ=+∈时,函数sin()y A x ωϕ=+为偶函数.(2)周期性:sin()y A x ωϕ=+存在周期性,其最小周期为2||T πω=.(3)单调性:根据sin y t =和t x ωϕ=+的单调性来研究,由22,22k x k k Z πππωϕπ-+≤+≤+∈得单调增区间;由322,22k x k k Z πππωϕπ+≤+≤+∈得单调减区间. (4)对称性:利用sin y x =的对称中心为(,0) k k Z π∈求解,令,x k k Z ωϕπ+=∈,求得x . 利用sin y x =的对称轴为2x k ππ=+ (k Z ∈)求解,令,2x k k Z πωϕπ+=+∈得其对称轴.【温馨提醒】对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调区间.【易错试题常警惕】由y =sin x 的图像变换到y =A sin(ωx +φ)的图像,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度。
2018年高考数学一轮复习第二章函数导数及其应用第12讲函数模型及其应用实战演练理
2018 年高考数学一轮复习第二章函数、导数及其应用第 12 讲函数模型及其应用实战操练理1.(2016 ·四川卷 ) 某企业为激励创新,计划逐年加大研发奖金投入.若该企业2015 年整年投入研发奖金 130 万元,在此基础上,每年投入的研发奖金比上一年增添12%,则该企业整年投入的研发奖金开始超出200 万元的年份是 ( 参照数据:lg ≈,lg ≈,lg 2= ( B ) A. 2018 年B. 2019 年C. 2020 年D. 2021 年分析:设第 n( b∈N*)年该企业年投入的研发资本开始超出200 万元.依据题意得130(1 n- 1+12%) >200,n- 1则 lg[130(1 + 12%) ]>lg 200 ,∴ lg 130 + ( n-1)lg >lg 2 + 2,∴ 2+ lg + ( n-1)lg >lg 2 + 2,∴+ ( n-1) ×>,解得n 24 *,∴≥5,∴该企业整年投入的研发资本开始超出200 万元的年> ,又∵∈N5 n n份是 2019 年.应选 B.2.(2015 ·北京卷 ) 汽车的“燃油效率”是指汽车每耗费 1 升汽油行驶的里程,以下图描述了甲、乙、丙三辆汽车在不一样速度下的燃油效率状况,以下表达中正确的选项是( D )A.耗费 1 升汽油,乙车最多可行驶 5 千米B.以同样速度行驶同样行程,三辆车中,甲车耗费汽油最多C.甲车以80 千米 / 小时的速度行驶 1 小时,耗费10 升汽油D.某城市灵活车最高限速80 千米 / 小时,同样条件下,在该市用丙车比用乙车更省油分析:关于 A 选项,由题图可知,当乙车速度大于40 km/h 时,乙车每耗费 1 升汽油,行驶里程都超出 5 km,则 A 错;关于 B 选项,由题意可知,以同样速度行驶同样行程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则 B 错;关于 C选项,甲车以 80 千米 / 小时的速度行驶时,燃油效率为 10 km/L,则行驶 1 小时,耗费了汽油 80×1÷10= 8(L) ,则 C错;关于 D选项,当行驶速度小于80 km/h,在同样条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则 D 对.3.(2014 ·湖南卷 ) 某市生产总值连续两年连续增添,第一年的增添率为p,第二年的增添率为,则该市这两年生产总值的年均匀增添率为( D )qp+qB.p+1 q+1-1A.22C.pq D.p+1 q+1-1分析:设两年前的年末该市的生产总值为a,则第二年年末的生产总值为a(1+ p)(1+q).设这两年生产总值的年均匀增添率为x,则 a(1+ x) 2= a(1+ p)(1+ q),因为连续两年连续增添,所以 x>0,所以 x=1+p 1+q - 1,应选 D.4.(2015 ·江苏卷 ) 某山区外头有两条互相垂直的直线型公路,为进一步改良山区的交通现状,计划修筑一条连结两条公路和山区界限的直线型公路,记两条互相垂直的公路为l 1,l2,山区界限曲线为C,计划修筑的公路为l ,如下图,M,N为C 的两个端点,测得点 M到 l 1, l 2的距离分别为 5 千米和 40 千米,点N到l1,l2的距离分别为20 千米和千米,a 以 l 2,l 1所在的直线分别为x,y 轴,成立平面直角坐标系xOy,假定曲线 C切合函数 y=x2+b ( 此中a,b为常数 ) 模型.(1)求 a, b 的值;(2)设公路 l 与曲线 C相切于点 P,点 P的横坐标为 t .①请写出公路l 长度的函数分析式 f ( t ),并写出其定义域;②当 t 为什么值时,公路l 的长度最短?求出最短长度.分析: (1) 由题意知,点,的坐标分别为(5,40) ,(20, ,M Na a 25+b =40,a=1 000,分别代入 y=x2+b,得 a 解得b=0.400+b=,(2) ①由 (1) 知,y=1 000P的坐标为 t1 000,x 2 (5 ≤x≤20) ,则点,t 2设在点 P 处的切线 l 交 x, y 轴分别于 A, B点,易知 y′=-2 000x3 ,则 l 的方程为 y-1 000=-2 000( x-t ) ,t 2 t 33t 3 000 由此得A2 , 0 , B 0,t2 .故 f ( t )=3t 2+3 000 2 3 2 4×106.2 t2 =t +4,t∈ [5,20]2 t②设 g( t )= t 2+4×106 16×10 6t 4 ,则 g′(t )=2t -t 5.令 g′(t )=0,解得 t =10 2.当 t ∈(5,10 2)时, g′(t )<0,g( t )是减函数;当 t∈(10 2,20)时, g′(t )>0, g( t )是增函数;进而,当 t =102时,函数g( t ) 有极小值,也是最小值,所以g( t )min=300,则 f ( t )min =15 3.故当 t =102时,公路l的长度最短,最短长度为15 3千米.。
(江苏版)2018年高考数学一轮复习(讲+练+测):-专题3
专题3.3 导数的综合应用班级__________ 姓名_____________ 学号___________ 得分__________(总分值100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每题6分,共计60分). 1. 【2017课标3,理11改编】函数211()2()x x f x x x a ee --+=-++有唯一零点,那么a =_________【答案】12【解析】2. 【江苏省南通市如东县、徐州市丰县2017届高三10月联考】函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,假设函数()()(){}()min ,0h x f x g x x =>恰有三个零点,那么实数m 的取值范围是 ▲ .【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,()0,03mf f m -><<,解得515343244m m m ->-⇒-<<- 3. 【泰州中学2016-2017年度第一学期第一次质量检测】假设函数()y f x =的定义域为R ,对于x R ∀∈,'()()f x f x <,且(1)f x +为偶函数,(2)1f =,那么不等式()xf x e <的解集为 . 【答案】(0,)+∞ 【解析】试题分析:令()()x f x g x e =,那么()()()0xf x f xg x e'-'=<,因为(1)f x +为偶函数,所以(1)(1)(0)(2)1g(0)1f x f x f f +=-+⇒==⇒=,因此()()1(0)0x f x e g x g x <⇒<=⇒>4. 【2017届高三七校联考期中考试】假设()1ln ,(),0xexf x x a xg x a e =--=<,且对任意[]()1212,3,4,x x x x ∈≠121211|()()|||()()f x f xg x g x -<-的恒成立,那么实数a 的取值范围为 ▲ . 【答案】22[3,0)3e - 【解析】那么()'21()10xe x a h x x ex-=--≤在(3,4)x ∈上恒成立,[]11,3,4x x e a x e x x --∴≥-+∈恒成立令[]11(),3,4x x e u x x ex x--=-+∈,[]21112(1)113'()11,3,424x x x e x u x ee x x x ---⎡⎤-⎛⎫∴=-+=--+∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21211331,'()0244x ee u x x -⎡⎤⎛⎫-+>>∴<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()u x ∴为减函数,()u x ∴在[]3,4x ∈的最大值为22(3)33u e =-综上,实数a 的取值范围为22[3,0)3e -.5. f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,假设a <b ,那么af (b )与bf (a )的大小关系为________. 【答案】af (b )≤bf (a )【解析】∵xf ′(x )≤-f (x ),f (x )≥0, ∴⎝⎛⎭⎪⎫f x x ′=xf ′x -f x x 2≤-2f x x 2≤0.那么函数f x x在(0,+∞)上是单调递减的,由于0<a <b ,那么f a a≥f b b.即af (b )≤bf (a ).6.设D 是函数y =f (x )定义域内的一个区间,假设存在x 0∈D ,使f (x 0)=-x 0,那么称x 0是f (x )的一个“次不动点〞,也称f (x )在区间D 上存在“次不动点〞,假设函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点〞,那么实数a 的取值范围是________. 【答案】⎝⎛⎦⎥⎤-∞,127.电动自行车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,那么速度应定为________. 【答案】40【解析】由y ′=x 2-39x -40=0, 得x =-1或x =40,由于0<x <40时,y ′<0; 当x >40时,y ′>0.所以当x =40时,y 有最小值.8.函数f (x )=ax 3+x 恰有三个单调区间,那么a 的取值范围是________. 【答案】(-∞,0)【解析】f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1. 要使f ′(x )=0有两个不等实根,那么a <0.9.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.假设a 1=16,那么a 1+a 3+a 5的值是________. 【答案】2110.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1、x 2∈(0,+∞),不等式g x 1k ≤f x 2k +1恒成立,那么正数k 的取值范围是________. 【答案】[1,+∞)解析】因为对任意x 1、x 2∈(0,+∞), 不等式g x 1k ≤f x 2k +1恒成立,所以k k +1≥⎣⎢⎡⎦⎥⎤g x 1f x 2max. 因为g (x )=e 2xe x ,所以g ′(x )=(x e2-x)′=e2-x+x e2-x·(-1)=e2-x(1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0,所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e ; 因为f (x )=e 2x 2+1x,当x ∈(0,+∞)时,f (x )=e 2x +1x ≥2e,当且仅当e 2x =1x,即x =1e 时取等号,故f (x )min =2e.所以⎣⎢⎡⎦⎥⎤g x 1f x 2max =e 2e =12.所以kk +1≥12.又因为k 为正数,所以k ≥1. 二、解答题:解容许写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指.定区域内....。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2.12 函数模型及其应用【考纲解读】【直击考点】题组一 常识题1.[教材改编] 函数模型:①y =1.002x,②y =0.25x ,③y =log 2x +1.随着x 的增大,增长速度的大小关系是____________.【解析】根据指数函数、幂函数、对数函数的增长速度关系可得.①>②>③2.[教材改编] 某公司市场营销人员的个人月收入与其每月的销售量的关系满足一次函数,已知销售量为1000件时,收入为3000元,销售量为2000件时,收入为5000元,则营销人员没有销售量时的收入是________元.【解析】设收入y 与销售量x 的关系为y =kx +b ,则有3000=1000k +b ,5000=2000k +b ,解得k =2,b =1000,所以y =2x +1000,故没有销售量时的收入y =2×0+1000=1000.3.[教材改编] 某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________元.【解析】设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108. 题组二 常错题4.据调查,某自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是________.【解析】y =0.2x +(4000-x)×0.3=-0.1x +1200(0≤x ≤4000,x ∈N ),这里不能忽略x 的取值范围,否则函数解析式失去意义.5.等腰三角形的周长为20,腰长为x ,则其底边长y =f(x)=________________.题组三 常考题6.某市职工收入连续两年持续增加,第一年的增长率为a ,第二年的增长率为b ,则该市这两年职工收入的年平均增长率为______________.【解析】设年平均增长率为x ,则有(1+a)(1+b)=(1+x)2,解得x =(1+a )(1+b )-1.7.某食品的保鲜时间y(单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b(e =2.718 28…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是240小时,在22 ℃的保鲜时间是60小时,则该食品在11℃的保鲜时间是________小时.【解析】由题意,⎩⎪⎨⎪⎧240=e b,60=e 22k +b , 得⎩⎪⎨⎪⎧240=e b,2-1=e 11k,于是当x =11时,y =e 11k +b =e 11k ·e b =2-1×240=120.8.要制作一个容积为16 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.【解析】设长方体底面边长分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y)×10+20xy=20⎝ ⎛⎭⎪⎫x +16x +20×16,由基本不等式得,z =20⎝⎛⎭⎪⎫x +16x +20×16≥40x ·16x+320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.【知识清单】1.几种常见的函数模型【考点深度剖析】解答应用问题的程序概括为“四步八字”,即①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;②建模:把自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;③求模:求解数学模型,得出数学结论; ④还原:将数学结论还原为实际问题的意义.【重点难点突破】考点1 一次函数与二次函数模型【1-1】 某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差_________元.【答案】10【解析】依题意可设s A (t)=20+kt ,s B (t)=mt , 又s A (100)=s B (100), ∴100k +20=100m , 得k -m =-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元.【1-2】将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_________元. 【答案】95【思想方法】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 【温馨提醒】1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 考点2 分段函数模型【2-1】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v(x)的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x ·v(x)可以达到最大,并求出最大值(精确到1辆/小时). 【答案】(1) v(x)=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200.(2) 当x =100时,f(x)在区间(20,200]上取得最大值.【解析】(1)由题意:当0≤x ≤20时,v(x)=60;【2-2】某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f(t)与上市时间t 的关系及国内市场的日销售量g(t)与上市时间t 的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.【答案】(1) f(t)=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40.g(t)=-320t 2+6t(0≤t ≤40). (2) 上市后的第30天.【思想方法】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2) 分段函数的最值是各段的最大(最小)者的最大者(最小者).【温馨提醒】构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏.考点3 指数函数模型【3-1】一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【答案】(1) x =1-⎝ ⎛⎭⎪⎫12110 (2) 5.(3)15.【3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),判定该股民这支股票的盈亏情况(不考虑其他费用). 【答案】略有亏损【解析】设该股民购这支股票的价格为a ,则经历n 次涨停后的价格为a(1+10%)n =a ×1.1n,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n·a<a ,故该股民这支股票略有亏损. 【思想方法】(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.(3)y =a(1+x)n通常利用指数运算与对数函数的性质求解.【温馨提醒】解指数不等式时,一定要化为同底,且注意对应函数的单调性.【易错试题常警惕】数学实际应用问题,一定要正确理解题意,选择适当的函数模型;合理确定实际问题中自变量的取值范围;必须验证答案对实际问题的合理性.如:如图所示,在矩形CD AB 中,已知a AB =,C b B =(a b >).在AB 、D A 、CD 、C B 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形FG E H 的面积最大?求出这个最大面积.【易错点】忽略实际问题中自变量的取值范围,造成与实际问题不相符合的错误结论.【练一练】某村计划建造一个室内面积为8002m 的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留m 宽的通道,沿前侧内墙保留m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?【答案】当矩形温室的边长各为40m ,20m 时,蔬菜的种植面积最大,最大面积是6482m .专题2.12 函数模型及其应用一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y 随自变量x ).【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t(年)的函数关系图象正确的是________(填序号).【答案】①3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.【答案】10【解析】设A 种方式对应的函数解析式为s =k 1t +20, B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.【答案】20【解析】设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x(40-x)=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.5.(2017·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,tmin 后剩余的细沙量为 y =ae -bt (cm 3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 【答案】166.A ,B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 km h ,经过________h ,AB 间的距离最短.【答案】258【解析】设经过x h ,A ,B 相距为y km ,则y = 145-40x 2+ 16x 2= 1 856t 2-11 600t +1452(0≤x ≤298),求得函数的最小值时x 的值为258.7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________. 【答案】10【解析】设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x(x +1),所以x 年的平均费用为y =100+0.5x +x x +1 x =x +100x+1.5,由基本不等式得y =x +100x +1.5≥2 x ·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号.8.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30). 【答案】2019二、解答题9.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P -A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高OO 1是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解 (1)V =13×62×2+62×2×4=312(m 3).(2)设PO 1=x ,则O 1B 1=62-x 2,B 1C 1=2·62-x 2,∴SA 1B 1C 1D 1=2(62-x 2),又由题意可得下面正四棱柱的高为4x.则仓库容积V =13x ·2(62-x 2)+2(62-x 2)·4x =263x(36-x 2). 由V ′=0得x =23或x =-23(舍去). 由实际意义知V 在x =23(m)时取到最大值, 故当PO 1=2 3 m 时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y =x25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?能力提升题组11.(2017·南京调研)某市对城市路网进行改造,拟在原有a 个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x 个标段和n 个道路交叉口,其中n 与x 满足n =ax +5.已知新建一个标段的造价为m 万元,新建一个道路交叉口的造价是新建一个标段的造价的k 倍. (1)写出新建道路交叉口的总造价y(万元)与x 的函数关系式; (2)设P 是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k ≥3.问:P 能否大于120,说明理由.解 (1)依题意得y =mkn =mk(ax +5),x ∈N *. (2)法一 依题意x =0.2a ,所以P =mx y =x k ax +5 =0.2a k 0.2a 2+5 =ak a 2+2512.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x 的关系满足:若x 不超过20,则q(x)=1 260x +1;若x 大于或等于180,则销售量为零;当20≤x ≤180时,q(x)=a -b x(a ,b 为实常数). (1)求函数q(x)的表达式;(2)当x 为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x ≤180时,由⎩⎨⎧a -b ·20=60,a -b ·180=0,得⎩⎨⎧a =90,b =3 5.故q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x ≤20,90-35x ,20<x<180,0,x ≥180.(2)设总利润f(x)=x ·q(x),由(1)得f(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,9 000x -3005·x x ,20<x<180,0,x ≥180,当0<x ≤20时,f(x)=126 000x x +1=126 000-126 000x +1,又f(x)在(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000.当20<x<180时,f(x)=9 000x -3005·x x , f ′(x)=9 000-4505·x , 令f ′(x)=0,得x =80.当20<x<80时,f ′(x)>0,f(x)单调递增, 当80<x<180时,f ′(x)<0,f(x)单调递减, 所以当x =80时,f(x)有最大值240 000. 当x ≥180时,f(x)=0.综上,当x =80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.专题2.12 函数模型及其应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 【答案】202.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是________.(lg2=0.301 0,lg3=0.477 1,lg109=2.037 4,lg0.09=-2.954 3) 【答案】2011年【解析】 设1995年总值为a ,经过x 年翻两番,则a ·(1+9%)x=4a.∴x =2lg2lg1.09≈16.3. 给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是________(填序号).【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.4.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 【答案】16【解析】当t =0时,y =a ;当t =8时,y =ae -8b=12a ,∴e -8b=12,容器中的沙子只有开始时的八分之一时,即y =ae -bt=18a.e -bt =18=(e -8b )3=e -24b,则t =24,所以再经过16 min.5.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y 与t 的函数关系式y =(116)t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为__________________________.(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 【答案】(1)y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1, 116t -0.1,t>0.1 (2)0.66.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:mg/L)与过滤时间t(单位:h)之间的函数关系为P =P 0e -kt (k ,P 0均为正的常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么至少还需过滤 才可以排放. 【答案】5 h【解析】设原污染物数量为a ,则P 0=a.由题意有10%a =ae -5k,所以5k =ln10.设t h 后污染物的含量不得超过1%,则有1%a ≥ae -tk,所以tk ≥2ln10,t ≥10.因此至少还需过滤10-5=5 h 才可以排放.7.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 【答案】9【解析】设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15 x -3 +1,3<x ≤8,8+2.15×5+2.85 x -8 +1,x>8.由y =22.6,解得x =9.8.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4 000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是 【答案】3元9.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为_______人时,旅行社获得的利润最大.【答案】60【解析】设旅游团的人数为x人,飞机票为y元,利润为Q元,依题意,①当1≤x≤30时,y =1 800元,此时利润Q=yx-30 000=1 800x-30 000,此时最大值是当x=30时,Q max=1 800×30-30 000=24 000(元);②当30<x≤75时,y=1 800-20(x-30)=-20x+2 400,此时利润Q=yx-30 000=-20x2+2 400x-30 000=-20(x-60)2+42 000,所以当x=60时,旅行社可获得的最大利润42 000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大.10.某地西红柿从2 月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bc+c,Q=a·b t,Q=a·log b t利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________.(2)最低种植成本是________(元/100kg).【答案】(1)120 (2)80二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域....内.。