2014届高三模拟考试数学文试题(附参考答案)
2014届高三数学文科高考模拟试卷及答案
2014届高三数学文科高考模拟试卷考生须知:1、全卷分试卷I 、II ,试卷共4页,有三大题,满分150分。
考试时间120分钟。
2、本卷答案必须做在答卷I 、II 的相应位置上,做在试卷上无效。
3、请用蓝、黑墨水笔或圆珠笔将姓名、准考证号分别填写在答卷I 、II 的相应位置上,用2B 铅笔将答卷I 的准考证号和学科名称所对应的方框内涂黑。
参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上.下底面积, h 表示棱台 V =34πR 3的高 其中R 表示球的半径选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,全集}9,7,6,4,2,1{=I , 其中}9,7,4,2{=M ,}9,7,4,1{=P ,}7,4,2{=S 是I 的3个子集,则阴影部分所表示的集合等于 ( ▲ )(A )}9,7,4{ (B )}9,7{ (C )}9,4{ (D )}9{2.已知a R ∈,则“2a >”是“22a a >”成立的( ▲ )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件3.已知βα,是不同的两个平面,n m ,是不同的两条直线,则下列命题中不正确...的是( ▲ ) (A )若α⊥m n m ,//,则α⊥n (B )若,m m αβ⊥⊥,则αβ∥(C )若βα⊂⊥m m ,,则αβ⊥ (D )若,m n ααβ=∥,则m n ∥ 4.下列函数中,既是偶函数又在) , 0(∞+上单调递增的是( ▲ )(A )||ln x y = (B )2x y -= (C )x e y = (D )x y cos =5. 某中学高三理科班从甲、乙两个班各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如右图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为( ▲ )(A )8 (B )7 (C )9 (D )168(第5题)乙甲y x 6119261180567986. 函数)(x f y =的图象向右平移3π单位后与函数x y 2sin =的图象重合,则)(x f y =的解析式是( ▲ ) (A )()f x =)32cos(π-x (B )()f x =)62cos(π-x (C )()fx =)62cos(π+x (D )()f x =)32cos(π+x7.已知函数n mx x x f 231)(23+-=(n m ,为常数),当2=x 时,函数)(x f 有极值,若函数)(x f 只有三个零点,则实数n 的取值范围是( ▲ )(A )]35,0( (B ))32,0( (C ))35,1[ (D )]32,0[ 8.已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( ▲ )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )等腰直角三角形9.P 为双曲线221916x y -=右支上一点,12,F F 分别是双曲线的左焦点和右焦点,过P 点作 12PH F F ⊥,若12PF PF ⊥,则PH = ( ▲ )(A )645 (B )85 (C )325 (D )16510.已知函数⎪⎩⎪⎨⎧≥-<-=2,132|,12|)(x x x x f x ,若方程0)(=-a x f 有两个不同的实数根,则实数a的取值范围为 ( ▲ ) (A ))3,1( (B ))3,1[(C ))1,0( (D ))3,0(非选择题部分(共100分)二、填空题: 本大题共7小题, 每小题4分, 共28分。
2014年高三一模数学(文)北京市海淀区试题Word版带答案.doc
海淀区高三年级第二学期期中练习数 学 (文科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -解析:55(2)22(2)(2)i i i i i +==+--+2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则A.1 B.0 C. 1 D.解析:{0}B =,所以{0}A B ⋂=3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个解析:根据抛物线的定义抛物线上的任意一点到焦点的距离等于到准线的距离,有两个点。
4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B. 3C.5D. 7解析:()a a b a a a b +=•+•=4+1=5 5. 函数()2sin f x x x =+的部分图象可能是A B C D解析:由题得函数为奇函数,关于原点对称,x=1时,函数值为正,答案为A 。
6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 解析:根据题意有22132()S a S S +=+,2111112()a a q a a q a q +=++解得q=3.OyxOyxOyxOyx7. 已知()x f x a 和()x g x b 是指数函数,则“(2)(2)f g ”是“ab ”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件解析:根据题意函数式指数函数,a ,b>0,所以22a b >,a b >,反之也成立,所以为充分必要条件。
8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4解析:A(1,0),设0,0(ln )B x x 则AB 的中点坐标001ln (,)22x x +,因为中点在1y x =上,所以00(1)ln 4x x +=,利用数形结合,满足条件的点个数1个。
2014年高三一模数学(文)北京市西城区试题Word版带解析.doc
北京市西城区2014年高三一模试卷数 学(文科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集{|02}U x x =<<,集合1{|0}A x x =<≤,则集合UA =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)解析:根据集合的运算性质UA =(1,2)2.已知平面向量(2,1)=-a ,(1,3)=b ,那么|a +b |等于( ) (A )5(B(C(D )13解析:a +b =(3,2),所以==|a +b |3.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为( ) (A(B )2(C(D解析:因为虚轴长是实轴长的2倍,所以有b=2a ,222a b c +=,所以离心率ce a== 4.某几何体的三视图如图所示,则该几何体的体积为( ) (A )2 (B )43(C )4 (D )5正(主)视图俯视图侧(左)视图解析:由题可知该几何体是由一长方体和一三棱柱组成的几何体,所以111221242V =⨯⨯+⨯⨯⨯=解析:函数满足以π为周期的偶函数,所以答案选D 。
6. 设0a >,且1a ≠,则“函数log a y x =在(0,)+∞上是减函数”是“函数3(2)y a x =-在R 上是增函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:函数log a y x =在(0,)+∞上是减函数,有0<a<1,2-a>0,所以可以推出3(2)y a x =-在R 上是增函数,反之函数3(2)y a x =-在R 上是增函数,0<a<2,不能推出函数log a y x =在(0,)+∞上是减函数,所以充分而不必要条件。
数学_2014年某校高考数学一模试卷(文科)(含答案)
2014年某校高考数学一模试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1. 己知集合A ={x|x 2−3x +2<0},B ={x|log 4x >12},则( ) A A ∩B =⌀ B B ⊆A C A ∩∁R B =R D A ⊆B 2. 已知复数z =1+2i i 5,则它的共轭复数z ¯等于( )A 2−iB 2+iC −2+iD −2−i3. 命题“∃x ∈[π2, π],sinx −cosx >2”的否定是( )A ∀x ∈[π2, π],sinx −cosx <2B ∃x ∈[π2, π],sinx −cosx ≤2C ∀x ∈[π2, π],sinx −cosx ≤2 D ∃x ∈[π2, π],sinx −cosx <24. 已知α,β是两个不同的平面,下列四个条件中能推出α // β的是( ) ①在一条直线a ,a ⊥α,a ⊥β,③存在两条平行直线a ,b ,a ⊂α,b ⊂β,a // β,b // α; ②存在一个平面γ,γ⊥α,γ⊥β;④存在两条异面直线a ,b ,a ⊂α,b ⊂β,a // β,b // α. A ①③ B ②④ C ①④ D ②③5. 已知向量m →,n →的夹角为π6,且|m →|=√3,|n →|=2,在△ABC 中,AB →=2m →+2n →,AC →=2m →−6n →,D 为BC 边的中点,则|AD →|=( )A 2B 4C 6D 86. 能够把圆O:x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数不是圆O 的“和谐函数”的是( ) A f(x)=4x 3+x B f(x)=1n5−x 5+xC f(x)=tan x2D f(x)=e x +e −x7. 已知sinα+√2cosα=√3,则tanα=( ) A √22B √2C −√22D −√2 8. 已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A 4n−1B 4n −1C 2n−1D 2n −19. 执行如图所示的程序框图后,输出的值为4,则P 的取值范围是( )A 78<P ≤1516B P >1516C 78≤P <1516D 34<P ≤7810. 已知实数x ,y 满足{2x −y +1≥0x −2y −1≤0x +y ≤1,则|3x +4y −7|的最大值为( )A 11B 12C 13D 1411. 设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60∘的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A (2√33,2] B [2√33,2) C (2√33,+∞) D [2√33,+∞) 12. 已知函数f(x)={−13x +16,x ∈[0,12]2x 3x+1,x ∈(12,1],函数g(x)=asin(π6x)−2a +2(a >0),若存在x 1,x 2∈[0, 1],使得f(x 1)=g(x 2)成立,则实数a 的取值范围是( ) A [−23, 1] B [12, 43] C [43, 32] D [13, 2]二.填空题(每题5分,共20分.把答案填在答题纸的横线上) 13. 已知f(x)=22x +1+sinx ,则f(−2)+f(−1)+f(0)+f(1)+f(2)=________.14. 已知球的直径PQ =4,A 、B 、C 是该球球面上的三点,∠APQ =∠BPQ =∠CPQ =30∘,△ABC 是正三角形,则棱锥P −ABC 的体积为________.15. 一个多面体的直观图、正(主)视图、侧(左)视图、俯视图如图,M 、N 分别为A 1B 、B 1C 1的中点.下列结论中正确的是________.(填上所有正确项的序号)①线MN与A1C相交;②MN⊥BC;③MN // 平面ACC1A1;④三棱锥N−A1BC的体积为V N−A1BC =16a3.16. 某城市为促进家庭节约用电,计划制定阶梯电价,阶梯电价按年月均用电量从低到高分为一、二、三、四档,属于第一档电价的家庭约占10QUOTE,属于第二档电价的家庭约占40QUOTE,属于第三档电价的家庭约占30QUOTE,属于第四档电价的家庭约占20QUOTE.为确定各档之间的界限,从该市的家庭中抽查了部分家庭,调查了他们上一年度的年月均用电量(单位:千瓦时),由调查结果得如图的直方图,由此直方图可以做出的合理判断是________①年月均用电量不超过80千瓦时的家庭属于第一档②年月均用电量低于200千瓦时,且超过80千瓦时的家庭属于第二档③年月均用电量超过240千瓦时的家庭属于第四档④该市家庭的年月均用电量的平均数大于年月均用电量的中位数.三、解答题(本大题共5小题,共70分,17---21必做,每题12分;22、23、24选做,每题10分,多选以第一题为准,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17. 若f(x)=√3cos2ax−sinaxcosax(a>0)的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列.(1)求a和m的值;(2)△ABC中a、b、c分别是∠A、∠B、∠C的对边.若(A2, √32)是函数f(x)图象的一个对称中心,且a=4,求△ABC周长的取值范围.18. “幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度时,给出的区间内的一个数,该数越接近10表示越满意,为了解某大城市市民的幸福感,随机对该城市的男、女各500人市民进行了调查,调查数据如下表所示:(1)完成频率分布直方图,并根据频率分布直方图估算该城市市民幸福感指数的平均值;(参考数据:2×1+3×3+40×5+30×7+25×9=646)(2)如果市民幸福感指数达到6,则认为他幸福.试在犯错误概率不超过0.01的前提下能否判定该市市民幸福与否与性别有关?参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)k0 2.706 6.63510.82819. 如图1,在Rt△ABC中,∠ABC=90∘,D为AC中点,AE⊥BD于E(不同于点D),延长AE交BC于F,将△ABD沿BD折起,得到三棱锥A1−BCD,如图2所示.(1)若M是FC的中点,求证:直线DM // 平面A1EF;(2)求证:BD⊥A1F;(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.20. 已知抛物线x2=2py(p>0)上的一点(m, 1)到焦点的距离为5.点4P(x0, y0)是抛物线上任意一点(除去顶点),过点M1(0, −1)与P的直线和抛物线交于点P1,过点M2(0, 1)与的P直线和抛物线交于点P2.分别以点P1,P2为切点的抛物线的切线交于点P′.(1)求抛物线的方程;(2)求证:点P′在y轴上.21. 对于函数f(x)(x∈D),若x∈D时,恒有f′(x)>f(x)成立,则称函数f(x)是D上的J函数.(Ⅰ)当函数f(x)=me x lnx是定义域上的J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0, +∞)上的J函数,①试比较g(a)与e a−1g(1)的大小;②求证:对于任意大于1的实数x1,x2,x3,…,x n,均有g(ln(x1+x2+...+x n))>g(lnx1)+g(lnx2)+...+g(lnx n).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. 如图,⊙O1与⊙O2相交于A、B两点,AB是⊙O2的直径,过A点作⊙O1的切线交⊙O2于点E,并与BO1的延长线交于点P,PB分别与⊙O1、⊙O2交于C,D两点.求证:(1)PA⋅PD=PE⋅PC;(2)AD=AE.选修4─4:坐标系与参数方程选讲.23. 已知曲线C 的参数方程为{x =3cosθy =2sinθ(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换{x′=13xy′=12y得到曲线C′.(1)求C ′的普通方程;(2)若点A 在曲线C′上,点B(3, 0),当点A 在曲线C′上运动时,求AB 中点P 的轨迹方程.选修4─5:不等式证明选讲.24. 已知函数f(x)=√x 2−6x +9+√x 2+8x +16. (1)求f(x)≥f(4)的解集;(2)设函数g(x)=k(x −3),k ∈R ,若f(x)>g(x)对任意的x ∈R 都成立,求k 的取值范围.2014年某校高考数学一模试卷(文科)答案1. A2. B3. C4. C5. A6. D7. A8. D9. D 10. D 11. A 12. B 13. 5 14.9√3415. ②③④ 16. ①③④17. 解:(1)f(x)=√3cos 2ax −sinaxcosax =√32−sin(2ax −π3),由题意,函数f(x)的周期为π,且最大(或最小)值为m,而m>0,√32−1<0,∴ a=1,m=√32+1;(2)∵ (A2,√32)是函数f(x)图象的一个对称中心,∴ sin(A−π3)=0,又∵ A为△ABC的内角,∴ A=π3,△ABC中,则由正弦定理得:bsinB =csinc=asinA=4sinπ3=8√33,∴ b+c+a=b+c+4=8√33[sinB+sinC]+4=8√33[sinB+sin(B+π3)]+4=8sin(B+π6)+4,∵ 0<B<2π3,∴ b+c+a∈(8, 12].18. 解:(1)幸福感指数在[4, 6),[6, 8)内的频数分别为220+180=400和125+175=300,因为总人数为1000,所以,相应的频率÷组距为:400÷1000÷2=0.2,300÷1000÷2=0.15,据此可补全频率分布直方图如右图.所求的平均值为0.01×2×1+0.015×2×3+0.2×2×5+0.15×2×7+0.125×2×9=6.46;所以K2=1000×(250×300−200×250)2450×550×500×500=10.101>6.635,所以在犯错误概率不超过0.01的前提下能否判定该市市民幸福与否与性别有关.19. (1)证明:因为D,M分别为AC,CF中点,所以DM // EF ,又EF ⊂平面A 1EF ,DM ⊄平面A 1EF 所以DM // 平面A 1EF .(2)证明:因为A 1E ⊥BD ,EF ⊥BD ,且A 1E ∩EF =E ,所以BD ⊥平面A 1EF ,又A 1F ⊂平面A 1EF 所以BD ⊥A 1F .(3)解:直线A 1B 与直线CD 不能垂直, 因为平面A 1BD ⊥平面BCD ,平面A 1BD ∩平面BCD =BD ,EF ⊥BD ,EF ⊂平面CBD , 所以 EF ⊥平面A 1BD .因为A 1B ⊂平面A 1BD ,所以A 1B ⊥EF , 又因为EF // DM ,所以A 1B ⊥DM . 假设A 1B ⊥CD ,因为A 1B ⊥DM ,CD ∩DM =D , 所以A 1B ⊥平面BCD , 所以A 1B ⊥BD ,这与∠A 1BD 为锐角矛盾所以直线A 1B 与直线CD 不能垂直. 20. (1)解:由题意得 1+12p =54,∴ p =12所以抛物线的方程为y =x 2…(2)证明:设P 1(x 1, y 1),P 2(x 2, y 2)因为y′=2x 则以点P 1为切点的抛物线的切线方程为y −y 1=2x 1(x −x 1) 又y 1=x 12,所以y =2x 1x −x 12…同理可得以点P 2为切点的抛物线的切线方程为y =2x 2x −x 22由{y =2x 1x −x 12y =2x 2x −x 22解得x =x 1+x 22… 又过点P(x 0, y 0)与M 1(0, −1)的直线的斜率为k 1=y 0+1x 0所以直线PM 1的方程为y =y 0+1x 0x −1由{y =y 0+1x 0x −1y =x 2得x 2−y 0+1x 0x +1=0所x 0x 1=1,即x 1=1x 0…同理可得直线PM 2的方程y =y 0−1x 0x +1由{y =y 0−1x 0x +1y =x 2得 x 2−y 0−1x 0x −1=0所以x 0x 2=−1,即x 2=−1x 0则x 1+x 2=1x 0+(−1x 0)=0,即P′得横坐标为0,所以点P′在y 轴上…21. (1)由f(x)=me xlnx ,可得f ′(x)=m(e xlnx +e x x),因为函数f(x)是J 函数,所以m(e x lnx +e x x)>me x lnx ,即me x x>0,因为e xx >0,所以m >0,即m 的取值范围为(0, +∞). (2)①构造函数ℎ(x)=g(x)e x,x ∈(0,+∞),则ℎ(x)=g ′(x)−g(x)e x>0,可得ℎ(x)为(0, +∞)上的增函数,当a >1时,ℎ(a)>ℎ(1),即g(a)e a>g(1)e,得g(a)>e a−1g(1);当0<a <1时,ℎ(a)<ℎ(1),即g(a)e a<g(1)e,得g(a)<e a−1g(1);当a =1时,ℎ(a)=ℎ(1),即g(a)e a=g(1)e,得g(a)=e a−1g(1).②因为x 1+x 2+...+x n >x 1,所以ln(x 1+x 2+...+x n )>lnx 1, 由①可知ℎ(ln(x 1+x 2+...+x n ))>ℎ(lnx 1), 所以g(ln(x 1+x 2+⋯+x n ))e ln(x 1+x 2+⋯+x n )>g(lnx 1)e lnx 1,整理得x 1g(ln(x 1+x 2+⋯+x n ))x 1+x 2+⋯+x n>g(lnx 1),同理可得x 2g(ln(x 1+x 2+⋯+x n ))x 1+x 2+⋯+x n>g(lnx 2),…,x n g(ln(x 1+x 2+⋯+x n ))x 1+x 2+⋯+x n>g(lnx n ).把上面n 个不等式同向累加可得g (ln(x 1+x 2+...+x n ))>g(lnx 1)+g(lnx 2)+...+g(lnx n ). (12)22. ∵ PE 、PB 分别是⊙O 2的割线 ∴ PA ⋅PE =PD ⋅PB又∵ PA 、PB 分别是⊙O 1的切线和割线 ∴ PA 2=PC ⋅PB由以上条件得PA ⋅PD =PE ⋅PC连接AC 、ED ,设DE 与AB 相交于点F ∵ BC 是⊙O 1的直径,∴ ∠CAB =90∘ ∴ AC 是⊙O 2的切线.由(1)知PAPE =PCPD ,∴ AC // ED ,∴ AB ⊥DE ,∠CAD =∠ADE 又∵ AC 是⊙O 2的切线,∴ ∠CAD =∠AED 又∠CAD =∠ADE ,∴ ∠AED =∠ADE∴ AD =AE23. 解:(1)将{x =3cosθy =2sinθ代入{x′=13x y′=12y, 得C ′的参数方程为{x =cosθy =sinθ∴ 曲线C ′的普通方程为x 2+y 2=1.(2)设P(x, y),A(x 0, y 0),又B(3, 0),且AB 中点为P , 所以有:{x 0=2x −3y 0=2y,又点A 在曲线C ′上,∴ 代入C ′的普通方程x 02+y 02=1得(2x −3)2+(2y)2=1, ∴ 动点P 的轨迹方程为(x −32)2+y 2=14. 24. 解:(1)∵ f(x)=√x 2−6x +9+√x 2+8x +16 =√(x −3)2+√(x +4)2 =|x −3|+|x +4|,∴ f(x)≥f(4)即|x −3|+|x +4|≥9. ∴ ①{x ≤−43−x −x −4≥9,或②{−4<x <33−x +x +4≥9,或③{x ≥3x −3+x +4≥9.解①得:x ≤−5; 解②得:x 无解; 解③得:x ≥4.∴ f(x)≥f(4)的解集为{x|x ≤−5 或x ≥4}.(2)f(x)>g(x)对任意的x ∈R 都成立,即f(x)的图象恒在g(x)图象的上方, ∵ f(x)=|x −3|+|x +4| ={−2x −1,x ≤−47,−4<x <32x +1,x ≥3.由于函数g(x)=k(x −3)的图象为恒过定点P(3, 0),且斜率k 变化的一条直线, 作函数y =f(x)和 y =g(x)的图象如图,其中,k PB=2,A(−4, 7),∴ k PA=−1.由图可知,要使得f(x)的图象恒在g(x)图象的上方,∴ 实数k的取值范围为(−1, 2].。
2014届高三数学一模文科试卷(附答案)
2014届高三数学一模文科试卷(附答案)箴言中学2013年高三第一次学月考试(时量120分钟满分 150分)一、选择题:本大题共9小题,每小题5分,共45分,每小题只有一项符合题目要求. 1.已知全集,集合,,则 =__________. A. {1,2,4} B. {2,3,4} C. {0,2,4} D . {0,2,3,4} 2.复数为虚数单位)在复平面内所对应的点在__________. A.第一象限 B.第二象限C.第三象限 D.第四象限 3.设 , 则“ ”是“ ”的__________. A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且;② y与x负相关且;③ y与x正相关且;④ y与x正相关且 . 其中一定不正确的结论的序号是__________. A.①② B.②③ C.③④ D.①④ 5.下列函数中,既是偶函数又在区间上单调递减的是__________. A. B. C. D. 6.已知向量,,若,则=__________. A. B. C. D. 7.已知点在圆外, 则直线与圆的位置关系是_______. A.相切 B.相交 C.相离 D.不确定 8.若 ,则的取值范围是__________. A. B. C. D. 9.形如的函数因其函数图象类似于汉字中的�遄郑�故生动地称为“�搴�数”。
则当时的“�搴�数”与函数的交点个数为__________. A.2 B.3 C.4 D.5 二、填空题:本大题共6小题,每小题5分,共30分. 10.直线(为参数)的倾斜角为__________. 11.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4, 则命中环数的方差为 . (注:方差,其中为的平均数) 12. 某几何体的三视图如图1所示,它的体积为__________. 13. 阅读图2的程序框图, 该程序运行后输出的的值为 __. 14. 设F1,F2是椭圆C:的两个焦点,若在C上存在一点P, 使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为_____________. 15.已知函数的定义域为,部分对应值如下表,的导函数,的图象如图所示.�1 0 2 4 5 1 2 0 2 1 (1)的极小值为_______;(2)若函数有4个零点,则实数的取值范围为_________.箴言中学2013年高三第一次学月考试文科数学答题卷一、选择题:本大题共9小题,每小题5分,共45分,序号 1 2 3 4 5 6 7 8 9 答案二、填空题:本大题共6小题,每小题5分,共30分. 10.____________11.____________ 12..____________ 13.____________14.____________ 15.____________ _____________ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题12分) 若函数在R上的最大值为5. (1)求实数m的值; (2)求的单调递减区间。
2014届高三高考模拟题数学试卷(文科)(含答案)
2014届高三高考模拟题数学试卷(文科)(含答案)一、选择题(每题5分,共8题)1.已知复数12z i =-,那么1z =( )A.55i +B.55-C.1255i +D.1255i - 2. “1x >”是“1x >” 的A .充分不必要条件 B.必要不充分条件 C. 充分必要条件 D.既不充分又不必要条件3.设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为( )A . 1,-1 B. 2,-2 C. 1,-2 D.2,-14. 方程03log 4=-x x 的根所在区间为( )A .)25,2( B. )3,25( C.)4,3( D.)5,4(5.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2013(f 的值为( ) A .-2 B. 2 C.4 D.-46. 若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A . [3,1]-- B. [1,3]- C. [3,1]- D. (,3][1,)-∞-+∞ 7. 在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A . 3B .2 3C .3 3 D. 4 38.则使方程()x f x m +=有解的实数m 的取值范围是( ) A .(1,2)B. (,1][2,)-∞⋃+∞C.(,1)(2,)-∞⋃+∞D. (,2]-∞-二、填空题(每小题5分,共6小题)9.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = 。
10.已知(2,0),(2,2),(2,1)OB OC CA ===,则OA 与OB 夹角的正弦值为_____.11.如图,PT 切圆O 于点T ,PA 交圆O 于A 、B 两点,且与直径CT 交于点D ,6,3,2===BD AD CD ,则=PB 。
2014湖南师大附中高考模拟卷数学文试题和答案.
湖南师大附中2014届高三高考模拟卷(一)数学(文)试题命题:朱海棠 舒玻 洪利民 审题:高三文科数学备课组(考试范围:高中文科数学全部内容)本试题卷包括选择题、填空题和解答题三部分,共6页。
时量120分钟。
满分150分。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z=1a ii+-(a ∈R, i 为虚数单位),若z 为纯虚数,则a=( ) A . -1B .0C . 1D .22.已知全集U={1,2,3,4,5},集合A={2,3},B={3,4},设集合M={a ,b},若(U M A B ⊆U ð,则a+b 的最大值为( )A .6B .7C .8D .93.已知直线l 1:2(1)(3)750m x m y m ++-+-=和l 2:(3)250m x y -+-=,若l 1⊥l 2,则( ) A .m= -2 B .m=3 C .m=-1或3 D .m=3或-24.已知某几何的三视图如图所示,则该几何体的体积为( ) A .83 B .8C D .5.设命题p :∃x 0>0,使20x +2x 0+a=0(a 为实常数),则p ⌝为假命题的一个充分不必要条件是( ) A .a <0 B .a ≤-1 C .a<l D .a>-2 6.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,右图是根据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50, 70),[70,90) ,[90,110),[110 ,130),[130,150].已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数不小于70个且小于130个的人数是 A .60 B .66 C .90 D .135 7.已知函数f (x )=Asin (x ωϕ+)(A>0,ω>0,2πϕ≤)在一个周期内的图象如图所示,则()6f π的值为A .2B CD .18.已知函数f (x )=2x,设g (x )=(),()22,()2f x y x f x ≥⎧⎨<⎩,则函数g (x )的单调递减区间是 ( )A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,-1]9.设点P 是椭圆222516x y +=1上的动点,F 1为椭圆的左焦点,M (6,4)为定点,则|PM|+|PF 1|的最大值是( ) A .15B .C .10D .10.设A ,B ,C 为圆O 上三点,且AB=3,AC=5,则AO uuu r ·BC =u u ur ( )A . -8B .-1C .1D .8二、填空题:本大题共5个小题,每小题5分,共25分,把各题答案的最简形式写在题中的横线上。
山东省潍坊市2014届高三3月模拟考试 文科数学 Word版含答案.pdf
保密★启用前试卷类型:A 高三数学() 2014. 本试卷共4页,分第卷(选择题)和第Ⅱ卷(非选择题)两部分共150分考试时间l20分钟. 第卷(选择题共50分) 注意事项: 1.答第卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每题选出答案后,用2铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号. 一、选择题:本大题共l0小题。
每小题5分共50分.在每小题给出的四个选项中只有一项是符合题目要求的1.若复数2满足z(1+i)=2i,则在复平面内z对应的点的坐标是 (A)(1,1) (B)(1,l) (C)(-l,1) (D)(l,l) 2.设全集U=R,集合A={},B={},则等于 (A)[1,0) (B)(0,5] (C)[1,0] (D)[0,5] 3.已知命题p、q,为真是为假的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 4.若圆C经过(1,0),(3,0)两点,且与轴相切,则圆C的方程为 (A) (B) (C) (D) 5.运行如图所示的程序框图,则输出的结果S为 (A) 1007 (B) 1008 (C) 2013 (D) 2014 6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为 (A) 13 (B) 17 (C) 19 (D) 21 7.函数与且在同一直角坐标系下的图象可能是.三棱锥SABC的所有顶点在球的表面上,SA平面ABC,ABBC,又SA=AB=BC=1,则球的表面积为 (A) (B) (C)3 (D) 12 9.对任意实数,定义运算”:设,若函数的图象与轴恰有三个不同交点,则k的取值范围是 (A)(2,1) (B)[0,1] (C)[2,0) (D)[2,1) 10.如图,已知直线:=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,且A、B两点在抛物线C准线上的射影分别是M、N,若AM|=2|BN|,则k的值是 (A) (B) (C) (D) 2 第Ⅱ卷 (非选择题共100分) 注意事项: 将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上二、填空题:本大题共5小题每小题5分共25分1 1.已知角的顶点与原点重合,始边与轴的正半轴重合,终边上一点的坐标为(3,4),则=. 12.已知某几何体的三视如图所示,则该几何体的体积为 13.若、满足条件,则z=+3y的最大值是14.已知>b>0,ab=1,则的最小值为. 15.已知函数为奇函数,且对定义域内的任意都有.当时 给出以下4个结论: ①函数的图象关于点(,)(kZ)成中心对称; ②函数是以2为周期的周期函数; 当时; ④函数在(,k+1)( kZ)上单调递增. 其一中所有正确结论的序号为 三、解答题:本大题共6小题共75分解答应寓出文字说明.证明过程或演算步骤. 16.(本小题满分l2分) 已知函数. (I)求函数在上的单调递增区间; (Ⅱ)在ABC中,内角A,,C的对边分别是a,,c,已知=(a,),且n,求.17.(本小题满分12分) 如图,底面是等腰梯形的四棱锥EABCD中,EA平ABCD,ABCD,AB=2CD,ABC=. (I)设F为EA的中点,证明:DF平面EBC; (II)若AE=AB=2,求三棱锥DE的体积.18,(本小题满分l2分) 甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下: 甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为l50,边界忽略不计)即为中奖. 乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖. 问:购买该商品的顾客在哪家商场中奖的可能性大? 19.19.(本小题满分12分) 已知数列{}的前n项和,数列{}满足,且. (I)求,; (Ⅱ)设为数列{}的前项和,求. 20.(本小题满分13分) 已知函数. (I)的单调性; (Ⅱ)求函数的零点的个数; 令,若函数在(0,)内有极值,求实数的取值范围; 21.(本小题满分14分) 已知双曲线:的焦距为,其中一条渐近线的方程为.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点的动直线与椭圆E交于A、两点. (I)求椭圆E的方程; (II)若点P为椭圆的左顶点,,求的取值范围; (Ⅲ)若点P满足,求证为定值。
安徽省安庆市省市示范高中2014届高三高考模拟考试数学文扫描版含答案
三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)16、(本题满分12分)解:(1)由题意可得ϕϕϕsin 2sin cos cos sin 2)(2-+=x x x f )2sin(sin 2cos cos 2sin sin 2sin cos )2cos 1(sin ϕϕϕϕϕϕ+=+=-++=x x x x x………2分 当6π=x 时,62,2262ππϕππϕπ+=∴+=+⨯k k又因πϕ<<0,所以6πϕ=………4分17、(本题满分12分)解:(1)依题意,分层抽样的抽样比为18015403=. 所以在高一年级抽取的人数为21801360=⨯=x 人 , 在高二年级抽取的人数为41801720=⨯=y 人. ………4分(2)①用12,A A 表示环保志愿者小组中高一年级的2名志愿者,用1234,,,a a a a 表示环保志愿者小组中高二年级的4名志愿者.则抽取二人的情况为121112131421222324121314232434,,,,,,,,,,,,,,A A A a A a A a A a A a A a A a A a a a a a a a a a a a a a 共15种. ………8分在AO 上取点G ,使AO AG 41=,连FG . 由4AP AF =知FG ∥PO由(1)可知⊥FG 平面ABCD于是三棱锥ABD F -的体积为4134133131=⨯⨯⨯=⨯⨯∆FG S ABD 故多面体PBCDF 的体积为47412=-. ………12分19、(本题满分13分) 解:(1)设1F ,2F 的坐标分别为)0,(),0,(c c -,其中0>c于是点C 的坐标为()22,0或()22,0-………13分20、(本题满分13分)解:(1)函数)(x f 的定义域为),0(+∞, 求导得222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f , 当29=a 时,222)1()2)(21()1(125)(+--=++-='x x x x x x x x x f ………3分 令0)(='x f ,则21=x 或2=x 于是得下表:当29=a 时,函数)(x f 的单调递增区间为⎪⎭⎫ ⎝⎛21,0,()+∞,2,单调递减区间为⎪⎭⎫ ⎝⎛2,21.………7分 (2)当044)2(22≤-=--=∆a a a ,即40≤≤a 时,0)(≥'x f 恒成立,函数)(x f 在),0(+∞上单调递增,此时无极值点; ………9分 当⎩⎨⎧<->∆020a 即0<a 时,方程01)2(2=+-+x a x 有两个不相等的负实根,则函数)(x f 在),0(+∞上单调递增,此时无极值点.综上可得实数a 的取值范围为]4,(-∞. ………13分)1(6111...312121161...242+=⎪⎭⎫ ⎝⎛+-++-+-=+++∴k k k k b b b k 解不等式71)1(681<+<k k ,得63<<k 又k 为正整数,故存在正整数k ,5,4=k………13分。
2014年高三文科参考答案
2014年下学期高三调研考试数学(文科)(考试时量:120分钟 满分150分)参考答案一:单选题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,二:填空题:(本题共5小题,每小题5分,共25分。
) 11. 2±12. 18 13. 23π14. 15. 9-三:解答题:(本大题共6小题,共75分。
解答应写出文字学明、证明过程或演算步骤) 16. (本小题满分12分)解:解:根据已知得2{|,34}{|,14}{1,2,3}A x x N x x x x N x ++=∈+>=∈-<<=, 2分由702x x -≤-,解得27x <≤. ∴{|,27}{3,4,5,6,7}B x x N x +=∈<≤= 4分 ∴集合C 中的元素为:(1,3),(1,4),(1,5),(1,6),(1,7), (2,3),(2,4),(2,5),(2,6),(2,7),(3,3),(3,4),(3,5),(3,6),(3,7)共有15个 6分 (Ⅰ)∵(3,3)、(3,4)都在集合C 中,集合C 中共有15个元素, ∴在集合C 中随机取出一个元素(,)x y , 取出的元素是(3,3)或(3,4)的概率等于215. 9分 (Ⅱ)∵在集合C 的元素(,)x y 中,满足6x y +≤的有(1,3),(1,4),(1,5),(2,3),(2,4),(3,3)一共有6个,OBACDEFP∵62155=, ∴在集合C 中随机取出一个元素(,)x y ,6x y +≤的概率等于25. 12分 17.解:(Ⅰ)2()2cos cos f x x x x =+⋅1cos22x x =+2sin(2)16x π=++ 4分所以,周期T π=. 6分(Ⅱ)∵,64x ππ⎡⎤∈-⎢⎥⎣⎦,∴ 22,663x πππ⎡⎤+∈-⎢⎥⎣⎦ 8分1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦∴()f x 的值域为[]0,3 12分18.解:(Ⅰ)证明:连接BD ,交AC 于点O ,连接OP . 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . 5分 (Ⅱ)因为∠BAF =90º,所以AF ⊥AB ,又因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB , 所以AF ⊥平面ABCD 从而AF ⊥CD又因为四边形ABCD 为矩形 所以AD ⊥CD从而CD ⊥平面FAD 8分 所以∠CPD 就是直线PC 与平面FAD 所成的角 10分又2sin ,3CD CPD CP ∠==Q 且1CD PD PF =⇒=⇒=分 19.(Ⅰ)解法1:当1n =时,111a S p q ==++, 1分 当2n ≥时,1n n n a S S -=- 2分 ()()221121n pn q n p n q n p ⎡⎤=++--+-+=-+⎣⎦. 3分∵{}n a 是等差数列,∴1211p q p ++=⨯-+,得0q =. 4分 又2353,5,9a p a p a p =+=+=+, 5分 ∵235,,a a a 成等比数列,∴2325a a a =,即()()()2539p p p +=++, 6分解得1p =-. 7分 解法2:设等差数列{}n a 的公差为d , 则()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭. 1分 ∵2n S n pn q =++, ∴12d =,12da p -=,0q =. 4分 ∴2d =,11p a =-,0q =. ∵235,,a a a 成等比数列,∴2325a a a =, 5分即()()()2111428a a a +=++.解得10a =. 6分 ∴1p =-. 7分 (Ⅱ)由(Ⅰ)得22n a n =-. 8分 ∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. 9分∴1231n n nT b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ , ① 10分则有()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅ ,② 11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=12分 ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. 13分 20.解:(Ⅰ)根据题意,得1(5)8y x =- []0,5x ∈. 4分 (Ⅱ)令tt ⎡∈⎣,则212x t =, 7分2211517y t t (t 2).1648168=-++=--+ 10分因为2⎡∈⎣2=时,即2x =时,y 取最大值0.875. 12分 答:总利润的最大值是0.875亿元. 13分21.解(Ⅰ)∵2()ln 1f x x a x =--的定义域为(0,)+¥,函数()f x 的图象上的每一点处的切线斜率都是正数,∴()20af x x x'=->在(0,)+¥上恒成立. 2分 ∴22a x <在(0,)+¥上恒成立 .∵220y x =>在(0,)+¥上恒成立, ∴0a ≤∴所求的a 的取值方位为(,0]-¥. 6分 (Ⅱ)当2a =时,函数()1f x y x =-的图象与()y F x =的图象没有公共点. 理由:当2a =时,2()2ln 111f x x x y x x --==--, 它的定义域为01x x >≠且,()F x 的定义域为0x ≥.当01x x >≠且时,由()()1f x F x x =-得:22ln 20x x x --+=. 8分设2()2ln 2h x x x x =--+,则21)(222)()21x h x xx x +'=--=∴当01x <<时,()0h x '<,此时,()h x 单调递减; 当1x >时,()0h x '>,此时,()h x 单调递增. ∴当2a =,01x x >≠且时,()()1f x F x x =-无实数根, 即当2a =时,函数()1f x y x =-的图象与()y F x =的图象没有公共点. 13分。
数学_2014年某校高考数学三模试卷(文科)(含答案)
2014年某校高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分. 1. 已知复数z =2+i 1−i,则复数z 的共轭复数在复平面内对应的点在( )A 第一象限B 第二象限C 第三象限D 第四象限2. 已知集合A ={x|x 2−2x −3>0},则集合N ∩∁R A 中元素的个数为( ) A 无数个 B 3 C 4 D 53. 执行图题实数的程序框图,如果输入a =2,b =2,那么输出的a 值为( )A 44B 16C 256D log 3164. 设非零向量a →,b →,c →,满足|a →|=|b →|=|c →|,a →+b →=c →,b →与c →的夹角为( ) A 60∘ B 90∘ C 120∘ D 150∘5. 已知正方形ABCD ,其中顶点A 、C 坐标分别是(2, 0)、(2, 4),点P(x, y)在正方形内部(包括边界)上运动,则z =2x +y 的最大值是( ) A 10 B 8 C 12 D 66. 设函数f(x)=cos(ωx +φ)−√3sin(ωx +φ),(ω>0, |φ|<π2)且其图象相邻的两条对称轴为x =0,x =π2,则( )A y =f(x)的最小正周期为2π,且在(0, π)上为增函数B y =f(x)的最小正周期为π,且在 (0, π)上为减函数C y =f(x)的最小正周期为π,且在(0, π2)上为增函数 D y =f(x)的最小正周期为π,且在(0, π2)上为减函数 7. 函数f(x)=2|log 2x|−|x −1x |的大致图象为( )A B C D8. 下列命题正确的个数是( )①命题“∃x 0∈R ,x 02+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x”;②“函数f(x)=cos 2ax −sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件;③x 2+2x ≥ax 在x ∈[1, 2]上恒成立⇔(x 2+2x)min ≥(ax)max 在x ∈[1, 2]上恒成立; ④“平面向量a →与b →的夹角是钝角”的充分必要条件是“a →⋅b →<0”.A 1B 2C 3D 49. 设双曲线x 2a 2−y 2b 2=1(a >0, b >0),离心率e =√2,右焦点F(c, 0).方程ax 2−bx −c =0的两个实数根分别为x 1,x 2,则点P(x 1, x 2)与圆x 2+y 2=8的位置关系( ) A 在圆外 B 在圆上 C 在圆内 D 不确定10. 点A ,B ,C ,D 在同一个球面上,AB =BC =√2,AC =2,若球的表面积为25π4,则四面体ABCD 体积最大值为( ) A 14 B 12 C 23 D 211. 已知△ABC 外接圆O 的半径为1,且OA →⋅OB →=−12.∠C =π3,从圆O 内随机取一个点M ,若点M 取自△ABC 内的概率恰为3√34π,则△ABC 的形状为的形状为( )A 直角三角形B 等边三角形C 钝角三角形D 等腰直角三角形12. 定义在区间(1, +∞)上的函数f(x)满足两个条件:(1)对任意的x ∈(1, +∞),恒有f(2x)=2f(x)成立;(2)当x ∈(1, 2]时,f(x)=2−x .若函数g(x)=f(x)−k(x −1)恰有两个零点,则实数k 的取值范围是( ) A [1, 2) B [1, 2] C [43,2) D (43,2)二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡相应位置. 13. 设a 为实数,函数f(x)=x 3+ax 2+(a −3)x 的导函数为f′(x),且f′(x)是偶函数,则曲线y =f(x)在原点处的切线方程是________.14. 如图为某几何体的三视图,则该几何体的体积为________.15. 若在由正整数构成的无穷数列{a n }中,对任意的正整数n ,都有a n ≤a n+1,且对任意的正整数k ,该数列中恰有2k −1个k ,则a 2014=________.16. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,己知F 1,F 2是一对相关曲线的焦点,P 是它们在第一象限的交点,当∠F 1PF 2=60∘,则这 一对相关曲线中椭圆的离心率是________.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. 等比数列{a n }中,a n >0(n ∈N ∗),且a 1a 3=4,a 3+1是a 2和a 4的等差中项,若b n =log 2a n+1(1)求数列{b n}的通项公式;(2)若数列{c n}满足c n=a n+1+1,求数列{c n}的前n项和.b2n−1⋅b2n+118. 某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成[40, 50),[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70, 80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试成绩的中位数;(Ⅲ)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.19. 如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE和CF的中点.(1)求证:AF // 平面BDGH:(2)求V E−BFH.20. 平面内动点P(x, y)与两定点A(−2, 0),B(2, 0)连接的斜率之积等于−1,若点P的轨迹4, 0),直线l交曲线E于M,N两点.为曲线E,过点Q(−65(1)求曲线E的方程,并证明:∠MAN是一定值;(2)若四边形AMBN的面积为S,求S的最大值.21. 已知函数f(x)的定义域是(0, +∞),f′(x)是f(x)的导函数,且xf′(x)−f(x)>0在(0, +∞)上恒成立.(1)求函数F(x)=f(x)的单调区间.x(2)若函数f(x)=lnx+ax2,求实数a的取值范围<1.(3)设x0是f(x)的零点,m,n∈(0, x0),求证:f(m+n)f(m)+f(n)四、选做题:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分作答时用2B 铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲 22. 如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2−14x +mn =0的两个根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若∠A =90∘,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.选修4.4坐标系与参数方程23. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为{x =1+tcosαy =tsinα (t 为参数,0<α<π),曲线C 的极坐标方程为ρsin 2θ=4cosθ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求|AB|的最小值.选修4-5:不等式选讲24. 已知f(x)=|ax +1|,a ≠0,不等式f(x)≤3的解集是{x|−1≤x ≤2} (1)求a 的值; (2)若g(x)=f(x)+f(−x)2,g(x)<|k|存在实数解,求实数k 的取值范围.2014年某校高考数学三模试卷(文科)答案1. D2. C3. C4. A5. A6. D7. D8. B9. C 10. C 11. B 12. C13. 3x+y=014. 4π315. 4516. √3317. 解:(1)设等比数列{a n}的公比为q.由a1a3=4可得a22=4因为a n>0,所以a2=2依题意有a2+a4=2(a3+1),得2a3=a4=a3q 因为a3>0,所以,q=2所以数列{a n}通项为a n=2n−1,所以b n=log2a n+1=n;…(2)设数列{c n}的前n项和为S n.∵ c n=a n+1+1b2n−1⋅b2n+1=2n+12(12n−1−12n+1)…∴ S n=2(1−2n)1−2+12(1−13+13−15+ (1)2n−1−12n+1)=2n+1−2+n2n+1…18. (1)分数在[70, 80)内的频率为1−(0.010+0.015+0.015+0.025+0.005)×10=0.3,∴ 小矩形的高为0.030,补全频率分布直方图如图:(2)由频率频率分布直方图知前三组的频率之和为0.1+0.15+0.15=0.4,∴ 中位数在第四组,设中位数为70+x,则0.4+0.030×x=0.5⇒x=103,∴ 数据的中位数为70+103=2203,(Ⅲ)第1组有60×0.1=6人(设为1,2,3,4,5,6)第6组有60×0.05=3人(设为A,B,C)从9人中任取2人有C92=36种方法;其中抽取2人成绩之差的绝对值大于10的抽法是从第1组与第6组各抽取1人,抽法由C61×C31=18种,∴ 抽取2人成绩之差的绝对值大于10的概率为12.19. (1)证明:设AC ∩BD =O ,连接OH , 在△ACF 中,因为OA =OC ,CH =HF , 所以OH // AF ,又因为OH ⊂平面BDGH ,AF ⊄平面BDGH , 所以OH // 平面BDGH .…(2)解:因为四边形是正方形, 所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD , 且AC ⊂平面ABCD , 所以AC ⊥平面BDEF…则H 到平面BDEF 的距离为CO 的一半又因为AO =√2,三角形BEF 的面积12×3×2√2=3√2, 所以V E−BFH =V H−BEF =13×3√2×√22=1…20. 解:(1)设动点P 坐标为(x, y),当x ≠±2时, 由条件得:yx−2⋅yx+2=−14,化简得x 24+y 2=1,(x ≠±2), ∴ 曲线E 的方程为:x 24+y 2=1,(x ≠±2).…(说明:不写x ≠±2的扣1分) 由题可设直线MN 的方程为x =ky −65,联立方程组{x =ky −65x 24+y 2=1,化简得:(k 2+4)y 2−125ky −6425=0,设M(x 1, y 1),N(x 2, y 2),则y 1y 2=−6425(k 2+4),y 1+y 2=12k5(k 2+4),…又A(−2, 0),则AM →⋅AN →=(x 1+2, y 1)•(x 2+2, y 2)=(k 2+1)y 1y 2+45k(y 1+y 2)+1625=0, ∴ ∠MAN =90∘,∴ ∠MAN 的大小为定值90∘.… (II)S =12|AB|⋅|y 1−y 2|=12|2+2|⋅√(y 1+y 2)2−4y 1y 2 =2√(12k 5(k 2+4))2+4×6425(k 2+4)=8√25k 2+64(k 2+4)2.令k 2+4=t ,(t ≥4),∴ k 2=t −4, ∴ S =8√25t−36t 2,设f(t)=25t−36t 2, ∴ f ′(t)=−25−2t(25t−36)t 4=−25t+72t 3,∵ t >4,∴ f′(t)<0,∴ y =f(t)在[4, +∞)上单调递减. ∴ f(t)≤f(4)=100−3616=4,由t =4,得k =0,此时S 有最大值16.…21. 解:(1)根据题意,对于x ∈(0, +∞),F′(x)=xf′(x)−f(x)x 2>0;∴ F(x)在(0, +∞)上单调递增,(0, +∞)是F(x)的单调递增区间. (2)f′(x)=1x +2ax ,∴ x(1x +2ax)−lnx −ax 2>0; ∴ ax 2−lnx +1>0; ∴ a >lnx−1x 2,令g(x)=lnx−1x 2,g′(x)=3−2lnx x 3,令3−2lnx x 3=0得:x =e 32;∴ x ∈(0, e 32)时,g′(x)>0;x ∈(e 32, +∞)时,g′(x)<0; ∴ x =e 32时,g(x)取到极大g(e 32)=12e −32,也是最大值; ∴ a 的取值范围是(12e −32, +∞).(3)根据(1)知在(0, x 0)上,f(x)x是增函数,∴ x ∈(0, x 0)时,f(x)x<f(x 0)x 0=0,∴ f(x)<0;∵ m +n >m ,m +n >n ∴f(m+n)m+n>f(m)m,f(m+n)m+n>f(n)n.∴ f(m)<mf(m+n)m+n①f(n)<nf(m+n)m+n②. ∴ ①+②得:f(m)+f(n)<mf(m+n)m+n+nf(m+n)m+n=f(m +n).∴ f(m+n)f(m)+f(n)<1.22. (I )连接DE ,根据题意在△ADE 和△ACB 中, AD ×AB =mn =AE ×AC , 即AD AC=AE AB又∠DAE =∠CAB ,从而△ADE ∽△ACB 因此∠ADE =∠ACB∴ C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2−14x +mn =0的两根为x 1=2,x 2=12. 故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH . ∵ C ,B ,D ,E 四点共圆,∴ C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于∠A =90∘,故GH // AB ,HF // AC .HF =AG =5,DF =12(12−2)=5. 故C ,B ,D ,E 四点所在圆的半径为5√223. 解:(1)由ρsin 2θ=4cosθ,得(ρsinθ)2=4ρcosθ, ∴ 曲线C 的直角坐标方程为y 2=4x .(2)将直线l 的参数方程代入y 2=4x ,得t 2sin 2α−4tcosα−4=0. 设A 、B 两点对应的参数分别为t 1、t 2, 则t 1+t 2=4cosαsin 2α,t 1t 2=−4sin 2α,∴ |AB|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=√(4cosαsin 2α)2+16sin 2α=4sin 2α, 当α=π2时,|AB|的最小值为4.24. 解:(1)由|ax +1|≤3得:−4≤ax ≤2;当a >0时,−4a≤x ≤2a,∵ 原不等式的解集是{x|−1≤x ≤2},∴ {−4a=−12a=2,该方程组无解;当a <0时,2a≤x ≤−4a,原不等式的解集是{x|−1≤x ≤2},∴ {2a=−1−4a =2,解得a =−2.… (2)由题:g(x)=f(x)+f(−x)2=|−2x+1|+|2x+1|2=|x −12|+|x +12|,因为g(x)<|k|存在实数解,只需|k|大于g(x)的最小值,由绝对值的几何意义,g(x)=|x−12|+|x+12|≥|x−12−(x+12)|=1,所以|k|>1.解得:k<−1或k>1…。
2014高三数学(文科)模拟试题及答案
2013—2014高三数学(文科)模拟试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数2)1(ii += A .2 B .-2 C .-2 i D .2i 2.若a ,b ∈R ,则“a b ≥2”是“2a +2b ≥4”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.在正方体ABCD-A 1B 1C 1D 1中,AB 与平面A 1BC 1所成角的正弦值为 A .36 B .33 C .21 D . 23 4.要得到函数12sin 3sin 22-+=x x y 的图像,只需将函数x y 2sin 2=的图像 A .向右平移12π个单位 B .向左平移12π个单位 C .向右平移6π个单位 D .向左平移6π个单位5.若⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,则11++=x y z 的取值范围是A .[1,23] B .[21,1] C .[1,2] D .[21,2] 6.一圆形纸片的圆心为O ,F 是圆内异于O 的一个定点.M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD.若CD 与OM 交于点P ,则点P 的轨迹是 A .圆 B .椭圆 C .双曲线 D .抛物线7.已知抛物线C:x y 42=的焦点为F,准线为,过抛物线C 上一点A 作准线的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为 A .(1,±2) B .(21,±2) C .(4,±1) D .(2,±22)8.已知平面向量a ,b (a ≠b )满足| a |=1,且a 与b -a 的夹角为︒150,若c =(1-t )a +t b(t ∈R ),则|c |的最小值为 A .1 B .41 C .21D .239.已知函数c x x x f +-=2)(2,记))(()(),()(11x f f x f x f x f n n ==+(n ∈N *),若函数x x f y n -=)(不存在零点,则c 的取值范围是A .c <41 B .c ≥43 C .c > 49 D .c ≤4910.若沿△ABC 三条边的中位线折起能拼成一个三棱锥,则△ABCA .一定是等边三角形B .一定是锐角三角形C .可以是直角三角形D .可以是钝角三角形 二、填空题:本大题共7个小题,每小题4分,共28分。
山东省2014届高三4月模拟考试数学(文)试题 Word版含答案.pdf
文 科 数 学 (根据2014年山东省最新考试说明命制) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效. 考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上. 2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米及以上黑色字迹的签字笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持答题卡上面清洁,不折叠,不破损. 第I卷(共50分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 集合 A. B. C. D. 2.复数(i是虚数单位)的共轭复数在复平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限 3.已知某篮球运动员2013年度参加了25场比赛,我从中抽取5场,用茎叶图统计该运动员5场中的得分如图1所示,则该样本的方差为A.25B.24C.18D.16 4.执行如图2所示的程序框图,输出的Z值为A.3B.4C.5D.6 5.在△ABC中,内角A,B,C的对边分别为已知 A. B. C. D. 6.设命题平面; 命题函数的图象关于直线对称.则下列判断正确的是A.为真B.C. 为假D. 为真 7.函数的部分图象是 8.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图3所示)的面积为8,则该三棱柱外接球的表面积为 A. B. C. D. 9.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为 A. B. C. D. 10.已知函数,若函数有三个零点,则实数k的取值范围是 A. B. C. D. 第II卷(共100分) 二、填空题(本大题共5小题,每小题5分,共25分). 11.已知抛物线上一点P到焦点F的距离是5,则点P的横坐标是 . 12.数列的前n项和为,则 . 13.矩形ABCD中,若=. 14.观察下列不等式: ①;②;③ 15.设变量x,y满足约束条件,若目标函数的最大值为a,最小值为b,则a—b的值为 . 三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)如图4,在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,终边交单位圆于点A,且.将角α的始边按逆时针方向旋转,交单位圆于点B,记. (1)若; (2)分别过A,B作x轴的垂线,垂足依次为C、D,记,求角的值. 17.(本题满分12分)四棱锥P—ABCD的底面是平行四边形,平面,E,F分别为AD,PC的中点. (1)求证: (2)若AB=2,求四棱锥P—ABCD的体积.. 18.(本小题满分12分)空气质量指数PM2.5(单位:)表示每立方米空气中可入肺颗粒物的含量,这个值越高,代表空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示 某市2013年11月(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图: (1)估计该城市一个月内空气质量类别为良的概率; (2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率. 19.(本题满分13分)已知在等比数列. (1)若数列满足,求数列的通项公式; (2)求数列的前n项和. 20.(本题满分13分)已知分别为椭圆的上下焦点,其是抛物线的焦点,点M是与在第二象限的交点,且 (1)试求椭圆的方程; (2)与圆相切的直线交椭圆于A,B两点,若椭圆上一点P满足的取值范围. 21.(本题满分13分)已知函数 (1)求函数的单调区间; (2)若函数在上是减函数,求实数a的最小值; (3)若成立,求实数a的取值范围.。
2014年高三文科数学三模试题及参考答案
高三年级第三次高考模拟测试试题数学(文科)(2014.05)考试时间:120分钟 分值:150分参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++只有一项是符合题目要求的.1.设全集{}4,3,2,1=U ,集合{}4,2,1=A ,{}4,3,2=B ,则=)(B A C U ( )A. {}3,1B. {}4,2C.{}4,3,2,1D. ∅2.若复数i a a a )1()23(2-++-是纯虚数,则实数a 的值为( ) A .1 B.2 C.1或2 D.1-3. 下列函数中,偶函数是A .x x f tan )(=B .x x x f -+=22)(C .x x f =)(D .3)(x x f =4.已知b a 、均为单位向量,它们的夹角为060,那么=-b a 2( )A.7B.10C.3D.3 5. 已知)0(31cos πϕϕ<<-=,则=ϕ2sin ( )A.922 B.922- C.924 D.924-6.某程序框图如图所示,该程序运行后输出的k 的 值是:A . 2B . 3C . 4D . 57. .已知一个几何体的三视图及其大小如图1,这个几何体的体积=VA .π12B .π64C .π18D . π168. 已知双曲线()222210,0x y a b a b-=>>的离心率为2,一个焦点与抛物线216y x =的焦点相同,则双曲线的渐近线方程为 A.y = B .y x = C.y = D . 32y x =±9. 圆()221x a y -+=与直线y x =相切于第三象限,则a 的值是( )A .2B .2- C. D .210. 对于定义为D 的函数,若存在距离为d 的两条平行直线221:1:,:m kx y l m kx y l +=+=,使得对任意D x ∈,都有21)(m kx x f m kx +≤≤+恒成立,则称函数))((D x x f ∈有一个宽度为d 的通道,给出下列函数○1xx f 1)(=,○2x x f sin )(=,○31)(2-=x x f ,○4 1)(3+=x x f ,其中在区间),1[+∞上通道宽度可以是1的函数是( )A.○1 ○3 B.○2 ○3 C.○2 ○4 D. ○1 ○4 二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置.11.变量x y 、满足线性约束条件222200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数z x y =+的最大值为 .12.曲线21x y xe x =++在点(01),处的切线方程为 . 13.定义在R 上的函数()f x 满足3l o g (1)0()(1)(2)0x x f x f x f x x -≤⎧=⎨--->⎩,则(2014)f = .14.(坐标系与参数方程选做题)已知在平面直角坐标系xoy 中圆C的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩,(θ为参数),以ox 为极轴建立极坐标系,直线极坐标方程为:,0)6cos(=+πθρ则圆C 截直线所得弦长为 。
2014高三数学一模试卷含有答案
2014高三数学质量调研卷一.填空题1. 若集合}02|{2>-=x x x A ,}2|1||{<+=x x B ,则=B A .2. 设1e 、2e 是平面内两个不平行的向量,若21e e +=与21e e m -=平行,则实数=m .3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .4. 在nx )3(-的展开式中,若第3项的系数为27,则=n .5. 若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d l im . 6. 函数)1(log )(2-=x x f )21(≤<x 的反函数=-)(1x f.7. 已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 .8. 数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a . 9. 若函数x x x f 1)(+=,则不等式25)(2<≤x f 的解集为 .10.如图,正四棱柱1111D C B A ABCD -的底面边长2=AB ,若异面直线A A 1与C B 1 所成的角的大小为21arctan,则正四棱柱1111D C B A ABCD -的侧面积为 . 11. 在数列}{n a 中,21=a ,341+=-n n a a (2≥n ),则数列}{n a 的前n 项和=n S . 12. 已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种. 13. 若函数2cos 1)(xx x f ⋅+=π,则=+++)100()2()1(f f f .第10题14.已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 . 二.选择题15.若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数或偶函数”是“)()(x g x f ⋅是偶函数”的…………………………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件16. 若a 和b 均为非零实数,则下列不等式中恒成立的是……………………………( ))(A ||2||ab b a ≥+. )(B 2≥+baa b . )(C 4)11)((≥++b a b a . )(D 222)2(2b a b a +≥+. 17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .18. 若i A (n i ,,3,2,1 =)是AOB ∆所在的平面内的点,且OB OA OB OA i ⋅=⋅. 给出下列说法:①||||||||21OA OA n ==== ; ②||i 的最小值一定是||OB ; ③点A 、i A 在一条直线上;④向量及i OA 在向量的方向上的投影必相等.其中正确的个数是…………………………………………………………………………( ))(A 1个. )(B 2个. )(C 3个. )(D 4个.第18题第13题三.解答题19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分. 已知点)0,2(P ,点Q 在曲线C :x y 22=上.(1)若点Q 在第一象限内,且2||=PQ ,求点Q 的坐标; (2)求||PQ 的最小值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分. 已知函数x x x x f cos sin 322cos )(+=(1)求函数)(x f 的值域,并写出函数)(x f 的单调递增区间;求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值.21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径310=r 毫米,滴管内液体忽略不计.(1)如果瓶内的药液恰好156分钟滴完,问每分钟应滴下多少滴?(2)在条件(1)下,设输液开始后x (单位:分钟),瓶内液面与进气管的距离为h (单位:厘米),已知当0=x 时,13=h .试将h 表示为x 的函数.(注:3310001mm cm =)22. (本题满分16分) 已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2nn a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;高三数学质量调研卷 评分标准一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. )0,3(-; 2.1-; 3. 4;4.3; 5.1; 6. =-)(1x f )0(21≤+x x (不标明定义域不给分); 7. 8; 8.32; 9.)2,21( 10.32; 11. 14--n n (*N n ∈); 13.150;14.2<a ;二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分.【解】设),(y x Q (0,0>>y x ),x y 22=(1)由已知条件得2)2(||22=+-=y x PQ …………………………2分将x y 22=代入上式,并变形得,022=-x x ,解得0=x (舍去)或2=x ……………4分当2=x 时,2±=y只有2,2==y x 满足条件,所以点Q 的坐标为)2,2(………………6分 (2)||PQ 22)2(y x +-=其中x y 22=…………………………7分422)2(||222+-=+-=x x x x PQ 3)1(2+-=x (0≥x )…………10分当1=x 时,3||min =PQ ……………………………………12分(不指出0≥x ,扣1分)20. 【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分由于2)62sin(22≤+≤-πx ,所以函数)(x f 的值域为]2,2[-………4分由πππππk x k 22)6222+≤+≤+-得ππππk x k +≤≤+-63所以函数)(x f 的单调的增区间为]6,3[ππππ+-k k ,Z k ∈………6分(文科不写Z k ∈,不扣分;不写区间,扣1分)由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分621521322335+=⨯+⨯=………………14分 21. 解】(1)设每分钟滴下k (*N k ∈)滴,………………1分则瓶内液体的体积πππ1563294221=⋅⋅+⋅⋅=V 3cm ………………3分k 滴球状液体的体积75340103432ππk mm k k V ==⋅⋅⋅=3cm ………………5分所以15675156⨯=ππk ,解得75=k ,故每分钟应滴下75滴。
金华十校2014届高三4月高考模拟考试数学文试题 纯含答案
浙江省金华十校2014届高三4月高考模拟考试数学(文科)试卷2014.4一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合U ={a ,b ,c ,d ,e },M ={a ,d },N ={a ,c ,e },则M ∪C U N 为A .{c ,e }B .{a ,b ,d }C .{b ,d }D .{a ,c ,d ,e }2. 已知复数z 1=2+i ,z 2=a -i ,z 1·z 2是实数,则实数a =A .2B .3C .4D .53. 设y =f (x )是定义在R 上的函数,则“x ≠1”是“f (x )≠f (1)”成立的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 关于函数tan 23y x π⎛⎫=- ⎪⎝⎭,下列说法正确的是A .是奇函数B .在区间03π⎛⎫⎪⎝⎭,上单调递减C .06π⎛⎫⎪⎝⎭,为图象的一个对称中心 D .最小正周期为π5. 已知某空间几何体的三视图(单位:cm )如图所示, 则该几何体的体积是 A .2cm 3 B .23cm 3C .1cm 3D .6cm 36. 从5名医生(3男2女)中随机等可能地选派两名医生, 则恰选得一名男医生和一名女医生的概率为A .110 B .25C .12D .357. 空间中,α,β,γ 是三个互不重合的平面,l 是一条直线,则下列命题中正确的是 A .若α⊥β,l ∥α,则l ⊥β B .若α⊥β,l ⊥β,则l ∥αC .若l ⊥α,l ∥β,则α⊥βD .若l ∥α,l ∥β,则α∥β正视图 侧视图俯视图211122(第5题图)8. 若正实数x , y 满足1x y xy ++=,则x +2 y 的最小值是A .3B .5C .79. 如图,已知双曲线22221(0)x y a b a b -=>,的左右焦点分别为F 1F 2,|F 1F 2|=2,P 是双曲线右支上的一点,PF 1⊥PF 2,F 2P 与y轴交于点A ,△APF 12,则双曲线 的离心率是A B C D . 10.已知函数y =f (x ),y =g (x )的图象如图所示,则函数y =g [ | f (x ) | ]的大致图像是二、填空题:本大题有7小题,每小题4分,共28分.11. 若两直线x -2y +5=0与2x +my -5=0互相平行,则实数m = ▲ .12. 已知函数f (x )=|x +1|,若f (a )=2a ,则a = ▲ .13. 已知α为第三象限角,3sin 5α=-,则sin2cos2αα+= ▲ _14. 某程序框图如图所示,则该程序运行后输出的值是 ▲ .15. 等差数列{a n }的前n 项的和为S n ,若62127189S S ==,,则6a = ▲ _. 16.对于不等式组2320340210x y x y x y -+⎧⎪--⎨⎪++⎩≥,≤,≥的解(x ,y ),当且仅当=2,=2x y ⎧⎨⎩时,y =g (x ) y =f (x ) (第9题图) (第14题图)z =ax +y 取得最大值,则实数a 的取值范围是 ▲_.17. 如图,等腰Rt △ABC 直角边的两端点A ,B 分别在y 轴的正半轴上移动,若|AB |=2,则OB OC ⋅三、解答题:本大题共5小题,共72证明过程或演算步骤。
2014年高考数学(文)模拟试卷及答案
2014届高三高考模拟数学文试题第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}12|{},2|||{+==≥=x y y B x x A ,则=B A A. )[2,+∞ B. )(1,+∞ C. ),2[]2,(+∞--∞ D. )(1,,-2](-+∞∞2.若i 2123+=z ,则=-||z zz A. i 2321-+ B. i 2321+ C.i 2321- D. i 2321-- 3.已知R ∈a ,则“1<a ”是“232a a <”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.4.一个几何体的三视图如图所示,则该几何体的体积为 A. 4 B. 34C. 8D. 385.已知两个不重合的平面βα,和两条不同直线n m ,,则下列说法正确的是 A. 若,,,βα⊂⊥⊥m n n m 则βα⊥ B. 若,,,//βαβα⊥⊥m n 则n m // C. 若,,,βα⊂⊂⊥m n n m 则βα⊥ D. 若,//,,//βαβαm n ⊂则n m //6.若}3,2,1,0{,,∈z y x ,满足3=++z y x 的解中x 的值为0的概率是 A. 51 B. 52C.53 D. 21 7.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+.若3π=C ,则=ba 第4题A.21B. 3C. 21或3D. 3或418.已知定义域为R 的函数)(x f 在区间),1[+∞上单调递减,并且函数)1(+=x f y 为偶函数,则下列不等式关系成立的是A. )1-()23()41(f f f <<B. )41()1-()23(f f f <<C. )41()23()1-(f f f <<D. )23()41()1-(f f f <<9.已知3||2||==b a ,,,60, =〉〈b a 0)()(=-⋅-c b c a ,则||的最小值是 A. 27-19 B. 219 C.27-13 D. 213 10.已知关于x 的不等式x a x e x ≥-在R ∈x 上恒成立,则实数a 的取值范围为 A. 0≥a B. 0≤a C. 2ln ≥a D. 2ln ≤a第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.设函数xx x f 1)(-=.若23)(=m f ,则=m __ ▲__. 12.按照如图的程序框图执行,输出的结果是__ ▲__.13. 设实数y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤-≥-+.013,01,01y x x y x 则y x z -=5的最大值为__ ▲__.14.已知圆02:22=++x y x C 及直线0534:=-+y x l ,则圆心C 到直线l 距离为__ ▲__. 15.过双曲线)0,0(12222>>=-b a b y a x 上任意一点P ,作与实轴平行的直线,交两渐近线M 、N 两点,若22b PN PM =⋅,则该双曲线的离心率为__ ▲__. 16.若正数b a ,满足12=+b a ,则abb a 1422-+的最大值为__ ▲__.第12题17.已知实数0>a ,⎪⎩⎪⎨⎧>≤+-=,1,log ,1,2)(32x x x ax x x f 方程2167)(a x f =有且仅有两个不等实根,且较大的实根大于3,则实数a 的取值范围__ ▲__. 三、解答题(本大题共5小题,共72分) 18.(本题满分14分)已知函数)0(43)6sin(sin )(>-+=ωπωωx x x f ,且其图象的相邻对称轴间的距离为4π.(I ) 求)(x f 在区间]89,1211[ππ上的值域; (II )在锐角ABC ∆中,若,21)8(=-πA f ,2,1=+=c b a 求ABC ∆的面积.19.(本题满分14分)已知数列}{n a 的前n 项和221+--=-n n n a S ,n n n a b 2=. (Ⅰ)求证:数列}{n b 是等差数列; (Ⅱ)若n n a nn c 12+=,求数列}{n c 的前n 项和n T .20.(本题满分14分)如图三棱锥ABC P -中,PAC ∆,ABC ∆是等边三角形. (Ⅰ)求证:AC PB ⊥;(Ⅱ)若二面角B AC P -- 的大小为 45,求PA 与平面ABC 所成角的正弦值.21.(本题满分15分) 已知函数)R (11)1(ln )(∈+++-=a xx x a x x f . (Ⅰ)当210≤≤a 时,试讨论)(x f 的单调性; (Ⅱ)设2)(2+-=bx x x g ,当31=a 时,若对任意]2,0(1∈x ,存在]3,2[2∈x ,使)()(21x g x f ≥,求实数b 取值范围.22. (本题满分15分)已知抛物线)0(2:2>=p px y C 上有一点),2(0y Q 到焦点F 的距离为25. (Ⅰ)求p 及0y 的值.(Ⅱ)如图,设直线b kx y +=与抛物线交于两点),(),,(2211y x B y x A ,且2||21=-y y ,过弦AB 的中点M 作垂直于y 轴的直线与抛物线交于点D ,连接BD AD ,.试判断ABD ∆的面积是否为定值?若是,求出定值;否则,请说明理由.2014届高三高考模拟数学(文科)试卷参考答案与评分意见一、选择题(本大题共10小题,每小题5分,共50分) DADCB BCDAB二、填空题(本大题共7小题,每小题4分,共28分)11.4 12.31 13.5 14.5915.26 16.215- 17.]4,774(三、解答题(本大题共5小题,共72分) 18.(本题满分14分) 解:(I )43)cos 21sin 23(sin )(-+=x x x x f ωωω 43cos sin 21sin 232-+=x x x ωωω 432sin 41)2cos 1(43-+-=x x ω …………2分 x x ωω2cos 432sin 41-=)32sin(21πω-=x …………3分 由条件知,2π=T ,又ωπ22=T , 2=∴ω )34sin(21)(π-=∴x x f . …………4分 ]89,1211[ππ∈x , ]625,310[34πππ∈-∴x , ]21,1[)34sin(-∈-πx , )(x f ∴的值域是]41,21[-. …………7分(II )由21)8(=-πA f ,得3π=A , …………9分 由,1=a 2=+c b 及余弦定理A bc c b a cos 2222-+=,得1=bc , …………12分∴ABC ∆的面积43sin 21==A bc S . …………14分 19.(本题满分14分)解:(I )221+--=-n n n a S ,当1=n 时,2111+--=a S ,211=a , …………1分 当2≥n 时,22211+--=---n n n a S , …………2分n n n n n n a a S S a ---++-=-=∴1112,n n n a a --+=∴1122, …………4分 1)2(22211111=-=-=-∴-----n n n n n n n n n a a a a b b ,又1211==a b ,}{n b ∴是首项为1,公差为1的等差数列. …………7分(II )n n b n =⋅-+=1)1(1, nn n a 2=, …………8分n n n n a n n c 21)12(1+=+=. …………9分 n n n n n T 21)12(21)12(217215213132++-++⨯+⨯+⨯=- ,① 13221)12(21)12(21521321+++-++⨯+⨯=n n n n n T , ② …………11分 ①-②得13221)12(21221221221321++-⨯++⨯+⨯+⨯=n n n n T , 1121)12(211)211(212321+-+---+=n n n n T112122125+-+--=n n n , …………13分 nn n T 2525+-=∴. …………14分20.(本题满分14分)解:(I )取AC 的中点D ,连接BD PD ,. …………2分ABC PAC ∆∆, 是等边三角形,BD AC PD AC ⊥⊥∴,, …………4分又D BD PD = , ⊥∴AC 面PBD ,PB AC ⊥∴ …………6分(II )由(I )及条件知,二面角B AC P --的平面角为 45=∠PDB , …………8分 过点P 作BD PE ⊥,由(I )知⊥AC 面PBD , PE AC ⊥∴, 又D BD AC = ,∴⊥PE 面ABC , …………10分PAE ∠∴为PA 与平面ABC 所成角, …………11分令2=AC ,则,2=PA 3=PD , ,26sin =∠⋅=PDB PD PE 46226sin ==∠∴PA PE PAE . …………14分 21.(本题满分15分) 解:(I )22'11)(xx a a x x f -+-==222)1)(1(1x a ax x x a x ax -+--=-++-(0>x ) …………3分1 当0=a 时,0)('>x f ,函数)(x f 在),0(+∞单调递增; …………4分 2当21=a 时,0)('≤x f ,函数)(x f 在),0(+∞单调递减; …………5分 3当210<<a 时,11>-a a ,]1,0(∈x 时,0)('<x f ,函数)(x f 在]1,0(上单调递减;]1,1(a a x -∈时,0)('>x f ,函数)(x f 在]1,1(aa-上单调递增; ),1(+∞-∈a a x 时,0)('<x f ,函数)(x f 在),1(+∞-aa 上单调递减. …………7分(II )若对任意]2,0(1∈x ,存在]3,2[2∈x ,使)()(21x g x f ≥成立,只需)()(min min x g x f ≥ …………9分 由(I )知,当31=a 时,)(x f 在]1,0(单调递减,在]2,1(单调递增. 34)1()(min ==∴f x f , …………11分 法一:2)(2+-=bx x x g ,对称轴2bx =, 1当22≤b ,即4≤b 时,34)2()(min ≤=g x g ,得:437≤≤b ;2当32≥b ,即6≥b 时,34)3()(min ≤=g x g ,得:6≥b ;3当322<<b ,即64<<b 时,34)2()(min ≤=b g x g ,得:64<<b . …………14分综上:37≥b . …………15分 法二:参变量分离:xx b 32+≥, …………13分 令xx x h 32)(+=,只需)(min x h b ≥,可知)(x h 在]3,2[上单调递增, 37)2()(min ==h x h ,37≥b . …………15分 22.(本题满分15分) 解:(I )焦点)0,2(p, …………1分 2522=+p ,.1=p …………3分 x y 22=∴,代入),2(0y Q ,得20±=y …………5分 (II )联立⎩⎨⎧=+=xy bkx y 22,得:)0(0)1(2222≠=+-+k b x kb x k ,,0>∆即021>-kb , …………6分221)1(2k kb x x -=+,.2221k b x x =…………8分]4)[(||||2122122212221x x x x k x x k y y -+=-=-=4)21(42=-kkb ,∴221k kb =-, …………11分 ),1,1(2k k kb M - )1,21(2kk D , …………13分 ∴ABC ∆的面积.212|221|21||||21221=⨯-⨯=-⋅=k kb y y MD S …………15分注:其他解法可参考给分.。
【数学】河北省保定市2014届高三模拟考试(文)
侧视图正视图河北省保定市2014届高三第二次模拟考试文科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x ∈R |x +1>0 },集合B=={x ∈R |(x -1)(x +2)<0 },则A ∩B=( ) A .(-1,1) B .(-2,-1) C .(-∞,-2) D .(1,+∞), 2.函数y =sin x sin()2x π+的最小正周期是 ( )A .π2 B .2π C .π D .4π3.若a +i 1-i (a ∈R )是纯虚数,则|a +i 1-i |=( )A .iB .1C . 2D .24.已知平面向量→a , →b 满足|→a |=1,|→b |=2,且(→a +→b )⊥→a ,则→a ,→b 的夹角为 A .2π3 B .π2 C .π3 D .π65.若连续抛掷两次骰子得到的点数分别为m ,n ,m +n=5的概率是( )A .112B .19C .16D .136.设l 为直线,α,β是两个不同的平面,下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥β C. 若l ⊥α,l ∥β,则α∥β D. 若α⊥β,l ∥α,则l ⊥β7.设变量,x y 满足不等式组⎩⎨⎧0≤x +y ≤201≤y ≤10,则2x +3y 的最大值等于( )A .1B .10 C. 41 D .508.已知数列{}n a 中,1125,447()n n a a a n N *+==-∈,若其前n 项和为S n ,则S n 的最大值为( )A .15B .750C .7654D .70529.给出以下命题:①∀x ∈R, sin x +cos x >1;②∃ x ∈R, 2x -x +1<0;③“x >1”是“|x |>1 ”的充分不必要条件;④若→a ·→b =0, 则|→a |=|→b |=0.个数是( )A .0B .1C .2D .310.已知四棱锥P-ABCD 是三视图如图所示,则围成四棱锥P-ABCD 的五个面中的最大面积是( )A .3B .6C .8D .1011.直线l 与圆222410x y x y ++-+=相交于A ,B 两点,若弦AB 的中点为抛物线24x y=的焦点,则直线l 的方程为:( )A .2330x y +-=B .10x y --=C .10x y +-=D .10x y -+= 12.设函数()ln lg 1f x a x b x =++,11(1)(2)(2014)()()23f f f f f ++++++1()2014f +=( ) A .4028 B .4027 C .2014 D .2013 二、填空题:本大题共4小题,每小题5分,共20分.13.执行右边的程序框图,若输入n=6,m=3,那么输出的p 等于 .14.函数()f x =2ln x +2x 在x=1处的切线方程是 .15.已知平面向量→a ,→b 都是单位向量,且→a ·→b =-12,则|2→a -→b |的值为 .16.等比数列{}n a 的公比0<q <1,21724a a =,则使12n a a a +++ >12111na a a +++成立的正整数n 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在∆ABC 中,设角A 、B 、C 所对的边分别为,,a b c ,且cosA=255,cosB=31010.(I )求角C 的大小;(Ⅱ)若∆ABC 的面积为1,求abc . 18.(本小题满分12分) 由于受大气污染的影响,某工程机械的使用年限x (年)与所支出的维修费用y(万元)之间,AD BCA 1E 有如下统计资料:假设y与x 之间呈线性相关关系.(Ⅰ)求维修费用y(万元)与设备使用年限x(年)之间的线性回归方程;(精确到0.01) (Ⅱ)使用年限为8年时,维修费用大概是多少?参考公式:回归方程ˆˆˆybx a =+,其中1221ˆˆˆ,ni ii nii x y nx yb ay bx xnx ==-⋅==--∑∑. 19.(本题满分12分)已知∆ABC 是边长为3的等边三角形,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =CE EA =12.将∆ADE 沿DE 折起到∆1ADE 的位置,并使得平面A 1DE ⊥平面BCED. (Ⅰ)求证:A 1D ⊥EC ;(Ⅱ)求三棱锥E-A 1CD 的高.20.(本小题满分12分) 已知函数4()3ln 1f x x x x=+++(自然对数的底数e=2.71828…). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)求函数()f x 在[1e ,e]上的最大值与最小值.21.(本小题满分12分)设椭圆E:22221(0)x y a b a b+=>>的离心率为e=22,且过点(-1,- 62).(I )求椭圆E 的方程;(Ⅱ)设椭圆E 的左顶点是A ,若直线l :0x my t --=与椭圆E 相交于不同的两点M 、N(M 、N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.C请考生在第22、23、24量题中任选一题作答,如果多做,则按所做的第一题计分,作答时请把答题卡上所选题目题号后的方框涂黑. 22.(本小题满分10分)选修4一1:几何证明选讲如图,点A 在直径为15的⊙O 上,PBC 是过点O 的割线,且PA=10,PB=5.. (Ⅰ)求证:PA 与⊙O 相切;(Ⅱ)求S ∆ACB 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆2cos (0)C a a ρθ=≠的方程为,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为31,(43,x t t y t =+⎧⎨=+⎩为参数). (I )求圆C 的标准方程和直线l 的普通方程;(Ⅱ)若直线l 与圆C 恒有公共点,求实数a 的取值范围. 24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|1|2|1|1f x x x =-+++. (Ⅰ)求不等式()6f x <的解集;(Ⅱ)若直线1()3ay = (a R ∈)与函数y =()f x 的图象恒有公共点,求实数a 的取值区间.2014年保定市第二次高考模拟考试文科数学答案一.选择题: B 卷:ACBAB BDCDC DB二.填空题:13. 120; 14. 4x-y-3=0; 15. 16. 18.三.解答题:解答应写出文字说明,证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正视图俯视图2014届高三数学(检测)试题第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i iz 42+=,则z 等于 A .2+4iB .2-4iC .4-2iD .4+2i2.已知全集U=R ,集合⎭⎬⎫⎩⎨⎧<-=01|A x x x ,{}1|≥=x xB ,则集合{}0|≤x x 等于 A .A B ⋂ B .A B ⋃C .U C A B ⋂()D .U C A B ⋃() 3.“函数xy a =单调递增”是“ln 1a >”的什么条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要4.在公比大于1的等比数列{}n a 中,7273=a a ,2782=+a a ,则=12a A .96B .64C .72D .485.ABC ∆的内角A 、B 、C 的对边分别为c b a ,,,若c b a ,,成等比数列,且2c a =, 则cos B = A .14B .34CD 6.从抛物线x y 42=上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则△MPF 的面积A .5B .10C .20D .157.若x ,y 满足10,220,40.x y x x y ⎧⎪⎨⎪⎩-+≥-y -≤+-≥则x +2y 的最大值为A .132B .6C .11D .10 8.已知某个三棱锥的三视图如图所示,其中正视图是等边 三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于 AB.CD.39.如图给出的是计算2011151311+⋅⋅⋅+++的值的一个 程序框图,其中判断框内应填入的条件是 A .2011≤i B .2011>i C .1005≤i D .1005>i10.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①11.已知点D ,C ,B ,A ,P 是球O 的球面上的五点,正方形ABCD 的边长为32,ABCD PA 面⊥,62PA =则此球的体积为( )A .π36B .π38C .π316D .π33212.过双曲线12222=-by a x )0,0(>>b a 的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为B , C .若BC AB =2,则双曲线的离心率是 A .2B .3C .5D .10第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.已知向量,满足||=1,|﹣|=,与的夹角为60°,||= .14.若函数f (x )=x 3-3bx +b 在区间(0,1)内有极小值,则b 应满足的条件是 ; 15.已知y x y x y x 311,2lg 8lg 2lg ,0,0+=+>>则的最小值是 ;16.若(0,)απ∈,且3cos 2sin()4παα=-,则sin 2α的值为 .xx三、解答题:解答应写出文字说明.证明过程或演算步骤 17. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且2n S n =.数列{}n b 为等比数列,且11b =,48b =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)若数列{}n c 满足n n b c a =,求数列{}n c 的前n 项和n T ;18.(本小题满分13分)某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有630名学生,男女生人数之比为10:11,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为16. (1)求抽取的男学生人数和女学生人数;(2)通过对被抽取的学生的问卷调查,得到如下22⨯列联表:①完成列联表;②能否有97.5%的把握认为态度与性别有关?(3)若一班有5名男生被抽到,其中4人持否定态度,1人持肯定态度;二班有4名女生被抽到,其中2人持否定态度,2人持肯定态度.现从这9人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.解答时可参考下面公式及临界值表: ))()()(()(20d c b a d b c a bc ad n k ++++-=19.(本小题满分12分)P在四棱锥ABCD P -中,︒=∠=∠90ACD ABC ,︒=∠=∠60CAD BAC ,⊥PA 面ABCD ,E 为PD的中点,42==AB PA .(1)求证://CE 面PAB ; (2)求证:AE PC ⊥.20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,过顶点)1,0(A 的直线L 与椭圆C 相交于两点B A ,.(1)求椭圆C 的方程;(2)若点M 在椭圆上且满足2321+=,求直线L 的斜率k 的值.21.(本小题满分12分)设函数1()ln 1af x x ax x-=-+-. (Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)当13a =时,求函数()f x 的单调区间; (Ⅲ)在(Ⅱ)的条件下,设函数25()212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使12()()f x g x ≥成立,求实数b 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时DEABP 用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且BC BD 31=,CA CE 31=,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
23.(本小题满分10分)选修4—4: 坐标系与参数方程.已知直线: t t y t x (.23,211⎪⎪⎩⎪⎪⎨⎧=+=为参数), 曲线:1C cos ,sin ,x y θθ=⎧⎨=⎩ (θ为参数). (I)设 与1C 相交于B A ,两点,求||AB ; (II)若把曲线1C 上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线 的距离的最小值.24.(本小题满分10分)选修4—5: 不等式选讲.已知函数a a x x f +-=2)(.(I)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(II)在(I)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.2014届高三第二次模拟数学(文科)试卷参考答案13.2 14.b ∈(0,1)或0<b<1 15.4 16. 1或18- 17.(Ⅰ)∵ 数列{}n a 的前n 项和为n S ,且2n S n =,∴ 当2n ≥时,221(1)21n n n a S S n n n -=-=--=-.当1n =时,111a S ==亦满足上式,故21n a n =-,(*)n ∈N .又 数列{}n b 为等比数列,设公比为q ,∵ 11b =,3418b b q ==, ∴2q =. ∴ 12n n b -= (*)n ∈N .(Ⅱ)2121n n n b n c a b ==-=-.123n n T c c c c =+++12(21)(21)(21)n =-+-++-12(222)n n =++-2(12)12n n -=--.所以 122n n T n +=--.18.(1)共抽取6306105÷=人,…………………………………………………………1分男生 111055521⨯=人, 女生101055021⨯=人,……………………………3分 (2)①…………4分 ② 假设0H : 学生对体育课改上自习课的态度与性别无关220()105(45201030) 6.110()()()()75305550n ad bc k a c b d a b c d -⨯-⨯==≈++++⨯⨯⨯因为 6.110 5.024>, 2( 5.024)0.025P K ≥=所以 有97.5%的把握认为态度与性别有关.………………………………8分(3)记一班被抽到的男生为1234,,,,A A A A a ,1234,,,A A A A 持否定态度,a 持肯定态度;二班被抽到的女生为1212,,,B B b b ,12,B B 持否定态度,12,b b 持肯定态度. 则所有抽取可能共有20种:11(,)A B ,12(,)A B ,11(,)A b ,12(,)A b ;21(,)A B ,22(,)A B ,21(,)A b ,22(,)A b ;31(,)A B ,32(,)A B ,31(,)A b ,32(,)A b ;41(,)A B ,42(,)A B ,41(,)A b ,42(,)A b ;1(,)a B ,2(,)a B ,1(,)a b ,2(,)a b .………10分其中恰有一人持否定态度一人持肯定态度的有10种:11(,)A b ,12(,)A b ,21(,)A b ,22(,)A b ,31(,)A b ,32(,)A b ,41(,)A b ,42(,)A b ,1(,)a B ,2(,)a B .……11分记“从这9人中随机抽取一男一女,其中恰有一人持肯定态度一人持否定态度”事件为M ,则101()202P M ==. ……………………………………………………12分答:(1)抽取男生55人,女生50人;(2)有有97.5%的把握认为态度与性别有关; (3)恰有一人持肯定态度一人持否定态度的概率为12.……………………………13分19. 19.解:(1)(法一)取AD 中点M ,连接,EM CM .则 在PAD ∆中, EM ∥PA . 又 EM ⊄面PAB , PA ⊂面PAB则 EM ∥面PAB , …………………………………………………………………7分 在Rt ACD ∆中,60CAD ∠= 所以ACM ∆为正三角形,则 60ACM *∆= ……………………………………………………………………8分 又 60BAC ∠= 则 MC ∥AB .又 MC ⊄面PAB , AB ⊂面PAB则 MC ∥面PAB , …………………………………………………………………9分 而 EMMC M =,所以 面EMC ∥面PAB . …………………………………………………………10分 又 EC ⊂面EMC则 EC ∥面PAB . ………………………………………………………………11分 (法二)延长,DC AB 交于N ,连接PN . …………………………………………7分 在AND ∆中,60NAC DAC ∠=∠=,AC ⊥CD ,则 C 为ND 的中点…………………………………………………………………9分又 PE ED =所以 EC ∥PN ……………………………………………………………………10分 又 EC ⊄面PAB , PN ⊂面PAB则 EC ∥面PAB .…………………………………………………………………11分 (2)证明 取PC 中点F ,连接,AF EF . ……1分在Rt ABC ∆中,2AB =,60BAC ∠=, 则BC =4AC =. 而 4PA =则 在等腰三角形APC 中 PC AF ⊥. ① ………………2分又 在PCD ∆中,,PE ED PF FC ==,则 EF ∥CD ……………………………………………………………………3分因 PA ⊥面ABCD ,CD ⊂面ABCD , 则 PA ⊥CD ,又 90ACD ∠=,即CD AC ⊥,P则 CD ⊥面PAC ,……………………4分CD PC ⊥,所以 EF PC ⊥. ② ………………5分 由①②知 PC ⊥面AEF .故 PC ⊥AE .…………………………6分20.(Ⅰ)因为e=23,b=1,所以a=2, 故椭圆方程为1422=+y x .................................................... 4分 (Ⅱ)设l 的方程为y=kx+1,A(x 1,y 1),B(x 2,y 2),M(m,n). 联立 ⎪⎩⎪⎨⎧=++=14122y x kx y ,解得 (1+4k 2)x 2+8kx=0, …………………………………………7分 因为直线l 与椭圆C 相交于两点,所以△=(8k)2>0,所以x 1+x 2=2418kk+-,x 1×x 2=0, ∵13OM OA OB 2=+ ∴⎪⎩⎪⎨⎧+=+=)y 3y (21n )x 3x (21m 2121 点M 在椭圆上,则m 2+4n2=4,∴2212121(x )(y )44+++=,化简得x 1x 2+4y 1y 2= x 1x 2+4(kx 1+1)(kx 2+1)= (1+4k 2)x 1x 2+4k(x 1+x 2)+4=0, …………………10分∴4k ·(2418k k +-)+4=0,解得k=±12.故直线l 的斜率k=±12.…………………12分21.解:函数()f x 的定义域为(0,)+∞,'211()a f x a x x-=-- …………2分(Ⅰ)当1a =时,()ln 1f x x x =--,''1(1)2,()1,(1)0f f x f x∴=-=-∴= ∴()f x 在1x =处的切线方程为2y =- …………5分 (Ⅱ) 22232(1)(2)()33x x x x f x x x-+--'=-=- 所以当01x <<,或2x >时,()0f x '<,当12x <<时,()0f x '>故当13a =时,函数()f x 的单调递增区间为(1,2); 单调递减区间为(0,1),(2,)+∞ …………8分 (Ⅲ)当13a =时,由(Ⅱ)知函数()f x 在区间(1,2)上为增函数, 所以函数()f x 在[]1,2上的最小值为2(1)3f =-若对于12[1,2],[0,1]x x ∀∈∃∈使12()()f x g x ≥成立⇔()g x 在[0,1]上的最小值不大于()f x 在[1,2]上的最小值23-(*) …………10分又[]22255()2(),0,11212g x x bx x b b x =--=---∈ ①当0b <时,()g x 在上[]0,1为增函数,min 52()(0)123g x g ==->-与(*)矛盾 ②当01b ≤≤时,2min 5()()12g x g b b ==--,由252123b --≤-及01b ≤≤得,112b ≤≤ …………12分 ③当1b >时,()g x 在上[]0,1为减函数,min 72()(1)2123g x g b ==-≤-, 此时1b > 综上所述,b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭…………14分21. (1)当a=2时,f(x)=(-x2+2x)ex,∴f ′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex. 令f ′(x)>0,即(-x2+2)ex>0,∵ex>0,∴-x2+2>0,解得∴函数f(x)的单调递增区间是(2)f(x)不是R 上的减函数. 若函数f(x)在R 上单调递减, 则f ′(x)≤0对x ∈R 都成立,即[-x2+(a-2)x+a]ex ≤0对x ∈R 都成立. ∵ex>0,∴x2-(a-2)x-a ≥0对x ∈R 都成立. ∴Δ=(a-2)2+4a ≤0,即a2+4≤0,这是不可能的. 故函数f(x)不可能是R 上的减函数.22.证明:(I )在ABC ∆中,由11,,33BD BC CE CA ==知: ABD ∆≌BCE ∆,………………2分ADB BEC ∴∠=∠即ADC BEC π∠+∠=. 所以四点,,,P D C E 共圆;………………5分(II )如图,连结DE .在CDE ∆中,2CD CE =,60ACD ∠=, 由正弦定理知90CED ∠=.………………8分 由四点,,,P D C E 共圆知,DPC DEC ∠=∠, .122=+y x⎪⎩=+,122y x 1)0,1(,)23,21(-B , 则1||=AB .(II )2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是]2)4sin(2[432|3sin 23cos 23|+-=--=πθθθd ,由此当1)4sin(-=-πθ时,d 取得最小值,且最小值为)12(46-.24.解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =。