离散数学

合集下载

离散数学

离散数学
2019/3/2 离散数学 7
3、:N×NN,N是自然数集 (0∈N),(<x,y>)=|x2-y2|
解: 取<1,1>,<2,2>∈ N×N (<1,1>)=|12-12|=0 (<2,2>)=|22-22|=0 故不是单射. 又取2∈N, 因不存在自然数x,y∈N 满足: |x2-y2|=2 故不是满射. ∴ 既不是单射也不是满射.
2019/3/2
离散数学
9
§3.2 映射的运算
• 逆映射的概念
定义3.2.1 设:AB,定义关系RBA为: R={<y,x> | y∈B , x∈A,且(x)=y};如果R是B 到A的映射,则称R为的逆映射。记为– 1。
• 例如:设:N E,N 是自然数集合,E是 自然数中所有偶数的集合,(n) = 2n,n∈N。 则的逆映射-1为: -1 :E N,-1(m)=m/2,m∈E。
§3.1 基本概念
定义3.1.1: 设A,B是两个集合,是A到B的二 元关系,若对A中每个元素a,有唯一的 b∈B, 使得<a,b>∈ ,则称为A到B的映射,记为: : AB 或 A B
• 所谓从A到B的映射就是A中的每个人都向B中 的人射了一箭,并且都射中了B中的一个人。 既没有人偷懒不射,也没有人一箭双雕。 • 这时,B中的人,有的可能身中数箭,有的可 能一箭未中。当然也可能刚好每人中了一箭。
• 充分性:设是双射,考虑的逆关系,易知,对于B 中的每个元素y,都对应着A中唯一的一个在下以y 为映象的元素x,因此, 的逆关系是B到A的映射。
2019/3/2 离散数学 4
满射、单射和双射的例子
• 设:N N,N 是自然数集,(n)= 2n, n∈N。则是 单射,但不是满射。

离散数学简介

离散数学简介

数理逻辑

非欧几何的产生和集合论的悖论的发现, 说明数学本身还存在许多问题,为了研 究数学系统的无矛盾性问题,产生了证 明论
数理逻辑

证明论(proof theory)
– 证明论是数学家D.希尔伯特于20世纪初期建立的,目的是要
证明公理系统的无矛盾性 – 1931年,K.哥德尔证明:一个包含公理化的算术的系统中不 能证明它自身的无矛盾性。这就是著名的哥德尔不完备性定 理 – 1936年,G.根岑证明了算术公理系统的无矛盾性 – 20世纪60年代以后,证明论不再局限于无矛盾性的证明

数理逻辑

现代数理逻辑可分为
– 命题逻辑演算 – 谓词逻辑演算 – 证明论 – 模型论
– 递归函数论
– 公理化集合论等
数理逻辑

命题逻辑和一阶谓词逻辑是数理逻辑中 最成熟的部分,在计算机科学中应用最 为广泛
– 命题逻辑是数理逻辑的最基础部分 – 谓词逻辑在命题逻辑的基础上发展起来
数理逻辑
在数理逻辑的历史上,哥德尔的工作起着承前 启后的作用 他的不完全性定理,把人们引向一种完全不同 的境界 第一不完全性定理:一个包括初等数论的形式 系统,如果是协调的,那就是不完全的。
欧氏几何

欧氏几何的五条公理是:
– 1、任意两个点可以通过一条直线连接。 – 2、任意线段能无限延伸成一条直线。 – 3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作
离散数学是后继课程的基础 离散数学是实际应用的基础工具 计算机科学和离散数学处理问题的方法、思维 方式有相似之处 离散数学可提供所需的思维训练,培养所需的 分析问题和解决问题的能力

简介

离散数学是学习数据结构与算法、数据库、编 译原理、算法设计与分析、计算机网络等课程 的主要基础,对开发大型软件、研究信息安全 和密码学、开展计算机理论研究以及开发新型 计算机都提供了不可缺少的基础知识

离散数学 经典教材

离散数学 经典教材

离散数学是计算机科学中的一门核心课程,它涉及到数学中的许多概念和方法。

以下是一些离散数学的经典教材:
1.《离散数学》(作者:Kozen)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。

这本书的内容非常丰富,而且语言通俗易懂,是学习离散数学的好教材。

2.《离散数学及其应用》(作者:Rosen)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。

这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。

3.《离散数学教程》(作者:Kleitman)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。

这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。

4.《离散数学精讲》(作者:Sipser)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。

这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。

以上是一些离散数学的经典教材,每本书都有其独特的风格和特点,读者可以根据自己的需求和兴趣选择适合自己的教材。

02324离散数学知识点

02324离散数学知识点

02324离散数学知识点
离散数学是研究离散对象和离散结构的数学分支,其知识点包括但不限于集合论、图论、逻辑学、组合数学等。

以下是其中一些重要的知识点:
1. 集合论:集合论是离散数学的基石,它研究集合、集合之间的关系和集合的性质。

2. 图论:图论是离散数学的重要组成部分,它研究图(由节点和边构成的结构)的性质和分类。

3. 逻辑学:逻辑学是离散数学的另一个重要组成部分,它研究推理的规则和形式。

在离散数学中,逻辑通常用于描述和证明一些结构或系统的性质。

4. 组合数学:组合数学是离散数学的一个分支,它研究计数、排列和组合问题。

5. 离散概率论:离散概率论是离散数学的另一个分支,它研究离散随机事件的数学模型。

6. 离散概率分布:离散概率分布是描述离散随机事件发生概率的数学模型。

7. 离散随机变量:离散随机变量是能够取到可数无穷多个值的随机变量。

8. 离散概率空间:离散概率空间是一个集合,它包含一个可数无穷多的元素,每个元素都有一个与之相关的概率值。

9. 离散随机过程:离散随机过程是离散随机事件在时间或空间上的序列。

这些知识点都是离散数学的重要组成部分,它们在计算机科学、数学、物理学等领域都有广泛的应用。

离散数学定义(必须背)

离散数学定义(必须背)

命题逻辑▪令狐采学▪(论域)定义:论域是一个数学系统,记为D。

它由三部分组成:•(1)一个非空对象集合S,每个对象也称为个体;•(2) 一个关于D的函数集合F;•(3)一个关于D的关系集合R。

▪(逻辑连接词)定义•设n>0,称为{0,1}n到{0,1}的函数为n元函数,真值函数也称为联结词。

•若n =0,则称为0元函数。

▪(命题合式公式)定义:•(1).常元0和1是合式公式;•(2).命题变元是合式公式;•(3).若Q,R是合式公式,则(Q)、(Q R) 、(Q R) 、(Q R) 、(Q R) 、(Q R)是合式公式;•(4).只有有限次应用(1)—(3)构成的公式是合式公式。

▪(生成公式)定义1.5 设S是联结词的集合。

由S生成的公式定义如下:•⑴若c是S中的0元联结词,则c是由S生成的公式。

•⑵原子公式是由S生成的公式。

•⑶若n≥1,F是S中的n元联结词,A1,…,An是由S生成的公式,则FA1…An是由S生成的公式。

▪(复杂度)公式A的复杂度表示为FC(A)•常元复杂度为0。

•命题变元复杂度为0,如果P是命题变元,则FC (P)=0。

•如果公式A=B,则FC (A)=FC(B)+1。

•如果公式A=B1 B2,或A=B1 B2,或A=B1B2,或A=B1 B2,或A=B1 B2,或则FC (A)=max{FC(B1), FC(B2)}+1。

▪命题合式公式语义•论域:研究对象的集合。

•解释:用论域的对象对应变元。

•结构:论域和解释称为结构。

•语义:符号指称的对象。

公式所指称对象。

合式公式的语义是其对应的逻辑真值。

▪(合式公式语义)设S是联结词的集合是{,,,,,}。

由S生成的合式公式Q在真值赋值v下的真值指派v(Q)定义如下:•⑴v(0)=0, v(1)=1。

•⑵若Q是命题变元p,则v(A)= pv。

•⑶若Q1,Q2是合式公式▪若Q= Q1,则v(Q)= v(Q1)▪若Q=Q1 Q2,则v(Q)=v(Q1)v(Q2)▪若Q=Q1∨Q2,则v(Q)=v(Q1)∨v(Q2)▪若Q=Q1Q2,则v(Q)=v(Q1)v(Q2)▪若Q=Q1 Q2,则v(Q)=v(Q1) v(Q2)▪若Q=Q1Q2,则v(Q)=v(Q1)v(Q2)▪(真值赋值)由S生成的公式Q在真值赋值v下的真值v(Q)定义如下:•⑴若Q是S中的0元联结词c,则v(Q)=c。

大学离散数学的基本概念

大学离散数学的基本概念

大学离散数学的基本概念离散数学是一门研究离散对象及其关系的数学学科,与连续数学相对应。

它是现代计算机科学的基础和核心学科,对于计算机算法、数据库、网络通信等领域都有着重要影响。

本文将介绍大学离散数学的基本概念。

一、集合论集合论是离散数学的基础,它研究的是对象的集合及其间的关系。

在离散数学中,我们用符号表示集合,用各种运算法则来描述集合的性质和运算。

比如,我们可以用交集、并集、差集、补集等运算来对集合进行操作。

集合论是离散数学中的一项重要工具,它用于描述离散对象的属性和关系。

在计算机科学中,集合论被广泛应用于数据结构和数据库的设计与实现。

二、逻辑学逻辑学是研究推理和论证的规律的学科,它研究的是命题逻辑、谓词逻辑和命题演算等。

离散数学中的逻辑学帮助我们建立正确的思维模型,能够精确地描述数学命题的真假和推理的过程。

在计算机科学中,逻辑学是构建算法和验证程序正确性的基础。

通过使用逻辑学中的命题演算和谓词逻辑,我们可以对计算机程序进行形式化的推理,从而提高程序的可靠性。

三、图论图论是研究图和图的性质的数学分支,它研究的是由一些点和连接这些点的边构成的图形。

在离散数学中,图论用来描述对象之间的关系和相互作用,是离散数学中的一个重要分支。

图论在计算机科学中有广泛的应用。

比如,在网络通信中,我们可以用图模型来描述计算机网络的拓扑结构和通信路由;在社交网络中,我们可以用图模型来表示人与人之间的关系;在电路设计中,我们可以用图模型来描述电路的连接和功能。

四、排列与组合排列与组合是研究事物排列和选择方式的数学分支,它研究的是如何选取和安排对象,以及如何计算对象的数目。

在离散数学中,排列与组合用来计算离散对象的排列方式和组合数目,具有广泛的应用场景。

在计算机科学中,排列与组合被广泛应用于密码学、编码理论和算法设计等领域。

比如,在密码学中,排列与组合用来设计和分析密码算法的安全性;在编码理论中,排列与组合用来设计和分析数据的压缩和纠错算法。

离散数学知识点归纳

离散数学知识点归纳

离散数学知识点归纳
本文档旨在归纳和总结离散数学中的主要知识点。

离散数学是
一门关于离散结构和离散对象的数学学科,主要用于计算机科学、
信息技术和其他相关领域。

以下是一些常见的离散数学知识点:
1. 集合论:集合的定义、运算、子集、并集、交集和差集等。

2. 命题逻辑:命题、命题的合取、析取和否定、简介真值表和
命题等价性。

3. 谓词逻辑:量词、谓词、论域、量化和解释等。

4. 图论:图的定义、图的表示方法、连通性、树、图的着色问
题等。

5. 计数和组合:排列、组合、二项式系数、鸽笼原理等。

6. 关系论:关系的定义、关系的性质、等价关系和偏序关系等。

7. 有限自动机:状态、转移函数、状态转移图和正则表达式等。

8. 布尔代数:布尔运算、逻辑电路的设计和卡诺图等。

以上只是离散数学中的一部分知识点,这些知识点在计算机科学、信息技术和其他领域中有着广泛的应用。

深入理解和掌握离散数学的知识对于解决实际问题和进行科学研究具有重要意义。

希望本文档能够帮助您系统地了解离散数学的主要知识点,为您的研究和研究提供参考和指导。

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

什么叫离散数学

什么叫离散数学

什么叫离散数学
什么叫“离散”?离散,就是和连续相反的。

随便拿⼀堆东西,如⼤到宇宙,⼩到粒⼦团,若其整体中的元素是独⽴的,分开的,则叫“离散”。

计算机是不能处理连续信息的,这是由计算机的本质:0和1,决定的。

正因为这样,如果要借助计算机来处理连续的东西,其中有⼀个必须的步骤:离散化。

“离散数学”是什么?它是⼀门研究离散物质的规律的学科,是数学的⼀个分⽀。

近代数学,尤其是计算数学,在解决实际问题的时候,对于连续问题往往只能推论出“是否有解”,进⼀步可能会求出“解的形式”。

⽽实际的需求,却⾮要得到⼀个结果不可。

因此,在数学建模时,我们通常会⽤⼀个离散的模型去逼近这个连续的问题,最终⽤计算机进⾏⼤量运算来得到⼀个近似值。

不要以为我上⾯说的距离我们很远,⽐如我们常⽤的求根号(你敢说实际中不需要求根号?),就是通过迭代法取近似值。

离散数学知识点整理

离散数学知识点整理

离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、数理逻辑等领域都有着广泛的应用。

下面就来对离散数学的一些重要知识点进行整理。

一、集合论集合是离散数学中最基本的概念之一。

集合是由一些确定的、彼此不同的对象所组成的整体。

集合的表示方法有列举法和描述法。

列举法就是将集合中的元素一一列举出来,用花括号括起来。

描述法是通过描述元素所具有的性质来确定集合。

集合之间的关系包括子集、真子集、相等。

如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,那么 A 是 B 的真子集;如果集合 A 和集合 B 的元素完全相同,那么 A 和 B 相等。

集合的运算有并集、交集、差集和补集。

并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同的元素组成的新集合;差集是从一个集合中去掉另一个集合中的元素所得到的新集合;补集是在给定的全集 U 中,去掉集合 A 中的元素所得到的新集合。

二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。

关系可以用关系矩阵和关系图来表示。

关系矩阵是一个二维矩阵,用于表示两个有限集合之间的关系;关系图则是用顶点和边来表示关系。

关系的性质包括自反性、反自反性、对称性、反对称性和传递性。

自反性是指集合中的每个元素都与自身有关系;反自反性则是集合中的每个元素都与自身没有关系;对称性是如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性是如果 a 与 b 有关系且 b 与 a 有关系,那么 a 等于 b;传递性是如果 a 与 b 有关系,b 与 c 有关系,那么 a 与 c 有关系。

等价关系是一种具有自反性、对称性和传递性的关系,它可以将集合划分为等价类。

偏序关系是一种具有自反性、反对称性和传递性的关系,它可以引出偏序集的概念。

三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的概念离散数学是研究离散结构及其性质的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用计算机科学:图论在网络设计、算法分析中的应用,集合论在数据结构设计中的应用等。

数学逻辑:计算机程序设计中的逻辑判断,布尔代数在电路设计中的应用等。

二、集合论2.1 集合的基本概念集合的定义:由明确的元素构成的整体。

集合的表示法:列举法、描述法。

2.2 集合的运算并集、交集、补集的定义及运算性质。

集合的幂集。

三、逻辑与布尔代数3.1 命题逻辑命题、联结词、复合命题的真值表。

命题逻辑的推理规则。

3.2 谓词逻辑个体、谓词、量词。

谓词逻辑的推理规则。

3.3 布尔代数布尔代数的基本运算:与、或、非。

布尔表达式的化简。

四、图论4.1 图的基本概念图的定义:节点和边的集合。

无向图、有向图、多重图、加权图等。

4.2 图的运算图的遍历:深度优先搜索、广度优先搜索。

图的连通性:强连通、弱连通。

4.3 特殊图二分图、树、路径、圈。

网络流、最短路径问题。

五、组合数学5.1 排列组合排列、组合的定义及计算公式。

分布计数原理。

5.2 计数原理鸽巢原理、包含-排除原理。

二项式定理、多项式定理。

5.3 组合设计区块设计、拉丁方、Steiner系统等。

组合设计的性质和构造方法。

《离散数学教案》课件六、数理逻辑与计算逻辑6.1 数理逻辑的基本概念命题、联结词、逻辑代数。

真值表和逻辑等价式。

6.2 计算逻辑形式语言和自动机。

编译原理中的逻辑分析。

七、组合设计与编码理论7.1 组合设计的基本概念区块设计、拉丁方、Steiner系统。

组合设计的性质和构造方法。

7.2 编码理论线性码、循环码、汉明码。

编码的纠错能力和应用。

八、图的同态与同构8.1 图的同态图的同态的定义和性质。

同态定理和同态的应用。

8.2 图的同构图的同构的定义和性质。

同构定理和同构的应用。

九、树与森林9.1 树的基本概念树的定义和性质。

离散数学主要知识点

离散数学主要知识点

离散数学主要知识点离散数学是一门研究集合、逻辑、代数等离散结构的数学学科。

它是计算机科学、信息科学、通信工程、数学等多个领域的重要基础学科。

离散数学的主要知识点包括以下内容:一、集合论集合论是离散数学的基础。

离散数学中的所有概念都是基于集合论的。

集合论研究集合及其元素之间的关系,包括集合的定义、子集、等价关系、配对原理、无限集等概念。

二、二元关系与图论二元关系是表示两个元素之间关系的数学形式。

离散数学中的二元关系包括等价关系、偏序关系、全序关系等。

而图论是二元关系的一种特殊形式,它研究图的一些基本问题,如连通性、路径问题、欧拉图、哈密顿图等。

三、命题逻辑命题逻辑是一种用于表达命题之间逻辑关系的语言。

它使用符号表示逻辑概念,有常见的逻辑运算,如否定、合取、析取、蕴含等。

通过对命题逻辑的学习,可以分析已知条件,推出结论,具有很强的实用价值。

四、谓词逻辑谓词逻辑是一种更加复杂的逻辑体系,它能够描述更为丰富的关系和事实。

谓词逻辑包括一阶谓词逻辑和高阶谓词逻辑。

在计算机科学中,谓词逻辑主要用于形式化验证、人工智能、计算机程序正确性的证明等方面。

五、组合数学组合数学是离散数学的重要分支,它研究离散对象之间的组合问题。

组合数学包括排列、组合、二项式系数、Catalan数、指数级生成函数等。

在算法与数据结构、密码学、计算机网络等方面都有广泛的应用。

六、图像与树图像是离散数学中的一种图形结构。

通过图像的学习,可以了解到图的相关概念、算法和应用。

另外,树和二叉树也是离散数学中的一个重要概念。

它们在算法和数据结构中被广泛应用,如Prim算法、Kruskal算法等最小生成树算法。

总体来说,离散数学涵盖的知识点非常广泛,还包括了离散数学中的离散数学逻辑、推理、图论、网络、算法复杂性、公共关键密码、线性代数、概率论等等。

在计算机科学和信息技术的领域发展中,离散数学得到了广泛应用,这些基础的数学知识是实现现代科技的基础。

离散数学数论基础知识

离散数学数论基础知识

离散数学数论基础知识离散数学是数学中的一个重要分支,它研究离散的结构和离散的对象。

而数论作为离散数学中的一个重要领域,主要研究整数的性质和规律。

本文将介绍一些离散数学数论的基础知识,包括质数、整除性、同余关系等。

1. 质数及其性质质数是指只能被1和自身整除的整数。

例如,2、3、5、7等都是质数。

质数在数论中具有重要的地位和作用。

对于给定的整数n,存在无限个质数。

这是一个著名的结论,由古希腊数学家欧几里得证明。

除了这一性质,还有以下有趣的特点:- 质数不能由其他数相乘得到。

这个性质使得质数在密码学和加密算法中具有重要应用。

- 欧拉定理:若a和n互质,则a的φ(n)次方与n同余于1,其中φ(n)表示不大于n的正整数中与n互质的数的个数。

2. 整除性与最大公约数对于两个整数a和b,若a能整除b(即b可以被a整除),我们称a是b的约数,b是a的倍数。

最大公约数(GCD)是指两个或多个整数共有约数中最大的一个。

最大公约数的求解有多种方法,其中最常见的是辗转相除法:- 若a可以整除b,则a和b的最大公约数为a;- 若a不能整除b,则a和b的最大公约数等于b和a除以b的余数的最大公约数。

3. 同余关系在数论中,同余关系是一个重要的概念。

对于整数a、b和正整数m,若a和b除以m得到相同的余数,我们就说a和b关于模m同余,记作a ≡ b (mod m) 。

同余关系具有以下性质:- 自反性:对于任意的整数a和正整数m,a ≡ a (mod m)。

- 对称性:如果a ≡ b (mod m),那么b ≡ a (mod m)。

- 传递性:如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。

同余关系在密码学、编码理论和计算机科学中都有广泛应用。

4. 素数与唯一分解定理在数论中,复数的唯一分解定理是一个重要的结论。

该定理指出,任何一个大于1的正整数都可以表示为若干个素数相乘,而且这种表示方式是唯一的。

离散数学知识点

离散数学知识点

离散数学知识点
离散数学是数学中的一个分支,它主要涉及离散对象和离散结构的研究。

下面将介绍离散数学的一些主要知识点。

1. 集合论:集合是离散数学中的基础概念,集合论研究集合的性质与运算。

它包括集合的定义、运算、关系、等价关系、函数和逆映射等概念。

2. 图论:图论是研究图及其性质的数学分支。

图是由节点(或称为顶点)和边组成的数学模型。

它的重点包括图的分类、图的遍历、最短路径、生成树、染色问题等。

3. 逻辑学:逻辑学是研究推理和论证的学科,在离散数学中应用广泛。

逻辑学包括命题逻辑、谓词逻辑、组合逻辑、模态逻辑等多个分支。

4. 组合数学:组合数学是研究离散结构中离散对象的组合方式的数学分支。

它包括组合计数、排列组合、生成函数、递归等概念。

5. 离散数学在计算机科学中的应用:离散数学在计算机科学中应用广泛,例如计算机算法、图像处理、密码学、编译器等领域都有着重要的应用。

以上是离散数学的主要知识点,它们都有着广泛的应用和研究领域,对于理解和
应用离散数学具有重要作用。

离散数学v

离散数学v

离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。

离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。

离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。

通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

离散数学(全)

离散数学(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2.熟练掌握常用的基本等价式及其应用。

3.熟练掌握(主)析/合取范式的求法及其应用。

4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5.熟练掌握形式演绎的方法。

教学重点:1.命题的概念及判断2.联结词,命题的翻译3.主析(合)取范式的求法4.逻辑推理教学难点:1.主析(合)取范式的求法2.逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词(1) P↑P⇔﹁(P∧P)⇔﹁P;(2)(P↑Q)↑(P↑Q)⇔﹁(P↑Q)⇔ P∧Q;(3)(P↑P)↑(Q↑Q)⇔﹁P↑﹁Q⇔ P∨Q。

(1)P↓P⇔﹁(P∨Q)⇔﹁P;(2)(P↓Q)↓(P↓Q)⇔﹁(P↓Q)⇔P∨Q;(3)(P↓P)↓(Q↓Q)⇔﹁P↓﹁Q⇔﹁(﹁P∨﹁Q)⇔P∧Q。

1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P↔Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。

例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)↔(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)↔(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。

离散数学公式大全总结

离散数学公式大全总结

离散数学公式大全总结离散数学是数学中的一个分支,涵盖了许多概念和公式。

以下是一些离散数学中常见的公式和概念的总结:1. 集合理论:集合并:$A \cup B = {x | x \in A \text{或} x \in B}$集合交:$A \cap B = {x | x \in A \text{且} x \in B}$集合补:$A' = {x | x \notin A}$集合差:$A - B = {x | x \in A \text{且} x \notin B}$幂集:如果$A$有$n$个元素,$P(A)$有$2^n$个子集。

容斥原理:$|A \cup B| = |A| + |B| - |A \cap B|$2. 排列和组合:排列数:$P(n, k) = \frac{n!}{(n - k)!}$组合数:$C(n, k) = \frac{n!}{k!(n - k)!}$二项定理:$(a + b)^n = \sum_{k=0}^{n}C(n, k)a^{n-k}b^k$3. 图论:手握定理:$2 \cdot \text{边数} = \sum \text{度数}$欧拉图:一个连通图是欧拉图,当且仅当每个顶点的度数都是偶数。

哈密顿图:包含图中每个顶点的圈。

图着色:给定图中的顶点,用尽量少的颜色对它们进行着色,使得相邻的顶点颜色不相同。

图的最短路径:Dijkstra算法和Floyd-Warshall算法用于找到图中的最短路径。

4. 布尔代数:布尔变量:$0$表示假,$1$表示真。

逻辑与:$A \land B$逻辑或:$A \lor B$逻辑非:$\lnot A$逻辑与门:$AND$逻辑或门:$OR$逻辑非门:$NOT$布尔恒等定律:$A \land 1 = A$,$A \lor 0 = A$德·摩根定律:$\lnot (A \land B) = \lnot A \lor \lnot B$,$\lnot (A \lor B) = \lnot A \land \lnot B$5. 树和图:树的顶点数与边数关系:$V = E + 1$二叉树的性质:最多有$2^k$个叶子节点,高度为$h$的二叉树最多有$2^{h+1} - 1$个节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章命题逻辑
1-1 命题及其表示法
命题的概念,表示,判断
原子命题、复合命题的概念
命题变元、命题常量的概念
1-2 联结词
五个联结词否定、合取、析取、条件、双条件及其真值取值情况1-3
命题公式的概念,判断
如何翻译自然语言,即如何将自然语言符号化
1-4 真值表与等价公式
真值表的绘制
等价公式的概念,等价公式的证明,一些常用的等价公式,等价公式的置换定理
1-5重言式与蕴含式
重言式/永真式的概念,矛盾式/永假式的概念及相关性质
蕴含式的概念,蕴含式的证明方法,一些常用的逻辑蕴含式,蕴含的性质
1-6 其他联结词
其他联结词:不可兼析取(排斥或/异或)、条件否定联结词、与非联结词、或非联结词其真值取值情况
最小联结词组的定义
1-7 对偶与范式
对偶式的概念,对偶定理
命题公式的析取范式、合取范式求取方法
命题公式的小项概念及其性质,主析取范式求取方法
命题公式的大项概念及其性质,主合取范式求取方法
主析取范式与主合取范式的关系
主析(合)取范式的应用
1-8推理理论
有效结论的概念
推理方法:1、真值表法;2、直接证法;(P 规则、T规则)3、间接证法(CP规则)
第二章谓词逻辑
2-1 谓词的概念和表示
主体、谓词的概念,一元谓词,多元谓词的概念,谓词填式的概念
2-2 命题函数与量词
简单命题函数、复合命题函数的概念
全称量词、存在量词的概念
2.3 谓词公式与翻译
谓词演算的合式公式的概念
谓词公式的翻译
2-4 变元的约束
指导变元/作用变元,作用域/辖域,约束出现,自由出现的概念约束变元的换名
自由变元的代入
2-5 谓词演算的等价式与蕴含式
赋值的概念
谓词公式等价的概念
谓词演算的等价式和蕴含式:量词的转化律、量词作用域的扩张与收缩、量词分配律、量词与命题联结词的蕴含式
2-6 前束范式
前束范式的概念
谓词公式化为前束范式的步骤
2-7 谓词演算的推理理论
量词添加和量词消去原则:全称指定规则(US规则)、全称推广规则(UG规则)、存在推广规则(EG规则)、存在指定规则(ES规则)
第三章集合论
3-1 集合的概念和表示
集合以及元素的表示,说明集合的方法,有限集、无限集的概念,集合相等的概念,幂集的概念
3-2 集合的运算
集合的交、并、补、差及相关性质
3-4 序偶与笛卡尔积
序偶的概念,三元组、四元组,n元组的概念
笛卡尔积的概念及性质
3-5 关系及其表示
二元关系的概念,前域、值域的概念
集合A到集合B的一个二元关系,空关系、全域关系、恒等关系的概念
关系的表示:集合表示法、关系矩阵法、关系图法。

3-6 关系的性质
自反和反自反、对称和反对称、传递的概念及判定定理,以及如何在关系图、关系矩阵中判定
3-7 复合关系和逆关系
复合关系的概念及性质
求复合关系的几种方法:根据复合关系的定义求复合关系;运用关系矩阵的运算求复合关系;利用关系图求复合关系R m
逆关系的概念及其性质
3-8 关系的闭包运算
自反闭包、对称闭包、传递闭包的概念及求法(分别用关系集合、关系矩阵,以及关系图怎么求)
3-9 集合的划分和覆盖
划分、覆盖的概念
加细、交叉划分的概念
3-10 等价关系与等价类
等价关系的概念,等价类的概念以及相关结论,商集的概念,等价类与划分的对应
3-11 相容关系
相容关系的概念,相容关系的关系简图,最大相容类的概念以及判断,最大相容类所对应的是完全覆盖
3-12 序关系
偏序集的概念,盖住的概念,哈斯图的画法,最大元、最小元、极大元、极小元、上界、下界、最小上界(上确界)、最大下界(下确界)的概念
第七章图论
7-1 图的基本概念
图的概念,
图G的结点与边之间的关系,图的结点的度数及其计算,握手定理,图G的分类,图的同构的概念
7-2 路与回路
路、回路的概念,迹、通路、圈的概念
图的连通性:
无向图的连通性,连通分支的概念,点割集、割点的概念、点连通度的概念,边割集、桥的概念、边连通度的概念,G的点连通
度k(G)≤边连通度λ(G)≤最小度δ(G)
有向图的连通性,距离的概念,单向(侧)连通的、强连通的、弱连通的概念,强(单向,弱)分图的概念。

7-3 图的矩阵表示
邻接矩阵的概念
有向图的可达性矩阵及其求法
无向图的连通矩阵及其求法
完全关联矩阵
7-4 欧拉图与汉密尔顿图
欧拉路、欧拉回路、欧拉图的概念
欧拉路的充要条件
欧拉回路的充要条件
怎么能够“一笔画”
单向欧拉路(回路)的充要条件
汉密尔顿路、汉密尔顿回路、汉密尔顿图的概念
汉密尔顿图的必要条件
汉密尔顿路、汉密尔顿图的充分条件
标号法
7-5 平面图
平面图的概念,面、边界、次数的概念,欧拉公式
7-6 对偶图与着色
对偶图的概念
着色的概念,对图G进行着色的韦尔奇·鲍威尔法
7-7 树与生成树
树、树叶、分枝点/内点,森林的概念,树的等价定义
生成树、树枝、弦、补的概念
赋权图、最小生成树的概念,求最小生成树算法(Kruskal算法) 7-8 根树及其应用
根树、树根、树叶、分枝点/内点、层次、高的概念
祖先、后代、父亲、儿子、兄弟的概念
有序树的概念
m叉树、完全m叉树、左子树和右子树的概念
m叉树改写为二叉树的方法
带权二叉树
画最优树的算法---哈夫曼算法,前缀码(哈夫曼编码)。

相关文档
最新文档