第六章、船舶通信设备.pptx
合集下载
GMDSS船舶通信设备卫星通信ppt
gmdss船舶通信设备卫星通信ppt
xx年xx月xx日
目录
• 引言 • gmdss系统概述 • 卫星通信系统概述 • gmdss船舶通信设备卫星通信技术方案设计
目录
• gmdss船舶通信设备卫星通信系统性能测试与分 析
• 结论与展望 • 参考文献
01
引言
研究背景和意义
船舶通信设备的现 状及面临的问题
信号覆盖范围
测试了卫星通信系统的信号覆盖范围,发现信号 覆盖范围符合预期要求。
误码率
测试了系统的误码率,发现误码率较低,表明系 统的可靠性较高。
传输时延
对系统的传输时延进行了测量,发现传输时延较 低,满足船舶通信的需求。
多径效应
对系统的多径效应进行了测试和分析,发现多径 效应对系统性能的影响较小。
性能测试的结论和建议
07
参考文献
参考文献
卫星通信系统发展历程
卫星通信技术自20世纪60年代初期以来不断发展,经历了从模拟信号到数字信号的转变 ,以及从低速率传输到高速率传输的演进。
卫星通信系统工作原理
卫星通信系统通过将信号发送到地球同步轨道上的卫星,再由卫星转发回地面站,从而实 现远距离通信。
卫星通信系统组成
卫星通信系统由卫星、地面站和传输设备组成,其中卫星是核心部分,负责信号的接收、 处理和转发。
卫星通信系统的工作原理和应用范围
卫星通信系统的工作原理
卫星作为中继站,接收来自地面站的信号,进行放大、变频 后再发回地面站,实现远距离通信。
卫星通信系统的应用范围
广泛应用于军事、民用、海上等领域,如船舶、飞机、手机 等移动设备的通信。
04
gmdss船舶通信设备卫星通信技术方案
设计技术方ຫໍສະໝຸດ 的选择和设计思路2GMSS船舶通信设备通过卫星通信系统实现了 高效、可靠、实时的通信,提高了船舶运营安 全和效率。
xx年xx月xx日
目录
• 引言 • gmdss系统概述 • 卫星通信系统概述 • gmdss船舶通信设备卫星通信技术方案设计
目录
• gmdss船舶通信设备卫星通信系统性能测试与分 析
• 结论与展望 • 参考文献
01
引言
研究背景和意义
船舶通信设备的现 状及面临的问题
信号覆盖范围
测试了卫星通信系统的信号覆盖范围,发现信号 覆盖范围符合预期要求。
误码率
测试了系统的误码率,发现误码率较低,表明系 统的可靠性较高。
传输时延
对系统的传输时延进行了测量,发现传输时延较 低,满足船舶通信的需求。
多径效应
对系统的多径效应进行了测试和分析,发现多径 效应对系统性能的影响较小。
性能测试的结论和建议
07
参考文献
参考文献
卫星通信系统发展历程
卫星通信技术自20世纪60年代初期以来不断发展,经历了从模拟信号到数字信号的转变 ,以及从低速率传输到高速率传输的演进。
卫星通信系统工作原理
卫星通信系统通过将信号发送到地球同步轨道上的卫星,再由卫星转发回地面站,从而实 现远距离通信。
卫星通信系统组成
卫星通信系统由卫星、地面站和传输设备组成,其中卫星是核心部分,负责信号的接收、 处理和转发。
卫星通信系统的工作原理和应用范围
卫星通信系统的工作原理
卫星作为中继站,接收来自地面站的信号,进行放大、变频 后再发回地面站,实现远距离通信。
卫星通信系统的应用范围
广泛应用于军事、民用、海上等领域,如船舶、飞机、手机 等移动设备的通信。
04
gmdss船舶通信设备卫星通信技术方案
设计技术方ຫໍສະໝຸດ 的选择和设计思路2GMSS船舶通信设备通过卫星通信系统实现了 高效、可靠、实时的通信,提高了船舶运营安 全和效率。
船舶通讯 VHF ppt课件
18
双值守电路
➢设备同时扫描两个或两个以上频道,其中包括优先频
道CH16.在优先频道上检测到信号,则扫描程序立刻停止,
即使预选频道有信号,仍须自动检测优先频道,保证对优
先频道的有效值守。
➢对双值守电路的要求
1)双值守功能可人工启动或关闭。一旦拿下送受话器,
双值守功能将自动关闭;而挂上送受话器,双值守功能
4.2 船用VHF收发设备 一、VHF设备基本的组成
DSC 值守机
双工器
接
发
收
射
机
机
控 制 单元
显示器 扬声器 面板单元
话筒
DSC 终 端
17
双工器保证设备收、发隔离,保护接收机 。 船用VHF设备双工信道:
接收频率比发射频率高4.6MHz 。 操作面板上设置液晶显示器、键盘、话筒、 扬声器等,与控制单元连接完成对设备的操作控 制。
B=2(mf+1)Fmax=2(△fmax+Fmax) mf≤1时,窄带调频。
B=2Fmax
8
二、VHF通信的特点 1.通信距离近,正常距离为25NM,适合建立以 岸台为中心的近距离蜂窝式通信网,为消除网 组间的相互干扰,对设备发射功率给以限制。
船台≤25W,一般在6~25w之间,并应能 减小到≤1w ,岸台≤50W 2.VHF天线尺寸小,采用鞭状天线,易于架设。
15
3.发射功率:船台6~25w,可减小到1w,岸台50W 。 4.最大频偏:±5kHz,调制话音最高频率为3kHz 。 5.电波辐射方式:垂直极化。 6.必要带宽(辐射带宽):16kHz
[B=2(5+3)=16kHz] 7.CH70是DSC的专用频道。 8.收发转换时间≤0.3s, 频道转换时间≤5s,在开 机1mins工作。 9.采用预去加重技术,提高了接收端的信噪比。16
双值守电路
➢设备同时扫描两个或两个以上频道,其中包括优先频
道CH16.在优先频道上检测到信号,则扫描程序立刻停止,
即使预选频道有信号,仍须自动检测优先频道,保证对优
先频道的有效值守。
➢对双值守电路的要求
1)双值守功能可人工启动或关闭。一旦拿下送受话器,
双值守功能将自动关闭;而挂上送受话器,双值守功能
4.2 船用VHF收发设备 一、VHF设备基本的组成
DSC 值守机
双工器
接
发
收
射
机
机
控 制 单元
显示器 扬声器 面板单元
话筒
DSC 终 端
17
双工器保证设备收、发隔离,保护接收机 。 船用VHF设备双工信道:
接收频率比发射频率高4.6MHz 。 操作面板上设置液晶显示器、键盘、话筒、 扬声器等,与控制单元连接完成对设备的操作控 制。
B=2(mf+1)Fmax=2(△fmax+Fmax) mf≤1时,窄带调频。
B=2Fmax
8
二、VHF通信的特点 1.通信距离近,正常距离为25NM,适合建立以 岸台为中心的近距离蜂窝式通信网,为消除网 组间的相互干扰,对设备发射功率给以限制。
船台≤25W,一般在6~25w之间,并应能 减小到≤1w ,岸台≤50W 2.VHF天线尺寸小,采用鞭状天线,易于架设。
15
3.发射功率:船台6~25w,可减小到1w,岸台50W 。 4.最大频偏:±5kHz,调制话音最高频率为3kHz 。 5.电波辐射方式:垂直极化。 6.必要带宽(辐射带宽):16kHz
[B=2(5+3)=16kHz] 7.CH70是DSC的专用频道。 8.收发转换时间≤0.3s, 频道转换时间≤5s,在开 机1mins工作。 9.采用预去加重技术,提高了接收端的信噪比。16
船舶信号与VHF通信课件
船舶信号的国际标准与法规
国际标准
国际海事组织(IMO)制定了一系 列关于船舶信号的国际标准,包括旗 帜、灯光、音响等设备的规格和用途 。
国内法规
各国政府也制定了相应的国内法规, 规范本国船舶的信号使用,确保符合 国际标准。
02
VHF通信系统概述
VHF通信系统的原理与特点
原理
VHF通信系统利用甚高频无线电波进行信息传输,具有视距 传播特性,通常用于船只、车辆和飞机等移动终端之间的通 信。
导致两船相撞。
事故分析
货船未按规定使用船舶灯光信号进 行警告和识别,同时未通过VHF设 备及时通知渔船其航行动态,导致 渔船无法做出及时避让。
事故教训
在能见度较低的情况下,应加强船 舶灯光信号的使用,同时利用VHF 设备保持有效沟通,确保航行安全 。
THANKS
感谢观看
船舶VHF通信流程
按照规定的通信流程进行操作,包括开机、调频、呼叫、通话、记录等步骤,确保通信过程有序进行 。
船舶VHF通信的常见问题与处理
01
02
03
信号干扰
遇到信号干扰时,应尝试 更换频道或调整天线位置 ,以寻找更清晰的信号。
通信中断
如遇通信中断,应保持冷 静,采取措施尽快恢复通 信,如重新呼叫或调整通 信设备参数。
特点
VHF通信系统具有频率高、波长短、传播速度快、信号稳定 可靠等优点,但也存在易受干扰和遮挡物影响等局限性。
VHF通信系统的组成与功能
组成
VHF通信系统由发射机、接收机、天线、电源和通信控制器等部分组成。
功能
VHF通信系统可以实现语音通信、数据传输、遇险报警和船舶自动识别等多种功 能。
VHF通信系统的应用范围与限制
船舶通信与电子导航设备
雷达导航特点
具有全天候、全天时、高精度、远距 离探测能力,不受光照和时间限制, 适用于海上和空中导航。
雷达导航设备类型与选择
雷达导航设备类型
包括脉冲雷达、连续波雷达、多普勒雷达等,根据工作频率、发射功率、天线 类型等参数进行分类。
雷达导航设备选择
根据实际需求和场景选择合适的雷达导航设备,考虑因素包括探测距离、精度 、抗干扰能力、可靠性等。
船舶通信的主要目的是确保船舶航行安全、提高运营效率以及满足船员的生活需求 。
船舶通信系统通常包括内部通信系统和外部通信系统,分别用于船舶内部和船舶与 外部之间的通信。
船舶内部通信系统
01
船舶内部通信系统主要 用于船舶内部各部门、 船员之间的日常通信联 系。
02
内部通信系统通常包括 有线电话、无线电话、 广播系统、内部网络等 。
AIS设备类型与选择
A根I据S设功能备和类用型途的不同,AIS设备可
分为船载AIS、岸基AIS和卫星AIS等 类型。船载AIS主要用于船舶之间的 通信和导航;岸基AIS则用于海事管 理部门对船舶的监管和调度;卫星 AIS则通过卫星通信技术实现全球范
A围I内S设的船备舶选定择位和追踪。
在选择AIS设备时,需要考虑设备的 性能、价格、兼容性以及使用环境等 因素。一般来说,性能稳定、价格合 理、兼容性好且能够适应各种恶劣环 境的设备是首选。
03
有线电话是船舶内部通 信的主要手段,具有通 话质量稳定、保密性好 的特点。
04
无线电话则适用于在船 舶内部移动时使用,方 便船员在船舶各处进行 通信。
船舶外部通信系统
船舶外部通信系统主要用于船舶与岸 上设施、其他船舶以及航海保障部门 之间的通信联系。
无线电通信是船舶外部通信的主要手 段,包括甚高频(VHF)、中频( MF)和高频(HF)等频段。
具有全天候、全天时、高精度、远距 离探测能力,不受光照和时间限制, 适用于海上和空中导航。
雷达导航设备类型与选择
雷达导航设备类型
包括脉冲雷达、连续波雷达、多普勒雷达等,根据工作频率、发射功率、天线 类型等参数进行分类。
雷达导航设备选择
根据实际需求和场景选择合适的雷达导航设备,考虑因素包括探测距离、精度 、抗干扰能力、可靠性等。
船舶通信的主要目的是确保船舶航行安全、提高运营效率以及满足船员的生活需求 。
船舶通信系统通常包括内部通信系统和外部通信系统,分别用于船舶内部和船舶与 外部之间的通信。
船舶内部通信系统
01
船舶内部通信系统主要 用于船舶内部各部门、 船员之间的日常通信联 系。
02
内部通信系统通常包括 有线电话、无线电话、 广播系统、内部网络等 。
AIS设备类型与选择
A根I据S设功能备和类用型途的不同,AIS设备可
分为船载AIS、岸基AIS和卫星AIS等 类型。船载AIS主要用于船舶之间的 通信和导航;岸基AIS则用于海事管 理部门对船舶的监管和调度;卫星 AIS则通过卫星通信技术实现全球范
A围I内S设的船备舶选定择位和追踪。
在选择AIS设备时,需要考虑设备的 性能、价格、兼容性以及使用环境等 因素。一般来说,性能稳定、价格合 理、兼容性好且能够适应各种恶劣环 境的设备是首选。
03
有线电话是船舶内部通 信的主要手段,具有通 话质量稳定、保密性好 的特点。
04
无线电话则适用于在船 舶内部移动时使用,方 便船员在船舶各处进行 通信。
船舶外部通信系统
船舶外部通信系统主要用于船舶与岸 上设施、其他船舶以及航海保障部门 之间的通信联系。
无线电通信是船舶外部通信的主要手 段,包括甚高频(VHF)、中频( MF)和高频(HF)等频段。
船舶信号与VHF通信资料课件
04
VHF通讯操作实务
VHF通讯的基本操作流程
调频
根据需要通话的频道,调整 VHF设备的频率至相应的频道 。
建立通话
当对方回应后,即可建立通话 。在通话过程中,应保持声音 清楚、语速适中。
开启VHF设备
第一需要开启VHF设备,确保 电源稳定且设备正常工作。
呼叫对方
按下通话键,呼叫需要通话的 对方,并等待对方回应。
络化
借助物联网和云计算等技术,实 现船舶信号的远程监控和实时传 输,提高信号监控的实时性和覆 盖范围。
VHF通讯技术的未来发展趋势
VHF通讯技术的宽带化
01
随着宽带技术的不断发展,VHF通讯技术将逐渐实现宽带化,
提高通讯带宽和传输速率。
VHF通讯技术的移动化
02
随着移动通讯技术的不断发展,VHF通讯技术将逐渐实现移动
船舶信号的国际标准与法规
国际海事组织(IMO)制定了一系列关于船舶信号的国际标准和建议案,包括《 国际海上人命安全公约》(SOLAS)、《国际信号规则》(IRR)等。
这些国际标准和法规规定了船舶信号的种类、使用方法、显示方式等,以确保在 全球范围内统一、规范地使用船舶信号,保证海上安全。
02
VHF通讯概述
化,提高通讯的灵活性和便利性。
VHF通讯技术的数字化和智能化
03
通过引入数字信号处理和人工智能等技术,实现VHF通讯的数
字化和智能化,提高通讯质量和效率。
船舶信号与VHF通讯的融会发展前景
船舶信号与VHF通讯的互补性
船舶信号和VHF通讯各有优劣,未来发展中应充分发挥各自优势,实现互补发展。
船舶信号与VHF通讯的融会应用
05
船舶信号与VHF通讯的 发展趋势
船舶通信系统与无线电设备
PART 02
无线电设备在船舶通信中 应用
无线电设备种类及功能
甚高频(VHF)无线电设备
01
用于近距离船舶间和船舶与岸站间的通信,提供话音和数据传
输功能。
中频(MF)和高频(HF)无线电设备
02
用于远距离船舶间通信,可覆盖全球范围,常用于海上紧急呼
叫和遇险通信。
卫星通信设备
03
利用卫星中继站实现全球范围内的船舶通信,提供话音、数据
5G通信技术
5G通信技术的应用将进一步提高 船舶通信系统的传输速度和稳定 性,满足船舶对实时性、大数据
量传输的需求。
物联网技术
物联网技术的应用可以实现船舶 各系统之间的互联互通,提高船 舶的智能化水平,为船舶运营提
供更加便捷、高效的服务。
市场需求变化对产业影响分析
1 2 3
数字化、智能化需求增加
随着航运业的发展,船舶对数字化、智能化的需 求不断增加,推动船舶通信系统与无线电设备产 业向更高水平发展。
关键技术实现方法
硬件接口技术
采用标准化的硬件接口,实现通 信系统与无线电设备之间的连接
。
软件协议转换技术
通过软件协议转换,实现不同通信 系统之间的信息交互。
电磁兼容技术
采取电磁屏蔽、滤波等措施,降低 设备间的电磁干扰。
整合后性能评估及优化建议
性能评估指标
包括通信质量、传输速度、系统稳定 性等。
评估方法
性能。
设备老化
长时间使用的设备可能出现老 化、磨损和腐蚀等问题,导致 设备性能下降或失效。
人为操作失误
船员在使用通信系统和无线电 设备时,可能因操作不当或疏 忽大意而导致安全事故。
恶意攻击
第六章、船舶通信设备
③单路单载波(SCPC-Single Channel Per Carrier):
是指每个载波只传一路信号,每个地球站只有在需要通信时 才被分配给载波,即按需分配载波信道,通信结束后信道随 即被收回。
④单路单载波2个优点: 每个地球站 按需分配 载波; 信道利用率高
3)时分多址(TDMA)
(1)定义:
国际移动卫星系统中,通常电话信道采用什么 分配方式?电传信道采用什么分配方式?
你掌握了吗?
1.下列各技术中哪个属于多址联接技术?
FDM TDM SDM 2.下列各技术中哪些属于多路复用技术?
大气
噪声
电离层闪烁 太阳黑子活动
四、卫星通信频段及主要性能参数
1.卫星通信频段的选择原则:
① 电波应能穿透电离层且传播过程中衰减要小; ② 天线系统接收的外部噪声要小; ③ 有较宽的频带,较大的通信容量,满足信息传输的要求; ④ 能充分利用现有的通信技术; ⑤ 与其它通信、雷达等电子系统间的干扰要小。
是指多路信号用同一载波在 不同时隙交替占用同一信道 进行传输。具体说来是将信 道不同的工作时隙指定给各 个不同的用户,以时间来彼 此分割达到同信道而不同时 的多元通信。
2.多址联接:在射频信道复用 1)定义 多个地球站利用同一颗卫星实现双边或多边通信的
联接方式。
2)海事卫星通信主要涉及的多址联接:
(3)TDMA 5个主要优点:
❖ 各地球站载波信号频率相同,但发射时间不同 ❖ 卫星上一个转发器,无互调干扰 ❖ 需网同步 ❖ 技术设备较复杂 ❖ FDMA方式能更充分利用转发器的输出功率
4)空分多址(SDMA- Space Division Multiple Access ) 预备知识:点波束模式与全球覆盖模式
船舶内部通信系统介绍 ppt课件
2.4声力电话小房:
一般来讲,为了更好的隔音,方便通话,主机旁的声力电话船东会要求 与自动电话一样,有一个电话小房,一般船厂将自动电话和声力电话 一起安装在同一个电话小房内。
2. 5 声力电话号码表:
一般我们要求厂家来提供,一般把电话号码表刻双色版或无锈钢材质的 板上。
3. 举一个实船的例子,其中包括如下内容: 3.1 声力电话认可图 3.2 声力电话系统图 3.3声力电话技术协议
2.3.2 机械处所用自动电话:防护等级一般要求IP44, 一般为wall mounting, 船厂电缆直接进入电话,无需一个电话接线盒。
2.3.3 室外或露天甲板用自动电话:防护等级一般要求IP56, 一般为wall mounting, 为了防止此类自动电话长期在甲板上被海浪损坏,船东一般 要求船厂为此类电话提供防护箱,防护箱一般为无锈钢材质
3. 举一个实船的例子,其中包括如下内容: 3.1 对讲认可图 3.2对讲系统图 3.3对讲技术协议
4. 提问时间
五、内部通讯布置图
举一个实船的例子,
2.1.1 广播中心处理单元是广播系统的核心部件,它由微处理器组成, 它由大量的故障安全和备用元件组成,以确保系统的可靠性。它具 有如下特性:
- 应急故障返回安全的特性 - 主或热备用或完全的双冗余回路以确保可靠性 - 故障事件的记录
2.1.2 放大器有自己内部电源,故障保护和超声负载传感器去检查放大 器的功能和喇叭回路的完整性,它具有以下特性:
2.6 广播系统的声压级计算书
根据船级社要求,为了表明广播系统设计的合理性,广播系统的设计要 提供广播系统声压级计算书,一般船厂要求设备厂家来完成。
3. 举一个实船的例子,其中包括如下内容: 3.1 广播认可图 3.2广播系统图 3.3广播技术协议
船舶内部通信系统介绍知识学习57页PPT
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
57
船舶内部通信系统介绍知识学习
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
▪
船舶通信与电子设备
近年来,随着数字化和智能化技术的 不断发展,船舶通信系统也在不断升 级和完善,通信质量和效率得到了进 一步提升。
02
船舶电子设备简介
船舶电子设备种类
导航设备
包括雷达、罗经、GPS等 ,用于确定船舶位置和航 向。
通信设备
如无线电报、电话、卫星 通信等,用于船舶与陆地 或其他船舶之间的通信。
自动化设备
船舶通信发展历程
早期船舶通信
早期船舶通信主要依靠旗语、灯光、 声音等简单方式进行,通信距离和效
果有限。
卫星通信时代
随着卫星通信技术的发展,船舶通信 开始进入卫星通信时代,实现了全球
范围内的实时通信。
无线电通信时代
20世纪初,无线电通信技术开始在船 舶上应用,大大提高了船舶通信的效 率和可靠性。
数字化与智能化时代
自动化趋势
自动化技术的应用使得船舶在航行、靠泊、装卸 等作业过程中实现自动化操作,降低人工干预程 度,提高作业效率。
典型船舶通信与电子设备案
04
例分析
卫星导航系统应用实例
01 船舶定位与导航
利用卫星导航系统,如GPS、GLONASS或 Beidou,实现船舶在全球范围内的精确定位和导 航。
02 航线规划与监控
包括自动驾驶仪、自动舵 等,用于实现船舶的自动 化航行。
安全设备
如火灾报警系统、救生设 备等,用于保障船舶和船 员的安全。
关键设备功能与作用
雷达
通过发射和接收无线 电波来探测周围物体 ,帮助船员了解周围 环境和障碍物情况, 避免碰撞。
GPS
通过接收卫星信号来 确定船舶的精确位置 ,为航行提供准确的 定位信息。
无线电通信设备
用于船舶与陆地或其 他船舶之间的通信联 系,保障航行安全和 信息传递。
02
船舶电子设备简介
船舶电子设备种类
导航设备
包括雷达、罗经、GPS等 ,用于确定船舶位置和航 向。
通信设备
如无线电报、电话、卫星 通信等,用于船舶与陆地 或其他船舶之间的通信。
自动化设备
船舶通信发展历程
早期船舶通信
早期船舶通信主要依靠旗语、灯光、 声音等简单方式进行,通信距离和效
果有限。
卫星通信时代
随着卫星通信技术的发展,船舶通信 开始进入卫星通信时代,实现了全球
范围内的实时通信。
无线电通信时代
20世纪初,无线电通信技术开始在船 舶上应用,大大提高了船舶通信的效 率和可靠性。
数字化与智能化时代
自动化趋势
自动化技术的应用使得船舶在航行、靠泊、装卸 等作业过程中实现自动化操作,降低人工干预程 度,提高作业效率。
典型船舶通信与电子设备案
04
例分析
卫星导航系统应用实例
01 船舶定位与导航
利用卫星导航系统,如GPS、GLONASS或 Beidou,实现船舶在全球范围内的精确定位和导 航。
02 航线规划与监控
包括自动驾驶仪、自动舵 等,用于实现船舶的自动 化航行。
安全设备
如火灾报警系统、救生设 备等,用于保障船舶和船 员的安全。
关键设备功能与作用
雷达
通过发射和接收无线 电波来探测周围物体 ,帮助船员了解周围 环境和障碍物情况, 避免碰撞。
GPS
通过接收卫星信号来 确定船舶的精确位置 ,为航行提供准确的 定位信息。
无线电通信设备
用于船舶与陆地或其 他船舶之间的通信联 系,保障航行安全和 信息传递。
船用MFHF通信设备教育课件
VAM
fC
f
fC-Fmax fC-Fmin
fC+Fmax
fC+Fmin
带宽:B=2Fmax
单边带(SSB)通信的概念
从传递信息的角度看,用两个边带传递
相同的信息是不必要的,可以只用其中任意
一个来进行通信,在调幅中把载波和另外一
个边带完全抑制掉,而把信息调制在一个边
带上进行通信的方式叫单边带通信。
1 2mc2[Vco 2cs( )tco ts]
滤波
F
F
2fC+F
五、单边带通信的优点
1、占用频带窄 因为单边带通信只利用调幅信号中的一个边带进行通
信,所以节省频带。
例如,如果调制信号带宽为ΔF=Fmax-Fmin 则调幅信号带宽为BAM=2Fmax 而单边带信号的带宽为BSSB=ΔF=Fmax-Fmin
式中:m是调幅系数,为防止过调制,要求m≤1。
单音频调幅的波形与频谱图,如图所示。
设F
2
VΩ
fC
C 2
VC F
f
VAM
fC f 载波频率
下边频
上边频
f fC-F fC fC+F
带宽:B=2F
结论:
(1)调幅信号的包络 Vc(1mco st),完全反映了调制信号 的变化规律。
(2)单音频调制的调制信号由载频ωc 、上边频ωc+ Ω 、 下边频ωc-Ω三个频率分量组成。被传递的信息,即调制 信号的振幅、频率包含在上、下边频中。
V c co c t 1 2 s V c n 1 m n c(o c s n ) t 1 2 V c n 1 m n c(o c s n ) t
fC
f
fC-Fmax fC-Fmin
fC+Fmax
fC+Fmin
带宽:B=2Fmax
单边带(SSB)通信的概念
从传递信息的角度看,用两个边带传递
相同的信息是不必要的,可以只用其中任意
一个来进行通信,在调幅中把载波和另外一
个边带完全抑制掉,而把信息调制在一个边
带上进行通信的方式叫单边带通信。
1 2mc2[Vco 2cs( )tco ts]
滤波
F
F
2fC+F
五、单边带通信的优点
1、占用频带窄 因为单边带通信只利用调幅信号中的一个边带进行通
信,所以节省频带。
例如,如果调制信号带宽为ΔF=Fmax-Fmin 则调幅信号带宽为BAM=2Fmax 而单边带信号的带宽为BSSB=ΔF=Fmax-Fmin
式中:m是调幅系数,为防止过调制,要求m≤1。
单音频调幅的波形与频谱图,如图所示。
设F
2
VΩ
fC
C 2
VC F
f
VAM
fC f 载波频率
下边频
上边频
f fC-F fC fC+F
带宽:B=2F
结论:
(1)调幅信号的包络 Vc(1mco st),完全反映了调制信号 的变化规律。
(2)单音频调制的调制信号由载频ωc 、上边频ωc+ Ω 、 下边频ωc-Ω三个频率分量组成。被传递的信息,即调制 信号的振幅、频率包含在上、下边频中。
V c co c t 1 2 s V c n 1 m n c(o c s n ) t 1 2 V c n 1 m n c(o c s n ) t
船舶通讯
第一节 船舶信号设备
• 二、信号旗 • 字母旗26面
第一节
• 二、信号旗 • 数字旗10面
船舶信号设备
第一节
• 二、信号旗 • 代旗3面 • 回答旗1面
船舶信号设备
第一节
船舶信号设备
• B——I am taking in,or discharging, or carrying dangerous cargos • G ——I require a pilot • H-I have a pilot on board • O -man overboard • U -your are running into danger
• 视觉和声响通信包括:灯光通信、旗号 通信、手旗或手臂通信、音响通信和强 力扬声器喊话
第一节 船舶信号设备
• 一、手旗
• 手旗由两面四方形的布或旗沙与两根木 棍制成,边长40cm。一种是字母“O”, 一种是字母“P”的样子。 • 能见距离在1至3海里
手旗
第一节 船舶信号设备
• 二、信号旗 • 信号旗是用红、黄、白、黑、蓝五种不 同颜色的旗纱制成的 • 1套共有40面:字母旗26面、数字旗10 面、代用旗3面、回答旗1面 • 形状有四种:长方旗、燕尾旗、三角旗、 梯形旗
百叶遮板的闪光信号灯 (固定式)
桅顶信号灯(摩尔斯信号灯)
百叶遮板的闪光信号灯 (手提式)
第一节 船舶信号设备
• • • • 四、音响通信设备 1、号笛 2、号钟 3、号锣
号笛
号钟
号锣
第二节 摩尔斯符号
字 母 符号 字 母 符号 字母 符号 数 字 符号
A
B C
·—
— ···
K
L
— ·—
第6章船用VHF通信设备
用以代替卫星EPIRB实现遇险报警。
第6章船用VHF通信设备
6.1.2 VHF设备的主要功能
•1.VHF无线电台通信功能 • 港口引航业务、船舶动态业务通信。 • 公众通信。在A1海区船舶能通过该海区的VHF海
岸电台和陆上电话网用户进行通信。 • 驾驶台对驾驶台通信。实现船舶操作、安全避让、
船舶移动等通信。 • 近距离搜救协调通信,搜救现场通信。海上VHF
“1”对应较低频率 1700-400HZ=1300HZ 传号
第6章船用VHF通信设备
2.工作方式
有 • 单、工• 双和工• 半双三工种。
1)单工方式
①
按CCIR建议,水上VHF通信中船舶间的通信只
能使用同频单工方式。
② 船用设备的单工操作由话筒上的PTT开关控制。 发则不收,收则不发。
2)双工方式
•静噪电路框图
•直流放大 第6章船用VHF通信设备
第6章 船用VHF通信设备
6.1 VHF无线电通信设备及频率 6.2 VHF收发机 6.3 双值守原理与要求 6.4 VHF EPIRB
第6章船用VHF通信设备
• 6.3 双值守原理与要求
• 根据SOLAS公约要求,船舶在海上航行要保持在 VHF CH16信道上连续值守,为此要求VHF无线电 设备要具有双值守功能,使接收机能同时守听两个 信道。
烟囱
3.具• 有较强顶的上抗,干岸扰台能易力于:采用方向性很强的定向天线 • 。 因为调频接收机中,输出信噪比与调制指数mf
有关。mf加大,输出信噪比也增大。
•
mf=△fmax/Fmax
•
mf>1时,宽带调频. B=2(mf+1)Fmax=2(△fmax
•
+Fmax)
第6章船用VHF通信设备
6.1.2 VHF设备的主要功能
•1.VHF无线电台通信功能 • 港口引航业务、船舶动态业务通信。 • 公众通信。在A1海区船舶能通过该海区的VHF海
岸电台和陆上电话网用户进行通信。 • 驾驶台对驾驶台通信。实现船舶操作、安全避让、
船舶移动等通信。 • 近距离搜救协调通信,搜救现场通信。海上VHF
“1”对应较低频率 1700-400HZ=1300HZ 传号
第6章船用VHF通信设备
2.工作方式
有 • 单、工• 双和工• 半双三工种。
1)单工方式
①
按CCIR建议,水上VHF通信中船舶间的通信只
能使用同频单工方式。
② 船用设备的单工操作由话筒上的PTT开关控制。 发则不收,收则不发。
2)双工方式
•静噪电路框图
•直流放大 第6章船用VHF通信设备
第6章 船用VHF通信设备
6.1 VHF无线电通信设备及频率 6.2 VHF收发机 6.3 双值守原理与要求 6.4 VHF EPIRB
第6章船用VHF通信设备
• 6.3 双值守原理与要求
• 根据SOLAS公约要求,船舶在海上航行要保持在 VHF CH16信道上连续值守,为此要求VHF无线电 设备要具有双值守功能,使接收机能同时守听两个 信道。
烟囱
3.具• 有较强顶的上抗,干岸扰台能易力于:采用方向性很强的定向天线 • 。 因为调频接收机中,输出信噪比与调制指数mf
有关。mf加大,输出信噪比也增大。
•
mf=△fmax/Fmax
•
mf>1时,宽带调频. B=2(mf+1)Fmax=2(△fmax
•
+Fmax)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际天线增益通常按下式计算:G = (4πA)η/ λ2 式中:A为天线的口径面积(m2);λ为工作波长
(m);η为天线效率。 (2) 载噪比
载噪比是指载波功率与噪声功率之比,它是决定卫星
通信线路性能的基本参数,通常用C/Байду номын сангаас表示。
(3) 全向有效辐射功率EIRP 设发射机的功放输出功率为PT,发射天线的增 益为GT,全向有效辐射功率是指PT与天线增益 GT的乘积,则有:EIRP = PT×GT 。
1.系统构成
卫星 天线控制
解调
信源 变换器
发送器 传输信道
接收器
信宿 变换器
信源数字化 语音压缩编码
多址通信
多路复用
调制 (多用户共享资源) 多址联接
2.抗干扰
分集技术 差错控制编码 均衡技术
GMDSS通信设备与业务
第六章 卫星通信绪论
航海学院通信教研室
第六章 卫星通信绪论
一、 卫星通信及其特点 二、 通信卫星 三、 卫星通信频段及主要性能参数 四、 卫星通信中的主要技术 五、 思考题
大气
噪声
电离层闪烁 太阳黑子活动
四、卫星通信频段及主要性能参数
1.卫星通信频段的选择原则:
① 电波应能穿透电离层且传播过程中衰减要小; ② 天线系统接收的外部噪声要小; ③ 有较宽的频带,较大的通信容量,满足信息传输的要求; ④ 能充分利用现有的通信技术; ⑤ 与其它通信、雷达等电子系统间的干扰要小。
3)海事卫星通信主要涉及的多路复用: ① FDM ② TDM
(4) 接收系统品质因数 接收系统品质因数是衡量接收系统好坏的重要 指标。定义为接收天线增益与接收系统噪声温 度之比,也称为G/T值。G/T值较大为好。
四、卫星通信中的主要技术
1.多路复用:在基带内复用
1)定义:同一信道,互不干扰传输多路信号,收端能将各路
信号分离
2)技术难点: 多用户信号的合并和分离
NAVTEX 接收机 EGC 接收机
SART
搜救系统设备
本篇应了解和掌握的主要知识
1 卫星通信基本知识
什么是卫星通信、特点、通信卫星
2 主要技术
多址通信 终端技术
3 海事卫星通信系统
① Inmarsat系统 (B /F、C 船站) ② COSPAS-SARSAT系统 (406MHz示位标)
③ 主要涉及的问题 系统组成、特点、信道构成、 各种通信业务的接续过程
仰角:从地平线仰起到卫星所转动的角度。
赤道轨道 极轨道 倾斜轨道
各种轨道示意图
● ● ●
3. 特殊的一类卫星 → 静止卫星
静止卫星:赤道轨道,高轨道(36000km),卫星运行方向、 周期与地球自转方向、周期相同
特 点:
覆盖面大(42%) 卫星跟踪系统不复杂, 存在盲区 传输损耗和时延大 卫星数量有限。
微波 超短波
短波 长、中波
二、通信卫星
1. 卫星的组成及其作用 组成:
通信装置:转发器 --双工器、接收机、变频器、发射机 天线
转发器的数量决定卫星的容量,可达几十个
控制装置:控制卫星的运行姿态和位置 电源装置:太阳能电池、蓄电池—为电气设备供电 作用: 作为无线通信的中继站,实现远距离无线通信
2. 卫星分类
卫星通信
1)卫星 2)地球站
固定地球站 移动地球站
地面站
车载站
地面站
机载 站
地面站
船载站
2. 卫星通信的特点
优点:
❖ 覆盖区域大,通信距离远 ❖ 便于多址连接 ❖ 机动灵活,不受地理条件的限制 ❖ 频带宽、容量大 ❖ 一次转接,通信质量好,可靠性高 ❖ 通信成本与距离无关
缺点:
❖ 需要先进的空间技术 ❖ 传输距离较远,有较大的信号延迟 ❖ 卫星寿命短,寿命约为3-10年
2.卫星通信的频段选择
1)穿透电离层 频率足够高 传输衰减要小
工作频率增高
2)引入的外部噪声要小
工作频率> 1 GHz时
噪声影响可忽略
3) 但是, 随着频率升高,特别是在10GHz以上时 云、水蒸气、氧气、雨等噪声增加
4) 综合考虑,1 GHz~10GHz是卫星通信的最佳频段, 称为卫星通信的电波之窗
2.卫星通信的频段 :
ITU分配给卫星通信频道现在扩展为117MHz--275GHz
3.卫星通信的主要性能参数
( 1 )天线增益---定向天线增益 天线增益是用来衡量天线朝一个特定方向收发信号的 能力,它是卫星通信系统的一个重要参数,通常用G 表示,定义为定向天线辐射时接收到的最大功率与无 方向性天线辐射时接收到的功率之比。
一、卫星通信及其特点 1. 什么是卫星通信?
1)卫星通信:
卫星作为中继
两个或多个 地球站
间进行的通信
2)地球站: 地球站是指设在地球上(包括地面、 海洋和低层大气层中)的无线电通 信站。
包括:
固定地球站和移动地球站。固定 地球站通常指连接地面用户的地 面站,而移动地球站通常指安装 在移动体上的地球站。
4. 星蚀和日凌中断 1) 日凌中断
条件: 太阳、卫星、地球 依次排列为一直线
原因: 地球站天线对着卫星的同 时也正对着太阳,太阳噪声最大
时间: 每年春分、秋分前后数日, 白天中午
日凌中断
2) 星蚀
条件: 太阳、地球、卫星 依次排列为一直线
原因: 太阳能电池不工作, 蓄电池工作,通信效果受影响
时间: 春分、秋分前后23天,夜间
赤道轨道(ⅰ= 00,轨道面与赤道面重合) 按 倾 角 极轨道 (ⅰ= 900,穿过南北极)
倾斜轨道(00 <ⅰ< 900)
低(h ﹤ 5000 km ) 按 高 度 中(h:5000~20000 km)
高(h > 20000 km )
通信卫星的仰角和方位角 方位角:以正北为基准顺时针转动到卫星在地平线上方向的角度。
星蚀
5. 影响卫星通信的其他因素
1) 摄动现象:
理想情况下卫星应在定点位置按指定的轨道运行,但由 于卫星运行中会受到太阳、地球、月亮的引力的影响及 地球大气层阻力的影响和太阳辐射压力的影响,使卫星 运行的实际轨道不断发生不同程度地偏离理想轨道的现 象,这一现象称为摄动 要控制卫星的运行姿态和位置
2)其他因素:恶劣的气候 降雨
船舶通信设备
MF/HF 设备
SSB台→ 电话通信 NBDP → 电传通信 DSC → 常规和遇险呼叫
VHF 设备 卫通设备
FM 电话通信
DSC(CH70)→ 遇险报警 A/B/F 站
Inmarsat系统设备 C 站 E 站(1.6G EPIRB)
COSPAS系统设备 → 406 MHz EPIRB
MSI接收设备
(m);η为天线效率。 (2) 载噪比
载噪比是指载波功率与噪声功率之比,它是决定卫星
通信线路性能的基本参数,通常用C/Байду номын сангаас表示。
(3) 全向有效辐射功率EIRP 设发射机的功放输出功率为PT,发射天线的增 益为GT,全向有效辐射功率是指PT与天线增益 GT的乘积,则有:EIRP = PT×GT 。
1.系统构成
卫星 天线控制
解调
信源 变换器
发送器 传输信道
接收器
信宿 变换器
信源数字化 语音压缩编码
多址通信
多路复用
调制 (多用户共享资源) 多址联接
2.抗干扰
分集技术 差错控制编码 均衡技术
GMDSS通信设备与业务
第六章 卫星通信绪论
航海学院通信教研室
第六章 卫星通信绪论
一、 卫星通信及其特点 二、 通信卫星 三、 卫星通信频段及主要性能参数 四、 卫星通信中的主要技术 五、 思考题
大气
噪声
电离层闪烁 太阳黑子活动
四、卫星通信频段及主要性能参数
1.卫星通信频段的选择原则:
① 电波应能穿透电离层且传播过程中衰减要小; ② 天线系统接收的外部噪声要小; ③ 有较宽的频带,较大的通信容量,满足信息传输的要求; ④ 能充分利用现有的通信技术; ⑤ 与其它通信、雷达等电子系统间的干扰要小。
3)海事卫星通信主要涉及的多路复用: ① FDM ② TDM
(4) 接收系统品质因数 接收系统品质因数是衡量接收系统好坏的重要 指标。定义为接收天线增益与接收系统噪声温 度之比,也称为G/T值。G/T值较大为好。
四、卫星通信中的主要技术
1.多路复用:在基带内复用
1)定义:同一信道,互不干扰传输多路信号,收端能将各路
信号分离
2)技术难点: 多用户信号的合并和分离
NAVTEX 接收机 EGC 接收机
SART
搜救系统设备
本篇应了解和掌握的主要知识
1 卫星通信基本知识
什么是卫星通信、特点、通信卫星
2 主要技术
多址通信 终端技术
3 海事卫星通信系统
① Inmarsat系统 (B /F、C 船站) ② COSPAS-SARSAT系统 (406MHz示位标)
③ 主要涉及的问题 系统组成、特点、信道构成、 各种通信业务的接续过程
仰角:从地平线仰起到卫星所转动的角度。
赤道轨道 极轨道 倾斜轨道
各种轨道示意图
● ● ●
3. 特殊的一类卫星 → 静止卫星
静止卫星:赤道轨道,高轨道(36000km),卫星运行方向、 周期与地球自转方向、周期相同
特 点:
覆盖面大(42%) 卫星跟踪系统不复杂, 存在盲区 传输损耗和时延大 卫星数量有限。
微波 超短波
短波 长、中波
二、通信卫星
1. 卫星的组成及其作用 组成:
通信装置:转发器 --双工器、接收机、变频器、发射机 天线
转发器的数量决定卫星的容量,可达几十个
控制装置:控制卫星的运行姿态和位置 电源装置:太阳能电池、蓄电池—为电气设备供电 作用: 作为无线通信的中继站,实现远距离无线通信
2. 卫星分类
卫星通信
1)卫星 2)地球站
固定地球站 移动地球站
地面站
车载站
地面站
机载 站
地面站
船载站
2. 卫星通信的特点
优点:
❖ 覆盖区域大,通信距离远 ❖ 便于多址连接 ❖ 机动灵活,不受地理条件的限制 ❖ 频带宽、容量大 ❖ 一次转接,通信质量好,可靠性高 ❖ 通信成本与距离无关
缺点:
❖ 需要先进的空间技术 ❖ 传输距离较远,有较大的信号延迟 ❖ 卫星寿命短,寿命约为3-10年
2.卫星通信的频段选择
1)穿透电离层 频率足够高 传输衰减要小
工作频率增高
2)引入的外部噪声要小
工作频率> 1 GHz时
噪声影响可忽略
3) 但是, 随着频率升高,特别是在10GHz以上时 云、水蒸气、氧气、雨等噪声增加
4) 综合考虑,1 GHz~10GHz是卫星通信的最佳频段, 称为卫星通信的电波之窗
2.卫星通信的频段 :
ITU分配给卫星通信频道现在扩展为117MHz--275GHz
3.卫星通信的主要性能参数
( 1 )天线增益---定向天线增益 天线增益是用来衡量天线朝一个特定方向收发信号的 能力,它是卫星通信系统的一个重要参数,通常用G 表示,定义为定向天线辐射时接收到的最大功率与无 方向性天线辐射时接收到的功率之比。
一、卫星通信及其特点 1. 什么是卫星通信?
1)卫星通信:
卫星作为中继
两个或多个 地球站
间进行的通信
2)地球站: 地球站是指设在地球上(包括地面、 海洋和低层大气层中)的无线电通 信站。
包括:
固定地球站和移动地球站。固定 地球站通常指连接地面用户的地 面站,而移动地球站通常指安装 在移动体上的地球站。
4. 星蚀和日凌中断 1) 日凌中断
条件: 太阳、卫星、地球 依次排列为一直线
原因: 地球站天线对着卫星的同 时也正对着太阳,太阳噪声最大
时间: 每年春分、秋分前后数日, 白天中午
日凌中断
2) 星蚀
条件: 太阳、地球、卫星 依次排列为一直线
原因: 太阳能电池不工作, 蓄电池工作,通信效果受影响
时间: 春分、秋分前后23天,夜间
赤道轨道(ⅰ= 00,轨道面与赤道面重合) 按 倾 角 极轨道 (ⅰ= 900,穿过南北极)
倾斜轨道(00 <ⅰ< 900)
低(h ﹤ 5000 km ) 按 高 度 中(h:5000~20000 km)
高(h > 20000 km )
通信卫星的仰角和方位角 方位角:以正北为基准顺时针转动到卫星在地平线上方向的角度。
星蚀
5. 影响卫星通信的其他因素
1) 摄动现象:
理想情况下卫星应在定点位置按指定的轨道运行,但由 于卫星运行中会受到太阳、地球、月亮的引力的影响及 地球大气层阻力的影响和太阳辐射压力的影响,使卫星 运行的实际轨道不断发生不同程度地偏离理想轨道的现 象,这一现象称为摄动 要控制卫星的运行姿态和位置
2)其他因素:恶劣的气候 降雨
船舶通信设备
MF/HF 设备
SSB台→ 电话通信 NBDP → 电传通信 DSC → 常规和遇险呼叫
VHF 设备 卫通设备
FM 电话通信
DSC(CH70)→ 遇险报警 A/B/F 站
Inmarsat系统设备 C 站 E 站(1.6G EPIRB)
COSPAS系统设备 → 406 MHz EPIRB
MSI接收设备