江苏省13大市2013届高三上学期期末数学试题分类汇编--不等式

合集下载

江苏省13大市2013届高三上学期期末数学试题分类汇编--数列

江苏省13大市2013届高三上学期期末数学试题分类汇编--数列

江苏省13大市2013届高三上学期期末数学试题分类汇编数 列一、填空题1、(常州市2013届高三期末)已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑= ▲ . 答案:2324n n ⋅--2、(连云港市2013届高三期末)正项等比数列{a n }中,311a a =16,则22212l o gl o g a a += ▲ .答案:43、(南京市、盐城市2013届高三期末)在等差数列{}n a 中, 若9753=++a a a , 则其前9项和9S 的值为 ▲ 答案:274、(南通市2013届高三期末)若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:42±.5、(徐州、淮安、宿迁市2013届高三期末)已知等比数列}{n a 的前n 项和为n S ,若62,256382-==S a a a a ,则1a 的值是 ▲ .答案:-26、(扬州市2013届高三期末)数列{}n a 满足111,1(1)n n n a a a a +>-=-,()n N +∈,且122012111a a a +++ =2,则201314a a -的最小值为 ▲ . 答案:27-7、(镇江市2013届高三期末)在等比数列{}n a 中,n S 为其前n 项和,已知5423a S =+,6523a S =+,则此数列的公比q 为 ▲ .答案:3;8、(镇江市2013届高三期末) 观察下列等式:31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n = ▲ . 答案:()nn 2111⋅+-二、解答题1、(常州市2013届高三期末) 已知数列{}n a 是等差数列,12315a a a ++=,数列{}n b 是等比数列,12327b b b =.(1)若1243,a b a b ==.求数列{}n a 和{}n b 的通项公式;(2)若112233,,a b a b a b +++是正整数且成等比数列,求3a 的最大值.答案:解:(1)由题得225,3a b ==,所以123a b ==,从而等差数列{}n a 的公差2d =,所以21n a n =+,从而349b a ==,所以13n n b -=. ……………………3分 (2)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则15a d =-,13b q=,35a d =+,33b q =.因为112233,,a b a b a b +++成等比数列,所以2113322()()()64a b a b a b +⋅+=+=. 设1133a b ma b n+=⎧⎨+=⎩,*,m n N ∈,64mn =,则3553d mq d q n ⎧-+=⎪⎨⎪++=⎩,整理得,2()5()800d m n d m n +-++-=.解得2(10)362n m m n d -++--=(舍去负根).35a d =+ ,∴要使得3a 最大,即需要d 最大,即n m -及2(10)m n +-取最大值.*,m n N ∈ ,64mn =,∴当且仅当64n =且1m =时,n m -及2(10)m n +-取最大值.从而最大的637612d +=, 所以,最大的3737612a +=………16分 2、(连云港市2013届高三期末)已知数列{a n }中,a 2=a (a 为非零常数),其前n 项和S n 满足:S n =n (a n -a 1)2(n ∈N*).(1)求数列{a n }的通项公式;(2)若a =2,且21114m n a S -=,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足n a b p +≤的最大项恰为第3p -2项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由. (1)证明:由已知,得a 1=S 1=1⋅(a 1-a 1)2=0,∴S n =na n2, ………………………2分则有S n +1=(n +1)a n +12,∴2(S n +1-S n )=(n +1)a n +1-na n ,即(n -1)a n +1=na n n ∈N*, ∴na n +2=(n +1)a n +1,两式相减得,2a n +1=a n +2+a n n ∈N*, ……………………………4分 即a n +1-a n +1=a n +1-a n n ∈N*, 故数列{a n }是等差数列.又a 1=0,a 2=a ,∴a n =(n -1)a . ………………………………6分 (2)若a =2,则a n =2(n -1),∴S n =n (n -1).由21114m n a S -=,得n 2-n +11=(m -1)2,即4(m -1)2-(2n -1)2=43, ∴(2m +2n -3)(2m -2n -1)=43. ………………………………8分 ∵43是质数, 2m +2n -3>2m -2n -1, 2m +2n -3>0, ∴⎩⎨⎧2m -2n -1=12m +2n -3=43,解得m =12,n =11. ………………………………10分 (III)由a n +b ≤p ,得a (n -1)+b ≤p .若a <0,则n ≥p -ba +1,不合题意,舍去; ……………………………11分若a >0,则n ≤p -ba+1.∵不等式a n +b ≤p 成立的最大正整数解为3p -2,∴3p -2≤p -ba +1<3p -1, ………………………………13分即2a -b <(3a -1)p ≤3a -b ,对任意正整数p 都成立.∴3a -1=0,解得a =13, ………………………………15分此时,23-b <0≤1-b ,解得23<b ≤1.故存在实数a 、b 满足条件, a 与b 的取值范围是a =13,23<b ≤1. ………16分3、(南京市、盐城市2013届高三期末)若数列{}n a 是首项为612t -, 公差为6的等差数列;数列{}n b 的前n 项和为3n nS t =-.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n b 是等比数列, 试证明: 对于任意的(,1)n n N n ∈≥, 均存在正整数n c , 使得1n n c b a +=, 并求数列{}n c 的前n 项和n T ;(3)设数列{}n d 满足n n n d a b =⋅, 且{}n d 中不存在这样的项k d , 使得“1k k d d -<与1k k d d +<”同时成立(其中2≥k , *∈N k ), 试求实数的取值范围.答案:解: (1)因为{}n a 是等差数列,所以(612)6(1)612n a t n n t =-+-=-…………2分 而数列{}n b 的前n项和为3n n S t =-,所以当2n ≥时,11(31)(31)23n n n n b --=---=⨯,又113b S t ==-,所以13,123,2n n t n b n --=⎧=⎨⨯≥⎩……………………4分 (2)证明:因为{}n b 是等比数列,所以113232t --=⨯=,即1t =,所以612n a n =- ………………5分对任意的(,1)n n N n ∈≥,由于11123636(32)12n n n n b --+=⨯=⨯=⨯+-,令1*32n nc N -=+∈,则116(23)12n n c n a b -+=+-=,所以命题成立 …7分数列{}n c 的前n 项和13112321322nn n T n n -=+=⨯+-- …………………9分(3)易得6(3)(12),14(2)3,2n nt t n d n t n --=⎧=⎨-≥⎩, 由于当2n ≥时,114(12)34(2)3n n n n d d n t n t ++-=+---38[(2)]32n n t =--⨯,所以①若3222t -<,即74t <,则1n n d d +>,所以当2n ≥时,{}n d 是递增数列,故由题意得12d d ≤,即6(3)(12)36(22)t t t --≤-,解得5975977444t ---+≤≤<,………13分②若32232t ≤-<,即7944t ≤<,则当3n ≥时,{}n d 是递增数列,, 故由题意得23d d =,即234(22)34(23)3t t -=-,解得74t =…………………14分③若321(,3)2m t m m N m ≤-<+∈≥,即35(,3)2424m m t m N m +≤<+∈≥,则当2n m ≤≤时,{}n d 是递减数列, 当1n m ≥+时,{}n d 是递增数列, 则由题意,得1m m d d +=,即14(2)34(21)3m m t m t m +-=--,解得234m t +=…………15分 综上所述,的取值范围是59759744t ---+≤≤或234m t +=(,2)m N m ∈≥……16分4、(南通市2013届高三期末)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+.④③+④,得212n n n na na na +++=,即212n n n a a a +++=. …………………………7分 又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ………………………………………………………………9分 (3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,21333p qp q=+. ……………………………………………………11分 所以,213()33q p p q =-(☆).易知(p ,q )=(2,3)为方程(☆)的一组解. ………………………………………13分 当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133pp -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.5、(徐州、淮安、宿迁市2013届高三期末)已知,0,0<>b a 且,0≠+b a 令,,11b b a a ==且对任意正整数k ,当0≥+k k b a 时,;43,412111k k k k k b b b a a =-=++当0<+k k b a 时,.43,214111k k k k k a a b a b =+-=++(1) 求数列}{n n b a +的通项公式;(2) 若对任意的正整数n ,0<+n n b a 恒成立,问是否存在b a ,使得}{n b 为等比数列?若存在,求出b a ,满足的条件;若不存在,说明理由; (3) 若对任意的正整数,0,<+n n b a n 且,43122+=n n b b 求数列}{n b 的通项公式. ⑴当0n n a b +≥时,11124n n n a a b +=- 且134n n b b +=,所以111131()2442n n n n n n n a b a b b a b +++=-+=+,……………………………………2分又当0n n a b +<时,11142n n n b a b +=-+且134n n a a +=,113111()4422n n n n n n n a b a a b a b +++=-+=+,…………………………………………4分因此,数列{}n n b a +是以b a +为首项,12为公比的等比数列,所以,n n b a +11()2n a b -⎛⎫=+ ⎪⎝⎭.………………………………………………………5分⑵因为0n n a b +<,所以n n a a 431=+,所以134n n a a -⎛⎫= ⎪⎝⎭,11()2n n n b a b a -⎛⎫=+- ⎪⎝⎭1113()24n n a b a --⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,…………………………………8分假设存在a ,b ,使得{}n b 能构成等比数列,则1b b =,224b a b -=,34516b ab -=,故2245()()416b a b ab --=,化简得0=+b a ,与题中0a b +≠矛盾, 故不存在a ,b 使得{}n b 为等比数列. ……………………………………………10分 ⑶因为0n n a b <+且12243+=n n b b ,所以121222141--+-=n n n b a b 所以1243+n b 21212121211113142444n n n n n a b a b b -----=-+=-+- 所以2121212131()()44n n n n b b a b +----=-+,……………………………………………12分由⑴知,2221211()2n n n a b a b ---⎛⎫+=+ ⎪⎝⎭,所以222121132n n n a b b b -+-+⎛⎫-=- ⎪⎝⎭)()(321213112----+-+=n n n b b b b b b246241111132222n a b b -⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11114()141139414n n a b a b b b --⎡⎤⎛⎫-⎢⎥⎪⎡⎤++⎛⎫⎝⎭⎢⎥=-=--⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦,…………………………………13分22133()114434nn n a b b b b +⎡⎤+⎛⎫==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,………………………………………………14分 所以,1224()11,943()1-1,434n n na b b n b a b b n -⎧⎡⎤+⎛⎫⎪⎢⎥-- ⎪⎪⎢⎥⎝⎭⎪⎣⎦=⎨⎡⎤⎪+⎛⎫⎢⎥⎪- ⎪⎢⎥⎝⎭⎪⎣⎦⎩.为奇数时,为偶数时…………………………………16分6、(苏州市2013届高三期末)设数列{}n a 的前n 项和为n S ,满足21n n a S An Bn +=++(0A ≠).(1)若132a =,294a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式; (2)已知数列{}n a 是等差数列,求1B A-的值.7、(泰州市2013届高三期末)已知数列16n a n =-,(1)15nn b n =--,其中*n N ∈ (1)求满足1n a +=n b 的所有正整数n 的集合 (2)n ≠16,求数列nnb a 的最大值和最小值 (3)记数列{}n n a b 的前 n 项和为n S ,求所有满足22m n S S =(m<n )的有序整数对(m,n) (1)a n +1=|b n |,n -15=|n -15|,当n ≥15时,a n +1=|b n |恒成立, 当n <15时,n -15=-(n -15) ,n =15 n 的集合{n |n ≥15,n ∈N *}……………………………………….…………….…………….4分(2)nn a b =1615)1(---n n n(i)当n>16时,n 取偶数n n a b =1615--n n =1+161-n当n=18时(nn a b )max =23无最小值n 取奇数时nn a b =-1-161-n n=17时(nna b )min =-2无最大值 ……………………………………………………………8分 (ii)当n<16时,nna b =16)15()1(---n n n当n 为偶数时nn a b =16)15(---n n =-1-161-nn=14时(nn a b )max =-21(n n a b )min =-1413当n 奇数n n a b =1615--n n =1+161-n , n=1 , (nn a b )max =1-151=1514,n =15,(nna b )min =0 ………………………………………………11分 综上,nn a b 最大值为23(n =18)最小值-2(n =17)……………….……..……………….12分(3)n≤15时,b n =(-1)n-1(n-15),a 2k -1b 2k -1+a 2k b 2k =2 (16-2k )≥0 ,n >15时,b n =(-1)n (n -15),a 2k -1b 2k -1+a 2k b 2k =2 (2k -16) >0,其中a 15b 15+a 16b 16=0∴S 16=S 14 m =7, n =8…………………………………………………………….16分8、(无锡市2013届高三期末)已知数列{a n }中,a 1=2,n ∈N +,a n >0,数列{a n }的前n 项和S n ,且满足1122n n n a S S ++=-。

江苏省13大市2013届高三上学期期末数学试题分类汇编AqqPPH

江苏省13大市2013届高三上学期期末数学试题分类汇编AqqPPH

江苏省13大市2013届高三上学期期末数学试题分类汇编导数及其应用1、(南通市2013届高三期末)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ .答案:1e 2y x =-. 2、(苏州市2013届高三期末)过坐标原点作函数ln y x =图像的切线,则切线斜率为 . 答案:1e3、(泰州市2013届高三期末)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为 (0,0)4、(扬州市2013届高三期末)已知函数xmx x f -=ln )((R m ∈)在区间],1[e 上取得最小值4,则=m ▲ . e 3-5、(常州市2013届高三期末)第八届中国花博会将于2013年9月在常州举办,展览园指挥中心所用地块的形状是大小一定的矩形ABCD ,BC a =,CD b =.a ,b 为常数且满足b a <.组委会决定从该矩形地块中划出一个直角三角形地块AEF 建游客休息区(点E ,F 分别在线段AB ,AD 上),且该直角三角形AEF 的周长为(2l b >),如图.设AE x =,△AEF 的面积为S .(1)求S 关于x 的函数关系式;(2)试确定点E 的位置,使得直角三角形地 块AEF 的面积S 最大,并求出S 的最大值. 解:(1)设AF y =,则22x y x y l +++=,整理,得222()l lxy l x -=-.………3分 2(2)4(12)l l x S lx x xy --==,](0,x b ∈. …………………………………4分(2)()()]22'222422222,(0,4224l x lx l l S x l x l x b x l x l ⎛⎫⎛⎫-+-+=⋅=-⋅-∈ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭∴当222b l -≤时,'0S >,S 在](0,b 递增,故当x b =时,()()max 24bl b l S b l -=-; 当222b l ->时,在220,2x l ⎛⎫-∈ ⎪ ⎪⎝⎭上,'0S >,S 递增,在22,2x l b ⎛⎫-∈ ⎪ ⎪⎝⎭上,'0S <,S 递减,故当222x l -=时,2max 3224S l -=.6、(连云港市2013届高三期末)(连云港市2013届高三期末)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y (万元)随医疗总费用x (万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;(2)若该单位决定采用函数模型y =x -2ln x +a (a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)【解】(1)函数y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①, ……………2分 当x =10时,y 有最大值7.4万元,小于8万元,满足条件③. ………………………4分但当x =3时,y =2920<32,即y ≥x2不恒成立,不满足条件②,故该函数模型不符合该单位报销方案. ………………………6分(2)对于函数模型y =x -2ln x +a ,设f (x )= x -2ln x +a ,则f ´(x )=1-2x =x -2x≥0.所以f (x )在[2,10]上是增函数,满足条件①,由条件②,得x -2ln x +a ≥x 2,即a ≥2ln x -x2在x ∈[2,10]上恒成立,令g (x )=2ln x -x 2,则g ´(x )=2x -12=4-x2x,由g ´(x )>0得x <4,∴g (x )在(0,4)上增函数,在(4,10)上是减函数.∴a ≥g (4)=2ln4-2=4ln2-2. ………………10分 由条件③,得f (10)=10-2ln10+a ≤8,解得a ≤2ln10-2. ……………………12分 另一方面,由x -2ln x +a ≤x ,得a ≤2ln x 在x ∈[2,10]上恒成立, ∴a ≤2ln2,综上所述,a 的取值范围为[4ln2-2,2ln2],所以满足条件的整数a 的值为1. ……………14分7、(南京市、盐城市2013届高三期末)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; 若函数3()1x ag x x +=+在区间[3,10]上封闭, 求实数a 的取值范围; 若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值.解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0]………2分 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的……………… 4分 (2)因为33()311x a a g x x x +-==+++, ①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意……………5分 ②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a++,由309[,]114a a ++[3,10]⊆,得303119104aa +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得331a ≤≤,故331a <≤……………………7分 ③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 …………………8分 综上所述, 实数a 的取值范围是331a ≤≤……………………………9分(3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-, 所以()h x 在(,1)-∞-上单调递减,在(1,1)-上递增,在(1,)+∞上递增.①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解………10分②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意…………11分 ③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩,又33()3()3a h a a a b h b b b ⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩ ………12分 ④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b ah a b≥⎧⎨≤⎩ (*),而,a b Z ∈,经检验,均不合(*)式……………………………13分⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意…………14分 ⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a ah b b≥⎧⎨≤⎩,此时无解 ……………15分综上所述,所求整数,a b 的值为2,2a b =-=…………………16分8、(南通市2013届高三期末)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好. (1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?ABCD(第17题)B 'P解:(1)由题意,AB x =,2BC x =-.因2x x >-,故12x <<. …………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-.由 222PA AD DP =+,得 2221()(2)2(1)x y x y y x -=-+⇒=-,12x <<.……5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………6分23()222x x=-+≤-,当且仅当2x =∈(1,2)时,S 1取得最大值.……………………………………8分 故当薄板长为2米,宽为22-米时,节能效果最好. ……………………9分 (3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x=-+--=-+,12x <<.…………………………10分于是,33222142(2)022x S x x x x-+'=--==⇒=.……………………………11分 关于x 的函数2S 在3(1,2)上递增,在3(2,2)上递减.所以当32x =时,2S 取得最大值. …………………………13分故当薄板长为32米,宽为322-米时,制冷效果最好. ………………………14分9、(徐州、淮安、宿迁市2013届高三期末)已知函数).1,0(ln )(2≠>-+=a a a x x a x f x (1) 求函数)(x f 在点))0(,0(f 处的切线方程;(2) 求函数)(x f 单调区间;(3) 若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a 的取值范围. ⑴因为函数2()ln (0,1)x f x a x x a a a =->≠+,所以()ln 2ln x f x a a x a '=-+,(0)0f '=,…………………………………………2分 又因为(0)1f =,所以函数()f x 在点(0,(0))f 处的切线方程为1y =. …………4分 ⑵由⑴,()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.因为当0,1a a >≠时,总有()f x '在R 上是增函数, ………………………………8分 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+.………………………………………………10分 ⑶因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立,而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤,所以只要max min ()()e 1f x f x --≥即可.……………………………………………12分 又因为x ,()f x ',()f x 的变化情况如下表所示:x(,0)-∞0 (0,)∞+ ()f x '-+()f x减函数极小值增函数所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++, 令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-;当01a <<时,()0g a <,即(1)(1)f f <-.………………………………………14分所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a +-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+U .………………………………16分10、(泰州市2013届高三期末)已知函数f(x)=(x-a)2()x b -,a,b 为常数, (1)若a b ≠,求证:函数f(x)存在极大值和极小值(2)设(1)中 f(x) 取得极大值、极小值时自变量的分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),如果直线AB 的斜率为12-,求函数f(x)和/()f x 的公共递减区间的长度 (3)若/()()f x mf x ≥对于一切x R ∈ 恒成立,求实数m,a,b 满足的条件解:(1)[])2(3)()(/b a x b x x f +--= …………………………………………………1分b a ≠Θ32b a b +≠∴0)(,=∴x f 有两不等 b 和32ba + ∴f (x )存在极大值和极小值 ……………………………….……………………………4分(2)①若a =b ,f (x )不存在减区间②若a >b 时由(1)知x 1=b ,x 2=32ba + ∴A (b ,0)B ⎪⎪⎭⎫⎝⎛--+9)(2,322b a b a 21329)(22-=-+-∴b b a b a ∴)(3)(22b a b a -=- 23=-∴b a○3当a <b 时 x 1=32ba +,x 2=b 。

江苏省13大市2013高三数学上学期期末试题分类汇编 三角函数 苏教版

江苏省13大市2013高三数学上学期期末试题分类汇编 三角函数 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编三角函数一、填空题1、(常州市2013届高三期末)函数(1)()cos cos22x x f x -=p p 的最小正周期为 ▲ . 答案:22、(连云港市2013届高三期末)如果函数y =3sin(2x +)(0<<)的图象关于点(3,0)中心对称,则= ▲ . 答案:3;3、(南京市、盐城市2013届高三期末)将函数sin(2)3y x π=-的图像向左平移ϕ()0>ϕ个单位后, 所得到的图像对应的函数为奇函数, 则ϕ的最小值为 ▲ . 答案:6π4、(徐州、淮安、宿迁市2013届高三期末)已知角ϕ的终边经过点)1,1(-P ,点),(),,(2211y x B y x A 是函数)0)(sin()(>+=ωϕωx x f 图象上的任意两点,若2)()(21=-x f x f 时,21x x -的最小值为3π,则)2(πf 的值是 ▲ .5、(苏州市2013届高三期末)(苏州市2013届高三期末)已知θ为锐角,4sin(15)5θ+=,则cos(215)θ-= .6、(无锡市2013届高三期末)在△ABC 中,∠A=45o,∠C=105o,AC 的长度为 . 答案:17、(扬州市2013届高三期末)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,且3,sin 2sin a b C A ===,则sin A = ▲ .8、(镇江市2013届高三期末)5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ . 答案:19、(镇江市2013届高三期末) 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .41-10、(南京市、盐城市2013届高三期末)在ABC ∆中, 若9cos 24cos 25A B -=, 则BCAC的值为 ▲ .2311、(南京市、盐城市2013届高三期末)若x ,y 满足22221log [4cos ()]ln ln 4cos ()22y e xy y xy +=-+, 则cos 4y x 的值为 ▲ . 答案:-1 二、解答题1、(常州市2013届高三期末)已知,αβ均为锐角,且3sin 5α=,1tan()3αβ-=-. (1)求sin()αβ-的值; (2)求cos β的值. 解:(1)∵π,(0,)2αβ∈,从而ππ22αβ-<-<.又∵1tan()03αβ-=-<,∴π02αβ-<-<. …………………………4分∴sin()αβ-=. ………………………………6分(2)由(1)可得,cos()αβ-=∵α为锐角,3sin 5α=,∴4cos 5α=. ……………………………………10分∴cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+- …………12分=43(55+⨯. …………………………14分 2、(连云港市2013届高三期末)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c cos B +b cos C =3a cos B .(1)求cos B 的值; (2)若→BA ⋅→BC =2,求b 的最小值. 解:(1)因为c cos B +b cos C =3a cos B ,由正弦定理,得sin C cos B +sin B cos C =3sin A cos B ,即sin(B +C )=3sin A cos B . ………………………………5分又sin(B+C )=sin A 0,所以cos B =13. ……………………………7分(2)由→BA ⋅→BC =2,得ac cos B =2,所以ac =6. ………………………9分由余弦定理,得b 2=a 2+c 22ac cos B 2ac 23ac =8,当且仅当a =c 时取等号,故b 的最小值为2 2. (14)3、(南京市、盐城市2013届高三期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cos(A +6π)=sinA ,求A 的值; (2)若cosA =14,4b =c ,求sinB 的值.4、(南通市2013届高三期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. …………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立).即 2C A B =+, 得 3C π=. ………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, ………………………………………8分 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.……………14分5、(徐州、淮安、宿迁市2013届高三期末)在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++ (1) 求角A 值;(2) 求C B cos sin 3-的最大值.解:⑴因为(sin sin sin )(sin sin sin )3sin sin A B C B C A B C +++-=,由正弦定理,得()()3a b c b c a bc +++-=,…………………………………………2分所以222b c a bc +-=,所以2221cos 22b c a A bc +-==,………………………………4分 因为(0,)A ∈π,所以3A π=.…………………………………………………………6分⑵ 由3A π=,得23B C π+=cos B C -2cos()3B B π--1(cos )2B B B =--sin()6B π=+,……………………………………10分因为203B π<<,所以666B ππ5π<<+,……………………………………………12分当62B ππ=+,即3B π=cos B C -的最大值为1. ……………………14分6、(苏州市2013届高三期末)已知函数()sin()f x A x ωϕ=+,(其中0,0,02A πωϕ>><<)的周期为π,且图像上有一个最低点为2(,3)3M π- (1)求()f x 的解析式; (2)求函数()()4y f x f x π=++的最大值及对应x 的值.(苏州市2013届高三期末)在路边安装路灯,灯柱AB 与地面垂直,灯杆BC 与灯柱AB 所在平面与道路垂直,且120ABC ∠=,路灯C 采用锥形灯罩,射出的光线如图中阴影部分所示,已知60ACD ∠=,路宽24AD =米,设灯柱高AB h =(米),ACB θ∠=(3045θ≤≤)(1)求灯柱的高h (用θ表示);(2)若灯杆BC 与灯柱AB 所用材料相同,记此用料长度和为S ,求S 关于θ的函数表达式,并求出S 的最小值.C B A D7、(泰州市2013届高三期末)如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,AB =1,BC =2,现要将些铁皮剪出一个等腰三角形PMN ,其底边MN ⊥BC 。

江苏省13大市高三数学上学期期末试题分类汇编 数列 苏教版

江苏省13大市高三数学上学期期末试题分类汇编 数列 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编数 列一、填空题1、(常州市2013届高三期末)已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑= ▲ . 答案:2324n n ⋅--2、(连云港市2013届高三期末)正项等比数列{a n }中,311a a =16,则22212log log a a += ▲ . 答案:43、(南京市、盐城市2013届高三期末)在等差数列{}n a 中, 若9753=++a a a , 则其前9项和9S 的值为 ▲ 答案:274、(南通市2013届高三期末)若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:±.5、(徐州、淮安、宿迁市2013届高三期末)已知等比数列}{n a 的前n 项和为n S ,若62,256382-==S a a a a ,则1a 的值是 ▲ .答案:-26、(扬州市2013届高三期末)数列{}n a 满足111,1(1)n n n a a a a +>-=-,()n N +∈,且122012111a a a +++=2,则201314a a -的最小值为 ▲ .答案:27-7、(镇江市2013届高三期末)在等比数列{}n a 中,n S 为其前n 项和,已知5423a S =+,6523a S =+,则此数列的公比q 为 ▲ .答案:3;8、(镇江市2013届高三期末) 观察下列等式: 31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n n +1×12n = ▲ . 答案:()nn 2111⋅+-二、解答题1、(常州市2013届高三期末) 已知数列{}n a 是等差数列,12315a a a ++=,数列{}n b 是等比数列,12327b b b =.(1)若1243,a b a b ==.求数列{}n a 和{}n b 的通项公式;(2)若112233,,a b a b a b +++是正整数且成等比数列,求3a 的最大值.答案:解:(1)由题得225,3a b ==,所以123a b ==,从而等差数列{}n a 的公差2d =,所以21n a n =+,从而349b a ==,所以13n n b -=. ……………………3分 (2)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则15a d =-,13b q=,35a d =+,33b q =.因为112233,,a b a b a b +++成等比数列,所以2113322()()()64a b a b a b +⋅+=+=. 设1133a b ma b n+=⎧⎨+=⎩,*,m n N ∈,64mn =,则3553d mq d q n ⎧-+=⎪⎨⎪++=⎩,整理得,2()5()800d m n d m n +-++-=.解得2(10)36n m m n d -++--=(舍去负根).35a d =+,∴要使得3a 最大,即需要d 最大,即n m -及2(10)m n +-取最大值.*,m n N ∈,64mn =,∴当且仅当64n =且1m =时,n m -及2(10)m n +-取最大值.从而最大的d =,所以,最大的3a =………16分 2、(连云港市2013届高三期末)已知数列{a n }中,a 2=a (a 为非零常数),其前n 项和S n满足:S n =n (a n -a 1)2(n ∈N*).(1)求数列{a n }的通项公式;(2)若a =2,且21114m n a S -=,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足n a b p +≤的最大项恰为第3p -2项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由. (1)证明:由已知,得a 1=S 1=1⋅(a 1-a 1)2=0,∴S n =na n2, ………………………2分则有S n +1=(n +1)a n +12,∴2(S n +1-S n )=(n +1)a n +1-na n ,即(n -1)a n +1=na n n ∈N*, ∴na n +2=(n +1)a n +1,两式相减得,2a n +1=a n +2+a n n ∈N*, ……………………………4分 即a n +1-a n +1=a n +1-a n n ∈N*, 故数列{a n }是等差数列.又a 1=0,a 2=a ,∴a n =(n -1)a . ………………………………6分 (2)若a =2,则a n =2(n -1),∴S n =n (n -1).由21114m n a S -=,得n 2-n +11=(m -1)2,即4(m -1)2-(2n -1)2=43, ∴(2m +2n -3)(2m -2n -1)=43. ………………………………8分 ∵43是质数, 2m +2n -3>2m -2n -1, 2m +2n -3>0, ∴⎩⎨⎧2m -2n -1=12m +2n -3=43,解得m =12,n =11. ………………………………10分 (III)由a n +b ≤p ,得a (n -1)+b ≤p .若a <0,则n ≥p -ba+1,不合题意,舍去; ……………………………11分若a >0,则n ≤p -ba+1. ∵不等式a n +b ≤p 成立的最大正整数解为3p -2,∴3p -2≤p -ba+1<3p -1, ………………………………13分即2a -b <(3a -1)p ≤3a -b ,对任意正整数p 都成立.∴3a -1=0,解得a =13, ………………………………15分此时,23-b <0≤1-b ,解得23<b ≤1.故存在实数a 、b 满足条件, a 与b 的取值范围是a =13,23<b ≤1. ………16分3、(南京市、盐城市2013届高三期末)若数列{}n a 是首项为612t -, 公差为6的等差数列;数列{}n b 的前n 项和为3n nS t =-.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n b 是等比数列, 试证明: 对于任意的(,1)n n N n ∈≥, 均存在正整数n c , 使得1n n c b a +=, 并求数列{}n c 的前n 项和n T ;(3)设数列{}n d 满足n n n d a b =⋅, 且{}n d 中不存在这样的项k d , 使得“1k k d d -<与1k k d d +<”同时成立(其中2≥k , *∈N k ), 试求实数的取值范围.答案:解: (1)因为{}n a 是等差数列,所以(612)6(1)612n a t n n t =-+-=-…………2分 而数列{}n b 的前n项和为3n n S t =-,所以当2n ≥时,11(31)(31)23n n n n b --=---=⨯,又113b S t ==-,所以13,123,2n n t n b n --=⎧=⎨⨯≥⎩ ……………………4分 (2)证明:因为{}n b 是等比数列,所以113232t --=⨯=,即1t =,所以612n a n =- ………………5分对任意的(,1)n n N n ∈≥,由于11123636(32)12n n n n b --+=⨯=⨯=⨯+-,令1*32n nc N -=+∈,则116(23)12n n c n a b -+=+-=,所以命题成立 …7分数列{}n c 的前n 项和13112321322nn n T n n -=+=⨯+-- …………………9分(3)易得6(3)(12),14(2)3,2n nt t n d n t n --=⎧=⎨-≥⎩, 由于当2n ≥时, 114(12)34(2)3n n n n d d n t n t ++-=+---38[(2)]32n n t =--⨯,所以①若3222t -<,即74t <,则1n n d d +>,所以当2n ≥时,{}n d 是递增数列,故由题意得12d d ≤,即6(3)(12)36(22)t t t --≤-,74t ≤≤<,………13分②若32232t ≤-<,即7944t ≤<,则当3n ≥时,{}n d 是递增数列,, 故由题意得23d d =,即234(22)34(23)3t t -=-,解得74t =…………………14分③若321(,3)2m t m m N m ≤-<+∈≥,即35(,3)2424m m t m N m +≤<+∈≥,则当2n m ≤≤时,{}n d 是递减数列, 当1n m ≥+时,{}n d 是递增数列, 则由题意,得1m m d d +=,即14(2)34(21)3m m t m t m +-=--,解得234m t +=…………15分综上所述,t ≤≤234m t +=(,2)m N m ∈≥……16分4、(南通市2013届高三期末)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+.④③+④,得212n n n na na na +++=,即212n n n a a a +++=. …………………………7分 又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ………………………………………………………………9分 (3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,21333p qp q=+. ……………………………………………………11分 所以,213()33q p p q =-(☆). 易知(p ,q )=(2,3)为方程(☆)的一组解. ………………………………………13分 当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133pp -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.5、(徐州、淮安、宿迁市2013届高三期末)已知,0,0<>b a 且,0≠+b a 令,,11b b a a ==且对任意正整数k ,当0≥+k k b a 时,;43,412111k k k k k b b b a a =-=++当0<+k k b a 时,.43,214111k k k k k a a b a b =+-=++(1) 求数列}{n n b a +的通项公式;(2) 若对任意的正整数n ,0<+n n b a 恒成立,问是否存在b a ,使得}{n b 为等比数列?若存在,求出b a ,满足的条件;若不存在,说明理由; (3) 若对任意的正整数,0,<+n n b a n 且,43122+=n n b b 求数列}{n b 的通项公式. ⑴当0n n a b +≥时,11124n n n a a b +=- 且134n n b b +=, 所以111131()2442n n n n n n n a b a b b a b +++=-+=+,……………………………………2分又当0n n a b +<时,11142n n n b a b +=-+且134n n a a +=,113111()4422n n n n n n n a b a a b a b +++=-+=+,…………………………………………4分因此,数列{}n n b a +是以b a +为首项,12为公比的等比数列,所以,n n b a +11()2n a b -⎛⎫=+ ⎪⎝⎭.………………………………………………………5分⑵因为0n n a b +<,所以n n a a 431=+,所以134n n a a -⎛⎫= ⎪⎝⎭,11()2n n n b a b a -⎛⎫=+- ⎪⎝⎭1113()24n n a b a --⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,…………………………………8分假设存在a ,b ,使得{}n b 能构成等比数列,则1b b =,224b a b -=,34516b ab -=, 故2245()()416b a b ab --=,化简得0=+b a ,与题中0a b +≠矛盾, 故不存在a ,b 使得{}n b 为等比数列. ……………………………………………10分 ⑶因为0n n a b <+且12243+=n n b b ,所以121222141--+-=n n n b a b 所以1243+n b 21212121211113142444n n n n n a b a b b -----=-+=-+-所以2121212131()()44n n n n b b a b +----=-+,……………………………………………12分由⑴知,2221211()2n n n a b a b ---⎛⎫+=+ ⎪⎝⎭,所以222121132n n n a b b b -+-+⎛⎫-=- ⎪⎝⎭)()(321213112----+-+=n n n b b b b b b246241111132222n a b b -⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11114()141139414n n a b a b b b --⎡⎤⎛⎫-⎢⎥⎪⎡⎤++⎛⎫⎝⎭⎢⎥=-=--⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦,…………………………………13分 22133()114434n n n a b b b b +⎡⎤+⎛⎫==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,………………………………………………14分所以,1224()11,943()1-1,434n n na b b n b a b b n -⎧⎡⎤+⎛⎫⎪⎢⎥-- ⎪⎪⎢⎥⎝⎭⎪⎣⎦=⎨⎡⎤⎪+⎛⎫⎢⎥⎪- ⎪⎢⎥⎝⎭⎪⎣⎦⎩.为奇数时,为偶数时…………………………………16分6、(苏州市2013届高三期末)设数列{}n a 的前n 项和为n S ,满足21n n a S An Bn +=++(0A ≠).(1)若132a =,294a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式;(2)已知数列{}n a 是等差数列,求1B A-的值.7、(泰州市2013届高三期末)已知数列16n a n =-,(1)15nn b n =--,其中*n N ∈ (1)求满足1n a +=n b 的所有正整数n 的集合 (2)n ≠16,求数列nnb a 的最大值和最小值 (3)记数列{}n n a b 的前 n 项和为n S ,求所有满足22m n S S =(m<n )的有序整数对(m,n) (1)a n +1=|b n |,n -15=|n -15|,当n ≥15时,a n +1=|b n |恒成立, 当n <15时,n -15=-(n -15) ,n =15n 的集合{n |n ≥15,n ∈N *}……………………………………….…………….…………….4分(2)nn a b =1615)1(---n n n(i)当n>16时,n 取偶数n n a b =1615--n n =1+161-n当n=18时(nn a b )max =23无最小值n 取奇数时nn a b =-1-161-n n=17时(nna b )min =-2无最大值 ……………………………………………………………8分 (ii)当n<16时,nna b =16)15()1(---n n n当n 为偶数时nn a b =16)15(---n n =-1-161-nn=14时(nn a b )max =-21(n n a b )min =-1413当n 奇数n n a b =1615--n n =1+161-n , n=1 , (nn a b )max =1-151=1514,n =15,(nna b )min =0 ………………………………………………11分 综上,nn a b 最大值为23(n =18)最小值-2(n =17) (12)分(3)n≤15时,b n =(-1)n-1(n-15),a 2k -1b 2k -1+a 2k b 2k =2 (16-2k )≥0 ,n >15时,b n =(-1)n(n -15),a 2k -1b 2k -1+a 2k b 2k =2 (2k -16) >0,其中a 15b 15+a 16b 16=0∴S 16=S 14 m =7, n =8…………………………………………………………….16分8、(无锡市2013届高三期末)已知数列{a n }中,a 1=2,n∈N +,a n >0,数列{a n }的前n 项和S n ,且满足1122n n n a S S ++=-。

江苏省13大市2013届高三上学期期末数学试题分类汇编--不等式Word版含答案

江苏省13大市2013届高三上学期期末数学试题分类汇编--不等式Word版含答案

江苏省13大市2013届高三上学期期末数学试题分类汇编不等式1、(常州市2013届高三期末)已知实数,x y 同时满足54276x y --+=,2741log log 6y x -≥,2741y x -≤,则x y +的取值范围是 ▲ . 答案:56⎧⎫⎨⎬⎩⎭2、(连云港市2013届高三期末)关于x 的不等式x 2-ax +2a <0的解集为A ,若集合A 中恰有两个整数,则实数a 的取值范围是 ▲ .答案:125[1,)(,9]33--U3、(南京市、盐城市2013届高三期末)设,x y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x , 则目标函数23z x y =+的最大值为 ▲答案:264、(南通市2013届高三期末)已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,则λ的最大值为 ▲ . 答案:-2.5、(徐州、淮安、宿迁市2013届高三期末)已知实数y x ,满足约束条件⎪⎩⎪⎨⎧≤+++≥≥0,12,0k y x x y x (k为常数),若目标函数y x z +=2的最大值是311,则实数k 的值是 ▲ . 答案:-36、(苏州市2013届高三期末)已知()1f x x x =+,则11()()42f x f -<的解集是 . 答案:7、(无锡市2013届高三期末)已知变量x ,y 满足约束条件004x y y x ≤⎧⎪≥⎨⎪-≤⎩,表示平面区域M ,若-4≤a≤t 时,动直线x+y=a 所经过的平面区域M 的面积为7.则t= .答案:28、(扬州市2013届高三期末)设,x y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥52420y x y x x ,则y x z -=2的最大值是 ▲ . 答案:39、(镇江市2013届高三期末)已知x ,y 为正数,则22x yx y x y+++的最大值为 ▲ . 答案:3210、(徐州、淮安、宿迁市2013届高三期末)若对满足条件)0,0(3>>=++y x xy y x 的任意y x ,,01)()(2≥++-+y x a y x 恒成立,则实数a 的取值范围是 ▲ 答案:37(,]6-∞ 11、(苏州市2013届高三期末已知实数x ,y 满足不等式20403x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3322x y x y +的取值范围是 . 答案:。

江苏省2013届高三最新数学(精选试题26套)分类汇编16:不等式选讲 Word版含答案.pdf

江苏省2013届高三最新数学(精选试题26套)分类汇编16:不等式选讲 Word版含答案.pdf

江苏省2013届高三最新数学(精选试题26套)分类汇编16:不等式选讲 一、解答题 .(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)选修4-5(不等式选讲)已知x,y均为正数,且x>y,求证:. 【答案】选修4-5(不等式选讲)已知x,y均为正数,且x>y,求证:. 解:因为x>0,y>0,x-y>0,=, 所以 .(江苏省徐州市2013届高三考前模拟数学试题)D.[选修4-5:不等式选讲]已知为正数,且满足,求证:. 【答案】D.由柯西不等式,得 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)D.(选修4—5:不等式选讲) 已知均为正数,求证:. 【答案】D. 证明:由柯西不等式得 则,即 .(江苏省常州市华罗庚高级中学2013年高考数学冲刺模拟试卷)D.选修4—5:不等式选讲设都是正数, 且, 求证:.【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字证明、说明过程或演算步骤. 【答案】解:因为是正数,所以 同理,将上述不等式两边相乘, 得, 因为,所以 .(江苏省2013届高三高考压轴数学试题)(不等式选讲)已知函数(). (Ⅰ)当时,已知,求的取值范围;(Ⅱ)若的解集为或,求的值.【答案】 .(江苏省常州高级中学2013年高考数学模拟试卷)D.(不等式选讲) 已知x,y,z均为正数.求证:. 【答案】D.命题立意:本题主要考查证明不等式的基本方法,考查推理论证能力.证明:因为x,y,z均为正数,所以, 同理得(当且仅当x=y=z时,以上三式等号都成立),将上述三个不等式两边分别相加,并除以2,得. .(江苏省常州市横山桥中学2013年高考数学冲刺模拟试卷doc)(不等式选做题) 设x,y均为正数,且x>y,求证:2x+≥2y+3. 【答案】证明:由题设x>0,y>0,x>y,可得x-y>0 因为2x+-2y=2(x-y)+=(x-y)+(x-y)+ . 又(x-y)+(x-y) +,等号成立条件是x-y=1 . 所以,2x+-2y≥3,即2x+≥2y+3 .(江苏省2013届高三高考模拟卷(二)(数学) )选修4—5:不等式选讲已知a,b都是正实数,且a+b=2,求证:+≥1.【答案】选修4—5:不等式选讲证明:方法一:左边-右边=+-1==因边a+b=2,所以左边-右边=因为a,b都是正实数,所以ab≤=1 所以,左边-右边≥0,即+≥1 方法二:由柯西不等式,得(+)[(2+()2]≥(a+b)2 因为a+b=2,所以上式即为(+)×4≥4.即+≥1 .(江苏省西亭高级中学2013届高三数学终考卷)D.选修4-5:不等式选讲 (本小题满分10分) 设f(x)=|x-a|,a∈R. ①当-1≤x≤3时,f(x)≤3,求a的取值范围; ②若对任意x∈R,f(x-a)+f(x+a)≥1-2a恒成立,求实数a的最小值. 【答案】 .(南京师大附中2013届高三模拟考试5月卷)D、(不等式选做题) 设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc时成立.【答案】D、(不等式选做题)证明 由柯西不等式(a+b)(c+d)≥(ac+bd),得≥| ac+bd |≥ac+bd.将上式两边同时乘以2,再将两边同时加上a+b+c+d,有(a+b)+2+(c+d)≥(a+c)+(b+d), 即 (+)≥(), 所以,+≥ 由柯西不等式中等号成立的条件及上述推导过程可知,原不等式中等号当且仅当ad=bc时成立 .(2013年江苏省高考数学押题试卷 )选修4—5 不等式证明选讲证明:对任意正数a≠b的算术平均A=有B<。

江苏省2013届高三最新数学(精选试题26套)分类汇编6:不等式

江苏省2013届高三最新数学(精选试题26套)分类汇编6:不等式
【答案】(-3,2)
3 . (江苏省常州市武进高级中学 2013 年高考数学文科) 冲 刺模拟试卷 doc) 点 P ( x, y ) 在不等式组
x 0, x y 3, y x 1
表示的平面区域内,若点 P ( x, y ) 到直线 y kx 1 的最大距离为 2 2 ,则 k ___ .
2mx m 2 2 , m 0, m R, x R .若 x1 x2 1 ,则
_____.
【答案】 1
f ( x1 ) 的取值范围是 f ( x2 )

2 ,2 2 2
→ →
16. (江苏省西亭高级中学 2013 届高三数学终考卷)设向量OA=(0,1), OB=(1,1),O 为坐标原点,动点 P(x,y)
1
xy
的最小值是
___________. 【答案】 12
11 . ( 江 苏 省 常 州 高 级 中 学 2013 年 高 考 数 学 模 拟 试 卷 ) 定义 : min {x,y} 为实数 x,y 中 较小的 数 . 已知
h min a, 2 b 2 ,其中 a,b 均为正实数,则 h 的最大值是_________. a 4b
x ≤a 恒成立,则 a 的取值范围是 x +3x+1
2
________.
【答案】a≥
1 5
6 .( 江 苏 省 常 州 市 华 罗 庚 高 级 中 学 2013 年 高 考 数 学 冲 刺 模 拟 试 卷 ) 定 义 区 间
c, d , c, d , c, d , c, d 的长度均为d c,其中d c. 若
【答案】 1 4 . (江苏省启东中学 2013 届高三综合训练(1) )设 a

江苏省13大市高三上学期期末数学试题分类汇编--数列含答案 (1)

江苏省13大市高三上学期期末数学试题分类汇编--数列含答案 (1)

江苏省13大市2013届高三上学期期末数学试题分类汇编数 列一、填空题1、(常州市2013届高三期末)已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑= ▲ . 答案:2324n n ⋅--2、(连云港市2013届高三期末)正项等比数列{a n }中,311a a =16,则22212log log a a += ▲ .答案:43、(南京市、盐城市2013届高三期末)在等差数列{}n a 中, 若9753=++a a a , 则其前9项和9S 的值为 ▲答案:274、(南通市2013届高三期末)若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:42±.5、(徐州、淮安、宿迁市2013届高三期末)已知等比数列}{n a 的前项和为n S ,若62,256382-==S a a a a ,则1a 的值是 ▲ .答案:-26、(扬州市2013届高三期末)数列{}n a 满足111,1(1)n n n a a a a +>-=-,()n N +∈,且122012111a a a +++=2,则201314a a -的最小值为 ▲ .答案:27-7、(镇江市2013届高三期末)在等比数列{}n a 中,n S 为其前项和,已知5423a S =+,6523a S =+,则此数列的公比q 为 ▲ . 答案:3;8、(镇江市2013届高三期末) 观察下列等式:31×2×12=1-122, 31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122+…+n +2n (n +1)×12n = ▲ .答案:()nn 2111⋅+-二、解答题1、(常州市2013届高三期末) 已知数列{}n a 是等差数列,12315a a a ++=,数列{}n b 是等比数列,12327b b b =.(1)若1243,a b a b ==.求数列{}n a 和{}n b 的通项公式;(2)若112233,,a b a b a b +++是正整数且成等比数列,求3a 的最大值.答案:解:(1)由题得225,3a b ==,所以123a b ==,从而等差数列{}n a 的公差2d =,所以21n a n =+,从而349b a ==,所以13n n b -=. ……………………3分(2)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则15a d =-,13b q=,35a d =+,33b q =.因为112233,,a b a b a b +++成等比数列,所以2113322()()()64a b a b a b +⋅+=+=. 设1133a b ma b n+=⎧⎨+=⎩,*,m n N ∈,64mn =,则3553d mq d q n ⎧-+=⎪⎨⎪++=⎩,整理得,2()5()800d m n d m n +-++-=.解得2(10)36n m m n d -++--=(舍去负根).35a d =+,要使得3a 最大,即需要d 最大,即n m -及2(10)m n +-取最大值.*,m n N ∈,64mn =,当且仅当64n =且1m =时,n m -及2(10)m n +-取最大值. 从而最大的63761d +=, 所以,最大的373761a +=………16分 2、(连云港市2013届高三期末)已知数列{a n }中,a 2=a (a 为非零常数),其前n 项和S n 满足:S n =n (a n -a 1)2(n ∈N*).(1)求数列{a n }的通项公式;(2)若a =2,且21114m n a S -=,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足n a b p +≤的最大项恰为第3p -2项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.(1)证明:由已知,得a 1=S 1=1⋅(a 1-a 1)2=0,∴S n =na n2, ………………………2分则有S n +1=(n +1)a n +12,∴2(S n +1-S n )=(n +1)a n +1-na n ,即(n -1)a n +1=na n n ∈N*, ∴na n +2=(n +1)a n +1,两式相减得,2a n +1=a n +2+a n n ∈N*, ……………………………4分 即a n +1-a n +1=a n +1-a n n ∈N*, 故数列{a n }是等差数列.又a 1=0,a 2=a ,∴a n =(n -1)a . ………………………………6分 (2)若a =2,则a n =2(n -1),∴S n =n (n -1).由21114m n a S -=,得n 2-n +11=(m -1)2,即4(m -1)2-(2n -1)2=43, ∴(2m +2n -3)(2m -2n -1)=43. ………………………………8分 ∵43是质数, 2m +2n -3>2m -2n -1, 2m +2n -3>0, ∴⎩⎨⎧2m -2n -1=12m +2n -3=43,解得m =12,n =11. ………………………………10分 (III)由a n +b ≤p ,得a (n -1)+b ≤p .若a <0,则n ≥p -ba +1,不合题意,舍去; ……………………………11分若a >0,则n ≤p -ba+1.∵不等式a n +b ≤p 成立的最大正整数解为3p -2,∴3p -2≤p -ba +1<3p -1, ………………………………13分即2a -b <(3a -1)p ≤3a -b ,对任意正整数p 都成立.∴3a -1=0,解得a =13, ………………………………15分此时,23-b <0≤1-b ,解得23<b ≤1.故存在实数a 、b 满足条件, a 与b 的取值范围是a =13,23<b ≤1. ………16分3、(南京市、盐城市2013届高三期末)若数列{}n a 是首项为612t -, 公差为6的等差数列;数列{}n b 的前项和为3n nS t =-.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n b 是等比数列, 试证明: 对于任意的(,1)n n N n ∈≥, 均存在正整数n c , 使得1n n c b a +=, 并求数列{}n c 的前项和n T ;(3)设数列{}n d 满足n n n d a b =⋅, 且{}n d 中不存在这样的项k d , 使得“1k k d d -<与1k k d d +<”同时成立(其中2≥k , *∈N k ), 试求实数的取值范围.答案:解: (1)因为{}n a 是等差数列,所以(612)6(1)612n a t n n t =-+-=-…………2分 而数列{}n b 的前项和为3n nS t =-,所以当2n ≥时, 11(31)(31)23n n n n b --=---=⨯,又113b S t ==-,所以13,123,2n n t n b n --=⎧=⎨⨯≥⎩……………………4分 (2)证明:因为{}n b 是等比数列,所以113232t --=⨯=,即1t =,所以612n a n =- ………………5分对任意的(,1)n n N n ∈≥,由于11123636(32)12n n n n b --+=⨯=⨯=⨯+-,令1*32n nc N -=+∈,则116(23)12n n c n a b -+=+-=,所以命题成立 …7分数列{}n c 的前项和13112321322nn n T n n -=+=⨯+-- …………………9分(3)易得6(3)(12),14(2)3,2n nt t n d n t n --=⎧=⎨-≥⎩, 由于当2n ≥时,114(12)34(2)3n n n n d d n t n t ++-=+---38[(2)]32n n t =--⨯,所以①若3222t -<,即74t <,则1n n d d +>,所以当2n ≥时,{}n d 是递增数列,故由题意得12d d ≤,即6(3)(12)36(22)t t t --≤-,59759774t ---+≤≤<,………13分②若32232t ≤-<,即7944t ≤<,则当3n ≥时,{}n d 是递增数列,, 故由题意得23d d =,即234(22)34(23)3t t -=-,解得74t =…………………14分③若321(,3)2m t m m N m ≤-<+∈≥,即35(,3)2424m m t m N m +≤<+∈≥,则当2n m ≤≤时,{}n d 是递减数列, 当1n m ≥+时,{}n d 是递增数列,则由题意,得1m m d d +=,即14(2)34(21)3mm t m t m +-=--,解得234m t +=…………15分 综上所述,597597t ---+≤≤234m t +=(,2)m N m ∈≥……16分4、(南通市2013届高三期末)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式;(3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+.④③+④,得212n n n na na na +++=,即212n n n a a a +++=. …………………………7分 又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ………………………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列, 于是,21333p qp q=+. ……………………………………………………11分 所以,213()33q p p q =-(☆). 易知(p ,q )=(2,3)为方程(☆)的一组解. ………………………………………13分 当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133pp -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.5、(徐州、淮安、宿迁市2013届高三期末)已知,0,0<>b a 且,0≠+b a 令,,11b b a a ==且对任意正整数k ,当≥+k k b a 时,;43,412111k k k k k b b b a a =-=++当<+k k b a 时,.43,214111k k k k k a a b a b =+-=++(1) 求数列}{n n b a +的通项公式;(2) 若对任意的正整数,0<+n n b a 恒成立,问是否存在b a ,使得}{n b 为等比数列?若存在,求出ba ,满足的条件;若不存在,说明理由;(3) 若对任意的正整数,0,<+n n b a n 且,43122+=n n b b 求数列}{n b 的通项公式. ⑴当0n n a b +≥时,11124n n n a a b +=- 且134n n b b +=, 所以111131()2442n n n n n n n a b a b b a b +++=-+=+,……………………………………2分又当0n n a b +<时,11142n n n b a b +=-+且134n n a a +=,113111()4422n n n n n n n a b a a b a b +++=-+=+,…………………………………………4分因此,数列{}n n b a +是以b a +为首项,12为公比的等比数列,所以,n n b a +11()2n a b -⎛⎫=+ ⎪⎝⎭.………………………………………………………5分⑵因为0n n a b +<,所以n n a a 431=+,所以134n n a a -⎛⎫= ⎪⎝⎭,11()2n n n b a b a -⎛⎫=+- ⎪⎝⎭1113()24n n a b a --⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,…………………………………8分假设存在,b ,使得{}n b 能构成等比数列,则1b b =,224b a b -=,34516b ab -=, 故2245()()416b a b ab --=,化简得0=+b a ,与题中0a b +≠矛盾, 故不存在,b 使得{}n b 为等比数列. ……………………………………………10分 ⑶因为0n n a b <+且12243+=n n b b ,所以121222141--+-=n n n b a b 所以1243+n b 21212121211113142444n n n n n a b a b b -----=-+=-+-所以2121212131()()44n n n n b b a b +----=-+,……………………………………………12分由⑴知,2221211()2n n n a b a b ---⎛⎫+=+ ⎪⎝⎭,所以222121132n n n a b b b -+-+⎛⎫-=- ⎪⎝⎭)()(321213112----+-+=n n n b b b b b b246241111132222n a b b -⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11114()141139414n n a b a b b b --⎡⎤⎛⎫-⎢⎥⎪⎡⎤++⎛⎫⎝⎭⎢⎥=-=--⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦,…………………………………13分22133()114434nn n a b b b b +⎡⎤+⎛⎫==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,………………………………………………14分所以,1224()11,943()1-1,434n n na b b n b a b b n -⎧⎡⎤+⎛⎫⎪⎢⎥-- ⎪⎪⎢⎥⎝⎭⎪⎣⎦=⎨⎡⎤⎪+⎛⎫⎢⎥⎪- ⎪⎢⎥⎝⎭⎪⎣⎦⎩.为奇数时,为偶数时…………………………………16分6、(苏州市2013届高三期末)设数列{}n a 的前项和为n S ,满足21n n a S An Bn +=++(0A ≠).(1)若132a =,294a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式; (2)已知数列{}n a 是等差数列,求1B A-的值.7、(泰州市2013届高三期末)已知数列16n a n =-,(1)15nn b n =--,其中*n N ∈(1)求满足1n a +=n b 的所有正整数n 的集合 (2)n16,求数列nnb a 的最大值和最小值 (3)记数列{}n n a b 的前 n 项和为n S ,求所有满足22m n S S =(m<n )的有序整数对(m,n)(1)a n +1=|b n |,n -15=|n -15|,当n ≥15时,a n +1=|b n |恒成立, 当n <15时,n -15=-(n -15) ,n =15n 的集合{n |n ≥15,n ∈N *}……………………………………….…………….…………….4分(2)nn a b =1615)1(---n n n(i)当n>16时,n 取偶数n n a b =1615--n n =1+161-n当n=18时(nn a b )max =23无最小值n 取奇数时nn a b =-1-161-n n=17时(nna b )min =-2无最大值 ……………………………………………………………8分 (ii)当n<16时,nna b =16)15()1(---n n n当n 为偶数时nn a b =16)15(---n n =-1-161-nn=14时(nn a b )max =-21(n n a b )min =-1413当n 奇数n n a b =1615--n n =1+161-n , n=1 , (nn a b )max =1-151=1514,n =15,(nna b )min =0 ………………………………………………11分 综上,nn a b 最大值为23(n =18)最小值-2(n =17)……………….……..……………….12分(3)n≤15时,b n =(-1)n-1(n-15),a 2k -1b 2k -1+a 2k b 2k =2 (16-2k )≥0 ,n >15时,b n =(-1)n (n -15),a 2k -1b 2k -1+a 2k b 2k =2 (2k -16) >0,其中a 15b 15+a 16b 16=0S16=S14m=7,n=8…………………………………………………………….16分8、(无锡市2013届高三期末)已知数列{a n}中,a1=2,n∈N+,a n>0,数列{a n}的前n项和S n,且满足1122nn naS S++=-。

【推荐下载】江苏省13大市2013届高三上学期期末数学试题分类汇编

【推荐下载】江苏省13大市2013届高三上学期期末数学试题分类汇编

[键入文字]
江苏省13大市2013届高三上学期期末数学试题分类汇编
江苏省13大市2013届高三上学期期末数学试题分类汇编
 1、(常州市2013届高三期末)空间内有个平面,设这个平面最多将空间分成个部分.
 (1)求;
 (2)写出关于的表达式并用数学归纳法证明.
 解:(1);
 (2).证明如下:
 当时显然成立,
 设时结论成立,即,
 则当时,再添上第个平面,因为它和前个平面都相交,所以可得条互不平行且不共点的交线,且其中任3条直线不共点,这条交线可以把第个平面划最多分成个部分,每个部分把它所在的原有空间区域划分成两个区域.因此,空间区域的总数增加了个,,
1。

江苏省2013届最新高三数学(精选试题26套)分类汇编16 不等式选讲

江苏省2013届最新高三数学(精选试题26套)分类汇编16 不等式选讲

江苏省2013届高三最新数学(精选试题26套)分类汇编16:不等式选讲一、解答题1 .(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)选修4-5(不等式选讲)已知x ,y 均为正数,且x >y ,求证:2212232x y x xy y ++-+≥. 【答案】选修4-5(不等式选讲) 已知x ,y 均为正数,且x >y ,求证:2212232x y x xy y ++-+≥.解:因为x >0,y >0,x -y >0,22211222()2()x y x y x xy y x y +-=-+-+-=21()()()x y x y x y -+-+-3≥,所以2212232x y x xy y ++-+≥2 .(江苏省徐州市2013届高三考前模拟数学试题)D.[选修4-5:不等式选讲]已知,,a b c 为正数,且满足22cos sin a b c θθ+<,求证22θθ【答案】D.由柯西不等式,得22θθ+11222222))](cos sin )θθθθ++≤ 1222(cos sin )a b θθ=+<3 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)D.(选修4—5:不等式选讲)已知x y z 、、均为正数,求证:111()3x y z ++≤. 【答案】D. 证明:由柯西不等式得2222222111111(111)()()x y z x y z++++≥++111x y z ≥++,111()x y z ++≤ 4 .(江苏省常州市华罗庚高级中学2013年高考数学冲刺模拟试卷)D.选修4—5:不等式选讲设n a a a ,,,21 都是正数, 且121=⋅n a a a , 求证:()()()n n a a a 211121≥+++ . 【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字证明、说明过程或演算步骤.【答案】解:因为1a 是正数,所以111a a +≥2同理1(2,3,)j j a a j n +=≥2,将上述不等式两边相乘,得1212(1)(1)(1)n n na a a a a a +++⋅⋅⋅⋅≥2,因为121n a a a ⋅⋅⋅=,所以12(1)(1)(1)n n a a a +++≥25 .(江苏省2013届高三高考压轴数学试题)(不等式选讲)已知函数()|3|||f x x x a =++- (0a >).(Ⅰ)当4a =时,已知()7f x =,求x 的取值范围;(Ⅱ)若()6f x ≥的解集为{|4x x ≤-或2}x ≥,求a 的值.【答案】6 .(江苏省常州高级中学2013年高考数学模拟试卷)D.(不等式选讲)已知x ,y ,z 均为正数.求证:111yx z yz zx xy x y z++++≥.【答案】D.命题立意:本题主要考查证明不等式的基本方法,考查推理论证能力.证明:因为x ,y ,z 均为正数,所以()12yx y x y x yz zx z z++=≥,同理得22yz z x zx xy x xy yz y++≥,≥(当且仅当x =y =z 时,以上三式等号都成立),将上述三个不等式两边分别相加,并除以2,得111yx z yz zx xy x y z++++≥.7 .(江苏省常州市横山桥中学2013年高考数学冲刺模拟试卷doc )(不等式选做题)设x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y2≥2y +3.【答案】证明:由题设x >0,y >0,x >y ,可得x -y >0 因为2x +1x 2-2xy +y 2-2y =2(x -y )+1 (x -y )2=(x -y )+(x -y )+1(x -y )2.又(x -y )+(x -y ) +1 (x -y )223213()3()x y x y -=-≥,等号成立条件是x -y =1.所以,2x +1x 2-2xy +y 2-2y ≥3,即2x +1x 2-2xy +y2≥2y +38 .(江苏省2013届高三高考模拟卷(二)(数学) )选修4—5:不等式选讲已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1.【答案】选修4—5:不等式选讲证明:方法一:左边-右边=a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +ab 2+a 2+b 2-ab -a -b -1(a +1)(b +1)因边a +b =2,所以左边-右边=1-ab(a +1)(b +1)因为a ,b 都是正实数,所以ab ≤(a +b )24=1所以,左边-右边≥0,即a 2a +1+b 2b +1≥1方法二:由柯西不等式,得 (a 2a +1+b 2b +1)[(a +1)2+ (b +1)2]≥(a +b )2因为a +b =2,所以上式即为(a 2a +1+b 2b +1)×4≥4.即a 2a +1+b 2b +1≥19 .(江苏省西亭高级中学2013届高三数学终考卷)D .选修4-5:不等式选讲(本小题满分10分)设f (x )=|x -a |,a ∈R .①当-1≤x ≤3时,f (x )≤3,求a 的取值范围;②若对任意x ∈R ,f (x -a )+f (x +a )≥1-2a 恒成立,求实数a 的最小值. 【答案】略10.(南京师大附中2013届高三模拟考试5月卷)D 、(不等式选做题)设a ,b ,c ,d ∈R,求证:a 2+b 2+c 2+d 2≥(a +c )2+(b +d )2,等号当且仅当ad =bc时成立.【答案】D 、(不等式选做题)证明 由柯西不等式 (a 2+b 2)(c 2+d 2)≥(ac +bd )2,得(a 2+b 2)(c 2+d 2)≥| ac +bd|≥ac +bd .将上式两边同时乘以2,再将两边同时加上a 2+b 2+c 2+d 2,有 (a 2+b 2)+2(a 2+b 2)(c 2+d 2)+(c 2+d 2)≥(a +c )2+(b +d )2, 即 (a 2+b 2+c 2+d 2)2≥((a +c )2+(b +d )2)2,所以,a 2+b 2+c 2+d 2≥(a +c )2+(b +d )2由柯西不等式中等号成立的条件及上述推导过程可知,原不等式中等号当且仅当ad =bc 时成立11.(2013年江苏省高考数学押题试卷 )选修4—5 不等式证明选讲证明:对任意正数a ≠b 的算术平均A =a +b 2与几何平均B =ab 有B <(a -b )28(A -B )<A .【答案】选修4—5 不等式证明选讲证明 因为B <A ,所以B <A +B2<A ,而(a -b )28(A -B )=(a 2-b 2)24(a -b 2)=(a +b )24=A +B 2,所以 B <A +B 2<A .。

江苏省13大市高三数学上学期期末试题分类汇编 三角函数 苏教版

江苏省13大市高三数学上学期期末试题分类汇编 三角函数 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编三角函数一、填空题1、(常州市2013届高三期末)函数(1)()cos cos22x x f x -=p p 的最小正周期为 ▲ . 答案:22、(连云港市2013届高三期末)如果函数y =3sin(2x +ϕ)(0<ϕ<π)的图象关于点(π3,0)中心对称,则ϕ= ▲ . 答案:π3;3、(南京市、盐城市2013届高三期末)将函数sin(2)3y x π=-的图像向左平移ϕ()0>ϕ个单位后, 所得到的图像对应的函数为奇函数, 则ϕ的最小值为 ▲ . 答案:6π4、(徐州、淮安、宿迁市2013届高三期末)已知角ϕ的终边经过点)1,1(-P ,点),(),,(2211y x B y x A 是函数)0)(sin()(>+=ωϕωx x f 图象上的任意两点,若2)()(21=-x f x f 时,21x x -的最小值为3π,则)2(πf 的值是 ▲ .2-5、(苏州市2013届高三期末)(苏州市2013届高三期末)已知θ为锐角,4sin(15)5θ+=,则cos(215)θ-= .6、(无锡市2013届高三期末)在△ABC 中,∠A=45o,∠C=105o,,则AC 的长度为 . 答案:17、(扬州市2013届高三期末)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,且3,sin 2sin a b C A ===,则sin A = ▲ .8、(镇江市2013届高三期末)5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ . 答案:19、(镇江市2013届高三期末) 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .41-10、(南京市、盐城市2013届高三期末)在ABC ∆中, 若9cos 24cos 25A B -=, 则BCAC的值为 ▲ .2311、(南京市、盐城市2013届高三期末)若x ,y 满足22221log [4cos ()]ln ln 4cos ()22y e xy y xy +=-+, 则cos 4y x 的值为 ▲ . 答案:-1 二、解答题1、(常州市2013届高三期末)已知,αβ均为锐角,且3sin 5α=,1tan()3αβ-=-. (1)求sin()αβ-的值; (2)求cos β的值. 解:(1)∵π,(0,)2αβ∈,从而ππ22αβ-<-<.又∵1tan()03αβ-=-<,∴π02αβ-<-<. …………………………4分∴sin()αβ-=. ………………………………6分(2)由(1)可得,cos()αβ-=∵α为锐角,3sin 5α=,∴4cos 5α=. ……………………………………10分∴cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+- …………12分=43(55+⨯. …………………………14分 2、(连云港市2013届高三期末)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c cos B +b cos C =3a cos B .(1)求cos B 的值; (2)若→BA ⋅→BC =2,求b 的最小值. 解:(1)因为c cos B +b cos C =3a cos B ,由正弦定理,得sin C cos B +sin B cos C =3sin A cos B ,即sin(B +C )=3sin A cos B . ………………………………5分又sin(B+C )=sin A ≠0,所以cos B =13. ……………………………7分(2)由→BA ⋅→BC =2,得ac cos B =2,所以ac =6. ………………………9分由余弦定理,得b 2=a 2+c 2-2ac cos B ≥2ac -23ac =8,当且仅当a =c 时取等号,故b 的最小值为2 2. (14)3、(南京市、盐城市2013届高三期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cos(A +6π)=sinA ,求A 的值; (2)若cosA =14,4b =c ,求sinB 的值.4、(南通市2013届高三期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. …………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立).即 2C A B =+, 得 3C π=. ………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, ………………………………………8分 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.……………14分5、(徐州、淮安、宿迁市2013届高三期末)在△A B C ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++ (1) 求角A 值;(2) 求C B cos sin 3-的最大值.解:⑴因为(sin sin sin )(sin sin sin )3sin sin A B C B C A B C +++-=,由正弦定理,得()()3a b c b c a bc +++-=,…………………………………………2分所以222b c a bc +-=,所以2221cos 22b c a A bc +-==,………………………………4分因为(0,)A ∈π,所以3A π=.…………………………………………………………6分⑵ 由3A π=,得23B C π+=cos B C -2cos()3B B π=--1(cos )2B B B =--sin()6B π=+,……………………………………10分因为203B π<<,所以666B ππ5π<<+,……………………………………………12分当62B ππ=+,即3B π=cos B C -的最大值为1. ……………………14分6、(苏州市2013届高三期末)已知函数()sin()f x A x ωϕ=+,(其中0,0,02A πωϕ>><<)的周期为π,且图像上有一个最低点为2(,3)3M π- (1)求()f x 的解析式; (2)求函数()()4y f x f x π=++的最大值及对应x 的值.(苏州市2013届高三期末)在路边安装路灯,灯柱AB 与地面垂直,灯杆BC 与灯柱AB 所在平面与道路垂直,且120ABC ∠=,路灯C 采用锥形灯罩,射出的光线如图中阴影部分所示,已知60ACD ∠=,路宽24AD =米,设灯柱高AB h =(米),ACB θ∠=(3045θ≤≤)(1)求灯柱的高h (用θ表示);(2)若灯杆BC 与灯柱AB 所用材料相同,记此用料长度和为S ,求S 关于θ的函数表达式,并求出S 的最小值.C B A D7、(泰州市2013届高三期末)如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,AB =1,BC =2,现要将些铁皮剪出一个等腰三角形PMN ,其底边MN ⊥BC 。

江苏省13大市高三数学上学期期末试题分类汇编 平面向量 苏教版

江苏省13大市高三数学上学期期末试题分类汇编 平面向量 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编平面向量1、(常州市2013届高三期末)已知向量a ,b 满足()22,4a b +=-,()38,16a b -=-,则向量a ,b 的夹角的大小为 ▲ .答案:p2、(连云港市2013届高三期末)在平面直角坐标系xOy 中,已知圆(x -1)2+(y -1)2=4,C为圆心,点P 为圆上任意一点,则OP CP ⋅的最大值为 ▲ . 答案:4+22; 3、(南京市、盐城市2013届高三期末)如图, 在等腰三角形ABC 中, 底边2=BC , =, 12AE EB =, 若12BD AC ⋅=-, 则⋅= ▲ .答案:04、(南通市2013届高三期末)在△ABC 中,若AB =1,AC=,||||AB AC BC +=,则||BA BC BC ⋅= ▲ .答案:12. 5、(徐州、淮安、宿迁市2013届高三期末)如图,在等腰三角形ABC 中,已知F E A AC AB ,,120,1︒===分别是边AC AB ,上的点,且,,AC n AF AB m AE ==其中),1,0(,∈n m 若BC EF ,的中点分别为,,N M 且,14=+n m 的最小值是 ▲.6、(苏州市2013届高三期末)已知向量a ,b ,满足1a =,()(2)0a b a b +-=,则b 的最小值为 .127、(无锡市2013届高三期末)已知向量a=(-2,2),b=(5,k ).若|la+b|不超过5,则k 的取值范围是AMNECF第14题图8、(扬州市2013届高三期末)已知向量()()k ,1,1,2-==,若⊥,则k 等于 ▲ . 答案:29、(镇江市2013届高三期末)已知向量(12,2)a x =-,()2,1b -=,若a b ⊥,则实数x = ▲ . 答案:09、(镇江市2013届高三期末) 在菱形ABCD 中,AB =,23B π∠=,3BC BE =,3DA DF =,则EF AC ⋅= ▲ . 答案:-1210、(连云港市2013届高三期末)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c cos B +b cos C =3a cos B .(1)求cos B 的值;(2)若→BA ⋅→BC =2,求b 的最小值. 解:(1)因为c cos B +b cos C =3a cos B ,由正弦定理,得sin C cos B +sin B cos C =3sin A cos B ,即sin(B +C )=3sin A cos B . ………………………………5分又sin(B+C )=sin A ≠0,所以cos B =13. ……………………………7分(2)由→BA ⋅→BC =2,得ac cos B =2,所以ac =6. ………………………9分由余弦定理,得b 2=a 2+c 2-2ac cos B ≥2ac -23ac =8,当且仅当a =c 时取等号,故b 的最小值为2 2. ………………………………14分 11、(泰州市2013届高三期末)已知向量a=(cos λθ,cos(10)λθ-),b=(sin(10)λθ-,sin λθ),,R λθ∈ (1)求22a b +的值 (2)若a b ⊥,求θ (3)20πθ=,求证:a b解:(1)∵|a |=cos 2λθ+cos 2(10-λ)θ ,|b |=sin 2(10-λ)θ+sin 2λθ (算1个得1分)|a |2+|b |2=2,………………………………………………………………4分(2)∵a ⊥b,∴cos λθ·sin(10-λ)θ +cos(10-λ) θ·sin λθ=0∴sin ((10-λ) θ+λθ)=0,∴sin10θ=0…………………………………………7分∴10θ=k π,k ∈Z ,∴θ=10πk ,k ∈Z (9)分(3)∵θ=20π, cos λθ·sin λθ-cos(10-λ) θ·sin[(10-λ) θ]=cos 20λπ·sin 20λπ-cos (2π-20λπ)·sin(2π-20λπ)=cos20λπ·sin20λπ-sin20λπ·cos20λπ=0,∴a ∥b (14)分12、(无锡市2013届高三期末) 已知向量(sin ,1)m x =-,向量1(3cos ,)2n x =,函数()()f x m n =+·m 。

江苏省各地市2013年高考数学 最新联考试题分类汇编(6) 不等式

江苏省各地市2013年高考数学 最新联考试题分类汇编(6) 不等式
13.(江苏省无锡市2013年2月高三质量检测)已知函数f(x)=x2+,若x<0时恒有f(x)≥3,则实数a的取值范围是▲.
【答案】(-∞,-2]
1、(常州市2013届高三期末)已知实数 同时满足 , , ,则 的取值范围是▲.
答案:
2、(连云港市2013届高三期末)关于x的不等式x2ax+2a<0的解集为A,若集合A中恰有两个整数,则实数a的取值范围是▲.
7、(镇江市2013届高三期末)已知函数 在区间 上是增函数.
(1)求实数 的取值范围;
(2)若数列 满足 , , N*,证明 .
(Ⅰ)求该超市日销售额y(万元)与时间t(天)的函数关系式;
(Ⅱ)求该超市日销售额的最小值.
17.解:(Ⅰ)由题日销售额y=f(t)•g(t)=(1+)(84-|t-20|)
=,t∈N*-----------5分
(Ⅱ)①当1≤t≤20且t∈N*时,y=t++68≥2+68=100,
当且仅当t=即t=16时取等号;013年3月高三第二次模拟)(本小题满分10分)
已知数列 满足 , 。
(1)证明: ( );
(2)证明: 。
23.(1)因为 所以
假设当 时,因为 ,
所以, 由数学归纳法知,当 时 .………………5分
(2)由(1)知, 得 ,
所以 所以 即
所以 ,以此类推,得 ,问题得证.…………10分
5层,则该小区每平方米的平均综合费用为1270元.
(每平方米平均综合费用=).
(1)求k的值;
(2)问要使该 小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?
23.(江苏省南通市2013届高三第二次调研)必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.

江苏省13大市高三数学上学期期末试题分类汇编 三角函数 苏教版

江苏省13大市高三数学上学期期末试题分类汇编 三角函数 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编三角函数一、填空题1、(常州市2013届高三期末)函数(1)()cos cos22x x f x -=的最小正周期为 ▲ . 答案:22、(连云港市2013届高三期末)如果函数y =3sin(2x +ϕ)(0<ϕ<π)的图象关于点(π3,0)中心对称,则ϕ= ▲ . 答案:π3;3、(南京市、盐城市2013届高三期末)将函数sin(2)3y x π=-的图像向左平移ϕ()0>ϕ个单位后, 所得到的图像对应的函数为奇函数, 则ϕ的最小值为 ▲ . 答案:6π4、(徐州、淮安、宿迁市2013届高三期末)已知角ϕ的终边经过点)1,1(-P ,点),(),,(2211y x B y x A 是函数)0)(sin()(>+=ωϕωx x f 图象上的任意两点,若2)()(21=-x f x f 时,21x x -的最小值为3π,则)2(πf 的值是 ▲ .2-5、(苏州市2013届高三期末)(苏州市2013届高三期末)已知θ为锐角,4sin(15)5θ+=,则cos(215)θ-= .6、(无锡市2013届高三期末)在△ABC 中,∠A=45o,∠C=105o,2,则AC 的长度为 . 答案:17、(扬州市2013届高三期末)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,且5,3,sin 2sin a b C A ===,则sin A = ▲ .5 8、(镇江市2013届高三期末)5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ . 答案:19、(镇江市2013届高三期末) 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .41-10、(南京市、盐城市2013届高三期末)在ABC ∆中, 若9cos 24cos 25A B -=, 则BCAC的值为 ▲ .2311、(南京市、盐城市2013届高三期末)若x ,y 满足22221log [4cos ()]ln ln 4cos ()22y e xy y xy +=-+, 则cos 4y x 的值为 ▲ . 答案:-1 二、解答题1、(常州市2013届高三期末)已知,αβ均为锐角,且3sin 5α=,1tan()3αβ-=-. (1)求sin()αβ-的值; (2)求cos β的值. 解:(1)∵π,(0,)2αβ∈,从而ππ22αβ-<-<.又∵1tan()03αβ-=-<,∴π02αβ-<-<. …………………………4分∴sin()αβ-=. ………………………………6分(2)由(1)可得,cos()αβ-=∵α为锐角,3sin 5α=,∴4cos 5α=. ……………………………………10分∴cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+- …………12分=43(55+⨯. …………………………14分 2、(连云港市2013届高三期末)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c cos B +b cos C =3a cos B .(1)求cos B 的值; (2)若→BA ⋅→BC =2,求b 的最小值. 解:(1)因为c cos B +b cos C =3a cos B ,由正弦定理,得sin C cos B +sin B cos C =3sin A cos B ,即sin(B +C )=3sin A cos B . ………………………………5分又sin(B+C )=sin A ≠0,所以cos B =13. ……………………………7分(2)由→BA ⋅→BC =2,得ac cos B =2,所以ac =6. ………………………9分由余弦定理,得b 2=a 2+c 2-2ac cos B ≥2ac -23ac =8,当且仅当a =c 时取等号,故b 的最小值为2 2. (14)3、(南京市、盐城市2013届高三期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cos(A +6π)=sinA ,求A 的值; (2)若cosA =14,4b =c ,求sinB 的值.4、(南通市2013届高三期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. …………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立).即 2C A B =+, 得 3C π=. ………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, ………………………………………8分 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.……………14分5、(徐州、淮安、宿迁市2013届高三期末)在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++ (1) 求角A 值;(2) 求C B cos sin 3-的最大值.解:⑴因为(sin sin sin )(sin sin sin )3sin sin A B C B C A B C +++-=,由正弦定理,得()()3a b c b c a bc +++-=,…………………………………………2分所以222b c a bc +-=,所以2221cos 22b c a A bc +-==,………………………………4分因为(0,)A ∈π,所以3A π=.…………………………………………………………6分⑵ 由3A π=,得23B C π+=,所以3sin cos B C -23sin cos()3B B π=--133sin (cos sin )22B B B =--+sin()6B π=+,……………………………………10分因为203B π<<,所以666B ππ5π<<+,……………………………………………12分当62B ππ=+,即3B π=时,3sin cos B C -的最大值为1. ……………………14分6、(苏州市2013届高三期末)已知函数()sin()f x A x ωϕ=+,(其中0,0,02A πωϕ>><<)的周期为π,且图像上有一个最低点为2(,3)3M π- (1)求()f x 的解析式; (2)求函数()()4y f x f x π=++的最大值及对应x 的值.(苏州市2013届高三期末)在路边安装路灯,灯柱AB 与地面垂直,灯杆BC 与灯柱AB 所在平面与道路垂直,且120ABC ∠=,路灯C 采用锥形灯罩,射出的光线如图中阴影部分所示,已知60ACD ∠=,路宽24AD =米,设灯柱高AB h =(米),ACB θ∠=(3045θ≤≤)(1)求灯柱的高h (用θ表示);(2)若灯杆BC 与灯柱AB 所用材料相同,记此用料长度和为S ,求S 关于θ的函数表达式,并求出S 的最小值.C B A D7、(泰州市2013届高三期末)如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,AB =1,BC =2,现要将些铁皮剪出一个等腰三角形PMN ,其底边MN ⊥BC 。

江苏省13大市2013届高三上学期期末数学试题分类汇编AqqPHU

江苏省13大市2013届高三上学期期末数学试题分类汇编AqqPHU

江苏省13大市2013届高三上学期期末数学试题分类汇编数 列一、填空题1、(常州市2013届高三期末)已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑= ▲ . 答案:2324n n ⋅--2、(连云港市2013届高三期末)正项等比数列{a n }中,311a a =16,则22212log log a a += ▲ .答案:43、(南京市、盐城市2013届高三期末)在等差数列{}n a 中, 若9753=++a a a , 则其前9项和9S 的值为 ▲答案:274、(南通市2013届高三期末)若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:42±.5、(徐州、淮安、宿迁市2013届高三期末)已知等比数列}{n a 的前n 项和为n S ,若62,256382-==S a a a a ,则1a 的值是 ▲ .答案:-26、(扬州市2013届高三期末)数列{}n a 满足111,1(1)n n n a a a a +>-=-,()n N +∈,且 122012111a a a +++L =2,则201314a a -的最小值为 ▲ .答案:27-7、(镇江市2013届高三期末)在等比数列{}n a 中,n S 为其前n 项和,已知5423a S =+,6523a S =+,则此数列的公比q 为 ▲ . 答案:3;8、(镇江市2013届高三期末) 观察下列等式:31×2×12=1-122, 31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122+…+n +2n (n +1)×12n = ▲ .答案:()nn 2111⋅+-二、解答题1、(常州市2013届高三期末) 已知数列{}n a 是等差数列,12315a a a ++=,数列{}n b 是等比数列,12327b b b =.(1)若1243,a b a b ==.求数列{}n a 和{}n b 的通项公式;(2)若112233,,a b a b a b +++是正整数且成等比数列,求3a 的最大值.答案:解:(1)由题得225,3a b ==,所以123a b ==,从而等差数列{}n a 的公差2d =,所以21n a n =+,从而349b a ==,所以13n n b -=. ……………………3分(2)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则15a d =-,13b q=,35a d =+,33b q =.因为112233,,a b a b a b +++成等比数列,所以2113322()()()64a b a b a b +⋅+=+=. 设1133a b ma b n+=⎧⎨+=⎩,*,m n N ∈,64mn =,则3553d mq d q n ⎧-+=⎪⎨⎪++=⎩,整理得,2()5()800d m n d m n +-++-=.解得2(10)362n m m n d -++--=(舍去负根).35a d =+Q ,∴要使得3a 最大,即需要d 最大,即n m -及2(10)m n +-取最大值.*,m n N ∈Q ,64mn =,∴当且仅当64n =且1m =时,n m -及2(10)m n +-取最大值.从而最大的637612d +=, 所以,最大的3737612a +=………16分 2、(连云港市2013届高三期末)已知数列{a n }中,a 2=a (a 为非零常数),其前n 项和S n 满足:S n =n (a n -a 1)2(n ∈N*).(1)求数列{a n }的通项公式;(2)若a =2,且21114m n a S -=,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足n a b p +≤的最大项恰为第3p -2项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.(1)证明:由已知,得a 1=S 1=1⋅(a 1-a 1)2=0,∴S n =na n2, ………………………2分则有S n +1=(n +1)a n +12,∴2(S n +1-S n )=(n +1)a n +1-na n ,即(n -1)a n +1=na n n ∈N*, ∴na n +2=(n +1)a n +1,两式相减得,2a n +1=a n +2+a n n ∈N*, ……………………………4分 即a n +1-a n +1=a n +1-a n n ∈N*, 故数列{a n }是等差数列.又a 1=0,a 2=a ,∴a n =(n -1)a . ………………………………6分 (2)若a =2,则a n =2(n -1),∴S n =n (n -1).由21114m n a S -=,得n 2-n +11=(m -1)2,即4(m -1)2-(2n -1)2=43, ∴(2m +2n -3)(2m -2n -1)=43. ………………………………8分 ∵43是质数, 2m +2n -3>2m -2n -1, 2m +2n -3>0, ∴⎩⎨⎧2m -2n -1=12m +2n -3=43,解得m =12,n =11. ………………………………10分 (III)由a n +b ≤p ,得a (n -1)+b ≤p .若a <0,则n ≥p -ba +1,不合题意,舍去; ……………………………11分若a >0,则n ≤p -ba+1.∵不等式a n +b ≤p 成立的最大正整数解为3p -2,∴3p -2≤p -ba +1<3p -1, ………………………………13分即2a -b <(3a -1)p ≤3a -b ,对任意正整数p 都成立.∴3a -1=0,解得a =13, ………………………………15分此时,23-b <0≤1-b ,解得23<b ≤1.故存在实数a 、b 满足条件, a 与b 的取值范围是a =13,23<b ≤1. ………16分3、(南京市、盐城市2013届高三期末)若数列{}n a 是首项为612t -, 公差为6的等差数列;数列{}n b 的前n 项和为3n nS t =-.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n b 是等比数列, 试证明: 对于任意的(,1)n n N n ∈≥, 均存在正整数n c , 使得1n n c b a +=, 并求数列{}n c 的前n 项和n T ;(3)设数列{}n d 满足n n n d a b =⋅, 且{}n d 中不存在这样的项k d , 使得“1k k d d -<与1k k d d +<”同时成立(其中2≥k , *∈N k ), 试求实数的取值范围.答案:解: (1)因为{}n a 是等差数列,所以(612)6(1)612n a t n n t =-+-=-…………2分 而数列{}n b 的前n 项和为3n nS t =-,所以当2n ≥时, 11(31)(31)23n n n n b --=---=⨯,又113b S t ==-,所以13,123,2n n t n b n --=⎧=⎨⨯≥⎩……………………4分 (2)证明:因为{}n b 是等比数列,所以113232t --=⨯=,即1t =,所以612n a n =- ………………5分对任意的(,1)n n N n ∈≥,由于11123636(32)12n n n n b --+=⨯=⨯=⨯+-,令1*32n nc N -=+∈,则116(23)12n n c n a b -+=+-=,所以命题成立 …7分数列{}n c 的前n 项和13112321322nn n T n n -=+=⨯+-- …………………9分(3)易得6(3)(12),14(2)3,2n nt t n d n t n --=⎧=⎨-≥⎩, 由于当2n ≥时,114(12)34(2)3n n n n d d n t n t ++-=+---38[(2)]32n n t =--⨯,所以①若3222t -<,即74t <,则1n n d d +>,所以当2n ≥时,{}n d 是递增数列,故由题意得12d d ≤,即6(3)(12)36(22)t t t --≤-,解得5975977444t ---+≤≤<,………13分②若32232t ≤-<,即7944t ≤<,则当3n ≥时,{}n d 是递增数列,, 故由题意得23d d =,即234(22)34(23)3t t -=-,解得74t =…………………14分③若321(,3)2m t m m N m ≤-<+∈≥,即35(,3)2424m m t m N m +≤<+∈≥,则当2n m ≤≤时,{}n d 是递减数列, 当1n m ≥+时,{}n d 是递增数列,则由题意,得1m m d d +=,即14(2)34(21)3mm t m t m +-=--,解得234m t +=…………15分 综上所述,的取值范围是59759744t ---+≤≤或234m t +=(,2)m N m ∈≥……16分4、(南通市2013届高三期末)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式;(3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+.④③+④,得212n n n na na na +++=,即212n n n a a a +++=. …………………………7分 又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ………………………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列, 于是,21333p qp q=+. ……………………………………………………11分 所以,213()33q p p q =-(☆). 易知(p ,q )=(2,3)为方程(☆)的一组解. ………………………………………13分 当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133pp -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.5、(徐州、淮安、宿迁市2013届高三期末)已知,0,0<>b a 且,0≠+b a 令,,11b b a a ==且对任意正整数k ,当≥+k k b a 时,;43,412111k k k k k b b b a a =-=++当<+k k b a 时,.43,214111k k k k k a a b a b =+-=++(1) 求数列}{n n b a +的通项公式;(2) 若对任意的正整数n ,0<+n n b a 恒成立,问是否存在b a ,使得}{n b 为等比数列?若存在,求出ba ,满足的条件;若不存在,说明理由;(3) 若对任意的正整数,0,<+n n b a n 且,43122+=n n b b 求数列}{n b 的通项公式. ⑴当0n n a b +≥时,11124n n n a a b +=- 且134n n b b +=, 所以111131()2442n n n n n n n a b a b b a b +++=-+=+,……………………………………2分又当0n n a b +<时,11142n n n b a b +=-+且134n n a a +=,113111()4422n n n n n n n a b a a b a b +++=-+=+,…………………………………………4分因此,数列{}n n b a +是以b a +为首项,12为公比的等比数列,所以,n n b a +11()2n a b -⎛⎫=+ ⎪⎝⎭.………………………………………………………5分⑵因为0n n a b +<,所以n n a a 431=+,所以134n n a a -⎛⎫= ⎪⎝⎭,11()2n n n b a b a -⎛⎫=+- ⎪⎝⎭1113()24n n a b a --⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,…………………………………8分假设存在a ,b ,使得{}n b 能构成等比数列,则1b b =,224b a b -=,34516b ab -=, 故2245()()416b a b ab --=,化简得0=+b a ,与题中0a b +≠矛盾, 故不存在a ,b 使得{}n b 为等比数列. ……………………………………………10分 ⑶因为0n n a b <+且12243+=n n b b ,所以121222141--+-=n n n b a b 所以1243+n b 21212121211113142444n n n n n a b a b b -----=-+=-+-所以2121212131()()44n n n n b b a b +----=-+,……………………………………………12分由⑴知,2221211()2n n n a b a b ---⎛⎫+=+ ⎪⎝⎭,所以222121132n n n a b b b -+-+⎛⎫-=- ⎪⎝⎭)()(321213112----+-+=n n n b b b b b b Λ246241111132222n a b b -⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L11114()141139414n n a b a b b b --⎡⎤⎛⎫-⎢⎥⎪⎡⎤++⎛⎫⎝⎭⎢⎥=-=--⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦,…………………………………13分22133()114434nn n a b b b b +⎡⎤+⎛⎫==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,………………………………………………14分所以,1224()11,943()1-1,434n n na b b n b a b b n -⎧⎡⎤+⎛⎫⎪⎢⎥-- ⎪⎪⎢⎥⎝⎭⎪⎣⎦=⎨⎡⎤⎪+⎛⎫⎢⎥⎪- ⎪⎢⎥⎝⎭⎪⎣⎦⎩.为奇数时,为偶数时…………………………………16分6、(苏州市2013届高三期末)设数列{}n a 的前n 项和为n S ,满足21n n a S An Bn +=++(0A ≠).(1)若132a =,294a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式; (2)已知数列{}n a 是等差数列,求1B A-的值.7、(泰州市2013届高三期末)已知数列16n a n =-,(1)15nn b n =--,其中*n N ∈(1)求满足1n a +=n b 的所有正整数n 的集合 (2)n ≠16,求数列nnb a 的最大值和最小值 (3)记数列{}n n a b 的前 n 项和为n S ,求所有满足22m n S S =(m<n )的有序整数对(m,n)(1)a n +1=|b n |,n -15=|n -15|,当n ≥15时,a n +1=|b n |恒成立, 当n <15时,n -15=-(n -15) ,n =15n 的集合{n |n ≥15,n ∈N *}……………………………………….…………….…………….4分(2)nn a b =1615)1(---n n n(i)当n>16时,n 取偶数n n a b =1615--n n =1+161-n当n=18时(nn a b )max =23无最小值n 取奇数时nn a b =-1-161-n n=17时(nna b )min =-2无最大值 ……………………………………………………………8分 (ii)当n<16时,nna b =16)15()1(---n n n当n 为偶数时nn a b =16)15(---n n =-1-161-nn=14时(nn a b )max =-21(n n a b )min =-1413当n 奇数n n a b =1615--n n =1+161-n , n=1 , (nn a b )max =1-151=1514,n =15,(nna b )min =0 ………………………………………………11分 综上,nn a b 最大值为23(n =18)最小值-2(n =17)……………….……..……………….12分(3)n≤15时,b n =(-1)n-1(n-15),a 2k -1b 2k -1+a 2k b 2k =2 (16-2k )≥0 ,n >15时,b n =(-1)n (n -15),a 2k -1b 2k -1+a 2k b 2k =2 (2k -16) >0,其中a 15b 15+a 16b 16=0∴S 16=S 14 m =7, n =8…………………………………………………………….16分8、(无锡市2013届高三期末)已知数列{a n }中,a 1=2,n ∈N +,a n >0,数列{a n }的前n 项和S n ,且满足1122n n n a S S ++=-。

江苏省13大市高三数学上学期期末试题分类汇编 数学归纳法与二项式定理 苏教版

江苏省13大市高三数学上学期期末试题分类汇编 数学归纳法与二项式定理 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编数学归纳法与二项式定理1、(常州市2013届高三期末)空间内有n 个平面,设这n 个平面最多将空间分成n a 个部分.(1)求1234,,,a a a a ;(2)写出n a 关于n 的表达式并用数学归纳法证明. 解:(1)12342,4,8,15a a a a ====;(2)31(56)6n a n n =++.证明如下: 当1n =时显然成立,设(1,)n k k k N *=≥∈时结论成立,即31(56)6k a k k =++, 则当1n k =+时,再添上第1k +个平面,因为它和前k 个平面都相交,所以可得k 条互不平行且不共点的交线,且其中任3条直线不共点,这k 条交线可以把第1k +个平面划最多分成21[(1)(1)2)]2k k +-++个部分,每个部分把它所在的原有空间区域划分成两个区域.因此,空间区域的总数增加了21[(1)(1)2)]2k k +-++个,2321111[(1)(1)2)](56)[(1)(1)2)]262k k a a k k k k k k +∴=++-++=++++-++ 31[(1)5(1)6)]6k k =++++,即当1n k =+时,结论也成立. 综上,对n N *∀∈,31(56)6n a n n =++. 2、(南京市、盐城市2013届高三期末) 已知n x x f )2()(+=, 其中*N n ∈.(1)若展开式中含3x 项的系数为14, 求n 的值;(2)当3=x 时, 求证:)(x f *)s N +∈的形式.解: (1)因为28812r rr r x C T-+=,所以6=r ,故3x 项的系数为14266=⋅-n n C ,解得7=n ………5分(2)由二项式定理可知,01201122(22222nnnn n n nnnnC C C C --=++++,设(2n x +=+=(2n +=+,a b N *∈,则(2n ,a b N *∈…………………………………………………………7分∵(2(21n n +⋅=+⋅-=,∴令,a s s N *=∈,则必有1b s =-……………………………………………………9分∴(2n +的形式,其中s N *∈ ……………………………10分 注:用数学归纳法证明的,证明正确的也给相应的分数. 3、(南通市2013届高三期末)已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数. 解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-,所以,5,1,1,2,n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩…………………………………3分(2)当3a =时,1114,31n a n a a -+==+. ……………………………………………4分下面利用数学归纳法来证明:a n 是4的倍数. 当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t rt t t t m --------=-⋅++-⋅+-⋅,m ∴∈Z ,∴当1n k =+时,命题成立.∴由数学归纳法原理知命题对*n ∀∈N 成立. ………………………………10分4、(徐州、淮安、宿迁市2013届高三期末)已知数列}{n a 满足),(12121*21N n na a a n n n ∈+-=+且.31=a(1) 计算432,,a a a 的值,由此猜想数列}{n a 的通项公式,并给出证明;(2) 求证:当2≥n 时,.4n nnn a ≥ 证明:⑴24a =,35a =,46a =,猜想:*2()n a n n =∈+N .……………………2分①当1n =时,13a =,结论成立;②假设当*(1,)n k k k =∈N ≥时,结论成立,即2k a k =+, 则当1n k =+时,22111111=(2)(+2)+1=+3=(+1)+22222k k k a a ka k k k k k +=-+-+, 即当1n k =+时,结论也成立,由①②得,数列{}n a 的通项公式为*2()n a n n =∈+N .5分⑵原不等式等价于2(1)4n n+≥.证明:显然,当2n =时,等号成立;当2n >时,01222222(1)C C C ()C ()n n n n n n n n n n n +=++++012233222C C C ()C ()n n n n n n n+++≥0122222>C C C ()54n n n n n n++=->, 综上所述,当2n ≥时,4nn na n ≥.…………………………………………………10分 5、(无锡市2013届高三期末) 已知函数f (x )=12x 2+1nx . (Ⅰ)求函数f (x )在区间[1,e]上的最大值、最小值;(Ⅱ)设g (x )=f (x ),求证:[()]()22()nnng x g x n N +-≥-∈.6、(扬州市2013届高三期末)已知数列{}n a 是等差数列,且123,,a a a 是1(1)2mx +展开式的前三项的系数. (Ⅰ)求1(1)2mx +展开式的中间项; (Ⅱ)当2n ≥时,试比较2121111n n n n a a a a ++++++与13的大小. 解:(Ⅰ)122111(1)1()()222m m m x C x C x +=+++依题意11a =,212a m =,3(1)8m m a -=,由2132a a a =+可得1m =(舍去),或8m = …………………2分 所以1(1)2m x +展开式的中间项是第五项为:44458135()28T C x x ==;…………………4分 (Ⅱ)由(Ⅰ)知,32n a n =-,当2n =时,212234111111111169147101403n n n n a a a a a a a ++++++=++=++=> 当3n =时,212345911111111n n n n a a a a a a a a ++++++=++++ 11111117101316192225=++++++1111111()()7101316192225=++++++ 1111111()()8161616323232>++++++133131181632816163=++>++> 猜测:当2n ≥时,2121111n n n n a a a a ++++++13> …………………6分以下用数学归纳法加以证明:①3n =时,结论成立, ②设当n k =时,212111113k k k k a a a a ++++++>, 则1n k =+时,2(1)(1)1(1)2(1)1111k k k k a a a a ++++++++++21)(1)1(1)211111()k k k k k a a a a a +++++=+++++22212(1)1111()kk k k a a a a +++++++-22212(1)11111()3k k k k a a a a +++>++++-21(21)133(1)232k k k +>+-+--221(21)(32)[3(1)2]3[3(1)2][32]k k k k k +--+-=++--2213733[3(1)2][32]k k k k --=++-- 由3k ≥可知,23730k k --> 即2(1)(1)1(1)2(1)111113k k k k a a a a ++++++++++> 综合①②可得,当2n ≥时,212111113n n n n a a a a ++++++> …………………10分7、(镇江市2013届高三期末)已知函数()ln(2)f x x ax =-+在区间(0,1)上是增函数.(1)求实数a 的取值范围;(2)若数列{}n a 满足1(0,1)a ∈,1ln(2)n n n a a a +=-+,n ∈N* ,证明101n n a a +<<<.解:(1) 函数()ln(2)f x x ax =-+在区间(0,1)上是增函数.∴()021≥+--='a xx f 在区间(0,1)上恒成立,……2分 x a -≥∴21,又()xx g -=21在区间(0,1)上是增函数 ()11=≥∴g a 即实数a 的取值范围为1≥a .……3分(2)先用数学归纳法证明10<<n a . 当1=n 时,1(0,1)a ∈成立, ……4分假设k n =时,10<<k a 成立,……5分当1+=k n 时,由(1)知1=a 时,函数()()x x x f +-=2ln 在区间(0,1)上是增函数∴()()k k k k a a a f a +-==+2ln 1 ∴()()()1102ln 0=<<=<f a f f k ,……7分即101<<+k a 成立, ∴当*∈N n 时,10<<n a 成立.……8分 下证1+<n n a a . ()101,ln 2ln10.n n n n a a a a +<<∴-=->=……9分1+<∴n n a a . 综上101<<<+n n a a .……10分。

江苏省13大市高三数学上学期期末试题分类汇编 概率 苏教版

江苏省13大市高三数学上学期期末试题分类汇编 概率 苏教版

江苏省13大市2013届高三上学期期末数学试题分类汇编概率一、填空题1、(常州市2013届高三期末)已知某拍卖行组织拍卖的10幅名画中,有2幅是膺品.某人在这次拍卖中随机买入了一幅画,则此人买入的这幅画是膺品的事件的概率为 ▲ . 答案:8152、(连云港市2013届高三期末).在数字1、2、3、4四个数中,任取两个不同的数,其和大于积的概率是 ▲ . 答案:12;3、(南京市、盐城市2013届高三期末)袋中装有2个红球, 2个白球, 除颜色外其余均相同, 现从中任意摸出2个小球, 则摸出的两球颜色不同的概率为 ▲ .答案:234、(南通市2013届高三期末).已知实数x ∈[1,9],执行如右图所示的流程图, 则输出的x 不小于55的概率为 ▲ .答案:38.5、(徐州、淮安、宿迁市2013届高三期末)从0,1,2,3这四个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是 ▲ . 答案:596、(苏州市2013届高三期末)有5个数成公差不为零的等差数列,这5个数的和为15,若从这5个数中随机抽取一个数,则它小于3的概率是 .答案:237、(泰州市2013届高三期末)如图,ABCD 是4⨯5的方格纸,向此四边形ABCD 内抛撒一粒豆子,则豆子恰好落在阴影部分内的概率为 答案:0.2 8、(扬州市2013届高三期末)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x ,y ,则x y 2=的概率为 ▲ . 答案:121二、解答题1、(常州市2013届高三期末)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望()E X .解:(1)设袋中原有个白球,则从9个球中任取2个球都是白球的概率为229n C C ,由题意知229n C C =512,即(1)5298122n n -=⨯,化简得2300n n --=. 解得6n =或5n =-(舍去) 故袋中原有白球的个数为6. (2)由题意,X 的可能取值为1,2,3,4. 62(1)93P X ===; 361(2)984P X ⨯===⨯;3261(3)98714P X ⨯⨯===⨯⨯;32161(4)987684P X ⨯⨯⨯===⨯⨯⨯.所以取球次数X 的概率分布列为:X1234P2314 114184所求数学期望为E (X )=123+214+3114+4184=10.72、(连云港市2013届高三期末)解:(1)一次从袋中随机抽取3个球,抽到编号为3的小球的概率253612C p C ==.所以,3次抽取中,恰有2次抽到3号球的概率为2223113(1)3()()228C p p -=⨯=. ……………4分(2)随机变量X 所有可能的取值为1,2,3.33361(1)20C P X C ===,12212323369(2)20C C C C P X C +===, 253610(3)20C P X C ===, ……………………………8分 所以,随机变量X的分布列为:X 1 2 3P120920 12故随机变量X的数学期望E(X )=191491232020220⨯+⨯+⨯=. …………………10分3、(南京市、盐城市2013届高三期末)某射击小组有甲、乙两名射手, 甲的命中率为1P 32=, 乙的命中率为2P , 在射击比武活动中每人射击两发子弹则完成一次检测, 在一次检测中, 若两人命中次数相等且都不少于一发, 则称该射击小组为“先进和谐组”. 若2P 21=, 求该小组在一次检测中荣获“先进和谐组”的概率; 计划在2013年每月进行1次检测, 设这12次检测中该小组获得“先进和谐组”的次数为ξ, 如果5≥ξE , 求2P 的取值范围. 解: (1)可得=⋅⋅+⋅⋅⋅⋅=)2121)(3232()2121)(3132(1212C C P 31……………4分 (2)该小组在一次检测中荣获“先进和谐组”的概率为222222212129498)3232()]1()[3132(P P P P P C C P -=⋅+-⋅⋅⋅⋅=,而ξ~),12(P B ,所以P E 12=ξ,由5≥ξE ,知512)9498(222≥⋅-P P ,解得1432≤≤P ………………………………10分 4、(苏州市2013届高三期末)设10件同类型的零件中有2件不合格品,从所有零件中依次不放回地取出3件,以X 表示取出的3件中不合格品的件数.(1)求“第一次取得正品且第二次取得次品”的概率;(2)求X 的概率分布和数学期望()E X .5、(无锡市2013届高三期末)某银行的一个营业窗口可办理四类业务,假设顾客办理业务所需的时间互相独立,且都是整数分钟,经统计以往100位顾客办理业务所需的时间(t),结果如下:类别A类B类C类D类顾客数(人)20 30 40 10时间t(分钟/人) 2 3 4 6注:银行工作人员在办理两项业务时的间隔时间忽略不计,并将频率视为概率.(Ⅰ)求银行工作人员恰好在第6分钟开始办理第三位顾客的业务的概率;(Ⅱ)用X表示至第4分钟末已办理完业务的顾客人数,求X的分布列及数学期望.。

江苏省大市高三上学期期末数学试题分类汇编不等式选讲选修 含答案

江苏省大市高三上学期期末数学试题分类汇编不等式选讲选修 含答案

江苏省13大市2013届高三上学期期末数学试题分类汇编不等式选讲1、(常州市2013届高三期末)设2()14,||1f x x x x a =-+-<且,求证:|()()|2(||1)f x f a a -<+.证明:由22|()()||||()(1)|f x f a x a a x x a x a -=-+-=-+-=|||1||1||()21|x a x a x a x a a -+-<+-=-+-|||2|1x a a ≤-++|2|2a <+ =2(||1)a +.2、(连云港市2013届高三期末)解:∵(x +2y +2z )2(12+22+22)(x 2+y 2+z 2)=9,当且仅当x 1=y 2=z2时取等号, ……………5分|a -1|3,解得a 4,或a -2. (10)分3、(南京市、盐城市2013届高三期末)设12,,,n a a a ⋅⋅⋅都是正数, 且12n a a a ⋅⋅⋅⋅⋅⋅=1, 求证:12(1)(1)(1)2n n a a a ++⋅⋅⋅+≥.解:因为1a 是正数,所以111a a +≥………………………………………5分 同理1(2,3,)j j a a j n +=≥2,将上述不等式两边相乘,得1212(1)(1)(1)n n n a a a a a a +++⋅⋅⋅⋅≥2,因为121n a a a ⋅⋅⋅=,所以12(1)(1)(1)n n a a a +++≥2……………………………10分4、(南通市2013届高三期末)已知0,0,a b >>且21a b +=,求224S ab a b =-的最大值.解:0,0,21,a b a b >>+=∴2224(2)414a b a b ab ab +=+-=-, ……………………………………………2分 且122a b ab =+≥24ab ≤,18ab ≤, ……………………………5分∴224S ab a b =--2(14)ab ab =--41ab ab =-212-≤,当且仅当11,42a b ==时,等号成立. ………………………………………10分5、(徐州、淮安、宿迁市2013届高三期末)D. [选修4—5 :不等式选讲](本小题满分10分) 已知实数z y x ,,满足,2=++z y x 求22232z y x ++的最小值.由柯西不等式,2222222()(2)(3)()()123x y z x y z ⎡⎤⎡⎤++++⋅++⎢⎥⎣⎦⎣⎦≤,……5分 因为2x y z =++,所以222242311x y z ++≥, 当且仅当23123x y z ==,即6412,,111111x y z ===时,等号成立, 所以22223x y z ++的最小值为2411.…………………………………………………10分 6、(苏州市2013届高三期末)已知a ,b ,x ,y 都是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.答案:7、(泰州市2013届高三期末)D.(本小题满分10分,不等式选讲)若c b a ,,∈R +,+a 2+b 3c =6.(1)求abc 的最大值;(2)求证cc b b a a 236+++++≥12. 解:(1)∵a ,b ,c ∈R +,a +2b +3c =6∴abc =61a ·2b ·3c ≤61 (332c b a ++)3=34当a =2,b =1,c =32时取等号,∴abc 的最大值为34……………………….…..5分(2)∵a a 6++b b 3++c c 2+=3+a 6+b 3+c2y=5y=x+1+x-2O yx 4321-3-2-15321而(a 6+b 3+c 2) (a +2b +3c ) ≥(6+6+6)2=54∴a 6+b 3+c 2≥9 ∴a a 6++b b 3++cc 2+≥12…………………………………..…………………..…….10分8、(无锡市2013届高三期末)已知|x+1|+|x -l|<4的解集为M ,若a ,b ∈M ,证明:2|a+b|<|4+ab|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省13大市2013届高三上学期期末数学试题分类汇编
不等式
1、(常州市2013届高三期末)已知实数,x y 同时满足54276
x y --+=
,2741log log 6
y x -≥

2741y
x
-≤,则x y +的取值范围是 ▲ .
2、(连云港市2013届高三期末)关于x 的不等式x 2-ax +2a <0的解集为A ,若集合A 中恰有两个整数,则实数a 的取值范围是 ▲ .
3、(南京市、盐城市2013届高三期末)设,x y 满足约束条件⎪⎩

⎨⎧≥≥≥+-≤--0,002063y x y x y x , 则目标函数
23z x y =+的最大值为 ▲
4、(南通市2013届高三期末)已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,
则λ的最大值为 ▲ .
5、(徐州、淮安、宿迁市2013届高三期末)已知实数y x ,满足约束条件⎪⎩

⎨⎧≤+++≥≥0,12,
0k y x x y x (k
为常数),若目标函数y x z +=2的最大值是3
11,则实数k 的值是 ▲ .
6、(苏州市2013届高三期末)已知()1f x x x =+,则11
()()4
2
f x f -<的解集
是 .
7、(无锡市2013届高三期末)已知变量x ,y 满足约束条件0
04x y y x ≤⎧⎪
≥⎨⎪-≤⎩
,表示平面区域M ,
若-4≤a≤t 时,动直线x+y=a 所经过的平面区域M 的面积为7.则t= .
8、(扬州市2013届高三期末)设,x y 满足约束条件⎪⎩

⎨⎧≤+≥+≥52420y x y x x ,则y x z -=2的最大值
是 ▲ .
9、(镇江市2013届高三期末)已知x ,y 为正数,则
22x y x y
x y
+
++的最大值为 ▲ .
10、(徐州、淮安、宿迁市2013届高三期末)若对满足条件)0,0(3>>=++y x xy y x 的任意y x ,,01)()(2≥++-+y x a y x 恒成立,则实数a 的取值范围是 ▲
11、(苏州市2013届高三期末已知实数x ,y 满足不等式20403x y x y x -≥⎧⎪
+-≥⎨⎪≤⎩
,则33
2
2x y x y +的取值范围是 .。

相关文档
最新文档