高考试题理科数学江苏卷及答案解析

合集下载

全国高考理科数学考试卷江苏试卷参考答案

全国高考理科数学考试卷江苏试卷参考答案

高考理科数学考试真题(江苏卷)参考答案1.π【解析】:2==2T ππ2.5【解析】:34,Z i Z =-= 3.3y=4x ±4.8【解析】:328=(个)5.3【解析】:n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6.2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.6320【解析】:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个,所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.1:24【解析】:三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.另:112211111334224ADE ABC V S h S h V ==⨯⨯= 所以121:24V V =9.[—2,12]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2.画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12.10.12 【解析】:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+所以1212λλ+=11.(﹣5,0) ∪(5,﹢∞)【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。

全国高考理科数学试卷真题(江苏)参考答案解析

全国高考理科数学试卷真题(江苏)参考答案解析

全国高考试卷真题(江苏) 数学理科参考答案1.5【解析】{123}{245}{12345}5AB ==,,,,,,,,,个元素.2.6【解析】平均数为46587666.322|||34|5||5||z i z z =+=⇒=⇒=.4.7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7S =. 5.56【解析】从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56.6.-3【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 7.(1,2)【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2)-. 8.3【解析】12tan()tan 7tan tan()321tan()tan 17αβαβαβααβα++-=+-===++-. 922221145+28=4833r r r ππππ⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⇒10.22(1)2x y 【解析】因为直线210()mx y m m R 恒过点(2,1),所以当点(2,1)为切点时,半径最大,此时半径2r ,故所求圆的标准方程为22(1)2x y .11.2011【解析】由题意得:112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)1212n n n n +=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++.122(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -==13.4【解析】当01x ≤时,()ln f x x ,()0g x ,此时方程|()()|1f x g x 即为ln 1x 或ln 1x,故x e 或1xe ,此时1x e符合题意,方程有一个实根. 当12x时,()ln f x x ,22()422g x x x ,方程|()()|1f x g x 即为2ln 21x x 或2ln 21x x ,即2ln 10x x 或2ln 30x x ,令2ln 1y x x ,则120yx x,函数2ln 1y x x 在(1,2)x 上单调递减,且1x 时0y,所以当12x 时,方程2ln 10x x 无解;令2ln 3yx x ,则120yx x,函数2ln 3y x x 在(1,2)x 上单调递减,且1x 时20y ,2x 时ln 210y ,所以当12x 时,方程2ln 30x x 有一个实根.当2x ≥时,()ln f x x ,2()6g x x ,方程|()()|1f x g x 即为2ln 61x x 或2ln 61x x,即2ln 70x x 或2ln 50x x ,令2y ln 7x x ,则120yx x,函数2y ln 7x x 在[2,)x 上单调递增,且2x 时ln 230y ,3x 时ln320y ,所以当2x ≥时方程2ln 70x x 有1个实根;同理2ln 50x x 在[2,)x 有1个实根.故方程1|)()(|=+x g x f 实根的个数为4个.14.1(1)(1)(1)(cos,sin cos )(cos ,sin cos )666666k k k k k k k k a a ππππππ++++⋅=+⋅+2(1)21(21)cossincos cos sin cos6666626k k k k k ππππππππ++++=++=++因此11103312k k k a a +=⋅==∑ 15.【解析】(1)由余弦定理知,2221C C 2C cos 4922372B =AB+A -AB⋅A ⋅A =+-⨯⨯⨯=,所以BC =(2)由正弦定理知,C sin C sin AB B =A ,所以21sin C sin C 7AB =⋅A==B .因为C AB <B,所以C 为锐角,则cosC 7===.因此212743sin 2C 2sin C cos C 2=⋅=⨯⨯=. 16.【证明】(1)由题意知,E 为1B C 的中点, 又D 为1AB 的中点,因此D //C E A .又因为D E ⊄平面11C C AA ,C A ⊂平面11C C AA , 所以D //E 平面11C C AA .(2)因为棱柱111C C AB -A B 是直三棱柱, 所以1CC ⊥平面C AB .因为C A ⊂平面C AB ,所以1C CC A ⊥.又因为C C A ⊥B ,1CC ⊂平面11CC B B ,C B ⊂平面11CC B B ,1C CC C B =,所以C A ⊥平面11CC B B .又因为1C B ⊂平面11CC B B ,所以1C C B ⊥A .因为1C CC B =,所以矩形11CC B B 是正方形,因此11C C B ⊥B . 因为C A ,1C B ⊂平面1C B A ,1CC C A B =,所以1C B ⊥平面1C B A .又因为1AB ⊂平面1C B A ,所以11C B ⊥AB .17.【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2a y x b =+,得4025 2.5400aba b⎧=⎪⎪+⎨⎪=⎪+⎩,解得10000a b =⎧⎨=⎩.(2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫ ⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x '=-, 则l 的方程为()2310002000y x t t t -=--,由此得3,02t ⎛⎫A ⎪⎝⎭,230000,t ⎛⎫B ⎪⎝⎭.故()f t ==,[]5,20t ∈. ②设()624410g t t t ⨯=+,则()6516102g t t t⨯'=-.令()0g t '=,解得t =当(t ∈时,()0g t '<,()g t 是减函数;当()20t ∈时,()0g t '>,()g t 是增函数.从而,当t =()g t 有极小值,也是最小值,所以()min 300g t =, 此时()min f t =答:当t =l的长度最短,最短长度为千米.18.【解析】(1)由题意,得2c a =且23a c c +=,解得a =1c =,则1b =,所以椭圆的标准方程为222x y .(2)当x AB ⊥轴时,AB =C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得()()2222124210kxk x k +-+-=,则1,2x=C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且)22112k k+AB ===+.若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而(()22231C 12k k k +P =+. 因为2PC AB=,所以(())222223111212k k kk k++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+.19.【解析】:(1)()232f x x ax '=+,令()0f x '=,解得10x =,223ax =-. 当0a =时,因为()230f x x '=>(0x ≠),所以函数()f x 在(),-∞+∞上单调递增; 当0a >时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,2,03a x ⎛⎫∈-⎪⎝⎭时,()0f x '<, 所以函数()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.(2)由(1)知,函数()f x 的两个极值为()0f b =,324327a f a b ⎛⎫-=+ ⎪⎝⎭,则函数()f x 有三个零点等价于()32400327a f f b a b ⎛⎫⎛⎫⋅-=+< ⎪ ⎪⎝⎭⎝⎭,从而34027a a b >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩.又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<.设()3427g a a a c =-+,因为函数()f x 有三个零点时,a 的取值范围恰好是()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,则在(),3-∞-上()0g a <,且在331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上()0g a >均恒成立,从而()310g c -=-≤,且3102g c ⎛⎫=-≥ ⎪⎝⎭,因此1c =.此时,()()()3221111f x x ax a x x a x a ⎡⎤=++-=++-+-⎣⎦,因函数有三个零点,则()2110x a x a +-+-=有两个异于1-的不等实根,所以()()22141230a a a a ∆=---=+->,且()()21110a a ---+-≠, 解得()33,31,,22a ⎛⎫⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.综上1c =. 20.【解析】(1)证明:因为112222n n n na a a d a ++-==(1n =,2,3)是同一个常数,所以12a ,22a ,32a ,42a 依次构成等比数列.(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2a d +(a d >,2a d >-,0d ≠).假设存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列, 则()()34a a d a d =-+,且()()6422a d a a d +=+. 令d t a =,则()()3111t t =-+,且()()64112t t +=+(112t -<<,0t ≠), 化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,()()21212313410t t t t t t t t +++-=+=++=+=,则14t =-.显然14t =-不是上面方程得解,矛盾,所以假设不成立, 因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列. (3)假设存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k na a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦,且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++. 令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++, 则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦.令()()1t t ϕϕ'=,则()()()()163ln 134ln 12ln 1t t t t ϕ'=+-+++⎡⎤⎣⎦.令()()21t t ϕϕ'=,则()()()()212011213t t t t ϕ'=>+++.由()()()()1200000g ϕϕϕ====,()20t ϕ'>, 知()2t ϕ,()1t ϕ,()t ϕ,()g t 在1,03⎛⎫- ⎪⎝⎭和()0,+∞上均单调. 故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.数学Ⅱ(附加题)21.A .【证明】 因为AC AB =,所以ABD C ∠=∠.又因为C E ∠=∠,所以ABD E ∠=∠, 又BAE ∠为公共角,可知ABD ∆∽AEB ∆.B .B 【解析】 由已知,得2ααA =-,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦, 则122x y -=-⎧⎨=⎩,即12x y =-⎧⎨=⎩,所以矩阵1120-⎡⎤A =⎢⎥⎣⎦.从而矩阵A 的特征多项式()()()21fλλλ=+-,所以矩阵A 的另一个特征值为1.C .【解析】 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2cos 4022ρθθ⎛⎫+--= ⎪⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=, 即()()22116x y -++=,所以圆C.D .【解析】:原不等式可化为3232x x ⎧<-⎪⎨⎪--≥⎩或32332x x ⎧≥-⎪⎨⎪+≥⎩.解得5x ≤-或13x ≥-. 综上,原不等式的解集是153x x x 或⎧⎫≤-≥-⎨⎬⎩⎭.22.【解析】 以{},,AB AD AP 为正交基底建立如图所示的空间直角坐标系xyz A -,则各点的坐标为()1,0,0B ,()1,1,0C ,()0,2,0D ,()0,0,2P .A(第21——A 题)(1)因为AD ⊥平面PAB ,所以AD 是平面PAB 的一个法向量,()0,2,0AD =. 因为()1,1,2PC =-,()0,2,2PD =-.设平面PCD 的法向量为(),,m x y z =,则C 0m ⋅P =,D 0m ⋅P =,即20220x y z y z +-=⎧⎨-=⎩.令1y =,解得1z =,1x =.所以()1,1,1m =是平面PCD 的一个法向量. 从而D 3cos D,D m m mA ⋅A ==A ,所以平面PAB 与平面PCD 所成二面角的余弦值 (2)因为()1,0,2BP =-,设(),0,2BQ BP λλλ==-(01λ≤≤), 又()0,1,0CB =-,则(),1,2CQ CB BQ λλ=+=--,又()0,2,2DP =-, 从而cos ,10CQ DP CQ DP CQ DP⋅<>==.设12t λ+=,[]1,3t ∈,则2222229cos ,5109101520999t CQ DP t t t <>==-+⎛⎫-+⎪⎝⎭≤.当且仅当95t=,即25λ=时,cos CQ,D P 的最大值为10. 因为cos y x =在0,2π⎛⎫⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP ==255BQ BP ==. 23.【解析】(1)()613f =.(2)当6n ≥时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩(t *∈N ).下面用数学归纳法证明: ①当6n =时,()666621323f =+++=,结论成立; ②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,()2,1k +,()3,1k +中产生,分以下情形讨论: 1)若16k t +=,则()615k t =-+,此时有()()12132323k k f k f k k --+=+=++++ ()111223k k k ++=++++,结论成立; 2)若161k t +=+,则6k t =,此时有()()112123k kf k f k k +=+=++++ ()()()11111223k k k +-+-=++++,结论成立;3)若162k t +=+,则61k t =+,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立; 4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 5)若164k t +=+,则63k t =+,此时有 ()()1122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有 ()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立. 综上所述,结论对满足6n ≥的自然数n 均成立.。

普通高等学校招生全国统一考试数学试题江苏卷,含解析

普通高等学校招生全国统一考试数学试题江苏卷,含解析

2021年普通高等学校招生全国统一考试数学试题〔江苏卷,含解析〕一、填空题:本大题共14个小题,每题5分,共70分.1.集合 A 1,2,3,B 2,4,5,那么集合A B中元素的个数为_______.【答案】5【解析】试题分析: A B {1,2,3} {2,4,5} {12,,3,4,5},5个元素考点:集合运算一组数据4,6,5,8,7,6,那么这组数据的平均数为________.【答案】6考点:平均数3.设复数z满足z234i〔i是虚数单位〕,那么z的模为_______.【答案】5【解析】试题分析:|z2||34i|5|z|25|z|5考点:复数的模根据如下图的伪代码,可知输出的结果S为________.S←1I←1While I 10S←S+2I←I+3End WhilePrint S〔第4题图〕【答案】7【解析】试题分析:第一次循环:S 3,I 4;第二次循环:S 5,I 7;第三次循环:S 7,I 10;结束循环,输出S7.考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.【答案】5.6考点:古典概型概率6.向量a=(2,1),b=(1,2),假设ma+nb=(9,8)(m,n R),m n的值为______.【答案】3【解析】试题分析:由题意得:2m n 9,m 2n8m 2,n 5,m n 3.考点:向量相等7.不等式2x2x4的解集为________.【答案】(1,2).【解析】试题分析:由题意得:221x2,解集为(1,2). xx考点:解指数不等式与一元二次不等式8.tan2,tan 1,那么tan的值为_______. 7【答案】3【解析】12tan()tan7试题分析:tan tan( 3.)tan()tan1127考点:两角差正切公式9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

2022年江苏省高考数学真题及参考答案

2022年江苏省高考数学真题及参考答案

2022年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。

江苏新高考一卷数学试题及答案

江苏新高考一卷数学试题及答案

江苏新高考一卷数学试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333...D. 1答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。

A. 0B. 4C. 8D. -4答案:A3. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 1, 1, 1, 1C. 3, 7, 11, 15D. 5, 7, 9, 11答案:A4. 已知三角形ABC,AB = 5,AC = 7,BC = 6,求三角形ABC的面积。

A. 10B. 12C. 14D. 16答案:B5. 以下哪个表达式是正确的?A. sin^2(x) + cos^2(x) = 1B. tan(x) = sin(x) / cos(x)C. sin(2x) = 2sin(x)cos(x)D. cos(2x) = 1 - 2sin^2(x)答案:C6. 已知圆的半径为5,求圆的周长。

A. 10πB. 15πC. 20πD. 25π答案:C7. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = -3答案:B8. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积。

A. 10B. 11C. 12D. 13答案:B二、填空题(每题4分,共24分)9. 已知函数g(x) = 3x - 2,求g(1)的值。

答案:110. 一个正六边形的内角和是多少?答案:720°11. 已知等比数列的首项为2,公比为3,求第三项的值。

答案:1812. 一个圆的直径是14,求这个圆的面积。

答案:153.94(保留两位小数)13. 已知向量c = (1, -1),向量d = (2, 3),求向量c与向量d的叉积。

答案:-1三、解答题(每题16分,共40分)14. 解不等式:|x - 3| < 2。

解:首先,我们可以将不等式分为两部分来考虑:x - 3 < 2 以及 -(x - 3) < 2解得:x < 5 以及 x > 1因此,不等式的解集为 {x | 1 < x < 5}。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。

根据导数的定义,f'(x) = 6x^2 6x + 1。

将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。

因此,f'(1)的值为1,选项B正确。

2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。

直线的斜率为k,圆的斜率可以通过求导得到。

对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。

在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。

由于直线和圆在切点处斜率相同,所以k = 1/2。

因此,选项A正确。

3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。

由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。

将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。

将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。

因此,选项C正确。

4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。

2020年高考卷理科数学(江苏卷)附答案

2020年高考卷理科数学(江苏卷)附答案

2. 3. 4.已知集合如{一顷封如{M3}则刀口=已知i是虚数单位,贝愎数z=(E)(2t)的实部是已知一组数据4,2a.3・a ,5,6的平均数为4,则a的值是.将一颗质地均匀的正方体骰子先后抛掷2次观察向上的点数,则点数和为5的概率是o4. S.右图是一个算法流程图,若输出y的值为2则输入x的值为ago6.2在平面宜角坐标系xOy中若以仙线/5=l(a>0)的一条渐近线方w程为'一2二则该双曲线的离心率是—o27.已知y=f(x>是奇函数,当x>0时,/⑴二F,则,(一8)的值是。

sin2(—+«)=—.8.已知43,则sm2a的值是_。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,己知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm\* = 3sin 2x + —10.将函数 I 4的图像向右平移M 个单位长度,则T 移后的图像与*轴最近的对称轴方程是—0U.设{■}是公差为〃的等差数列,{如}是公比为q 的等比数列,己知数列 {"心的前项和&顼-"1*^),则d+g 的值是—。

12.已知5xy +/=l(W e/e)t 则x 2+/的最小值是。

13.在△此中,t !B = 4, 4C=3.匕助C=90。

,。

在边AC 延长血坦炉,使得如=9,若是一 O后=血而专_』无(S 为常数),则co 的於度«㈣■14 .在平面直角坐标系H 夕中尸修。

已知I z 4、B 是圆 2)=36上的两个动点,满足PA=PB ,则△ "8的面积的最大值是15.在三棱柱如C —44G 中,ABLAC. B X CL 平面"分别是AC> %7的中点<1)求证:£少〃平面"MG :< 2)求证:平面^C±平面“时16.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=3,c=旧,B=45。

2024年江苏省高考数学真题及参考答案

2024年江苏省高考数学真题及参考答案

2024年江苏省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

高考数学试卷(含答案解析)

高考数学试卷(含答案解析)

江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n ∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中, l 的一端置于点E 处, 另一端置于侧棱GG 1上, 求l 没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=,=, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin (α+45°)=.B.利用=m+n(m, n∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50,=(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx 图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF ⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣), ∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ),由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=, ∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F1重合, 不满足题意,当m≠1时, =, =,由l1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或,无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N,在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l 没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n, ①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n, ②+a n﹣2+a n+a n+1=4a n﹣1, ③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1, ④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s 的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd ≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=, k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0),D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。

2020年江苏省高考数学试卷(理科)-解析版

2020年江苏省高考数学试卷(理科)-解析版

2020年江苏省高考数学试卷(理科)一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10.将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.11.设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知数列{a n+b n}的前n项和S n=n2−n+2n−1(n∈N∗),则d+q的值是______.12.已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 二、解答题(本大题共11小题,共140.0分)15. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO′为铅垂线(O′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离ℎ1(米)与D 到OO′的距离a(米)之间满足关系式ℎ1=140a 2;右侧曲线BO 上任一点F 到MN 的距离ℎ2(米)与F 到OO′的距离b(米)之间满足关系式ℎ2=−1800b 3+6b.已知点B 到OO′的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k(万元),桥墩CD 每米造价32k(万元)(k >0),问O′E 为多少米时,桥墩CD 与EF 的总造价最低?18. 在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k −S n 1k =λa n+11k 成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.21. 平面上的点A(2,−1)在矩阵M =[a 1−1b]对应的变换作用下得到点B (3,−4). (1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵M −1.22. 在极坐标系中,已知A(ρ1,π3)在直线l :ρcosθ=2上,点B(ρ2,π6)在圆C :ρ=4sinθ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求出直线l 与圆C 的公共点的极坐标.23.设x∈R,解不等式2|x+1|+|x|<4.24.在三棱锥A−BCD中,已知CB=CD=√5,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC中点.(1)求直线AB与DE所成角的余弦值;BC,设二面角F−DE−C的大小为θ,求sinθ的(2)若点F在BC上,满足BF=14值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n−1+q n−1的递推关系式和X n的数学期望E(X n)(用n表示).答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题.2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查.3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题.5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3.由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,可得√5a=√52,所以a=2,所以双曲线的离心率为:e=ca =√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.【答案】x=−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x−π6),求g(x)的所有对称轴x=7π24+kπ2,k∈Z,从而可判断平移后的图象中与y轴最近的对称轴的方程,【解答】解:因为函数y=3sin(2x+π4)的图象向右平移π6个单位长度可得g(x)=f(x−π6)=3sin(2x−π3+π4)=3sin(2x−π12),则y=g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z,当k=0时,x=7π24,当k=−1时,x=−5π24,所以平移后的图象中与y轴最近的对称轴的方程是x=−5π24,故答案为:x=−5π24.11.【答案】4【解析】解:因为{a n+b n}的前n项和S n=n2−n+2n−1(n∈N∗),因为{a n}是公差为d的等差数列,设首项为a1;{b n}是公比为q的等比数列,设首项为b1,所以{a n}的通项公式a n=a1+(n−1)d,所以其前n项和:n[a1+a1+(n−1)d]2=d2n2+(a1−d2)n,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1−b 1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), 整理得:PA ⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2, 可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5.故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1. 本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55,所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800),y′=k800(3x 2−60x)=3k800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减; 当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ;(2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值. 本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t)=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1×3,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12,当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP方程,再结合椭圆的右准线为:x=4,得点Q为(4,32⋅4−t1−t),再由向量数量积计算最小值即可.(3)在计算△OAB与△MAB的面积时,AB可以最为同底,所以若S2=3S1,则O到直线AB距离d1与M到直线AB距离d2,之间的关系为d2=3d1,根据点到直线距离公式可得d1=35,d2=95,所以题意可以转化为M点应为与直线AB平行且距离为95的直线与椭圆的交点,设平行于AB的直线l为3x−4y+m=0,与直线AB的距离为95,根据两平行直线距离公式可得,m=−6或12,然后在分两种情况算出M点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x=0,又f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x,符合任意,(2)ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+12≤0时,即k≤−1时,p(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当 k+12>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].42,所以f′(x)=4x31)(x−1),y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√(t 3−t)2−(3t 4−2t 2−8)=√t 6−5t 4+3t 2+8,t 2=λ,则λ∈[1,2],由图象可知,n −m =|x 1−x 2|=√λ3−5λ2+3λ+8, 设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1), 所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减, 所以φ(λ)max =φ(1)=7,故(n −m)max =|x 1−x 2|max =√7,即n −m ≤√7.【解析】(1)由f(x)=g(x)得x =0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x ,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x −1−lnx),设φ(x)=x −1−lnx ,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k ≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x =k +1≤0时,当k +1>0时进行讨论,进而得出答案. (3)因为f(x)=x 4−2x 2,求导,分析f(x)单调性及图象得函数y =f(x)的图象在x =x 0处的切线为:y =(4x 03−4x 0)x −3x 04+2x 02,可推出直线y =ℎ(x)为函数y =f(x)的图象在x =t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D 上恒成立;在分析g(x)−ℎ(x)=0,设4x 2−4(t 3−t)x +3t 4−2t 2−8=0,两根为x 1,x 2,由韦达定理可得x 1+x 2,x 1x 2,所以n −m =|x 1−x 2|=√t 6−5t 4+3t 2+8,再求最值即可得出结论. 本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k =1时,a n+1=S n+1−S n =λa n+1,由n 为任意正整数,且a 1=1,a n ≠0,可得λ=1; (2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n 2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1Sn=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则S n+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.21.【答案】解:(1)由题意,知[a1−1b ]⋅[2−1]=[2a −1−2−b ]=[3−4], 则{2a −1=3−2−b =−4,解得a =2,b =2; (2)由(1)知,矩阵M =[21−12],设矩阵M 的逆矩阵为M −1=[mn p q ],∴M ⋅M −1=[21−12]⋅[mn pq ]=[2m +p 2n +q −m +2p −n +2q ]=[1001], ∴{2m +p =12n +q =0−m +2p =0−n +2q =1,解得m =25,n =−15,p =15,q =25, ∴M −1=[25−151525].【解析】(1)由[a 1−1b ]⋅[2−1]=[3−4],列方程组,求出a 、b 的值; (2)设矩阵M 的逆矩阵为M −1=[mn p q ],利用M ⋅M −1=[1001],列方程组求出m 、n 、p 和q 的值即可.本题考查了矩阵的变换与计算问题,也考查了运算求解能力,是中档题.22.【答案】解:(1)∵A(ρ1,π3)在直线l :ρcosθ=2上,∴ρ1cos π3=2,解得ρ1=4. ∵点B(ρ2,π6)在圆C :ρ=4sinθ上, ∴ρ2=4sin π6,解得ρ2=2.(2)由直线l 与圆C 得,方程组{ρcosθ=2ρ=4sinθ,则sin2θ=1.∵θ∈[0,2π),∴2θ=π2,∴θ=π4. ∴ρ=4×sin π4=2√2.故公共点的极坐标为(2√2,π4).【解析】(1)直接根据点A 在直线l 上,列方程求出ρ1的值,点B 在圆C 上,列方程求出ρ2的值;(2)联立直线l 与圆C 的方程,然后求出其公共点的极坐标即可. 本题考查的知识要点:极坐标与极坐标方程的关系和根据简单曲线极坐标方程求交点坐标,主要考查学生的运算能力和转换能力,属于基础题型.23.【答案】解:2|x +1|+|x|={3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x +1|+|x|<4,∴{3x +2<4x >0或{x +2<4−1≤x ≤0或{−3x −2<4x <−1,∴0<x <23或−1<x <0或−2<x <−1,∴−2<x <23, ∴不等式的解集为{x|−2<x <23}.【解析】先将2|x +1|+|x|写为分段函数的形式,然后根据2|x +1|+|x|<4,利用零点分段法解不等式即可.本题考查了绝对值不等式的解法,考查了分类讨论思想,属基础题.24.【答案】解:(1)如图,连接OC ,∵CB =CD ,O 为BD 的中点,∴CO ⊥BD .以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系. ∵BD =2,∴OB =OD =1,则OC =√BC 2−OB 2=√5−1=2. ∴B(1,0,0),A(0,0,2),C(0,2,0),D(−1,0,0), ∵E 是AC 的中点,∴E(0,1,1),∴AB ⃗⃗⃗⃗⃗ =(1,0,−2),DE⃗⃗⃗⃗⃗⃗ =(1,1,1). 设直线AB 与DE 所成角为α, 则cosα=|AB⃗⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |⋅|DE ⃗⃗⃗⃗⃗⃗ |=√1+4⋅√1+1+1=√1515, 即直线AB 与DE 所成角的余弦值为√1515;(2)∵BF =14BC ,∴BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ , 设F(x,y ,z),则(x −1,y ,z)=(−14,12,0),∴F(34,12,0).∴DE ⃗⃗⃗⃗⃗⃗ =(1,1,1),DF ⃗⃗⃗⃗⃗ =(74,12,0),DC ⃗⃗⃗⃗⃗ =(1,2,0).设平面DEF 的一个法向量为m⃗⃗⃗ =(x 1,y 1,z 1), 由{m ⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =x 1+y 1+z 1=0m ⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ =74x 1+12y 1=0,取x 1=−2,得m ⃗⃗⃗ =(−2,7,−5); 设平面DEC 的一个法向量为n⃗ =(x 2,y 2,z 2), 由{n ⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =x 2+y 2+z 2=0n ⃗ ⋅DC ⃗⃗⃗⃗⃗ =x 2+2y 2=0,取x 2=−2,得n⃗ =(−2,1,1). ∴|cosθ|=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=√4+49+25⋅√4+1+1=√1313. ∴sinθ=√1−cos 2θ=√1−113=2√3913.【解析】(1)由题意画出图形,连接OC ,由已知可得CO ⊥BD ,以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,求出所用点的坐标,得到AB ⃗⃗⃗⃗⃗ =(1,0,−2),DE⃗⃗⃗⃗⃗⃗ =(1,1,1),设直线AB 与DE 所成角为α,由两向量所成角的余弦值,可得直线AB 与DE 所成角的余弦值;(2)由BF =14BC ,得BF ⃗⃗⃗⃗⃗=14BC ⃗⃗⃗⃗⃗ ,设F(x,y ,z),由向量等式求得F(34,12,0),进一步求出平面DEF 的一个法向量与平面DEC 的一个法向量,由两法向量所成角的余弦值求得cosθ,再由同角三角函数基本关系式求解sinθ.本题考查利用空间向量求空间角,考查空间想象能力与逻辑思维能力和运算求解能力,是中档题.25.【答案】解:(1)由题意可知:p 1=13,q 1=23,则p 2=13p 1+23×13q 1=727;q 2=23p 1+(23×23+13×13)q 1=1627.(2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n , q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23, 两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23, 则:2p n +q n =13(2p n−1+q n−1)+23, 所以,2p n +q n −1=13(2p n−1+q n−1−1),因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n , 即2p n +q n =(13)n +1,所以E(X n )=2p n +q n +0×(1−p n −q n )=(13)n +1.【解析】(1)利用已知条件求出p 1=13,q 1=23,推出p 2;q 2即可.(2)推出p n+1=13p n +29q n ,q n+1=−19q n +23,得到2p n+1+q n+1=13(2p n +q n )+23,推出2p n +q n −1=13(2p n−1+q n−1−1),说明数列{2p n +q n −1}是首项为13,公比为13的等比数列,然后求解的通项公式以及期望即可.本题考查数列与概率相结合,期望的求法,数列的递推关系式以及通项公式的求法,考查转化首项以及计算能力,是难题.。

2024年江苏省高考数学试卷(新高考Ⅰ)含答案解析

2024年江苏省高考数学试卷(新高考Ⅰ)含答案解析

绝密★启用前2024年江苏省高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|−5<x 3<5},B ={−3,−1,0,2,3},则A ∩B =( ) A. {−1,0} B. {2,3} C. {−3,−1,0} D. {−1,0,2}2.若z z−1=1+i ,则z =( )A. −1−iB. −1+iC. 1−iD. 1+i3.已知向量a ⃗=(0,1),b ⃗⃗=(2,x),若b ⃗⃗⊥(b ⃗⃗−4a ⃗⃗),则x =( ) A. −2B. −1C. 1D. 24.已知cos(α+β)=m ,tanαtanβ=2,则cos(α−β)=( ) A. −3mB. −m3C. m3D. 3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为√ 3,则圆锥的体积为( ) A. 2√ 3πB. 3√ 3πC. 6√ 3πD. 9√ 3π6.已知函数为f(x)={−x 2−2ax −a,x <0,e x +ln(x +1),x ≥0在R 上单调递增,则a 取值的范围是( )A. (−∞,0]B. [−1,0]C. [−1,1]D. [0,+∞)7.当x ∈[0,2π]时,曲线y =sinx 与y =2sin(3x −π6)的交点个数为( ) A. 3B. 4C. 6D. 88.已知函数为f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时,f(x)=x ,则下列结论中一定正确的是( ) A. f(10)>100B. f(20)>1000C. f(10)<1000D. f(20)<10000二、多选题:本题共3小题,共18分。

〖苏科版〗高考数学试卷理科参考答案与试题解析1

〖苏科版〗高考数学试卷理科参考答案与试题解析1

〖苏科版〗高考数学试卷理科参考答案与试题解析创作人:百里航拍创作日期:2021.04.01审核人:北堂中国创作单位:北京市智语学校一、选择题(共12小题,每小题5分,满分60分)1.(5分)(•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】由复数的几何意义作出相应判断.【解答】解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.【点评】本题考查的是复数的几何意义,属于基础题.2.(5分)(•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6【考点】集合的确定性、互异性、无序性.【分析】根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案.【解答】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.(5分)(•江西)若函数y=f(x)的值域是,则函数的值域是()A.B.C.D.【考点】基本不等式在最值问题中的应用.【分析】先换元,转化成积定和的值域,利用基本不等式.【解答】解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B【点评】做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值4.(5分)(•江西)=()A.B.0 C.D.不存在【考点】极限及其运算.【专题】计算题.【分析】把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.【解答】解:==,故选A.【点评】本题考查池函数的极限,解题时要注意计算能力的培养.5.(5分)(•江西)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn【考点】数列的概念及简单表示法.【专题】点列、递归数列与数学归纳法.【分析】把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.【解答】解:∵,,…∴=故选:A.【点评】数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n 换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.(5分)(•江西)函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是()A.B.C.D.【考点】正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.【专题】压轴题;分类讨论.【分析】本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.【解答】解:函数,分段画出函数图象如D图示,故选D.【点评】准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.(5分)(•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,) D.[,1)【考点】椭圆的应用.【专题】计算题.【分析】由•=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵•=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.(5分)(•江西)展开式中的常数项为()A.1 B.46 C.4245 D.4246【考点】二项式定理的应用.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.【解答】解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D【点评】本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.(5分)(•江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.【考点】基本不等式.【分析】本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.【解答】解:又∵a1b1+a2b2﹣(a1b2+a2b1)=(a1﹣a2)b1﹣(a1﹣a2)b2=(a2﹣a1)(b2﹣b1)>0∴a1b1+a2b2>(a1b2+a2b1)而1=(a1+a2)(b1+b2)=a1b1+a2b1+a1b2+a2b2<2(a1b1+a2b2)∴解法二:取,,,即可.故选A【点评】本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.(5分)(•江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个【考点】球面距离及相关计算.【专题】计算题;综合题.【分析】根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.【解答】解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.【点评】本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.(5分)(•江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.【考点】等可能事件的概率.【专题】计算题;压轴题.【分析】本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.【解答】解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C【点评】本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.(5分)(•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【考点】一元二次不等式的应用.【专题】压轴题.【分析】当m≤0时,显然不成立;当m>0时,因为f(0)=1>0,所以仅对对称轴进行讨论即可.【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8故选B.【点评】本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(•江西)直角坐标平面上三点A(1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=22.【考点】平面向量数量积的运算.【分析】本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.【解答】解:根据三等分点的坐标公式,得E(5,1),F(7,4);=(4,﹣1),=(6,2)=4×6﹣2=22,故答案为:22【点评】看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.(4分)(•江西)不等式的解集为(﹣∞,﹣3]∪(0,1].【考点】指数函数的单调性与特殊点;其他不等式的解法.【专题】计算题.【分析】≤0⇒x ∈(﹣∞,﹣3]∪(0,1]【解答】解:∵,∴,∴,∴∴x∈(﹣∞,﹣3]∪(0,1]答案:(﹣∞,﹣3]∪(0,1].【点评】本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.(4分)(•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=.【考点】抛物线的简单性质.【专题】计算题;压轴题.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣()2,整理后两边同除以x B2得关于的一元二次方程,求得的值,进而求得.【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴x A+x B=p,x A•x B=﹣p2,∴x A x B=﹣p2=﹣()2=﹣(x A2+x B2+2x A x B)∴3x A2+3x B2+10x A x B=0两边同除以x B2(x B2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴>﹣1,∴=﹣=﹣(﹣)=.故答案为:【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.16.(4分)(•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD(写出所有真命题的代号).【考点】棱柱的结构特征.【专题】综合题;压轴题;探究型.【分析】设出图(1)的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.【解答】解:设图(1)水的高度h2几何体的高为h1图(2)中水的体积为b2h1﹣b2h2=b2(h1﹣h2),所以b2h2=b2(h1﹣h2),所以h1=h2,故A错误,D正确.对于B,当容器侧面水平放置时,P点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为b2h2>b2h2,矛盾,故C不正确.故选BD【点评】本题考查空间想象能力,逻辑思维能力,几何体的体积,是难题.三、解答题(共6小题,满分74分)17.(12分)(•江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.【考点】三角形中的几何计算.【专题】计算题.【分析】由可求得得,把切转化成弦化简整理可求得sinC=,进而求得C,对2sinBcosC=sinA化简可得sin(B﹣C)=0,进而求得B,最后由正弦定理即可求得b,c.【解答】解:由得∴∴∴,又C∈(0,π)∴,或由2sinBcosC=sinA得2sinBcosC=sin(B+C)即sin(B﹣C)=0∴由正弦定理得【点评】本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式及三角函数公式等常用公式.18.(12分)(•江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.(1).写出ξ1、ξ2的分布列;(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题;应用题.【分析】(1)根据题意得到两个变量的可能取值,根据条件中所给的方案一和方案二的两年柑桔产量的变化有关数据写出两个变量的分布列.(2)根据两种方案对应的数据,做出方案一、方案二两年后柑桔产量超过灾前产量的概率,得到结论:方案二两年后柑桔产量超过灾前产量的概率更大.(3)根据两年后柑桔产量和灾前产量的比较,做出达不到灾前产量,达到灾前产量,超过灾前产量的概率,列出柑橘带来效益的分布列,做出期望.【解答】解:(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25ξ2的所有取值为0.8、0.96、1.0、1.2、1.44,ξ1、ξ2的分布列分别为:(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,P(A)=0.15+0.15=0.3,P(B)=0.24+0.08=0.32∴方案二两年后柑桔产量超过灾前产量的概率更大(3)令ηi表示方案i所带来的效益,则∴Eη1=14.75,Eη2=14.1∴方案一所带来的平均效益更大.【点评】本题考查离散型随机变量的分布列和期望,考查解决实际问题的能力,考查对题干较长的应用题的理解,是一个综合题.19.(12分)(•江西)数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a 1=3,b1=1,数列是公比为64的等比数列,b2S2=64.(1)求a n,b n;(2)求证.【考点】数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.【专题】证明题;综合题.【分析】(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n﹣1,依题意有,由此可导出a n与b n.(2)S n=3+5+…+(2n+1)=n(n+2),所以,然后用裂项求和法进行求解.【解答】解:(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n﹣1依题意有①由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故a n=3+2(n﹣1)=2n+1,b n=8n﹣1(2)S n=3+5+…+(2n+1)=n(n+2)∴==.【点评】本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.20.(12分)(•江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.【考点】直线与平面垂直的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(1)要证B1C1⊥平面OAH,直线证明直线垂直平面OAH内的两条相交直线:AH、OA即可;(2)作出二面角O﹣A1B1﹣C1的平面角,然后求解即可;或者建立空间直角坐标系,利用法向量的数量积求解.【解答】解:(1)证明:依题设,EF是△ABC的中位线,所以EF∥BC,则EF∥平面OBC,所以EF∥B1C1.又H是EF的中点,所以AH⊥EF,则AH⊥B1C1.因为OA⊥OB,OA⊥OC,所以OA⊥面OBC,则OA⊥B1C1,因此B1C1⊥面OAH.(2)作ON⊥A1B1于N,连C1N.因为OC1⊥平面OA1B1,根据三垂线定理知,C1N⊥A1B1,∠ONC1就是二面角O﹣A1B1﹣C1的平面角.作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则EM=OM=1.设OB1=x,由得,,解得x=3,在Rt△OA1B1中,,则,.所以,故二面角O﹣A1B1﹣C1为.解法二:(1)以直线OA、OC、OB分别为x、y、z轴,建立空间直角坐标系,O﹣xyz则所以所以所以BC⊥平面OAH,由EF∥BC得B1C1∥BC,故:B1C1⊥平面OAH(2)由已知,设B1(0,0,z)则由与共线得:存在λ∈R有得同理:C1(0,3,0),∴设是平面A1B1C1的一个法向量,则令x=2,得y=z=1,∴.又是平面OA1B1的一个法量∴所以二面角的大小为(3)由(2)知,,B(0,0,2),平面A1B1C1的一个法向量为.则.则点B到平面A1B1C1的距离为.【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12分)(•江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.(1)求证:三点A、M、B共线.(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.【考点】直线与圆锥曲线的综合问题.【专题】计算题;综合题;压轴题;数形结合;转化思想.【分析】(1)先根据题意设A(x1,y1),B(x2,y2),将切线PA的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点A(x1,y1),B(x2,y2)都在直线y0y=mx﹣1上,从而证得三点A、M、B共线,从而解决问题.(2)设重心G(x,y),欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A在双曲线上即可得重心G所在曲线方程.【解答】证明:(1)设A(x1,y1),B(x2,y2),由已知得到y1y2≠0,且x12﹣y12=1,x22﹣y22=1,设切线PA的方程为:y﹣y1=k(x﹣x1)由得(1﹣k2)x2﹣2k(y1﹣kx1)x﹣(y1﹣kx1)2﹣1=0从而△=4k2(y1﹣kx1)2+4(1﹣k2)(y1﹣kx1)2+4(1﹣k2)=0,解得因此PA的方程为:y1y=x1x﹣1同理PB的方程为:y2y=x2x﹣1又P(m,y0)在PA、PB上,所以y1y0=mx1﹣1,y2y0=mx2﹣1即点A(x1,y1),B(x2,y2)都在直线y0y=mx﹣1上又也在直线y0y=mx﹣1上,所以三点A、M、B共线(2)垂线AN的方程为:y﹣y1=﹣x+x1,由得垂足,设重心G(x,y)所以解得由x12﹣y12=1可得即为重心G所在曲线方程【点评】本小题主要考查直线与圆锥曲线的综合问题、三角形重心、双曲线的标准方程的问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.22.(14分)(•江西)已知函数f(x)=++,x∈(0,+∞)(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.【考点】利用导数研究函数的单调性;不等式的证明.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)把a=8代入函数解析式,求出函数的导数,并判断导数的符号,得到函数的单调区间.(2)令,则abx=8①,②,将f(x)解析式进行放缩,使用基本不等式,可证f(x)>1,由①、②式中关于x,a,b的对称性,不妨设x≥a≥b.则0<b≤2,当a+b≥7,将f(x)解析式进行放缩,可证f(x)<2;当a+b<7③,将f(x)解析式进行放缩,再使用基本不等式证明f(x)<2,结论得证.【解答】解:(1)当a=8时,,求得,于是当x∈(0,1]时,f'(x)≥0;而当x∈[1,+∞)时,f'(x)≤0.即f(x)在(0,1]中单调递增,而在[1,+∞)中单调递减.(2)对任意给定的a>0,x>0,由,若令,则abx=8①,且②.(一)先证f(x)>1:因为,,,又由,得a+b+x≥6.所以==.(二)再证f(x)<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.(ⅰ)当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.(ⅱ)当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>(1+a)(1+b),即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得f(x)<2.综上所述,对任何正数a,x,皆有1<f(x)<2.【点评】本题考查利用导数研究函数的单调性,用放缩法、基本不等式法证明不等式,体现分类讨论的数学思想,属于中档题.创作人:百里航拍创作日期:2021.04.01审核人:北堂中国创作单位:北京市智语学校。

2020年江苏省高考数学试卷(理科)-含详细解析

2020年江苏省高考数学试卷(理科)-含详细解析

2020年江苏省高考数学试卷(理科)副标题题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10. 将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 12. 已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 二、解答题(本大题共11小题,共142.0分)15. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18.在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.21.平面上的点A(2,−1)在矩阵M=[a1−1b]对应的变换作用下得到点B(3,−4).(1)求实数a,b的值;(2)求矩阵M的逆矩阵M−1.22.在极坐标系中,已知A(ρ1,π3)在直线1:ρcosθ=2上,点B(ρ2,π6)在圆C:ρ=4sinθ上(其中ρ≥0,0≤θ<2π).(1)求ρ1,ρ2的值;(2)求出直线l与圆C的公共点的极坐标.23.设x∈R,解不等式2|x+1|+|x|<4.24.在三棱锥A−BCD中,已知CB=CD=√5,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F−DE−C的大小为θ,求sinθ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n−1+q n−1的递推关系式和X n的数学期望E(X n)(用n表示).答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题. 2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查. 3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题. 5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3,由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,可得√5a=√52,所以a=2,所以双曲线的离心率为:e=ca =√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.【答案】x =−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12),则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11.【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和:n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d 2)n ,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA ⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2,可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5. 故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1. 本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800), y′=k 800(3x 2−60x)=3k 800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减;当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ;(2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值. 本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t )=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12, 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x =0,又f′(x)=2x +2,g′(x)=−2x +2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x , 经检验:ℎ(x)=2x ,符合任意, (2)ℎ(x)−g(x)=k(x −1−lnx), 设φ(x)=x −1−lnx ,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].423所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)x−3x04+2x02,可推出直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D上恒成立;在分析g(x)−ℎ(x)=0,设4x2−4(t3−t)x+3t4−2t2−8=0,两根为x1,x2,由韦达定理可得x1+ x2,x1x2,所以n−m=|x1−x2|=√t6−5t4+3t2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n 2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1Sn=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4, 则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.21.【答案】解:(1)由题意,知[a1−1b ]⋅[2−1]=[2a −1−2−b ]=[3−4], 则{2a −1=3−2−b =−4,解得a =2,b =2; (2)由(1)知,矩阵M =[21−12],设矩阵M 的逆矩阵为M −1=[mn p q ],∴M ⋅M −1=[21−12]⋅[mn pq ]=[2m +p 2n +q −m +2p −n +2q ]=[1001], ∴{2m +p =12n +q =0−m +2p =0−n +2q =1,解得m =25,n =−15,p =15,q =25, ∴M −1=[25−151525].【解析】(1)由[a 1−1b ]⋅[2−1]=[3−4],列方程组,求出a 、b 的值; (2)设矩阵M 的逆矩阵为M −1=[mn p q ],利用M ⋅M −1=[1001],列方程组求出m 、n 、p 和q 的值即可.本题考查了矩阵的变换与计算问题,也考查了运算求解能力,是中档题.22.【答案】解:(1)∵A(ρ1,π3)在直线1:ρcosθ=2上,∴ρ1cos π3=2,解得ρ1=4.∵点B(ρ2,π6)在圆C :ρ=4sinθ上, ∴ρ2=4sin π6,解得ρ2=2.(2)由直线l 与圆C 得,方程组{ρcosθ=2ρ=4sinθ,则sin2θ=1.∵θ∈[0,2π],∴2θ=π2,∴θ=π4. ∴ρ=4×sin π4=2√2. 故公共点的极坐标为(2√2,π4).【解析】(1)直接根据点A 在直线l 上,列方程求出ρ1的值,点B 在圆C 上,列方程求出ρ2的值;(2)联立直线l 与圆C 的方程,然后求出其公共点的极坐标即可.本题考查的知识要点:极坐标与极坐标方程的关系和根据简单曲线极坐标方程求交点坐标,主要考查学生的运算能力和转换能力,属于基础题型. 23.【答案】解:2|x +1|+|x|={3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x +1|+|x|<4,∴{3x +2<4x >0或{x +2<4−1≤x ≤0或{−3x −2<4x <−1,∴0<x <23或−1<x <0或−2<x <−1,∴−2<x <23,∴不等式的解集为{x|−2<x <23}.【解析】先将2|x +1|+|x|写为分段函数的形式,然后根据2|x +1|+|x|<4,利用零点分段法解不等式即可.本题考查了绝对值不等式的解法,考查了分类讨论思想,属基础题.24.【答案】解:(1)如图,连接OC ,∵CB =CD ,O 为BD 的中点,∴CO ⊥BD .以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系. ∵BD =2,∴OB =OD =1,则OC =√BC 2−OB 2=√5−1=2. ∴B(1,0,0),A(0,0,2),C(0,2,0),D(−1,0,0), ∵E 是AC 的中点,∴E(0,1,1), ∴AB⃗⃗⃗⃗⃗ =(−1,0,2),DE ⃗⃗⃗⃗⃗⃗ =(1,1,1). 设直线AB 与DE 所成角为α, 则cosα=|AB⃗⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |⋅|DE ⃗⃗⃗⃗⃗⃗ |=√1+4⋅√1+1+1=√1515, 即直线AB 与DE 所成角的余弦值为√1515;(2)∵BF =14BC ,∴BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,设F(x,y ,z),则(x −1,y ,z)=(−14,12,0),∴F(34,12,0). ∴DE ⃗⃗⃗⃗⃗⃗ =(1,1,1),DF ⃗⃗⃗⃗⃗ =(74,12,0),DC ⃗⃗⃗⃗⃗ =(1,2,0). 设平面DEF 的一个法向量为m⃗⃗⃗ =(x 1,y 1,z 1), 由{m ⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =x 1+y 1+z 1=0m ⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ =74x 1+12y 1=0,取x 1=−2,得m ⃗⃗⃗ =(−2,7,−5); 设平面DEC 的一个法向量为n⃗ =(x 2,y 2,z 2),由{n ⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =x 2+y 2+z 2=0n ⃗ ⋅DC ⃗⃗⃗⃗⃗ =x 2+2y 2=0,取x 2=−2,得n⃗ =(−2,1,1). ∴|cosθ|=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=√4+49+25⋅√4+1+1=√1313. ∴sinθ=√1−cos 2θ=√1−113=2√3913.【解析】(1)由题意画出图形,连接OC ,由已知可得CO ⊥BD ,以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,求出所用点的坐标,得到AB ⃗⃗⃗⃗⃗ =(−1,0,2),DE⃗⃗⃗⃗⃗⃗ =(1,1,1),设直线AB 与DE 所成角为α,由两向量所成角的余弦值,可得直线AB 与DE 所成角的余弦值;(2)由BF =14BC ,得BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,设F(x,y ,z),由向量等式求得F(34,12,0),进一步求出平面DEF 的一个法向量与平面DEC 的一个法向量,由两法向量所成角的余弦值求得cosθ,再由同角三角函数基本关系式求解sinθ.本题考查利用空间向量求空间角,考查空间想象能力与逻辑思维能力和运算求解能力,是中档题.25.【答案】解:(1)由题意可知:p 1=13,q 1=23,则p 2=13p 1+23×13q 1=727;q 2=23p 1+(23×23+13×13)q 1=1627.(2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n , q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23, 两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23, 则:2p n +q n =13(2p n−1+q n−1)+23, 所以,2p n +q n −1=13(2p n−1+q n−1−1),因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n , 即2p n +q n =(13)n +1,所以E(X n )=2p n +q n +0×(1−p n −q n )=(13)n +1.【解析】(1)利用已知条件求出p 1=13,q 1=23,推出p 2;q 2即可.(2)推出p n+1=13p n +29q n ,q n+1=−19q n +23,得到2p n+1+q n+1=13(2p n +q n )+23,推出2p n +q n −1=13(2p n−1+q n−1−1),说明数列{2p n +q n −1}是首项为13,公比为13的等比数列,然后求解的通项公式以及期望即可.本题考查数列与概率相结合,期望的求法,数列的递推关系式以及通项公式的求法,考查转化首项以及计算能力,是难题.。

江苏高考数学真题及答案

江苏高考数学真题及答案

江苏高考数学真题及答案
每年的高考数学试题都备受关注,尤其是江苏地区的高考数学试题
更是备受瞩目。

通过研究江苏高考数学真题及答案,考生可以更好地
了解考试内容和考点,为备战高考做好充分准备。

下面我们就一起来
看看江苏高考数学真题及答案。

首先,我们来看一道选择题:
1.设函数y=2x^3 -3x^2 +6x+1, 则y的单调递增区间是()。

A. ( -∞, 0)
B. ( -∞, -1)
C. ( -1,∞)
D. (0,+∞)
答案:C
接下来是一道解答题:
2.若集合A = {1, x, 2, y},集合B = {1, 2, 3, 4},且8个元素只取一
次,试问x和y可能的取值。

解:由于8个元素只取一次,且集合A中只有1个大于2的数,故
集合A中只能取1和2,又集合B中有1和2,所以$x=2$,同理,由
于集合A中只有1个大于1的数,故$y=3$。

最后一道综合题:
3.已知二次函数$y=ax^2+bx+c$的对称轴为x=2,且y轴截距为3,求
a,b,c的值。

解:由于对称轴为x=2,可得二次项的系数a = 1,由于y轴截距为3,代入得到c = 3,再由a = 1,结合对称轴为x=2,可得b = -4。

以上就是江苏高考数学真题及答案的部分内容,希望考生们能够认真学习、备考,取得优异的成绩。

祝各位考生考试顺利!。

2020年江苏省高考数学试卷(理科)

2020年江苏省高考数学试卷(理科)

2020年江苏省高考数学试卷(理科)试题数:25.满分:1901.(填空题.5分)已知集合A={-1.0.1.2}.B={0.2.3}.则A∩B=___ .2.(填空题.5分)已知i是虚数单位.则复数z=(1+i)(2-i)的实部是___ .3.(填空题.5分)已知一组数据4.2a.3-a.5.6的平均数为4.则a的值是___ .4.(填空题.5分)将一颗质地均匀的正方体骰子先后抛掷2次.观察向上的点数.则点数和为5的概率是___ .5.(填空题.5分)如图是一个算法流程图.若输出y的值为-2.则输入x的值是___ .6.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2a2 - y25=1(a>0)的一条渐近线方程为y= √52x.则该双曲线的离心率是___ .7.(填空题.5分)已知y=f(x)是奇函数.当x≥0时.f(x)=x 23 .则f(-8)的值是___ .8.(填空题.5分)已知sin2(π4+α)= 23.则sin2α的值是___ .9.(填空题.5分)如图.六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm.高为2cm.内孔半径为0.5cm.则此六角螺帽毛坯的体积是___ cm3.10.(填空题.5分)将函数y=3sin (2x+ π4 )的图象向右平移 π6 个单位长度.则平移后的图象中与y 轴最近的对称轴的方程是___ .11.(填空题.5分)设{a n }是公差为d 的等差数列.{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).则d+q 的值是___ .12.(填空题.5分)已知5x 2y 2+y 4=1(x.y∈R ).则x 2+y 2的最小值是___ .13.(填空题.5分)在△ABC 中.AB=4.AC=3.∠BAC=90°.D 在边BC 上.延长AD 到P.使得AP=9.若 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32 -m ) PC⃗⃗⃗⃗⃗ (m 为常数).则CD 的长度是 ___ .14.(填空题.5分)在平面直角坐标系xOy 中.已知P ( √32 .0).A 、B 是圆C :x 2+(y- 12 )2=36上的两个动点.满足PA=PB.则△PAB 面积的最大值是___ .15.(问答题.14分)在三棱柱ABC-A 1B 1C 1中.AB⊥AC .B 1C⊥平面ABC.E.F 分别是AC.B 1C 的中点. (1)求证:EF || 平面AB 1C 1; (2)求证:平面AB 1C⊥平面ABB 1.16.(问答题.14分)在△ABC中.角A、B、C的对边分别为a、b、c.已知a=3.c= √2 .B=45°.(1)求sinC的值;(2)在边BC上取一点D.使得cos∠ADC=- 45.求tan∠DAC的值.17.(问答题.4分)某地准备在山谷中建一座桥梁.桥址位置的竖直截面图如图所示:谷底O在水平线MN上.桥AB与MN平行.OO′为铅垂线(O′在AB 上).经测量.左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1= 140a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=- 1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF.且CE为80米.其中C.E在AB上(不包括端点).桥墩EF每米造价k(万元).桥墩CD每米造价32k(万元)(k>0).问O′E为多少米时.桥墩CD与EF的总造价最低?18.(问答题.16分)在平面直角坐标系xOy中.已知椭圆E:x24 + y23=1的左、右焦点分别为F1、F2.点A在椭圆E上且在第一象限内.AF2⊥F1F2.直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P.直线AP 与椭圆E 的右准线相交于点Q.求 OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上.记△OAB 与△MAB 的面积分别为S 1.S 2.若S 2=3S 1.求点M 的坐标.19.(问答题.16分)已知关于x 的函数y=f (x ).y=g (x )与h (x )=kx+b (k.b∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x.g (x )=-x 2+2x.D=(-∞.+∞).求h (x )的表达式; (2)若f (x )=x 2-x+1.g (x )=klnx.h (x )=kx-k.D=(0.+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2.g (x )=4x 2-8.h (x )=4(t 3-t )x-3t 4+2t 2(0<|t |≤ √2 ).D=[m.n]⊂[- √2 . √2 ].求证:n-m≤ √7 .20.(问答题.16分)已知数列{a n }(n∈N*)的首项a 1=1.前n 项和为S n .设λ和k 为常数.若对一切正整数n.均有Sn+1 1k-S n 1k =λan+1 1k成立.则称此数列为“λ-k”数列.(1)若等差数列{a n }是“λ-1”数列.求λ的值;(2)若数列{a n }是“ √33 -2”数列.且a n >0.求数列{a n }的通项公式;(3)对于给定的λ.是否存在三个不同的数列{a n }为“λ-3”数列.且a n ≥0?若存在.求出λ的取值范围;若不存在.说明理由.21.(问答题.10分)平面上的点A (2.-1)在矩阵M= [a1−1b]对应的变换作用下得到点B (3.-4).(1)求实数a.b的值;(2)求矩阵M的逆矩阵M-1.22.(问答题.10分)在极坐标系中.已知A(ρ1. π3)在直线l:ρcosθ=2上.点B(ρ2. π6)在圆C:ρ=4sinθ上(其中ρ≥0.0≤θ<2π).(1)求ρ1.ρ2的值;(2)求出直线l与圆C的公共点的极坐标.23.(问答题.0分)设x∈R.解不等式2|x+1|+|x|<4.24.(问答题.10分)在三棱锥A-BCD中.已知CB=CD= √5 .BD=2.O为BD的中点.AO⊥平面BCD.AO=2.E为AC中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上.满足BF= 14BC.设二面角F-DE-C的大小为θ.求sinθ的值.25.(问答题.10分)甲口袋中装有2个黑球和1个白球.乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋.重复n次这样的操作.记甲口袋中黑球个数为X n.恰有2个黑球的概率为p n.恰有1个黑球的概率为q n.(1)求p1.q1和p2.q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).2020年江苏省高考数学试卷(理科)参考答案与试题解析试题数:25.满分:1901.(填空题.5分)已知集合A={-1.0.1.2}.B={0.2.3}.则A∩B=___ .【正确答案】:[1]{0.2}【解析】:运用集合的交集运算.可得所求集合.【解答】:解:集合B={0.2.3}.A={-1.0.1.2}.则A∩B={0.2}.故答案为:{0.2}.【点评】:本题考查集合的交集运算.考查运算能力.属于基础题.2.(填空题.5分)已知i是虚数单位.则复数z=(1+i)(2-i)的实部是___ .【正确答案】:[1]3【解析】:利用复数的乘法的运算法则.化简求解即可.【解答】:解:复数z=(1+i)(2-i)=3+i.所以复数z=(1+i)(2-i)的实部是:3.故答案为:3.【点评】:本题考查复数的乘法的运算法则以及复数的基本概念的应用.是基本知识的考查.3.(填空题.5分)已知一组数据4.2a.3-a.5.6的平均数为4.则a的值是___ .【正确答案】:[1]2【解析】:运用平均数的定义.解方程可得a的值.【解答】:解:一组数据4.2a.3-a.5.6的平均数为4.则4+2a+(3-a)+5+6=4×5.解得a=2.故答案为:2.【点评】:本题考查平均数的定义的运用.考查方程思想和运算能力.属于基础题.4.(填空题.5分)将一颗质地均匀的正方体骰子先后抛掷2次.观察向上的点数.则点数和为5的概率是___ . 【正确答案】:[1] 19【解析】:分别求得基本事件的总数和点数和为5的事件数.由古典概率的计算公式可得所求值.【解答】:解:一颗质地均匀的正方体骰子先后抛掷2次.可得基本事件的总数为6×6=36种. 而点数和为5的事件为(1.4).(2.3).(3.2).(4.1).共4种. 则点数和为5的概率为P= 436= 19. 故答案为: 19.【点评】:本题考查古典概率的求法.考查运算能力.属于基础题.5.(填空题.5分)如图是一个算法流程图.若输出y 的值为-2.则输入x 的值是___ .【正确答案】:[1]-3【解析】:由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值.模拟程序的运行过程.分析循环中各变量值的变化情况.可得答案.【解答】:解:由题意可得程序框图表达式为分段函数y= {2x ,x >0x +1,x ≤0 .若输出y 值为-2时.由于2x >0. 所以解x+1=-2.即x=-3. 故答案为:-3.【点评】:本题考查了程序框图的应用问题.解题时应模拟程序框图的运行过程.以便得出正确的结论.是基础题.6.(填空题.5分)在平面直角坐标系xOy 中.若双曲线 x 2a 2 - y 25 =1(a >0)的一条渐近线方程为y= √52x.则该双曲线的离心率是___ . 【正确答案】:[1] 32【解析】:利用双曲线的渐近线方程.求出a.然后求解双曲线的离心率即可.【解答】:解:双曲线 x 2a 2 - y 25=1(a >0)的一条渐近线方程为y= √52 x.可得√5a=√52.所以a=2.所以双曲线的离心率为:e= c a =√4+52 = 32. 故答案为: 32.【点评】:本题考查双曲线的简单性质的应用.是基本知识的考查.7.(填空题.5分)已知y=f (x )是奇函数.当x≥0时.f (x )=x 23.则f (-8)的值是___ . 【正确答案】:[1]-4【解析】:由奇函数的定义可得f (-x )=-f (x ).由已知可得f (8).进而得到f (-8).【解答】:解:y=f (x )是奇函数.可得f (-x )=-f (x ). 当x≥0时.f (x )=x 23.可得f (8)=8 23=4. 则f (-8)=-f (8)=-4. 故答案为:-4.【点评】:本题考查函数的奇偶性的定义和运用:求函数值.考查转化思想和运算能力.属于基础题.8.(填空题.5分)已知sin 2( π4 +α)= 23 .则sin2α的值是___ . 【正确答案】:[1] 13【解析】:根据二倍角公式即可求出.【解答】:解:因为sin 2( π4 +α)= 23.则sin 2( π4 +α)= 1−cos(π2+2α)2 = 1+sin2α2 = 23.解得sin2α= 13 . 故答案为: 13【点评】:本题考查了二倍角公式.属于基础题.9.(填空题.5分)如图.六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm.高为2cm.内孔半径为0.5cm.则此六角螺帽毛坯的体积是___ cm 3.【正确答案】:[1]12 √3−π2【解析】:通过棱柱的体积减去圆柱的体积.即可推出结果.【解答】:解:六棱柱的体积为: 6×12×2×2×sin60°×2=12√3 . 圆柱的体积为:π×(0.5)2×2= π2 .所以此六角螺帽毛坯的体积是:(12 √3− π2 )cm 3. 故答案为:12 √3− π2.【点评】:本题考查柱体体积公式.考查了推理能力与计算能力.属于基本知识的考查. 10.(填空题.5分)将函数y=3sin (2x+ π4 )的图象向右平移 π6 个单位长度.则平移后的图象中与y 轴最近的对称轴的方程是___ . 【正确答案】:[1]x=- 5π24【解析】:利用三角函数的平移可得新函数g (x )=f (x- π6).求g (x )的所有对称轴x= 7π24+ kπ2 .k∈Z .从而可判断平移后的图象中与y 轴最近的对称轴的方程.【解答】:解:因为函数y=3sin (2x+ π4)的图象向右平移 π6个单位长度可得 g (x )=f (x- π6 )=3sin (2x- π3 + π4 )=3sin (2x- π12 ). 则y=g (x )的对称轴为2x- π12= π2+kπ.k∈Z .即x= 7π24 + kπ2.k∈Z . 当k=0时.x= 7π24 . 当k=-1时.x= −5π24. 所以平移后的图象中与y 轴最近的对称轴的方程是x= −5π24 . 故答案为:x= −5π24.【点评】:本题考查三角函数的平移变换.对称轴方程.属于中档题.11.(填空题.5分)设{a n }是公差为d 的等差数列.{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).则d+q 的值是___ . 【正确答案】:[1]4【解析】:由{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N *).由{a n }是公差为d 的等差数列.设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列.设首项为b 1.讨论当q 为1和不为1时的前n 项和的表达式.由题意可得q≠1.由对应项的系数相等可得d.q 的值.进而求出d+q 的值.【解答】:解:因为{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).因为{a n }是公差为d 的等差数列.设首项为a 1;{b n }是公比为q 的等比数列.设首项为b 1. 所以{a n }的通项公式a n =a 1+(n-1)d.所以其前n 项和S a n = n [a 1+a 1+(n−1)d ]2 = d 2 n 2+(a 1- d2)n.当{b n }中.当公比q=1时.其前n 项和S b n =nb 1.所以{a n +b n }的前n 项和S n =S a n +S b n = d2n 2+(a 1- d 2)n+nb 1=n 2-n+2n -1(n∈N*).显然没有出现2n .所以q≠1. 则{b n }的前n 项和为S b n =b 1(q n −1)q−1 = b 1q n q−1 - b1q−1. 所以S n =S a n +S b n = d2 n 2+(a 1- d2 )n+ b 1q nq−1 - b1q−1 =n 2-n+2n -1(n∈N*).由两边对应项相等可得: {d 2=1a 1−d 2=−1q =2b 1q−1=1解得:d=2.a 1=0.q=2.b 1=1. 所以d+q=4. 故答案为:4【点评】:本题考查等差数列及等比数列的综合及由前n 项和求通项的性质.属于中档题.12.(填空题.5分)已知5x 2y 2+y 4=1(x.y∈R ).则x 2+y 2的最小值是___ . 【正确答案】:[1] 45【解析】:方法一、由已知求得x 2.代入所求式子.整理后.运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)•4y 2.运用基本不等式.计算可得所求最小值.【解答】:解:方法一、由5x 2y 2+y 4=1.可得x 2= 1−y 45y 2. 由x 2≥0.可得y 2∈(0.1]. 则x 2+y 2=1−y 45y 2 +y 2= 1+4y 45y 2 = 15 (4y 2+ 1y 2) ≥ 15•2 √4y 2•1y 2 = 45.当且仅当y 2= 12 .x 2= 310.可得x 2+y 2的最小值为 45 ; 方法二、4=(5x 2+y 2)•4y 2≤( 5x 2+y 2+4y 22 )2= 254(x 2+y 2)2. 故x 2+y 2≥ 45 .当且仅当5x 2+y 2=4y 2=2.即y 2= 12.x 2= 310时取得等号. 可得x 2+y 2的最小值为 45 . 故答案为: 45 .【点评】:本题考查基本不等式的运用:求最值.考查转化思想和化简运算能力.属于中档题. 13.(填空题.5分)在△ABC 中.AB=4.AC=3.∠BAC=90°.D 在边BC 上.延长AD 到P.使得AP=9.若 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32-m ) PC⃗⃗⃗⃗⃗ (m 为常数).则CD 的长度是 ___ .【正确答案】:[1]0或 185【解析】:以A 为坐标原点.分别以AB.AC 所在直线为x.y 轴建立平面直角坐标系.求得B 与C 的坐标.再把 PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP=9列式求得m 值.然后分类求得D 的坐标.则CD 的长度可求.【解答】:解:如图.以A 为坐标原点.分别以AB.AC 所在直线为x.y 轴建立平面直角坐标系. 则B (4.0).C (0.3).由 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32 -m ) PC ⃗⃗⃗⃗⃗ .得 PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) . 整理得: PA⃗⃗⃗⃗⃗ =−2mAB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =-2m (4.0)+(2m-3)(0.3)=(-8m.6m-9). 由AP=9.得64m 2+(6m-9)2=81.解得m= 2725 或m=0. 当m=0时. PA ⃗⃗⃗⃗⃗ =(0,−9) .此时C 与D 重合.|CD|=0; 当m= 2725 时.直线PA 的方程为y= 9−6m8mx. 直线BC 的方程为 x4+y3=1 .联立两直线方程可得x= 83 m.y=3-2m . 即D ( 7225 . 2125 ).∴|CD|= √(7225)2+(2125−3)2=185.∴CD 的长度是0或 185. 故答案为:0或 185.【点评】:本题考查向量的概念与向量的模.考查运算求解能力.利用坐标法求解是关键.是中档题.14.(填空题.5分)在平面直角坐标系xOy 中.已知P ( √32 .0).A 、B 是圆C :x 2+(y- 12 )2=36上的两个动点.满足PA=PB.则△PAB 面积的最大值是___ . 【正确答案】:[1]10 √5【解析】:求得圆的圆心C 和半径.作PC 所在直径EF.交AB 于点D.运用垂径定理和勾股定理.以及三角形的面积公式.由三角换元.结合函数的导数.求得单调区间.计算可得所求最大值.【解答】:解:圆C :x 2+(y- 12 )2=36的圆心C (0. 12 ).半径为6. 如图.作PC 所在直径EF.交AB 于点D.因为PA=PB.CA=CB=R=6.所以PC⊥AB .EF 为垂径. 要使面积S △PAB 最大.则P.D 位于C 的两侧. 并设CD=x.可得PC= √14+34 =1. 故PD=1+x.AB=2BD=2 √36−x 2 .S △PAB = 12 |AB|•|PD|=(1+x ) √36−x 2 .0<x <6. 方法一、可令x=6cosθ.S △PAB =(1+6cosθ)•6sinθ=6sinθ+18sin2θ.0<θ≤ π2 . 设函数f (θ)=6sinθ+18sin2θ.0<θ≤ π2 . f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ-6).由f′(θ)=6(12cos 2θ+cosθ-6)=0.解得cosθ= 23 (cosθ=- 34 <0舍去).显然.当0≤cosθ< 23 .f′(θ)<0.f (θ)递减;当 23 <cosθ<1时.f′(θ)>0.f (θ)递增. 结合cos θ在(0. π2 )递减.故cosθ= 23 时.f (θ)最大.此时sinθ= √1−cos 2θ = √53 . 故f (θ)max =6× √53 +36× √53 × 23 =10 √5 .则△PAB 面积的最大值为10 √5 .方法二、S △PAB = 12 |AB|•|PD|=(1+x ) √36−x 2 .0<x <6.设u=(x+1)2(36-x 2).0<x <6.可得u′=-2(x+1)(2x+9)(x-4). 当4<x <6时.u′>0.函数u 递减;当0<x <4时.u′>0.函数u 递增. 所以函数u 在x=4处取得最大值500. 即有△PAB 面积的最大值为10 √5 . 故答案为:10 √5 .【点评】:本题考查圆的方程和运用.以及圆的弦长公式和三角形的面积公式的运用.考查换元法和导数的运用:求单调性和最值.属于中档题.15.(问答题.14分)在三棱柱ABC-A1B1C1中.AB⊥AC.B1C⊥平面ABC.E.F分别是AC.B1C的中点.(1)求证:EF || 平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【正确答案】:【解析】:(1)证明EF || AB1.然后利用直线与平面平行的判断定理证明EF || 平面AB1C1;(2)证明B1C⊥AB.结合AB⊥AC.证明AB⊥平面AB1C.然后证明平面AB1C⊥平面ABB1.【解答】:证明:(1)E.F分别是AC.B1C的中点.所以EF || AB1.因为EF⊄平面AB1C1.AB1⊂平面AB1C1.所以EF || 平面AB1C1;(2)因为B1C⊥平面ABC.AB⊂平面ABC.所以B1C⊥AB.又因为AB⊥AC.AC∩B1C=C.AC⊂平面AB1C.B1C⊂平面AB1C.所以AB⊥平面AB1C.因为AB⊂平面ABB1.所以平面AB1C⊥平面ABB1.【点评】:本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用.直线与平面平行的判断定理的应用.是中档题.16.(问答题.14分)在△ABC中.角A、B、C的对边分别为a、b、c.已知a=3.c= √2 .B=45°.(1)求sinC的值;(2)在边BC上取一点D.使得cos∠ADC=- 45.求tan∠DAC的值.【正确答案】:【解析】:(1)由题意及余弦定理求出b边.再由正弦定理求出sinC的值;(2)三角形的内角和为180°.cos∠ADC=- 45.可得∠ADC为钝角.可得∠DAC与∠ADC+∠C互为补角.所以sin∠DAC=sin(∠ADC+∠C)展开可得sin∠DAC及cos∠DAC.进而求出tan∠DAC的值.【解答】:解:(1)因为a=3.c= √2 .B=45°..由余弦定理可得:b= √a2+c2−2accosB =√9+2−2×3×√2×√22= √5 .由正弦定理可得csinC = bsinB.所以sinC= cb•sin45°= √2√5•√22= √55.所以sinC= √55;(2)因为cos∠ADC=- 45 .所以sin∠ADC= √1−cos2∠ADC = 35.在三角形ADC 中.易知C为锐角.由(1)可得cosC= √1−sin2C = 2√55.所以在三角形ADC中.sin∠DAC=sin(∠ADC+∠C)=sin∠ADCcos∠C+cos∠ADCsin∠C= 2√525.因为∠DAC ∈(0,π2) .所以cos∠DAC= √1−sin2∠DAC = 11√525.所以tan∠DAC= sin∠DACcos∠DAC = 211.【点评】:本题考查三角形的正弦定理及余弦定理的应用.及两角和的正弦公式的应用.属于中档题.17.(问答题.4分)某地准备在山谷中建一座桥梁.桥址位置的竖直截面图如图所示:谷底O在水平线MN上.桥AB与MN平行.OO′为铅垂线(O′在AB 上).经测量.左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1= 140a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=- 1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF.且CE为80米.其中C.E在AB上(不包括端点).桥墩EF每米造价k(万元).桥墩CD每米造价32k(万元)(k>0).问O′E为多少米时.桥墩CD与EF的总造价最低?【正确答案】:无【解析】:(1)由题意可令b=40.求得h2.即O'O的长.再令h1=|OO'|.求得a.可得|AB|=a+b;(2)可设O′E=x.则CO'=80-x.0<x<40.求得总造价y= 32 k[160- 140(80-x)2]+k[160-(6x-1800x3)].化简整理.应用导数.求得单调区间.可得最小值.【解答】解:(1)h2=- 1800b3+6b.点B到OO′的距离为40米.可令b=40.可得h2=- 1800×403+6×40=160.即为|O'O|=160.由题意可设h1=160.由140a2=160.解得a=80.则|AB|=80+40=120米; (2)可设O′E=x .则CO'=80-x.由 {0<x <400<80−x <80.可得0<x <40.总造价为y= 32 k[160- 140 (80-x )2]+k[160-(6x- 1800 x 3)] = k800 (x 3-30x 2+160×800).y′= k800 (3x 2-60x )= 3k800 x (x-20).由k >0.当0<x <20时.y′<0.函数y 递减; 当20<x <40时.y′>0.函数y 递增.所以当x=20时.y 取得最小值.即总造价最低. 答:(1)桥|AB|长为120米;(2)O′E 为20米时.桥墩CD 与EF 的总造价最低. 【点评】本题考查函数在实际问题中的应用.考查导数的应用:求最值.考查运算能力和分析问题与解决问题的能力.属于中档题.18.(问答题.16分)在平面直角坐标系xOy 中.已知椭圆E : x 24 + y 23 =1的左、右焦点分别为F 1、F 2.点A 在椭圆E 上且在第一象限内.AF 2⊥F 1F 2.直线AF 1与椭圆E 相交于另一点B . (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P.直线AP 与椭圆E 的右准线相交于点Q.求 OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上.记△OAB 与△MAB 的面积分别为S 1.S 2.若S 2=3S 1.求点M 的坐标.【正确答案】:【解析】:(1)由椭圆标准方程可知a.b.c 的值.根据椭圆的定义可得△AF 1F 2的周长=2a+2c.代入计算即可.(2)由椭圆方程得A (1. 32 ).设P (t.0).进而由点斜式写出直线AP 方程.再结合椭圆的右准线为:x=4.得点Q 为(4. 32 • 4−t 1−t ).再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时.AB 可以最为同底.所以若S 2=3S 1.则O 到直线AB 距离d 1与M 到直线AB 距离d 2.之间的关系为d 2=3d 1.根据点到直线距离公式可得d 1= 35 .d 2= 95 .所以题意可以转化为M 点应为与直线AB 平行且距离为 95 的直线与椭圆的交点.设平行于AB 的直线l 为3x-4y+m=0.与直线AB 的距离为 95 .根据两平行直线距离公式可得.m=-6或12.然后在分两种情况算出M 点的坐标即可.【解答】:解:(1)由椭圆的标准方程可知.a 2=4.b 2=3.c 2=a 2-b 2=1. 所以△AF 1F 2的周长=2a+2c=6. (2)由椭圆方程得A (1. 32 ).设P (t.0).则直线AP 方程为y=321−t(x −t ) .椭圆的右准线为:x= a 2c =4.所以直线AP 与右准线的交点为Q (4. 32 • 4−t1−t ).OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ =(t.0)•(t-4.0- 32 • 4−t 1−t )=t 2-4t=(t-2)2-4≥-4. 当t=2时.( OP ⃗⃗⃗⃗⃗ •QP ⃗⃗⃗⃗⃗ )min =-4.(3)若S 2=3S 1.设O 到直线AB 距离d 1.M 到直线AB 距离d 2.则 12 ×|AB|×d 2= 12 ×|AB|×d 1.即d 2=3d 1.A (1. 32 ).F 1(-1.0).可得直线AB 方程为y= 34 (x+1).即3x-4y+3=0.所以d 1= 35 .d 2= 95 . 由题意得.M 点应为与直线AB 平行且距离为 95的直线与椭圆的交点. 设平行于AB 的直线l 为3x-4y+m=0.与直线AB 的距离为 95.√9+16= 95 .即m=-6或12. 当m=-6时.直线l 为3x-4y-6=0.即y= 34 (x-2).联立 {y =34(x −2)x 24+y 23=1 .可得(x-2)(7x+2)=0.即 {x M =2y N =0 或 {x M =−27y M =−127. 所以M (2.0)或(- 27 .- 127 ).当m=12时.直线l 为3x-4y+12=0.即y= 34(x+4).联立 {y =34(x +4)x 24+y 23=1 .可得 214x 2 +18x+24=0.△=9×(36-56)<0.所以无解.综上所述.M 点坐标为(2.0)或(- 27 .- 127 ).【点评】:本题考查椭圆的定义.向量的数量积.直线与椭圆相交问题.解题过程中注意转化思想的应用.属于中档题.19.(问答题.16分)已知关于x的函数y=f(x).y=g(x)与h(x)=kx+b(k.b∈R)在区间D上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x2+2x.g(x)=-x2+2x.D=(-∞.+∞).求h(x)的表达式;(2)若f(x)=x2-x+1.g(x)=klnx.h(x)=kx-k.D=(0.+∞).求k的取值范围;(3)若f(x)=x4-2x2.g(x)=4x2-8.h(x)=4(t3-t)x-3t4+2t2(0<|t|≤ √2).D=[m.n]⊂[-√2 . √2 ].求证:n-m≤ √7.【正确答案】:【解析】:(1)由f(x)=g(x)得x=0.求导可得f′(0)=g′(0)=2.能推出函数h(x)的图象为过原点.斜率为2的直线.进而可得h(x)=2x.再进行检验即可.(2)由题可知h(x)-g(x)=k(x-1-lnx).设φ(x)=x-1-lnx.求导分析单调性可得.φ(x)≥φ(1)=0.那么要使的h(x)-g(x)≥0.则k≥0;令p(x)=f(x)-h(x)为二次函数.则要使得p(x)≥0.分两种情况.当x=k+1≤0时.当k+1>0时进行讨论.进而得出答案.(3)分三种情况① 当1≤t≤ √2时. ② 当0<t<1时. ③ 当- √2≤t<0时.讨论f(x)≥h(x)≥g(x).进而得出结论.【解答】:解:(1)由f(x)=g(x)得x=0.又f′(x)=2x+2.g′(x)=-2x+2.所以f′(0)=g′(0)=2.所以.函数h(x)的图象为过原点.斜率为2的直线.所以h(x)=2x.经检验:h(x)=2x.符合任意.(2)h(x)-g(x)=k(x-1-lnx).设φ(x)=x-1-lnx.设φ′(x)=1- 1x = x−1x.在(1.+∞)上.φ′(x)>0.φ(x)单调递增. 在(0.1)上.φ′(x)<0.φ(x)单调递减. 所以φ(x)≥φ(1)=0.所以当h(x)-g(x)≥0时.k≥0.令p(x)=f(x)-h(x)所以p(x)=x2-x+1-(kx-k)=x2-(k+1)x+(1+k)≥0.得.当x=k+1≤0时.即k≤-1时.f(x)在(0.+∞)上单调递增.所以p(x)>p(0)=1+k≥0.k≥-1.所以k=-1.当k+1>0时.即k>-1时.△≤0.即(k+1)2-4(k+1)≤0.解得-1<k≤3.综上.k∈[0.3].(3)① 当1≤t≤ √2时.由g(x)≤h(x).得4x2-8≤4(t3-t)x-3t4+2t2.≤0.(*)整理得x2-(t3-t)x+ 3t4−2t2−84令△=(t3-t)2-(3t4-2t2-8).则△=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤ √2).则φ′(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0.恒成立.所以φ(t)在[1. √2 ]上是减函数.则φ(√2)≤φ(t)≤φ(1).即2≤φ(t)≤7. 所以不等式(*)有解.设解为x1≤x≤x2.因此n-m≤x2-x1= √△≤ √7.② 当0<t<1时.f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1.则v′(t)=12t3+12t2-4t-4=4(t+1)(3t2-1)..令v′(t)=0.得t= √33)时.v′(t)<0.v(t)是减函数.当t∈(0. √33.1)时.v′(t)>0.v(t)是增函数.当t∈(√33v(0)=-1.v(1)=0.则当0<t<1时.v(t)<0.则f(-1)-h(-1)<0.因此-1∉(m.n).因为[m.n]⊆[- √2 . √2 ].所以n-m≤ √2 +1<√7 .③ 当- √2≤t<0时.因为f(x).g(x)为偶函数.因此n-m≤ √7也成立.综上所述.n-m≤ √7 .【点评】:本题考查恒成立问题.参数的取值范围.导数的综合应用.解题过程中注意数形结合思想的应用.属于难题.20.(问答题.16分)已知数列{a n }(n∈N*)的首项a 1=1.前n 项和为S n .设λ和k 为常数.若对一切正整数n.均有Sn+1 1k-S n 1k =λan+1 1k成立.则称此数列为“λ-k”数列.(1)若等差数列{a n }是“λ-1”数列.求λ的值;(2)若数列{a n }是“ √33-2”数列.且a n >0.求数列{a n }的通项公式;(3)对于给定的λ.是否存在三个不同的数列{a n }为“λ-3”数列.且a n ≥0?若存在.求出λ的取值范围;若不存在.说明理由.【正确答案】:【解析】:(1)由“λ-1”数列可得k=1.结合数列的递推式.以及等差数列的定义.可得λ的值; (2)运用“ √33-2”数列的定义.结合数列的递推式和等比数列的通项公式.可得所求通项公式; (3)若存在三个不同的数列{a n }为“λ-3”数列.则S n+1 13 -S n 13 =λa n+1 13 .由两边立方.结合数列的递推式.以及t 的讨论.二次方程的实根分布和韦达定理.即可判断是否存在λ.并可得取值范围.【解答】:解:(1)k=1时.a n+1=S n+1-S n =λa n+1.由n 为任意正整数.且a 1=1.a n ≠0.可得λ=1; (2) √S n+1 - √S n = √33 √a n+1 .则a n+1=S n+1-S n =( √S n+1 - √S n )•( √S n+1 + √S n )= √33 • √a n+1 ( √S n+1 + √S n ).因此 √S n+1 + √S n = √3 • √a n+1 .即 √S n+1 = 23 √3a n+1 .S n+1= 43 a n+1= 43 (S n+1-S n ). 从而S n+1=4S n .又S 1=a 1=1.可得S n =4n-1. a n =S n -S n-1=3•4n-2.n≥2.综上可得a n = {1,n =13•4n−2,n ≥2 .n∈N*;(3)若存在三个不同的数列{a n }为“λ-3”数列. 则Sn+1 13-S n 13 =λan+1 13.则S n+1-3S n+1 23S n 13+3Sn+1 13S n 23-S n =λ3a n+1=λ3(S n+1-S n ).由a1=1.a n≥0.且S n>0.令p n=(S n+1S n)13>0.则(1-λ3)p n3-3p n2+3p n-(1-λ3)=0.λ=1时.p n=p n2.由p n>0.可得p n=1.则S n+1=S n.即a n+1=0.此时{a n}唯一.不存在三个不同的数列{a n}.λ≠1时.令t= 31−λ3.则p n3-tp n2+tp n-1=0.则(p n-1)[p n2+(1-t)p n+1]=0.① t≤1时.p n2+(1-t)p n+1>0.则p n=1.同上分析不存在三个不同的数列{a n};② 1<t<3时.△=(1-t)2-4<0.p n2+(1-t)p n+1=0无解.则p n=1.同上分析不存在三个不同的数列{a n};③ t=3时.(p n-1)3=0.则p n=1.同上分析不存在三个不同的数列{a n}.④ t>3时.即0<λ<1时.△=(1-t)2-4>0.p n2+(1-t)p n+1=0有两解α.β. 设α<β.α+β=t-1>2.αβ=1>0.则0<α<1<β.则对任意n∈N*. S n+1S n =1或S n+1S n=α3(舍去)或S n+1S n=β3.由于数列{S n}从任何一项求其后一项均有两种不同的结果.所以这样的数列{S n}有无数多个.则对应的数列{a n}有无数多个.则存在三个不同的数列{a n}为“λ-3”数列.且a n≥0.综上可得0<λ<1.【点评】:本题考查数列的新定义的理解和运用.考查等差数列和等比数列的通项公式的运用.以及数列的递推式的运用.考查分类讨论思想.以及运算能力和推理论证能力.是一道难题.21.(问答题.10分)平面上的点A (2.-1)在矩阵M= [a1−1b]对应的变换作用下得到点B (3.-4).(1)求实数a.b的值;(2)求矩阵M的逆矩阵M-1.【正确答案】:【解析】:(1)由 [a 1−1b ] • [2−1] = [3−4] .列方程组.求出a 、b 的值; (2)设矩阵M 的逆矩阵为M -1= [m n p q ] .利用M•M -1= [1001] .列方程组求出m 、n 、p 和q 的值即可.【解答】:解:(1)由题意.知 [a 1−1b ] • [2−1] = [2a −1−2−b ] = [3−4] . 则 {2a −1=3−2−b =−4.解得a=2.b=2;(2)由(1)知.矩阵M= [21−12] .设矩阵M 的逆矩阵为M -1= [m np q ] . ∴M•M -1= [21−12] • [m n p q ] = [2m +p 2n +q −m +2p −n +2q ] = [1001] . ∴ {2m +p =12n +q =0−m +2p =0−n +2q =1.解得m= 25 .n=- 15 .p= 15 .q= 25 . ∴M -1= [25−151525] .【点评】:本题考查了矩阵的变换与计算问题.也考查了运算求解能力.是中档题.22.(问答题.10分)在极坐标系中.已知A (ρ1. π3 )在直线l :ρcosθ=2上.点B (ρ2. π6 )在圆C :ρ=4sinθ上(其中ρ≥0.0≤θ<2π). (1)求ρ1.ρ2的值;(2)求出直线l 与圆C 的公共点的极坐标.【正确答案】:【解析】:(1)直接根据点A 在直线l 上.列方程求出ρ1的值.点B 在圆C 上.列方程求出ρ2的值;(2)联立直线l 与圆C 的方程.然后求出其公共点的极坐标即可.【解答】:解:(1)∵A (ρ1. π3 )在直线l :ρcosθ=2上. ∴ ρ1cos π3=2 .解得ρ1=4. ∵点B (ρ2. π6 )在圆C :ρ=4sinθ上. ∴ ρ2=4sin π6 .解得ρ2=2或ρ2=0时.点B ( ρ2,π6 )表示极点.而圆C 经过极点.所以满足条件.极点的极坐标表示ρ为0.极角为任意角. 故ρ2=2或0.(2)由直线l 与圆C 得.方程组 {ρcosθ=2ρ=4sinθ .则sin2θ=1.∵θ∈[0.2π). ∴ 2θ=π2. ∴ θ=π4 .∴ ρ=4×sin π4=2√2 .故公共点的极坐标为(2 √2,π4).【点评】:本题考查的知识要点:极坐标与极坐标方程的关系和根据简单曲线极坐标方程求交点坐标.主要考查学生的运算能力和转换能力.属于基础题型. 23.(问答题.0分)设x∈R .解不等式2|x+1|+|x|<4.【正确答案】:【解析】:先将2|x+1|+|x|写为分段函数的形式.然后根据2|x+1|+|x|<4.利用零点分段法解不等式即可.【解答】:解:2|x+1|+|x|= {3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x+1|+|x|<4.∴ {3x +2<4x >0 或 {x +2<4−1≤x ≤0 或 {−3x −2<4x <−1 .∴ 0<x <23或-1≤x≤0或-2<x <-1.∴-2<x < 23.∴不等式的解集为{x|-2<x<23}.【点评】:本题考查了绝对值不等式的解法.考查了分类讨论思想.属基础题.24.(问答题.10分)在三棱锥A-BCD中.已知CB=CD= √5 .BD=2.O为BD的中点.AO⊥平面BCD.AO=2.E为AC中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上.满足BF= 14BC.设二面角F-DE-C的大小为θ.求sinθ的值.【正确答案】:【解析】:(1)由题意画出图形.连接OC.由已知可得CO⊥BD.以O为坐标原点.分别以OB.OC.OA所在直线为x.y.z轴建立空间直角坐标系.求出所用点的坐标.得到AB⃗⃗⃗⃗⃗ =(−1,0,2) . DE⃗⃗⃗⃗⃗ =(1,1,1) .设直线AB与DE所成角为α.由两向量所成角的余弦值.可得直线AB与DE所成角的余弦值;(2)由BF= 14 BC.得BF⃗⃗⃗⃗⃗ =14BC⃗⃗⃗⃗⃗ .设F(x.y.z).由向量等式求得F(34. 12.0).进一步求出平面DEF的一个法向量与平面DEC的一个法向量.由两法向量所成角的余弦值求得cosθ.再由同角三角函数基本关系式求解sinθ.【解答】:解:(1)如图.连接OC.∵CB=CD .O 为BD 的中点.∴CO⊥BD .以O 为坐标原点.分别以OB.OC.OA 所在直线为x.y.z 轴建立空间直角坐标系. ∵BD=2.∴OB=OD=1.则OC= √BC 2−OB 2=√5−1=2 . ∴B (1.0.0).A (0.0.2).C (0.2.0).D (-1.0.0). ∵E 是AC 的中点.∴E (0.1.1).∴ AB⃗⃗⃗⃗⃗ =(1,0,−2) . DE ⃗⃗⃗⃗⃗ =(1,1,1) . 设直线AB 与DE 所成角为α. 则cosα= |AB⃗⃗⃗⃗⃗ •DE ⃗⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗|•|DE⃗⃗⃗⃗⃗⃗ |=√1+4•√1+1+1=√1515 . 即直线AB 与DE 所成角的余弦值为√1515; (2)∵BF= 14 BC.∴ BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ . 设F (x.y.z ).则(x-1.y.z )=( −14 . 12 .0).∴F ( 34 . 12 .0). ∴ DE ⃗⃗⃗⃗⃗ =(1,1,1) . DF ⃗⃗⃗⃗⃗ =(74,12,0) . DC ⃗⃗⃗⃗⃗ =(1,2,0) . 设平面DEF 的一个法向量为 m ⃗⃗ =(x 1,y 1,z 1) .由 {m ⃗⃗ •DE ⃗⃗⃗⃗⃗ =x 1+y 1+z 1=0m ⃗⃗ •DF ⃗⃗⃗⃗⃗ =74x 1+12y 1=0 .取x 1=-2.得 m ⃗⃗ =(−2,7,−5) ; 设平面DEC 的一个法向量为 n ⃗ =(x 2,y 2,z 2) .由 {n ⃗ •DE ⃗⃗⃗⃗⃗ =x 2+y 2+z 2=0n ⃗ •DC ⃗⃗⃗⃗⃗ =x 2+2y 2=0 .取x 2=-2.得 n ⃗ =(−2,1,1) .∴|cosθ|= |m ⃗⃗⃗ •n ⃗ ||m ⃗⃗⃗ |•|n ⃗ |= √4+49+25•√4+1+1=√1313. ∴sin θ=√1−cos 2θ=√1−113=2√3913.【点评】:本题考查利用空间向量求空间角.考查空间想象能力与逻辑思维能力和运算求解能力.是中档题.25.(问答题.10分)甲口袋中装有2个黑球和1个白球.乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋.重复n次这样的操作.记甲口袋中黑球个数为X n.恰有2个黑球的概率为p n.恰有1个黑球的概率为q n.(1)求p1.q1和p2.q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).【正确答案】:【解析】:(1)利用已知条件求出p1= 13 .q1= 23.推出p2;q2即可.(2)推出p n+1= 13p n+29q n .q n+1= −19q n+23.得到2p n+1+q n+1= 13(2p n+q n)+23.推出2p n+q n-1= 13(2p n−1+q n−1−1) .说明数列{2p n+q n-1}是首项为13.公比为13的等比数列.然后求解的通项公式以及期望即可.【解答】:解:(1)由题意可知:p1= 13 .q1= 23.则p2= 13p1+23×13q1 = 727;q2= 23p1+(23×23+13×13)q1 = 1627.(2)由题意可知:p n+1=13p n+23×13q n = 13p n+29q n .q n+1=23p n+(23×23+13×13)q n + 23(1−p n−q n) = −19q n+23.两式相加可得2p n+1+q n+1= 23p n+13q n+23= 13(2p n+q n)+23.则:2p n+q n= 13(2p n−1+q n−1)+23.所以.2p n+q n-1= 13(2p n−1+q n−1−1) .因为2p1+q1−1=13 .数列{2p n+q n-1}是首项为13.公比为13的等比数列.所以2p n+q n-1= (13) n .即2p n+q n= (13)n+1.所以E(X n)=2p n+q n+0×(1-p n-q n)= (13)n+1.【点评】:本题考查数列与概率相结合.期望的求法.数列的递推关系式以及通项公式的求法.考查转化首项以及计算能力.是难题.。

2022年江苏省高考数学试卷(新高考Ⅰ)及答案解析

2022年江苏省高考数学试卷(新高考Ⅰ)及答案解析

2022年江苏省高考数学试卷(新高考Ⅰ)一、选择题(共10小题,每小题5分,满分50分)A .{2}B .{1,2}C .{2,3}D .{1,2,3}1.(5分)已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( )A .48个B .36个C .24个D .18个2.(5分)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)若cosθ>0,且sin 2θ<0,则角θ的终边所在象限是( )A .y ′=x 2+1x 2B .y ′=x 2−1x C .y ′=x 2−1x 2D .y ′=1−x2x 24.(5分)函数y =x 2−1x的导数是( )A.B.C.D.5.(5分)已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )A .3B .4C .6D .96.(5分)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |的值为( )→→→→→→→7.(5分)已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )二、填空题(本大题共5小题,每小题5分,满分25分)三、解答题:(本大题共6小题,共75分)A .8B .-8C .±8D .98A .3B .6C .9D .128.(5分)若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( )A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.(5分)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A .7,6,1,4B .6,4,1,7C .4,6,1,7D .1,6,4,710.(5分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如明文1,2,3,4对应加密文5,7,18,16,当接受方收到密文14,9,23,28时,则解密得明文为( )11.(5分)已知0≤x ≤2,则函数y =4x -3×2x -4的最小值.12.(5分)若数列{a n }(n ∈N +)为等差数列,则数列b n =a 1+a 2+a 3+…+a n n (n ∈N +)也为等差数列,类比上述性质,相应地,若数列{c n }是等比数列且c n >0(n ∈N +),则有数列d n =(n ∈N +)也是等比数列.13.(5分)在(x +1x )5展开式中,含x 项的系数为 .14.(5分)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为 .15.(5分)求圆ρ=cosθ+23sinθ圆心的极坐标.√16.(12分)已知sinθ+cosθ=22,求sin 4θ+cos 4θ和sin 3θ+cos 3θ的值.√17.(12分)甲、乙、丙3人投篮,投进的概率分别是13,25,12.(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ.18.(12分)在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,M 为D1D的中点.(Ⅰ)求证:异面直线B1O与AM垂直;(Ⅱ)求二面角B1-AM-B的大小;(Ⅲ)若正方体的棱长为a,求三棱锥B1-AMC的体积.19.(14分)已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明1a2−a1+1a3−a2+…+1a n+1−a n<1.20.(12分)已知直角三角形ABC的顶点A(-2,0),直角顶点B(0,-22),顶点C在x轴上.(1)求BC所在直线方程的一般式;(2)求△ABC外接圆M的标准方程.√21.(13分)设函数f(x)=lnx+x2+ax时,f(x)取得极值,求a的值;(1)若x=12(2)若f(x)在其定义域内为增函数,求a的取值范围.。

历年江苏高考数学试卷(1999-2012)(含详细答案)

历年江苏高考数学试卷(1999-2012)(含详细答案)

f x M, f b M, 则函数 gx M cosx 在a, b上
()
(A) 是增函数
(B) 是减函数
(C) 可以取得最大值 M
(D) 可以取得最小值 M
5.若 f xsin x 是周期为 的奇函数,则 f x可以是
()
(A) sin x
(B) cos x
(C) sin 2x
(D) cos 2x
DO 2 a, AC 2a, EO 2 a sec 45 a.
2
2
故 SEAC
2 a2. 2
II. 解:由题设 ABCD A1B1C1D1 是正四棱柱,得 A1 A ⊥底面 AC, A1 A ⊥AC,
又 A1 A ⊥ A1B1,
所以 A1 A 是异面直线 A1B1 与 AC 间的公垂线.
新疆 王新敞
奎屯
三、解答题:本大题共 6 小题;共 74 分,解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分 10 分)
解不等式 3loga x 2 2 loga x 1 a 0, a 1
20.(本小题满分 12 分)
设复数 z 3cos i 2sin. 求函数 y arg z0 的最大值以及对应的
x
a.
20.本小题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所
学数学知识解决问题的能力.
解:由 0 得 tg 0.
2
由 z 3cos i2sin 得 0 arg z 及
2
tgarg z 2 sin 2 tg.
3 cos 3

tgy tg arg z
2 loga x 1 0.
② ③
由①得 loga
x

2019年高考理科数学江苏卷真题及答案详解

2019年高考理科数学江苏卷真题及答案详解

2019年普通高等学校招生全国统一考试·江苏卷数学(理科)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.如图是一个算法流程图,则输出的S的值是.4.函数y=的定义域是.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD 的体积是.10.在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P 到直线x+y=0的距离的最小值是.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.已知=﹣,则sin(2α+)的值是.14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g (x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB =BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小..于.圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m≤b k≤c k+1成立,求m的最大值.时,都有ck21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin(θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分10分)设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.23.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年普通高等学校招生全国统一考试·江苏卷数学(理科)参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.2.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.3.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.4.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].5.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.6.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.7.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.8.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.9.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD 1=120,∴三棱锥E﹣BCD的体积:V=E﹣BCD==×AB×BC×DD1=10.故答案为:10.10.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.11.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).12.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:13.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.14.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.16.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.17.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF 2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).18.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x,0),2则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.19.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x+x2=,x1x2=,1可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x)=x1(x1﹣b)(x1﹣1)1=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.20.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;}的公比为q,②设{cn存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c成立,k+1即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)【解答】解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.B.[选修4-4:坐标系与参数方程](本小题满分10分)【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.C.[选修4-5:不等式选讲](本小题满分0分)【解答】解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x >1或x ∈∅或x <﹣,∴不等式的解集为{x |x <﹣或x >1}.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.【解答】解:(1)由(1+x )n =C +C x +C x 2+…+C x n ,n ≥4, 可得a 2=C =,a 3=C =,a 4=C =,a 32=2a 2a 4,可得()2=2••,解得n =5;(2)方法一、(1+)5=C +C +C ()2+C ()3+C ()4+C ()5=a +b ,由于a ,b ∈N *,可得a =C +3C +9C =1+30+45=76,b =C +3C +9C =44, 可得a 2﹣3b 2=762﹣3×442=﹣32;方法二、(1+)5=C +C+C ()2+C ()3+C ()4+C ()5=a +b ,(1﹣)5=C +C (﹣)+C (﹣)2+C (﹣)3+C (﹣)4+C (﹣)5=C ﹣C+C ()2﹣C ()3+C ()4﹣C ()5,由于a ,b ∈N *,可得(1﹣)5=a ﹣b , 可得a 2﹣3b 2=(1+)5•(1﹣)5=(1﹣3)5=﹣32. 23.【解答】解:(1)当n =1时,X 的所有可能取值为1,,2,,X 的概率分布为P (X =1)==;P (X =)==;P (X =2)==;P (X =)==;(2)设A (a ,b )和B (c ,d )是从M n 中取出的两个点, 因为P (X ≤n )=1﹣P (X >n ),所以只需考虑X >n 的情况, ①若b =d ,则AB ≤n ,不存在X >n 的取法; ②若b =0,d =1,则AB =≤,所以X >n 当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理2008年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共1小题,每小题5分,共70分.1.若函数cos(0)6y x πωω=->最小正周期为5π,则ω= .2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 .是线是端边为按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为11.设,,x y z 为正实数,满足230x y z -+=,则2y xz 的最小值是12 34 5 67 8 9 10 11 12 13 14 15 ………………12.在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过20a P c ⎛⎫⎪⎝⎭,作圆M 的两条切线相互垂直,则椭圆的离心率为13.满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值14.设函数3()31()f x ax x x R =-+∈,若对于任意的[]1,1-∈x 都有0)(≥x f 成立,则实数a 的值为 15.锐角αβ,(1)求(2)求16. (1(217.A ,B 及CD O 处,.记铺(1(i (ii (2 18.(1)求实数b 的取值范围; (2)求圆C 的方程;(3)问圆C 是否经过定点(其坐标与b 的无关)?请证明你的结论.19.(1)设12,,,n a a a L 是各项均不为零的n (4n ≥)项等差数列,且公差0d ≠,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i )当4n =时,求1ad的数值;(ii )求n 的所有可能值.(2)求证:对于给定的正整数n (4n ≥),存在一个各项及公差均不为零的等差数列12b b ,,L ,n b ,其中任意三项(按原来的顺序)都不能组成等比数列. 20.已知函数11()3x p f x -=,22()23x p f x -=⋅(12,,x R p p ∈为常数).函数()f x 定义为:对每个给定的实数x ,112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩若若(1)求1()()f x f x =对所有实数x 成立的充分必要条件(用12,p p 表示);(2)设,a b 是两个实数,满足a b <,且12,(,)p p a b ∈.若()()f a f b =,求证:函数()f x 在区间[,]a b 上21:从A .选修如图,D .求证:ED B .选修,求F C .选修D .选修设a ,b 22.λ.当APC ∠23.在等式2cos 22cos 1x x =-(x ∈R )的两边求导,得:2(cos 2)(2cos 1) x x ''=-,由求导法则,得(sin 2)24cos (sin ) x x x -=-g g ,化简得等式:sin 22cos sin x x x =g .(1)利用上题的想法(或其他方法),结合等式0122(1+x)=C C C C n n n n n n n x x x ++++L (x ∈R ,正整数2n ≥),证明:112[(1)1]C nn k k n k n x k x--=+-=∑. (2)对于正整数3n ≥,求证:(i )1(1)C 0nkknk k =-=∑;(ii )21(1)C 0nkk nk k =-=∑;(iii )11121C 11n nk n k k n +=-=++∑. 2008年普通高等学校招生全国统一考试(江苏卷)数学参考答案一、填空题1、10;2、112;3、1;4、6;5、7;6、16π;7、6.42;8、ln2-1;9、11c b -;10、262n n -+;11、3;12、22;13、22;14、4;2、【解析】本小题考查古典概型.基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯ 6、【解析】本小题考查古典概型.如图:区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯7、【解析】由流程图 9、【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填CP :1x yc p+=,11c b -.事实上,由截距式可得直线AB :1x yb a+=,直线两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程. 10、【解析】本小题考查归纳推理和等差数列求和公式.前n -1行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3个数是全体正整数中第22n n -+3个,即为262n n -+.11、【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当x =3z 时取“=”.12、【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP是等腰直角三角形,故22a a c=,解得22c e a ==.13、【解析】设BC =x ,则AC =2x ,根据面积公式得:ABC S ∆=21sin 1cos 2AB BC B x B =-g .根据余弦定理得:2222242cos 24AB BC AC x x B AB BC x+-+-==g 244x x -=,代入上式得ABC S ∆==由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当x =14、【31x -+≥0设()g x 上单调当x <0()g x 二、15、(1因所以tan()αβ+=17tan tan 2311tan tan 172αβαβ++==---⨯g ; (2)132tan(2)tan[()]111(3)2αβαββ-++=++==---⨯, 从而由tan(2)1αβ+=-得324παβ+=.16、证明:(1)∵E,F 分别是AB BD ,的中点.∴EF 是△ABD 的中位线,∴E F ∥AD ,∵E F ∥⊄面ACD ,AD ⊂面ACD ,∴直线E F ∥面ACD ; (2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F,∴BD ⊥面EFC ,∵B D ⊂面BCD ,∴面EFC ⊥面BCD17、【解析】(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad),则10cos cos AQ OA θθ==,故 10cos OB θ=,又OP =1010tan θ-,所以y =②若令'y =0当θ⎛∈ ⎝θ=6π时,min y km 处。

18、令()f x (Ⅱ)设所求圆的一般方程为2x 20y Dx Ey F ++++=令y =0得20x Dx F ++=这与22x x b ++=0是同一个方程,故D =2,F =b . 令x =0得2y Ey +=0,此方程有一个根为b ,代入得出E =―b ―1. 所以圆C 的方程为222(1)0x y x b y b ++-++=. (Ⅲ)圆C 必过定点,证明如下:假设圆C 过定点0000(,)(,)x y x y b 不依赖于,将该点的坐标代入圆C 的方程,并变形为22000002(1)0x y x y b y ++-+-=(*) 为使(*)式对所有满足1(0)b b <≠的b 都成立,必须有010y -=,结合(*)式得2200020x y x y ++-=,解得000002 11x x y y ==⎧⎧⎨⎨==⎩⎩,-,或,,经检验知,点(0,1),(2,0)-均在圆C 上,因此圆C 过定点。

19、解:(1)①当n =4时,1234,,,a a a a 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d =0。

若删去a,所以3a 当去首项1n -也有1n a a ⋅=0≠d 矛盾。

((211,y z b ++(0x ≤)zd +,化简得(由1b d ≠当2y -故2y -因为0≤1d于是,对于任意的正整数)4(≥n n ,只要1b d为无理数,相应的数列就是满足题意要求的数列。

例如n 项数列1,11+1(n +-20、解:(1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于()()12f x f x ≤(对所有实数x )这又等价于12323x p x p --≤g ,即123log 2332x p x p ---≤=对所有实数x 均成立.(*)由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 故(*)等价于1232p p -≤,即123log 2p p -≤,这就是所求的充分必要条件(2)分两种情形讨论(i )当1232p p log -≤时,由(1)知1()()f x f x =(对所有实数[,]x a b ∈)0x =综(f x 故由函数1()f x 及2()f x 的单调性可知,()f x 在区间[,]a b 上的单调增区间的长度之和为012()()x p b p -+-,由于()()f a f b =,即12323p a b p --=⋅,得123log 2p p a b +=++⑵故由⑴、⑵得0121231()()[log 2]22b ax p b p b p p --+-=-+-=综合(i )(ii )可知,()f x 在区间[,]a b 上的单调增区间的长度和为2ab -。

21:A .选修4—1 几何证明选讲证明:如图,因为AE 是圆的切线, 所以,ABC CAE ∠=∠,又因为AD 是BAC ∠的平分线,所以BAD CAD ∠=∠从而ABC BAD CAE CAD ∠+∠=∠+∠ 因为ADE ABC BAD ∠=∠+∠, 所以ADE DAE ∠=∠,故EA ED =.因为EA 是圆的切线,所以由切割线定理知, 2EA EC EB =⋅,而EA ED =,所以2ED EC EB =g B .选修4—2 矩阵与变换解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵A 对应的变换下变为点'''(P ''0x y ⎡⎢⎢⎣C .选修因此S =D .选修即3331113a b c abc ++≥ 所以3331113abc abc a b c abc+++≥+, 而3abc abc +≥=所以333111a b c+++abc ≥22、解:由题设可知,以DA u u u r 、DC u u ur 、1DD u u u u r 为单位正交基底,建立如图所示的空间直角坐标系D xyz -,则有(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)D 由1(1,1,1)D B =-u u u u r,得11(,,)D P D B λλλλ==-u u u u r u u u u r,所以11(,,)(1,0,1)(1,,1)PA PD D A λλλλλλ=+=--+-=---u u u r u u u u r u u u u r显然APC ∠不是平角,所以APC ∠为钝角等价于cos cos ,0PA PCAPC PA PC PA PC∠=<>=<u u u r u u u ru u u r u u u r g u u u r u u u r g ,则等价于0PA PC <u u u r u u u r g即2(1λ-1因此,λ23(2)(i 所以1(nk =∑(ii 又由(i )知1(1)0nk k n k kC =-=∑(2)由(1)+(2)得21(1)C 0nk k n k k =-=∑(iii )将等式0122(1+x)=C C C C n n nn n n n x x x++++L 两边在[0,1]上对x 积分1101220(1)(C C C C )n n nn n n n x dx x x x dx +=++++⎰⎰L精心整理由微积分基本定理,得111100011(1)()11nn k k n k x C x n k ++=+=++∑ 所以1012111n n k n k C k n +=-=++∑。

相关文档
最新文档