局域网拓扑结构图
网络拓扑结构知识
![网络拓扑结构知识](https://img.taocdn.com/s3/m/53ece506af1ffc4fff47ac47.png)
网络拓扑结构知识网络的拓扑结构是抛开网络物理连接来讨论网络系统的连接形式,网络中各站点相互连接的方法和形式称为网络拓扑。
拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、总线结构、树型结构、网状结构、蜂窝状结构、分布式结构等。
星型结构星型结构是指各工作站以星型方式连接成网。
网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。
它具有如下特点:结构简单,便于管理;控制简单,便于建网;网络延迟时间较小,传输误差较低。
但缺点也是明显的:成本高、可靠性较低、资源共享能力也较差。
环型结构环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
环型结构具有如下特点:信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。
总线型结构总线结构是指各工作站和服务器均挂在一条总线上,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。
各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。
总线型结构的网络特点如下:结构简单,可扩充性好。
当需要增加节点时,只需要在总线上增加一个分支接口便可与分支节点相连,当总线负载不允许时还可以扩充总线;使用的电缆少,且安装容易;使用的设备相对简单,可靠性高;维护难,分支节点故障查找难。
无线局域网拓扑结构
![无线局域网拓扑结构](https://img.taocdn.com/s3/m/2aac1d86b9d528ea81c779ef.png)
模式有时也称为多蜂窝结构,蜂窝之间1、 多AP模式有时也称为多蜂窝结构 模式有时也称为多蜂窝结构 建议有15%的重叠 重叠,以便于无线工作站在不同 % 重叠 的蜂窝之间做无缝漫游。 2、所谓漫游是指一个用户从一个地点移动到
另外一个地点,应该被认定为离开一个接入点, 另外一个地点,应该被认定为离开一个接入点, 进入另一个接入点。 进入另一个接入点。
小结01无线局域网的几种拓扑结构多ap模式基础架构模式点对点模式apclient客户端模式无线中继器模式无线网桥模式无中心拓扑结构由无线工作站组成用于一台无线工作站和另一台或多台其他无线工作站的直接通讯该网络无法接入到有线网络中只能独立使用
无线局域网拓扑结构
无线局域网拓扑结构类型
点对点模式(Peer-to-Peer) /对等模式 点对点模式 对等模式 基础架构模式 多 AP 模式 无线网桥模式 无线中继器模式 AP Client客户端模式 客户端模式 Mesh结构 结构
Mesh的不足
互操作性差,缺乏统一的无线Mesh技术标准。 通信延迟大,Mesh网络中数据通过中间节点 进行多跳转发,每一跳都会带来一些延时。 安全性差,节点多,安全性问题就越发重要。
小结
在占有市场空间方面,无线网状网已经先于WiMAX、3G进 入市场。同时,无线网状网也可以依靠已被市场接受的WiFi终端迅速发展。 从技术上分析,无线网状网、Wi-Fi、WiMAX彼此可以相互 补充,共同组成无线城域网。Wi-Fi以低廉的成本,普及的 应用占据末端局域网接入市场,WiMAX则可以作为城域范 围的固定点接入,无线网状网能够实现城域范围内的移动宽 带专用通信网。随着技术和市场的不断发展,无线网状网与 将来的802.16e和3G在业务层面上的确存在着重叠的地方, 由此也会带来一定的竞争,但目前所能得出的结论则是:它 们之间的互补性要大于竞争性。
局域网拓扑图
![局域网拓扑图](https://img.taocdn.com/s3/m/5fa41168fd0a79563d1e723e.png)
局域网拓扑图网络设备主要包括局域网交换机、路由器、各种服务器等。
各器件间用双绞线连接;和互联网连接用光纤。
整体拓扑结构:整体平面图:网络拓扑结构的规划设计与网络规模息息相关。
一个规模较小的星型局域网没有主干网和外围网之分。
规模较大的网络通常采用分层结构的拓扑,分为核心层、汇聚层和接入层,如图示。
分层设计规划的好处是可有效地将全局通信问题分解考虑。
分层还有助于分配和规划带宽的使用。
主干网络又称为核心层,用以连接服务器群、建筑群到网络中心,或在一个较大型建筑物内连接多个交换机管理间到网络中心设备间;用以连接信息点的“毛细血管”线路及网络设备称为接入层,根据需要在中间设置汇聚层。
汇聚层和接入层又称为外围网络。
要不要汇聚层,采用级联还是堆叠,要视网络信息流的特点而定,堆叠体内能够有充足的带宽保证,适宜本地(楼宇内)信息流密集、全局信息负载相对较轻的情况;级联适宜于全网信息流较平均,且汇聚层交换机大都具有组播和初级QoS(服务质量)管理能力的场合,适合处理一些突发的重负载(如VOD视频点播),但增加汇聚层的同时也会使成本提高。
北京总部拓扑结构:北京分部拓扑结构:管理服务器包括:邮件服务服务器、Fileserver1的文件服务器、应用服务器、数据库服务器;包含FTP服务、DNS服务、Web服务等。
企业的文件服务器上有一个给员工保存文件的共享文件夹。
要求管理人员每人最多可以保存500MB文件,一般工作人员最多可以保存200MB文件,短期员工最多可以保存100MB文件。
企业中有一个名为Fileserver1的文件服务器,这台文件服务器上有一个共享文件夹叫shared folder,里面有几千份文档供企业的工程师使用。
为保证共享文件夹数据的安全性,需要对此共享文件夹进行严格审核,并进行每天一次的备份。
企业的主要数据都放置在北京的一号办公大楼服务器中。
研发部打印机服务器管理4台型号相同并集中放置在打印室的网络激光打印机,现在要求管理人员在使用这些打印机时要比一般员工有更高的优先级。
网络拓扑结构大全和图片(星型、总线型、环型、树型、分布式、网状拓扑结构)
![网络拓扑结构大全和图片(星型、总线型、环型、树型、分布式、网状拓扑结构)](https://img.taocdn.com/s3/m/0db4630e58fb770bf68a5520.png)
网络拓扑结构总汇星型结构星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。
中心节点可以是文件服务器,也可以是连接设备。
常见的中心节点为集线器。
星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。
每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。
因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。
优点:(1)控制简单。
任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。
易于网络监控和管理。
(2)故障诊断和隔离容易。
中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。
(3)方便服务。
中央节点可以方便地对各个站点提供服务和网络重新配置。
缺点:(1)需要耗费大量的电缆,安装、维护的工作量也骤增。
(2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。
(3)各站点的分布处理能力较低。
总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。
采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。
尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。
每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。
这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。
扩展星型拓扑:如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。
纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。
环型结构环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
网络拓扑图
![网络拓扑图](https://img.taocdn.com/s3/m/421d6459001ca300a6c30c22590102020740f231.png)
树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找 路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。
在网状拓扑结构中,网络的每台设备之间均有点到点的链路连接,这种连接不经济,只有每个站点都要频繁 发送信息时才使用这种方法。它的安装也复杂,但系统可靠性高,容错能力强。有时也称为分布式结构。
总线结构是使用同一媒体或电缆连接所有端用户的一种方式,也就是说,连接端用户的物理媒体由所有设备 共享,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送 信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时 都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。
网络拓扑图
由网络节点设备和通信介质构成的网络结构图
01 简介
03 分类
目录
02 基本名词 04 主流与优缺点
网络拓扑结构是指用传输媒体互连各种设备的物理布局(将参与LAN工作的各种设备用媒体互连在一起有多 种方法,但是实际上只有几种方式能适合LAN的工作)。
网络拓扑图是指由网络节点设备和通信介质构成的网络结构图。
使用这种结构必须解决的一个问题是确保端用户使用媒体发送数据时不能出现冲突。在点到点链路配置时, 这是相当简单的。如果这条链路是半双工操作,只需使用很简单的机制便可保证两个端用户轮流工作。在一点到 多点方式中,对线路的访问依靠控制端的探询来确定。然而,在LAN环境下,由于所有数据站都是平等的,不能 采取上述机制。对此,研究了一种在总线共享型网络使用的媒体访问方法:带有碰撞检测的载波侦听多路访问, 英文缩写成CSMA/CD。
拓扑结构
![拓扑结构](https://img.taocdn.com/s3/m/dd377d701ed9ad51f01df21d.png)
☆拓扑结构☆计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。
现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。
顾名思义,总线型其实就是将文件服务器和工作站都连在称为总线的一条公共电缆上,且总线两端必须有终结器;星形拓扑则是以一台设备作为中央连接点,各工作站都与它直接相连形成星型;而环形拓扑就是将所有站点彼此串行连接,像链子一样构成一个环形回路;把这三种最基本的拓扑结构混合起来运用自然就是混合型了!计算机网络的拓扑结构是引用拓扑学中研究与大小、形状无关的点、线关系的方法,把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。
在点到点的链路配置时,如链路是半双工操作,只需使用简单的机制便可保证两个用户轮流工作。
在一点到多点方式中,对线路的访问依靠控制端的探询来确定。
总线型拓扑定义:总线型拓扑是采用单根传输作为共用的传输介质,将网络中所有的计算机通过相应的硬件接口和电缆直接连接到这根共享的总线上。
使用总线型拓扑结构需解决的是确保端用户使用媒体发送数据时不能出现冲突。
特点:总线型拓扑结构的数据传输是广播式传输结构,数据发送给网络上的所有的计算机,只有计算机地址与信号中的目的地址相匹配的计算机才能接收到。
采取分布式访问控制策略来协调网络上计算机数据的发送,如图1所示。
图1 总线型拓扑优点及缺点:优点:(1)网络结构简单,节点的插入、删除比较方便,易于网络扩展。
(2)设备少、造价低,安装和使用方便。
(3)具有较高的可靠性。
因为单个节点的故障不会涉及整个网络。
缺点:(1)总线传输距离有限,通信范围受到限制。
(2)故障诊断和隔离比较困难。
故障隔离困难。
当节点发生故障,隔离起来还比较方便,一旦传输介质出现故障时,就需要将整个总线切断。
(3)易于发生数据碰撞,线路争用现象比较严重。
网络组建 无线局域网的拓扑结构
![网络组建 无线局域网的拓扑结构](https://img.taocdn.com/s3/m/50af07c0da38376baf1faed9.png)
网络组建 无线局域网的拓扑结构局域网只涉及到ISO/RM 七层网络模型中的最低两层:物理层和数据链路层所以网络结构相对较简单。
根据局域网的特点,IEEE (国际电气电子工程师协会)早在90年代初就开始研究并制定无线局域网的标准。
近来称为IEEE802.11的这一标准被正式确立。
在IEEE802.11标准中,具体将局域网结构划分为“点到点(Peer -To -Peer)”(简称:无中心拓扑结构(PEER TO PEER ))和“主从(Master -Slave)”(简称:有中心拓扑结构(HUB —BASED ))两种标准形式。
“点到点”结构用于连接计算机或者便携式计算机(笔记本计算机),允许各台计算机在无线网络所覆盖的范围内移动并自动建立点到点的连接,使不同计算机之间直接进行信息交换。
而“主从”结构中所有工作站都直接与中心天线或者访问节点(AP :Access Point )连接,由AP 承担无线通信的管理及与有线网络连接的工作。
无线用户在AP 所覆盖的范围内工作时,无需为寻找其它站点而耗费大量的资源,是理想的低功耗工作方式。
二者的拓扑结构中则要求一个无线站点充当中心站,所有站点对网络的访问均由中心站控制。
二者的拓扑结构如图7-4所示。
对于不同局域网的应用环境与需求,无线局域网可采取不同的网络结构来实现互连。
点到点结构主从结构图7-4 无线局域网拓扑结构同时IEEE802.11对无线局域网的物理层、应用环境和功能等方面也作了如下规定目前无线局域网采用的拓扑结构主要有网桥连接型、访问节点连接型、HUB 接入型和无中心型四种。
网桥连接型该结构主要用于无线或者有线局域网之间的互连。
当两个局域网无法实现有线连接或者使用有线连接存在困难时,可使用网桥连接实现点对点的连接。
在这种结构中局域网之间的通信是通过各自的无线网桥来实现的,无线网桥起到了网络路由选择和协议转换的作用,如图7-5所示。
● 访问节点连接型这种结构采用移动蜂窝通信网接入方式,各移动站点间的通信是先通过就近的无线接收站(访问节点:AP )将信息接收下来,然后将收到的信息通过有线网传入到“移动交换中心”,再由移动交换中心传送到所有无线接收站上。
局域网拓扑结构
![局域网拓扑结构](https://img.taocdn.com/s3/m/5de18d020812a21614791711cc7931b765ce7b93.png)
局域网拓扑结构局域网(Local Area Network)是指在较小的范围内,由多台计算机和网络设备通过通信线路连接而成的计算机网络。
局域网拓扑结构指的是局域网中各个节点(计算机和网络设备)之间的连接方式和布置形式。
不同的拓扑结构对局域网的性能和可靠性有着重要影响。
本文将介绍几种常见的局域网拓扑结构及其特点。
星型拓扑结构星型拓扑结构是指局域网中的节点通过交换机集中连接的方式组成的网络形式。
在星型拓扑结构中,每个节点都与一个中央交换机相连,而不直接与其他节点相连。
这种结构使得节点之间的通信需要通过中央交换机进行转发,具有良好的可控性和可扩展性。
星型拓扑结构的优点是易于安装和维护,若其中一个节点发生故障,对其他节点的影响较小。
然而,星型拓扑结构的缺点是对中央交换机的依赖性较高,如果交换机故障,则整个局域网将无法正常工作。
总线型拓扑结构总线型拓扑结构是指局域网中的节点通过一根主干电缆相连的方式组成的网络形式。
在总线型拓扑结构中,所有节点共享同一个电缆,节点之间通过发送和接收数据帧的方式进行通信。
总线型拓扑结构的优点是成本低廉,易于安装。
然而,当其中一个节点发生故障或者主干电缆断开时,整个局域网将会受到影响,无法正常工作。
环型拓扑结构环型拓扑结构是指局域网中的节点通过形成一个闭合的环路相连的方式组成的网络形式。
在环型拓扑结构中,每个节点都与其前后相邻的节点相连,形成一个环状结构。
节点之间通过发送和接收令牌的方式进行通信,只有拥有令牌的节点才能发送数据。
环型拓扑结构的优点是在数据传输过程中不存在冲突问题,可以提供有序的数据传输。
然而,当其中一个节点发生故障或者令牌丢失时,整个局域网将无法正常工作。
混合型拓扑结构混合型拓扑结构是指局域网中的节点通过多种拓扑结构的组合而成的网络形式。
混合型拓扑结构可以综合利用各种拓扑结构的优点,针对不同的需求进行合理的组合。
混合型拓扑结构的优点是灵活性强,可以根据实际情况进行灵活布局和扩展。
有线局域网拓扑结构——星型结构
![有线局域网拓扑结构——星型结构](https://img.taocdn.com/s3/m/140cfa1a854769eae009581b6bd97f192279bfa7.png)
有线局域网拓扑结构——星型结构(一、二)1.基本星型结构单元星型结构是目前应用最广、实用性最好的一种拓扑结构。
无论在局域网中,还是在广域网中都可以见到它的身影(具体后面将介绍到),但主要应用于有线双绞线以太局域网中。
如下图所示的是最简单的单台集线器或交换机(目前集线器已基本不用了,所以后面不再提及了)星型结构单元。
它采用的传输介质是常见的双绞线和光纤,担当集中连接的设备是具有双绞线RJ一45以太网端口,或者各种光纤端口的集线器或交换机。
在上图中的星型网络结构单元中,所有服务器和工作站等网络设备都集中连接在同一台交换机上。
因为现在的固定端口交换机最多可以有48个,或以上交换端口,所以这样一个简单的星型网络完全可以适用于用户节点数在40个以内的小型企业,或者分支办公室选用。
模块式的交换机端口数可达1 00个以上,可以满足一个小型企业连接。
但实际上这种连接方式是比较少见的,因为单独用一台模块式的交换机连接成本还要远高于采用多台低端口密度的固定端口交换机级联方式。
模块式交换机通常用于大中型网络的核心(骨干层),或会聚层,小型网络很少使用。
扩展交换端口的另一种有效方法就是堆叠了。
有一些固定端口配置的交换机支持堆叠技术,通过专用的堆叠电缆连接,所有堆叠在一起的交换机都可作为单一交换机来管理,不仅可以使端口数量得到大幅提高(通常最多堆叠8台),而且还可提高堆叠交换机中各端口实际可用的背板带宽,提高了交换机的整体交换性能。
2.多级星型结构复杂的星型网络就是在如图3—1所示的基础上通过多台交换机级联形成的,从而形成多级星型结构,满足更多、不同地理位置分布的用户连接和不同端口带宽需求。
如下图所示的是一个包含两级交换机结构的星型网络,其中的两层交换机通常为不同档次的,可以满足不同需求,核心(或骨干层)交换机要选择档次较高的,用于连接下级交换机、服务器和高性能需求的工作站用户等,下面各级则可以依次降低要求,以便于工作最大限度地节省投资。
局域网(LAN)特点、组成和结构
![局域网(LAN)特点、组成和结构](https://img.taocdn.com/s3/m/528b0fd251e79b896902264d.png)
IEEE 802局域网体系结构
IEEE于1980年2月成立了局域网标准委 员会(简称 IEEE 802委员会),专门从事局域网标准化工作, 并制定了IEEE 802标准
IEEE 802 标准所描述的局域网参考模型与OSI模 型的对应关系:
802.2 - 逻辑链路控制LLC 802.3 - CSMA/CD(以太网) 802.4 - Token Bus (令牌总线) 802.5 - Token Ring(令牌环) 802.6 - 分布队列双总线DQDB -- MAN标准 802.8 – FDDI(光纤分布数据接口) 802.11 – 无线LAN
优点:电缆和设备少、成本低、安装方便
B
C
Bus
缺点:
❖若主干电缆某处发生故障,整个网络将瘫痪
❖网上站点较多时,会因数据冲突增多而使效率降低。 典型实例:以太网
环型
D
✓由站点和连接站点的链路组成闭合
环,各节点共享环路
A
✓数据只能沿着一个固定的方向传送
T C
B
✓采用分布式介质访问控制方法
Ring
优点:时延确定、构造容易、通信电缆短、不存
24bit
24bit
典型的物理地址 :
00-60-8C-01-28-12 广播地址(全1地址):发往所有站点
数据链路层的两种不同的数据单元:LLC PDU和MAC帧
高 层 PDU
LLC首 部
LLC数 据
MAC首 部
MAC数 据
MAC尾 部
LLC 帧 和 M A C 帧 的 关 系
IEEE802标准的主要成员
局域网(LAN)特点、组
常见的局域网的拓扑结构
![常见的局域网的拓扑结构](https://img.taocdn.com/s3/m/6bfc365524c52cc58bd63186bceb19e8b8f6ecef.png)
常见的局域网的拓扑结构局域网拓扑结构文档范本:1·概述局域网拓扑结构是指在一个较小范围内建立起的计算机网络结构。
它是由多台计算机和网络设备组成的,用于在局部区域内实现信息传输和共享资源。
本文档将介绍常见的局域网拓扑结构及其特点。
2·总线型拓扑结构总线型拓扑结构是指所有计算机都连接到一条中央线缆上的一种结构。
每台计算机通过中央线缆与其他设备进行通信。
总线型拓扑结构的特点包括简单、成本低、易于修改和添加设备。
然而,当中央线缆出现问题时,整个网络将无法正常工作。
3·星型拓扑结构星型拓扑结构是指所有计算机连接到一个中央设备(如交换机或集线器)的一种结构。
每台计算机与中央设备直接相连,并通过中央设备进行通信。
星型拓扑结构的特点包括高可靠性、易于维护和故障隔离。
然而,当中央设备出现问题时,整个网络将无法正常工作。
4·环型拓扑结构环型拓扑结构是指计算机按照环形连接方式进行通信的一种结构。
每台计算机通过一个双向链路与相邻计算机相连。
环型拓扑结构的特点包括高可靠性、均衡负载和灵活性。
然而,环型拓扑结构容易出现单点故障,故障节点会导致整个环路中断。
5·树型拓扑结构树型拓扑结构是指通过交换机或集线器连接多个星型子网络而形成的一种结构。
每个星型子网络都连接到一个中央交换机或集线器上。
树型拓扑结构的特点包括扩展性强、易于扩展和管理。
然而,当根节点出现问题时,整个子网络将无法与其他子网络通信。
6·网状拓扑结构网状拓扑结构是指通过多个交换机或路由器连接成一个网状结构的一种结构。
每个交换机或路由器都可以与其他设备直接相连。
网状拓扑结构的特点包括高可靠性、多路径传输和灵活性。
然而,网状拓扑结构的成本较高,且管理复杂。
7·混合拓扑结构混合拓扑结构是指将不同的拓扑结构组合在一起形成的一种结构。
例如,可以将多个星型子网络通过路由器连接成一个网状结构。
混合拓扑结构的特点是可以根据实际需求灵活组合不同的拓扑结构以满足网络要求。
局域网基础---局域网的讲解和研究
![局域网基础---局域网的讲解和研究](https://img.taocdn.com/s3/m/bf61d5b402d276a200292e82.png)
局域网的数据链路层
按功能划分为两个子层:LLC和MAC 功能分解的目的:
• 将功能中与硬件相关的部分和与硬件无关的部分 分开,以适应不同的传输介质。
• 解决共享信道(如总线)的介质访问控制问题,使 帧的传输独立于传输介质和介质访问控制方法。
LLC: 与介质、拓扑无关; MAC:与介质、拓扑相关。
6
IEEE802体系结构示意图
8
802.1D Bridge
0 2
802.2 LLC
LLC
体
系 结 构
802.3 CSMA/CD
802.4 Token
Bus
802.5 Token Ring
802.6 802.8 DQDB FDDI
……
MAC PHY
网际互联 数据链路层 物理层
数据链路层在不同的子标准中定义
特征:基带传输、总线拓扑、CSMA/CD、同轴电缆
• 1985年被采纳为IEEE 802.3,支持多种传输媒体。
“带有冲突检测的载波监听多路访问方法和物理层技术规范”
• Ethernet II和IEEE 802.3二者区别很小
仅是帧格式和支持的传输介质略有不同
• 目前已发展到万兆以太网,仍在继续发展 …
25
IEEE 802.3 以太网标准(主要的)
传统以太网:10Mb/s
• 802.3 —— 粗同轴电缆
• 802.3a —— 细同轴电缆
• 802.3i —— 双绞线
• 802.3j —— 光纤
快速以太网(FE):100Mb/s
• 802.3u ——双绞线,光纤
千兆以太网(GE):1000Mb/s(1Gb/s)
• 802.3z —— 屏蔽短双绞线、光纤
几种常见的局域网拓扑结构
![几种常见的局域网拓扑结构](https://img.taocdn.com/s3/m/be99fc06eff9aef8941e06ab.png)
如今,许多单位都建成了自己的局域网。
随着发展的需要,局域网的延伸和连接也成为人们关注的焦点。
本文主要就局域网间的连接设备、介质展开讨论来说明局域网的互连。
中继器、网桥、路由器、网关等产品可以延伸网络和进行分段。
中继器可以连接两局域网的电缆,重新定时并再生电缆上的数字信号,然后发送出去,这些功能是ISO模型中第一层——物理层的典型功能。
中继器的作用是增加局域网的覆盖区域,例如,以太网标准规定单段信号传输电缆的最大长度为500米,但利用中继器连接4段电缆后,以太网中信号传输电缆最长可达2000米。
有些品牌的中继器可以连接不同物理介质的电缆段,如细同轴电缆和光缆。
中继器只将任何电缆段上的数据发送到另一段电缆上,并不管数据中是否有错误数据或不适于网段的数据。
如同中继器一样,网桥可以在不同类型的介质电缆间发送数据,但不同于中继器的是网桥能将数据从一个电缆系统转发到另一个电缆系统上的指定地址。
网桥的工作是读网络数据包的目的地址,确定该地址是否在源站同一网络电缆段上,如果不存在,网桥就要顺序地将数据包发送给另一段电缆。
网桥功能是与数据链路层内第二层介质访问控制子层相关,例如网桥可以读令牌环网数据帧的站地址,以确定信息目的地址,但是网桥不能读数据帧内的TCP/IP地址。
当多段电缆通过网桥连接时可以通过三种结构连接:级连网桥拓扑结构、主干网桥拓扑结构、星型拓扑结构。
星型拓扑结构使用一个多端口网桥去连接多条电缆,一般用于通信负载较小的场合,其优势是有很强工作生命力,即使有一个站与集线器之间的一根电缆断开或形成一个不良的连接,网络其它部分仍能工作。
级连网桥拓扑与主干网桥拓扑结构相比,前者需要的网桥和连接设备少,但当C段局域网要连到A段局域网中时,必须经过B段局域网;后者可减少总的信息传送负载,因为它可以鉴别送向不同段的信息传输类型。
网桥和中继器对相连局域网要求不同。
中继器要求相连两网的介质控制协议与局域网适配器相同,与它们使用的电缆类型无关;网桥可以连接完全不同的局域网适配器和介质访问控制协议的局域网段,只要它们使用相同的通信协议就可以,如:IPX对IPX。
无线局域网拓扑结构
![无线局域网拓扑结构](https://img.taocdn.com/s3/m/a36d45efd0f34693daef5ef7ba0d4a7302766c98.png)
WLAN的拓扑结构
❖ 无线网桥模式
利用一对无线网桥连接两个有线或者无线局域网网段,实现两个局域网之间 资源的共享。
❖ WiFi-Mesh的研究起源于美国军方DARPA计划中对 MANET(Mobile Ad-hoc Network,移动自组织网络)的研究, 应用于波斯湾和海湾战争的作战通信指挥系统。今天,在经历了多年 的技术进步和商业推动之后,商用的无线网状网最终成为现实。目前 ,已经商用的无线网状网产品基本上都基于WiFi,称之为WiFiMESH
用来区分不同的无线网络,最多 可以有32个字符。
SSID通常由AP广播出 出于安全考虑可以不广播SSID,
分布式系统
此时用户就要手工设置SSID才
能进入相应的网络。
站
无线接入点 广播
SSI D
SSID(服务集标识)
❖ SSID与ESSID
本章总结
本章首先介绍了无线网络的发展史;然后对 802.11无线网络做了简单介绍。
BSSID:基本服务集标识。接入点的MAC地址,不可修改。 ESSID:扩展服务集标识。即通常所说的SSID,可修改
站 无线接入点 广播
SSI D
WLAN的常用拓扑结构
❖ 自组网拓扑(Ad-Hoc) ❖ 基础结构拓扑(Infrastructure)
WLAN的拓扑结构
❖ 自组网拓扑(AdHoc)
Mesh结构
特点
❖ (1). 是一种新型无线技术,提供无线路由功能,可扩展WiFi形成无 线城域网
局域网的拓扑结构
![局域网的拓扑结构](https://img.taocdn.com/s3/m/d13de383d4d8d15abe234e47.png)
局域网拓扑结构拓扑结构网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接,这种连接方式就叫做"拓扑结构",通俗地讲这些网络设备如何连接在一起的。
目录局域网拓扑结构(1)星型结构(2)环型结构(3)总线型结构(4)树型编辑本段详解点和通信链路,网络中结点的互连模式叫网络的拓扑结构。
在局域网中常用的拓扑结构有:星形结构、环形结构、总线型结构,网格型结构。
编辑本段星形拓扑结构概述星形网通过点到点链路接到中央结点的各站点组成的。
通过中心设备实现许多点到点连接。
在数据网络中,这种设备是主机或集线器。
在星形网中,可以在不影响系统其他设备工作的情况下,非常容易地增加和减少设备。
星型拓扑的优点是:利用中央结点可方便地提供服务和重新配置网络;单个连接点的故障只影响一个设备,不会影响全网,容易检测和隔离故障,便于维护;任何一个连接只涉及到中央结点和一个站点,因此控制介质访问的方法很简单,从而访问协议也十分简单。
星型拓扑的缺点是:每个站点直接与中央结点相连,需要大量电缆,因此费用较高;如果中央结点产生故障,则全网不能工作,所以对中央结点的可靠性和冗余度要求很高。
这种结构是目前在局域网中应用得最为普遍的一种,在企业网络中几乎都是采用这一方式。
星型网络几乎是Ethernet(以太网)网络专用,它是因网络中的各工作站节点设备通过一个网络集中设备(如集线器或者交换机)连接在一起,各节点呈星状分布而得名。
这类网络目前用的最多的传输介质是双绞线,如常见的五类线、超五类双绞线等。
特点这种拓扑结构网络的基本特点主要有如下几点:(1)容易实现:它所采用的传输介质一般都是采用通用的双绞线,这种传输介质相对来说比较便宜,如目前正品五类双绞线每米也仅1.5元左右,而同轴电缆最便宜的也要2.00元左右一米,光缆那更不用说了。
这种拓扑结构主要应用于IEEE 802.2、IEEE 802.3标准的以太局域网中;(2)节点扩展、移动方便:节点扩展时只需要从集线器或交换机等集中设备中拉一条线即可,而要移动一个节点只需要把相应节点设备移到新节点即可,而不会像环型网络那样"牵其一而动全局";(3)维护容易;一个节点出现故障不会影响其它节点的连接,可任意拆走故障节点;(4)采用广播信息传送方式:任何一个节点发送信息在整个网中的节点都可以收到,这在网络方面存在一定的隐患,但这在局域网中使用影响不大;(5)网络传输数据快:这一点可以从目前最新的1000Mbps到10G以太网接入速度可以看出。
几种常见的局域网
![几种常见的局域网](https://img.taocdn.com/s3/m/7f16e6ae6394dd88d0d233d4b14e852459fb395b.png)
3.以太网的工作过程如下
• 1、监听信道上收否有信号在传输。如果有的话,表明 信道处于忙状态,就继续监听,直到信道空闲为止。若 没有监听到任何信号,就传输数据。
• 2、传输的时候继续监听,如发现冲突,则立即停止发 送,冲突双方执行退避算法,随机等待一段时间后,重 新执行步骤1(当冲突发生时,涉及冲突的计算机会发 送会返回到监听信道状态。 注意:每台计算机一次只 允许发送一个包,一个拥塞序列,以警告所有的节点); 若未发现冲突则发送成功。
令牌总线的特点:
• 无冲突的访问方式。 • 确定的访问最大时延。 • 介质访问可调节(可引入优先权策略)。
• 物理上的总线网,逻辑上的环形网的这一特点使之 既具有总线网的连接简单、距离长、可广播通信等 优点,又具有环型网的介质访问可确定性和可调节 性的优点。
• 吞吐量在轻载时令牌总线网是低效的,在重负荷时 有较高的效率。
的标准结构,并对已经成熟的,在重负荷情况下仍能保 持高吞吐量的IEEE 802.5 Token Ring令牌环网络技术加以
改进,以多增加一条光纤链路为代价,构成一种被称为 反向双环(Dual Counter-Rotating Ring)的特殊结构, 弥补了环型网络拓扑结构的缺陷,提高了FDDI网络系统 的可靠性。
因而是最安全的传输媒体。
由光纤构成的FDDI,其基本结构为逆向双环,如图所示。一个 环为主环,另一个环为备用环。当主环上的设备失效或光缆发生 故障时,通过从主环向备用环的切换可继续维持FDDI的正常工作。 这种故障容错能力是其它网络所没有的。
FDDI的应用状况
• FDDI技术发展成熟,有全球统一的技术标准, 加上前面的优点,使之成为20世纪90年代初 期到中期最为流行的网络。
• 令牌环网与总线型的以太网都是共享传输介质,以广 播方式发送信息。但令牌环控制简单,消除了信息流
网络拓扑结构
![网络拓扑结构](https://img.taocdn.com/s3/m/f9780419b7360b4c2e3f6491.png)
网络拓扑结构
网络拓扑 (Topology) 结构是指用传输介质互连各种设备的物理布局。
星型拓扑结构(如图 1 、图 2 )
星型网络由中心节点和其它从节点组成,中心节点可直接与从节点通信,而从节点间必须通过中心节点才能通信。
在星型网络中中心节点通常由一种称为集线器或交换机的设备充当,因此网络上的计算机之间是通过集线器或交换机来相互通信的,是目前局域网最常见的方式。
图 1 星型网络示意图图 2 星型网络实物图
总线拓扑结构(如图 3 )
总线型网络是一种比较简单的计算机网络结构,它采用一条称为公共总线的传输介质,将各计算机直接与总线连接,信息沿总线介质逐个节点广播传送。
图 3 总线型网络
环型网络拓扑结构(如图 4 )
环型网络将计算机连成一个环。
在环型网络中,每台计算机按位置不同有一个顺序编号,见图 4 。
在环型网络中信号按计算机编号顺序以“接力”方式传输。
如图 4 中,若计算机 A 欲将数据传输给计算机 D 时,必须先传送给计算机 B ,计算机 B 收到信号后发现不是给自己的,于是再传给计算机 C ,这样直到传送到计算机 D 。
图 4 环形网络
在实际应用中,上述三种类型的网络经常被综合应用,并形成互连网。
互连网是指将两个或两个以上的计算机网络连接而成的更大的计算机网络。