《两个基本原理》教案2 高中数学 选修2-3 苏教版
2019-2020学年苏教版选修2-3 1.1 两个基本计数原理教学学案
1.1两个基本计数原理1.了解计数问题.2.理解区分分类计数原理与分步计数原理.3.掌握用两个基本计数原理解决简单的实际计数问题.1.分类计数原理(加法原理)如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N =m1+m2+…+m n种不同的方法.2.分步计数原理(乘法原理)如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n 步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.1.判断(正确的打“√”,错误的打“×”)(1)在分类计数原理中,两类不同方案中的方法可以相同.()(2)在分类计数原理中,每类方案中的方法都能完成这件事.()(3)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.()答案:(1)×(2)√(3)√(4)√2.某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选1门,则不同的选法共有() A.3种B.4种C.7种D.12种答案:C3.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是()A.1 B.3C.6 D.9答案:D4.加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,从中选3人每人做一道工序,则选法有________种.答案:120分类计数原理的应用在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36个.法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类计数原理知,符合条件的两位数共有1+3+5+7+9=25个.利用分类计数原理计数时的解题流程1.(1)某一数学问题可用综合法和分析法两种方法证明,有7位同学只会用综合法证明,有5位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数为________.(2)一个科技小组有3名男同学,5名女同学,从中任选1名同学参加学科竞赛,不同的选派方法共有________种.解析:(1)由分类计数原理可得,有7+5=12(种)不同的选法.(2)任选1名同学参加学科竞赛,有两类方案:第一类,从男同学中选取1名参加学科竞赛,有3种不同的选法;第二类,从女同学中选取1名参加学科竞赛,有5种不同的选法.由分类计数原理得,不同的选派方法共有3+5=8(种).答案:(1)12(2)8分步计数原理的应用从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y=ax2+bx+c的系数a,b,c,则可以组成抛物线的条数为多少?【解】由题意知a不能为0,故a的值有5种选法;b 的值也有5种选法;c的值有4种选法.由分步计数原理得:5×5×4=100条.1.若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a有两种方法,第二步确定b有5种方法,第三步确定c有4种方法,故可组成2×5×4=40条抛物线.2.若从本例的六个数字中选2个作为椭圆x2m+y2n=1的参数m,n,则可以组成椭圆的个数是多少?解:据条件知m>0,n>0,且m≠n,故需分两步完成,第一步确定m,有3种方法,第二步确定n,有2种方法,故确定椭圆的个数为3×2=6个.利用分步计数原理计数时的解题流程2.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有() A.12种B.7种C.14种D.49种解析:选D.要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法;第二步出门也有4+3=7种方法,由分步计数原理知进、出门的方案有7×7=49种.两个计数原理的综合应用现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一人任组长,有多少种不同的选法?(3)推选二人做中心发言,这二人需来自不同的班级,有多少种不同的选法?【解】(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别是从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法;所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).两个计数原理解题的思路(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法.(2)分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树形图,使问题的分析更直观、清楚,便于探索规律.(3)混合问题一般是先分类再分步.3.一个袋子里装有10张不同的中国移动手机卡,另一个袋子里装有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动手机卡和一张联通手机卡供自己今后使用,问一共有多少种不同的取法?解:(1)从两个袋子中任取一张卡有两类情况:第一类:从第一个袋子中取一张移动手机卡,共有10种取法,第二类:从第二个袋子中取一张联通手机卡,共有12种取法.根据分类计数原理,共有10+12=22(种)取法.(2)想得到一张移动手机卡和一张联通手机卡可分两步进行:第一步,从第一个袋子中任取一张移动手机卡,共有10种取法,第二步,从第二个袋子中任取一张联通手机卡,共有12种取法.根据分步计数原理,共有10×12=120(种)取法.两个计数原理的联系与区别(1)联系分类计数原理与分步计数原理的共同点是把一个原始的事件分解成若干个分事件来完成,它们都是关于做一件事的不同方法种数的问题.(2)区别分类计数原理分步计数原理区别一完成一件事,共有n类方法,关键词是“分类”完成一件事,共有n个步骤,关键词是“分步”区别二每类方法都能独立完成这件事,且每类方法得到的都是最后结果,只需一种方法就可以完成这件事任何一步都不能独立完成这件事,缺少任何一步都不能完成这件事,只有各个步骤都完成了,才能完成这件事区别三各类方法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和会日语的各一人,有多少种不同的选法?【解】依题意得既会英语又会日语的有7+3-9=1人,则6人只会英语,2人只会日语.第一类:从只会英语的6人中选一人,有6种方法,此时选一人会日语,有2+1=3种方法.由分步计数原理可得N1=6×3=18种.第二类:从既会英语又会日语的人中选一人,有1种方法,此时选一人会日语,有2种方法.由分步计数原理可得N2=1×2=2种.综上,由分类计数原理可知,不同选法共有N=N1+N2=18+2=20种.(1)本题易忽视了既会英语,又会日语的人的双重性,当从7个会英语的人中选出的1人是既会英语又会日语的,他就不可以再参加会日语的选取,因此选会日语的人时,只有2种选法了.(2)解答此类问题,首先必须弄清是“分类”还是“分步”,其次要搞清“分类”或“分步”的具体标准是什么,选择合理的标准处理事件,关键是看能否独立完成这件事,避免计数的重复或遗漏.1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.解析:当a =0时,方程化为2x +b =0,解得x =-b 2,有序数对(0,b )有4个;当a ≠0时,Δ=4-4ab ≥0,得ab ≤1,有序数对(-1,b )有4个,(1,b )有3个,(2,b )有2个.综上共有4+4+3+2=13(个).答案:132.从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地到B 地有4条路,则从A 地到B 地不同走法的种数是________.解析:由题意从A 地到B 地需过C 、D 两地,实际就是分三步完成任务,用乘法原理得N =3×2×4=24(种).答案:24[A 基础达标]1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是( )A .5B .4C .9D .20解析:选 C.由分类计数原理求解,5+4=9(种).故选C.2.已知集合M ={1,-2,3},N ={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是()A.18 B.16C.14 D.10解析:选C.分两类:第一类M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.3.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.4.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是()A.15 B.12C.5 D.4解析:选A.分情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15.5.十字路口来往的车辆,如果不允许回头,则不同的行车路线有()A.24种B.16种C.12种D.10种解析:选C.完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.6.已知集合A={0,3,4},B={1,2,7,8},集合C ={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C 的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:77.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22条,即所求的不同的直线共有22条.答案:228.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有________.解析:参观路线分步完成:第一步选择三个“环形”路线中的一个,有3种方法,再按逆时针或顺时针方向参观有2种方法;第二步选择余下两个“环形”路线中的一个,有2种方法,也按逆时针或顺时针方向参观有2种方法;第三步:最后一个“环形”路线,也按逆时针或顺时针方向参观有2种方法.由分步计数原理知,共有3×2×2×2×2=48(种)不同的参观路线.答案:489.数字1,2,3可以组成多少个四位数?解:要组成一个四位数可以分成四个步骤:第一步确定千位上的数字,从3个数字里任选一个数字,共有3种选法;第二步确定百位上的数字,依题意数字允许重复,仍有3种选法;第三步确定十位数字,同理,也有3种选法;同理,第四步确定个位数字,也有3种选法,根据分步计数原理得到可以组成的四位数的个数是:N=3×3×3×3=34=81.10.已知集合A={2,4,6,8,10},B={1,3,5,7,9},在A中任取一元素m和在B中任取一元素n,组成数对(m,n),问:(1)有多少个不同的数对?(2)其中所取两数m>n的数对有多少个?解:(1)因为集合A={2,4,6,8,10},B={1,3,5,7,9},在A中任取一元素m和在B中任取一元素n,组成数对(m,n),先选出m有5种结果,再选出n有5种结果,根据分步计数原理知共有5×5=25个不同的数对.(2)在(1)中的25个数对中所取两数m>n的数对可以分类来解,当m=2时,n=1,有1种结果;当m=4时,n=1,3,有2种结果;当m=6时,n=1,3,5,有3种结果;当m=8时,n=1,3,5,7,有4种结果;当m=10时,n=1,3,5,7,9,有5种结果.综上所述共有1+2+3+4+5=15个不同的数对.[B能力提升]1.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为() A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).2.n2个人排成n行n列,若从中选出n名代表,要求每行每列都有代表,则不同的选法共有________种.解析:分n步完成:第一步,从第1行中选一名,有n 种选法;第二步,从第2行中选一名,有n-1种选法(因为要求每行每列都有代表,故第一步选出的代表所在的列不能再选);…;依此选下去,到第n-1步,从第n-1行中选一名时,有2种选法;最后一步只有惟一的选法.根据分步计数原理,不同的选法共有n·(n-1)·(n-2)·…·2×1种.答案:n·(n-1)·(n-2)·…·2×13.某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.4.(选做题)用n种不同颜色为下列两块广告牌着色(如图所示甲、乙),要求在①②③④区域中相邻(有公共边界)的区域不用同一种颜色.(1)若n=6,为甲着色时共有多少种不同方法?(2)若为乙着色时共有120种不同方法,求n.解:完成着色这件事,共分四个步骤,可依次考虑为①②③④着色时各自的方法数,再由分步计数原理确定总的着色方法数,因此(1)为①着色有6种方法,为②着色有5种方法,为③着色有4种方法,为④着色也有4种方法.所以共有着色方法为6×5×4×4=480(种);(2)两个小题的区别在于与④相邻的区域由两块变成了三块.同理,不同的着色方法数是n(n-1)(n-2)(n-3).所以n(n-1)(n-2)(n-3)=120,(n2-3n)(n2-3n+2)-120=0,即(n2-3n)2+2(n2-3n)-12×10=0,所以n2-3n-10=0,所以n=5.。
江苏省高二数学苏教版选修2-3教案: 1.1 两个基本计数原理2
第一类方法,乘火车,有4种方法;
第二类方法,乘汽车,有2种方法;
第三类方法,乘轮船,有3种方法;
所以从甲地到乙地共有4 + 2 + 3 = 9种方法。
问题2.如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?
分析:从A村经B村去C村有2步,
第一步,选一名男三好学生,有m1 = 5种方法;
第二步,选一名女三好学生,有m2 = 4种方法;
所以,根据分步原理,得到不同选法种数共有N = 5×4 = 20种。
例2
1在图1-1-3(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?
2在图1-1-3(2)的电路中,合上两只开关以接通电路,有多少种不同的方法
图见书本第7页
分析略
例3为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码,在某网站设置的信箱中,
1密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?
2密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个,这样的密码共有多少个?
3密码为4-6位,每位均为0到10个数字中的一个,这样的密码共有多少个?
事实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,可归结为以下小的“方法结构”:
.每个“接受单位”至多接受一个被分配元素的问题方法是 ,这里 .其中 是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要 .个数为 的一个元素就是“接受单位”,于是,方法还可以简化为 .这里的“多”只要“少”
苏教版高中数学选修2-3《两个基本计数原理(第2课时)》学案
1.1 两个基本计数原理
1.问自学准备与知识导学:
1.分类计数原理(加法原理):
2.分步技术原理(乘法原理):
3.两种基本计数原理的区别与联系:
二.学习交流与问题研讨:
(1)列举法计数
例1 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式有种.
合理分类,运用分类加法计数原理计数
例2 等腰三角形的三边均为正整数,且其周长不大于10,这样的不同形状的三角形的种数为种.
巧妙分步,运用分步乘法计数原理计数
例3 将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?(三种作物必须都种植)
综合运用两个计数原理
例4 现有高一年级某班三个组学生24人,其中第一、二、三组各7人、8人、9人,他们自愿组成数学兴趣小组.
(1)选其中1人为负责人,有多少种不同的选法?
(2)每组选1名组长,有多少种不同的选法?
(3)推选2人作代表发言,这2人需来自不同的组,有多少中不同的选法?
三,练习测试与拓展延伸:
(1)课本P8页练习1~5;
(2)课本P9页习题1.1
补充:在3000至8000之间有多少个无重复数字的奇数?
答案:1232(个).
课堂小结
解决计数问题必须审清:做什么“事”?怎样才算“完成”?采用何种“方式”完成?若采用“分类”的方式完成,则需遵循同一个分类标准,以防重漏现象的发生;若采用“分步”的方式,则需按这件事发展的连续过程分层次进行,若某一步中的每一种方法对其下一步中的方法数产生了不同的影响,则需采取先分类后分步的方式来协调.
四.课后反思。
高中数学1.1两个基本计数原理教案2苏教版选修2_3
花:也是上下结构,草字头两竖要内斜;下面单人旁起笔对准上面的左竖,竖弯钩起笔对准上面的右竖;竖弯钩要舒展,(用红笔描竖弯钩,并在旁边书写一个大的竖弯钩)要求弯处圆转,不能僵硬(书写僵硬的竖弯钩,并在旁边打×)。
板书设计:结构特点(6)宝、穷、写、会、奔
我的思考:使学生更好的把握好字的结构,同时在教师的指导下提高学生辨别能力。激励学生更好的书写。
第(5)课时
课题:怎样写好字
课型:复习课
教学目标:1、让学生能够正确认识,端正态度。
教学过程:
一、正确的学书之路
1.临帖
临帖是学习书法的最根本的方法。古往今来,没有一个书法家是不经临习而成功的,没有一个字写得好的人是不经过临帖的。只有临帖,取法唐楷、晋行、汉隶、秦篆等传统的东西,才会有所获。
二、指导“车”字旁写法:
1、出示范字,观察“车”字旁写法。2、讨论明确其书写要领:“车”字旁分四笔完成,整个偏旁左重右轻,不超过竖中线。第一笔横稍短。第二笔撇折收笔于横中线。第三笔垂露竖,应在第一笔横下的正中位置起笔。最后一笔,比第一横长一些,离折笔稍近一些。3、练写“车”字旁。
三、指导临写“轻”字。
春:上部三横都是短横,收笔处不要顿;撇画最长,捺画从哪里起笔?从第三横下面起笔,不能碰到撇;下面“日”的两竖要竖直,不能斜。
雨:旁边两竖要内斜,上横短,中竖写在竖中线上;从下面看,哪一笔最低?钩最低,中竖最短;四个点都是斜点。
江:左右结构,左窄右宽左边三点水第二点略向外展;右边“工”字上横是短横,下横是长横;中竖略斜。
总第(2)课时
江苏省高二数学苏教版选修2-3教案: 1.1 两个基本计数原理1
复习:1.分类计数原理、分步计数原理概念
2.分类计数原理、分步计数原理的不同点
例题讲解:
例1.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?
解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,
课外作业:第10页习题1. 1 6 , 7 , 8
教学反思:要深入弄清所要解的问题的情景,切实把握住各因素之间的相互关系,不可分析不透就用 或 乱套一气.具体地说:首先要弄清有无“顺序”的要求,如果有“顺序”的要求,用 ;反之用 .其次,要弄清目标的实现,是分步达到的,还是分类完成的.前者用乘法原理,后者用加法原理.事实上,一个复杂的问题,往往是分类和分步交织在一起的,这就要准确分清,哪一步用乘法原理,哪一步用加法原理.
2若颜色是2种,4种,5种又会什么样的结果呢?
75600有多少个正约数?有多少个奇约数?
解:由于75600=24×33×52×7
(1) 75600的每个约数都可以写成 的形式,其中 , , ,
于是,要确定75600的一个约数,可分四步完成,即 分别在各自的范围内任取一个值,这样有5种取法,有4种取法,有3种取法,有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.
对于较复杂的问题,一般都有两个方向的列式途径,一个是“正面凑”,一个是“反过来剔”.前者指,按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求的方案剔出去.
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
高中数学苏教版选修2-3《1.1.1两个基本计数原理》省级名师优质课教案比赛获奖教案示范课教案公开课教案
高中数学苏教版选修2-3第1章《1.1.1两个基本计数原理》省级名师优质课教案比赛获奖教案示范课教案公开课教案
【省级名师教案】
1教学目标
1.能说出分类计数原理和分步计数原理;
2.会用分类计数原理或分步计数原理分析和解决一些简单的实际问题
2重点难点
区分两个基本计数原理,正确地选用两个计数原理解决实际问题
3教学过程
3.1第一学时
教学活动
1【导入】课前预习
完成一件事,有类方式,在第1类方式中有种不同的方法,在第2类方式中有种不同的方法,……,在第类方式中有种不同的方法,那么完成这件事共有
种不同的方法.分类计数原理又称为原理。
注:做一件事有类方式,每一类方式中的每一种方法均完成了这件事。
完成一件事,需要分成个步骤,做第1步有种不同的方法,在第2步有种不同的方法,……,在第步有种不同的方法,那么完成这件事共有种不同的方法.分类计数原理又称为原理。
注:做一件事要分个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事。
2【讲授】例题剖析
例1某班共有男生28名、女生20名,从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,则有多少种不同的选法?
(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.1.1 两个基本计数原理》
追问4:如果还有3个班次的动车呢?
问题2:小包同学进入大学后对自己严格要求、勤奋好学、积极上进,学习游刃有余,所以小包同学想再选修第二专业。通过了解,他在以下学院中选择一个专业,那么他可能选择的专业有几种?
追问1:这里小包同学完成了什么事?
追问2:这里有几种可供他选择的类型?
追问3:中选择这里任何一个专业时,这件事有没有完成?
问题3:小包同学暑期放假,他想“既要读万卷书、也要行万里路〞所以他决定到舍友的家乡杭州游历,欣赏一下西湖美景,然后再回常州。他准备先乘火车去杭州,两天后乘汽车回常州。每天适宜的火车有4个班次,汽车有3个班次,那么他从上海回到常州有几种不同的走法?
请看下面几个问题:
问题1:如果我班班长包栋梁同学经过自己的努力,一年后考上了上海的大学开学报到时,他在思考如何选择适宜的交通工具如果从常州到上海一天中适宜的高铁有3班次,直达客车有2个班次,那么一天中乘坐这些交通工具从常州到上海会有多少种不同的直达方法?
追问1:“5〞是怎么来的?为什么将他们相加?
追问2:这里,小包同学完成了一件什么事?
在图⑵的电路中,仅合上2只开关接通电路,有多少种不同的方法?
问题7:上述问题⑴中需要完成什么事?
问题8:能否一步完成?采用哪种计数原理?
问题9:对于问题⑵你有是怎么想的?
解:在图⑴中,按要求接通电路,只要在中的2只开关或中的3只开关中合上1只即可根据分类计数原理,共有种不同的方法
在图⑵中,按要求接通电路,必须分两步进行:第一步,合上中的1只开关;第二步,合上中的1只开关根据分步计数原理,共有种不同的方法
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.1.1 两个基本计数原理》84
课题:两个基本计数原理授课教师:崔绪春教材:苏教版普通高中课程标准实验教科书选修2-3 第节教学目标:①理解分类计数原理与分步计数原理的内容;②能选择分类计数原理与分步计数原理解决一些简单实际问题.教学过程:问题情境:一. 学生活动:问题1:乘汽车从淮安到宿迁,假设汽车北站直达宿迁有4班次,汽车总站直达宿迁有3班次,那么从淮安直达宿迁共有多少种不同的方法问题2:乘汽车从淮安到宿迁,假设汽车北站直达宿迁有4班次,汽车总站直达宿迁有3班次,汽车南站直达宿迁有1班次,那么从淮安直达宿迁共有多少种不同的方法二.数学建构分类计数原理:如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,……,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++= 21种不同的方法问题3:乘汽车从淮安到宿迁,若先从淮安乘车到洋河办事,一天后再从洋河乘车到达宿迁,假设从淮安直达洋河的汽车有4班次,从洋河直达宿迁的汽车有3班次,那么从淮安经洋河到宿迁共有多少种不同的方法分步计数原理:如果完成一件事要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…,做第n 步有n m 种不同的方法,那么完成这件事共有种12n N m m m =⨯⨯⨯不同方法.三.数学运用例1:某班有男生30名,女生24名。
(1) 现要从中任选一名学生代表班级参加公益活动,共有多少种不同选法?(2) 若要从中选出男、女生各一名代表班级参加公益活动,共有多少种不同选法?例2:书架上第一层放有4本不同的计算机书,第二层放有3本不同的文艺书,第三层放有2本不同的体育书若从书架上任取1本书,有多少种不同取法?变式1:若从第一,二,三层中各取1本书,有多少种不同取法?变式2:若从书架上取2本不同类别的书,有多少种不同取法?四.练习巩固五.课堂小结。
高中数学《1.1两个基本计数原理》学案苏教版选修2-3
选修2-3 第1课时两个基本计数原理教学目标:1.准确理解分类计数原理和分步计数原理,弄清它们的区别.2.会运用分类计数原理和分步计数原理解决一些简单的问题.教学过程:一、概念讲解:1.分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2中不同的方法,……在第n类方式中有m n中不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.二、例题讲解例一、某班共有男生28名、女生20名,从该班选出学生代表参加校学代会.(1)若学校分配给该班1名代表,则有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女代表各1名,则有多少种不同的选法?例二、(1)在图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?练习:1.(1)现有高中一年级的学生4名,高二年级的学生5名,高三年级的学生3名.① 从中任选一人参加夏令营,有 ________ 种不同的选法?② 从每个年级的学生中各选一人参加夏令营,有 种不同的选法?2.若4名学生报名参加数学、计算机、航模兴趣小组,每人选报1项,则有 报名方法例3 为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码.在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的一个.这样的密码共有多少个?(3)密码为4~6位,每位均为0到9这10个数字中的一个.这样的密码共有多少个?例4、有5种不同的书(每种不少于3本),从中选购3本 送给3本送给3名同学,每人各1本,共有多少种不同的送法?练习:1.某超市有四个门供购物者通行,若自由出入,共有__________种走法.2.设集合{}A b a A ∈=,,5,4,3,2,1,则方程122=+by a x 表示焦点位于y 轴上的椭圆有_ _个三、课后作业:1.已知某种新产品的编号由1个英文字母和1个数字组合而成,且英文字母在前,其中英文字母可以是A,B,C,D,E,F这6个字母中的1个,数字可以是1,2,…9这9个数字中的1个,问:共有多少种不同的编号?2.某人有4枚明朝不同年代的古币和6枚清朝不同年代的古币.(1)若从中任意取出1枚,则有多少种不同取法?(2)若从中任意取出明、清古币各1枚,则有多少种不同取法?3.从甲地到乙地,可以乘飞机,也可以乘火车,还可以乘长途汽车.每天飞机有2班,火车有4班,长途汽车有10班.一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的方法?4.手表厂为了生产更多款式新颖的手表,给统一的机芯设计了4种形状的外壳、2种颜色的表面及3种形式的数字.问:共有几种不同的款式?5.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,则不同选法的种数是________.6.书架的第一层有6本不同的数学书,第二层有6本不同的语文书,第三层有5本不同的英语书.(1)从这些书中任取1本,有多少种不同的取法?(2)从这些书中任取1本数学书,1本语文书,1本英语书共3本书的不同的取法有多少种?(3)从这些书中任取3本,并且在书架上按次序排好,有多少种不同的排法?。
苏教版选修(2-3)1.1《两个基本原理》word学案
编写人:邵凤颖 使用时间 2012-4-29分类加法与分步乘法计数原理(一)学习目标:1、了解学习本章的意义;2、理解分类加法计数原理和分步乘法计数原理及其区别;;3、会利用两个原理分析和解决一些简单的应用问题。
学习重点:理解分类计数原理和分步计数原理的区别标准;学习难点:会利用两个原理分析和解决一些简单的应用问题学习过程:引例一、1、用Z A -的英文字母或90-的数字给座位编号(每个号码只有一个字符)有多少种不同的号码?(虽然你能直接说出结果,但我还是让你按下面步骤专业分析)分析: 本题要做的一件事情是____________________按本题给的条件做这件事有______类方法,第一类方法: 用____________,有______种号码; 第二类方法: 用____________,有______种号码;所以共有___________________=+ 种不同号码.2、从双阳到铁岭,可以乘火车、汽车还有飞机。
一天中,火车有4 班、汽车有2班。
那么一天中乘坐这些交通工具从双阳到铁岭共有多少种不同的走法? (按照引例1的步骤分析)结论:做一件事情,完成它可以有两类不同的方案在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法,那么完成这件事共有=N ______ 种不同的方法. 这就是___________________班级___________ 组 __________________ ____ 层学生 ___________3、完成教材3页探究:第一句话答案:=N ________________________________第二句话答案:=N _______________________________引例二、1、如图,由A 村去B 村的道路有3条,由B 村去C 村的道路有2条。
从A 村经B 村去C 村,共有多少种不同的走法? (你能直接说出结果吗?_______)分析: 本题要做的一件事情是____________________按本题给的条件做这件事分类还是分步?__________,分_____步第一步: ____________ ,有______种方法;第二步: ____________ ,有______种方法;所以从A 村经 B 村去C 村共有式子____________==_____A B村种不同号码.2、用前6个大写英文字母和91-个阿拉伯数字,以、、、、2121;B B A A 的方式给教室的座位编号(按照引例1的步骤分析)结论:做一件事情,完成它需要分成n 个步骤,第一步有1m 种不同的方法, 第二步有2m 种不同的方法, 那么完成这件事有=N____________________ 种不同的方法.这就是__________________3、完成教材5页探究:第一句话答案:=N ________________________________第二句话答案:=N _______________________________一、看明白教材例题1、2、3、4二、认真看教材6页两个原理的区别,并体会其区别。
2019-2020学年高中数学 1.1 两个基本计数原理(2)导学案苏教版选修2-3.doc
C
D
乙
四:学后反思
课堂检测——1.1 两个基本计数原理(1)
姓名:
1、 乘积 (a1 a2 a3 )(b1 b2 b3 )(c1 c2 c3 c4 c5 ) 展开后共有多少 项? 2、 (200 2.在 1,2 ,3,4,5 这五个数字组成的没有重 复数字的三位数中,各位数字 之和为奇数的共有 3、(2005,北京春(文) ,5 分)从 0,1,2,3 这四个数中选三个不同的数作 为函数 f ( x) ax2 bx c 的 系数,可组成不同的一次函数共有 同的二次函数共有 个。 个,不
2019-2020 学年高中数学 1.1 两个基本计数原理(2)导学案苏教版 选修 2-3
一:学习目标 (1)理解分类计数原理与分步计数原理 (2)会利用两个原理分析和解决一些简单的应用问题 二:课前 预习 1、分类计数原理(加法原理) :完成一件事有 n 类方式,由第 1 种方法中 有 m1 种不同的方法可以完成,由第 2 种方法有 m2 种不同的方法可以完 成,……由第 n k 种途径有 mn 种方法可以完成。那么,完成这件事共有 N 种不同的方法。 2、分步计数原理(乘法原理) :完成一件事,需要分成 n 个步骤,做第 1 步 有 m1 种不同的方法 ,做第 2 步有 m2 种不同的方法,……做第 n 步有 mn 种 不同的方法,那么 完成这件事共有 N 种不同的方法。
变式:1、如果按照①、②、④、③的次序填涂,怎样解决这个问题? 2、如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种 , 允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数 为( ) A. 180 ② ① ③ 图一 若变为图二,图三呢? ④ B. 160 ① ③ ② 图二 ④ ② C. 96 D. 60
苏教版高中数学选修2-3《两个基本计数原理》参考教案
1.1《两个基本计数原理》教案一、教学目标1.理解分类加法计数原理与分步乘法计数原理;2.会利用两个原理分析和解决一些简单的应用问题.二、教学重难点1、理解分类计数原理与分步计数原理2、会利用两个原理分析和解决一些简单的应用问题三、教学过程一、问题情况问题1:.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4 班, 汽车有2班,轮船有3班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?问题2:如图,由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.二、学生活动探究:你能说说以上两个问题的特征吗?三、数学构建一、分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有=N+mn种不同的方法.分类记数原理的另一种表述:做一件事情,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二1类办法中有m种不同的方法,……,在第n类办法中有n m种不同的方法.那么完2成这件事共有12n N m m m =+++种不同的方法.问题1解答:分析:从甲地到乙地有3类方法:第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法.所以,从甲地到乙地共有 4 + 2 + 3 = 9 种方法.问题2解答:分析:从A 村经B 村去C 村有两步:第一步,由A 村去B 村有3种方法,第二步,由B 村去C 村有2种方法,所以,从A 村经 B 村去C 村共有 3 ×2 = 6 种不同的方法.四、数学运用例 1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种取法?(2)从书架的第1,2,3层各取1本书,有多少不同的取法?分析:(1)从书架上任取1本书,有三类办法:第一类办法, 从第1层中任取一本书, 共有 1m = 4 种不同的方法; 第二类办法, 从第2层中任取一本书, 共有2m = 3 种不同的方法;第三类办法:从第3层中任取一本书,共有3m = 2 种不同的方法.A 南 北所以, 根据分类记数原理, 得到不同选法种数共有N = 4+3+2= 9 种.点评:解题的关键是从总体上弄清楚这件事情是“分类完成”,还是“分步完成”.“分类完成”用“分类记数原理”;“分步完成”用“分步记数原理”.例2 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?分析1:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7 个,8 个.则根据分类记数原理共有 1 +2 +3 +4 + 5 + 6 + 7 + 8 =36 (个).分析2:按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.则根据分类记数原理共有 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 (个).二、分步记数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯种不同的方法.例 3 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?首位数字不为0的号码数有多少?首位数字是0的号码数又有多少?分析:按号码位数,从左到右依次设置第一位、第二位、第三位、第四位,需分为四步完成:第一步,1m =10;第二步,2m = 10; 第三步,3m =10,第四步,4m = 10.根据分步记数原理, 共可以设置N = 10×10×10 ×10 =410种四位数的号码. 答:首位数字不为0的号码数有N =9×10×10 ×10 = 9×310种,首位数字是0的号码数有N = 1×10×10 ×10 =310种.由此可以看出,首位数字不为0的号码数与首位数字是0的号码数之和等于号码总数.分类记数原理中的“分类”要全面, 不能遗漏; 但也不能重复、交叉;“类”与“类”之间是并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法.若完成某件事情有n类办法, 即它们两两的交为空集,n类的并为全集.分步记数原理中的“分步”程序要正确.“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉;若完成某件事情需n步,则必须且只需依次完成这n个步骤后,这件事情才算完成在运用“分类记数原理、分步记数原理”处理具体应用题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分类”或“分步”的具体标准.在“分类”或“分步”过程中,标准必须一致,才能保证不重复、不遗漏.练习:练习1 如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?投影完成解: 按地图A、B、C、D四个区域依次分四步完成,第一步,m= 3种,1第二步,m= 2种,2第三步,m= 1种,3第四步,m= 1种.4所以根据分步记数原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6 种.练习2 如图,该电路,从A 到B 共有多少条不同的线路可通电?解:从总体上看由A 到B 的通电线路可分三类,第一类, 1m = 3 条,第二类,2m =1条,第三类,3m =2×2 = 4条.所以, 根据分类记数原理, 从A 到B 共有N = 3 + 1 + 4 = 8条不同的线路可通电. 点评: 我们可以把分类记数原理看成“并联电路”;分步记数原理看成“串联电路”.五、课堂小结1.主要学习了分类记数原理和分步记数原理2.两个原理的异同点:共同点是:它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类记数原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事.分步记数原理是“分步完成”, 即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情.这也是本节课的重点.A B。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.1.1 两个基本计数原理》9
分类计数与分步计数原理〔一〕班级学号姓名一、目标要点:理解分类计数原理与分步计数原理,并能用此原理解决一些简单的实际问题。
二、要点回忆:1、分类计数原理:完成一件事,有n类方法,在第一类方法中有m1种不同的方法,第二类方法中有m2种不同的方法,……,在第n类方法中有m n种不同的方法,那么完成这件事共有:种不同的方法。
注意:1〕分类要全、清; 2〕任何一种方法均能完成此事;3〕各类方法相互独立。
2、分步计数原理:完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有的种不同的方法。
注意:1〕各步方法数相互独立; 2〕每步均完成后才能完成这件事。
三、目标训练:1、一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色各不相同〔1〕从两个口袋内任取一个小球,有种不同的取法;〔2〕从两个口袋内各取一个小球,有种不同的取法2、新华书店有语文、数学、英语不同的练习册各10本,〔1〕买其中一本有 _____种方法;〔2〕买语文、数学、英语各一本有 _____种方法;〔3〕买两本不同科的书有种方法3、某考生填报高考志愿,有10个不同志愿可供选择,假设考生只能按第一、第二、第三填入3个不同的志愿,那么有种不同填法。
4、现有3名同学报名参加体操、美术、计算机、游泳等四个兴趣小组,每人必选报且只能选报其中一个,那么有种不同报名方式。
5、从集合中任取3个元素分别作为直线方程中的系数,那么所得经过原点的直线有条。
思考:假设将集合改为那么有条。
6、假设,且,那么不同数对的个数是〔〕A 72 .36 C7、三科教师都布置了作业,假设同一时刻4名学生都做作业,那么可能情形有〔〕.81 C8、假设5个运发动争夺三项冠军,那么冠军结果〔无并列〕种数为〔〕.60 C9、书橱上原来并放着6本不同的书,现要再插入3本不同的书,那么不同的插法有〔〕种种种种10、某工厂有三个车间,第一车间有三个小组,第二车间有四个小组,第三车间有五个小组有一个新工人分配到该工厂工作,有几种不同的安排?11、完成一件产品需要三道工序,这三道工序分别有第一、第二、第三车间来完成,第一车间有三个小组,第二车间有四个小组,第三车间有五个小组,各车间的每一个小组都只可以独立完成车间所规定的工序,问完成这件产品有几种不同的分配方案?12、2021年奥运会在中国北京举办,假设进行从北京经南京去上海的火炬接力,方案北京到南京有东路8天,中路4天,西路6天三种走法,南京到上海有东路5天,西路3天两种走法,假设总时间不超过12天,那么共有多少种不同的走法?13、在一块并排10垄的田地中,选择2垄分别种植A、B两种不的作物,每种作物种植一垄,为利于作物生长,要求A、B两种作物的间隔不小于6垄,那么共有多少种不同的种植方法?。
2018版高二数学苏教版选修2-3教案: 1.1 两个基本计数原理2
分步计数原理完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事有
N=m1×m2×…×mn
种不同的方法。
、㈢例题
1.某班级有男三好学生5人,女三好学生4人。
(1)从中任选一人去领奖,有多少种不同的选法?
(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?
教学重点
教学难点
分类加法计数原理与分步乘法计数原理的应用理解
利用两个原理分析和解决一些简单的应用问题
教具准备:与教材内容相关的资料。
教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。
教学过程:
学生探究过程:
问题1.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
事实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,可归结为以下小的“方法结构”:
.每个“接受单位”至多接受一个被分配元素的问题方法是 ,这里 .其中 是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要 .个数为 的一个元素就是“接受单位”,于是,方法还可以简化为 .这里的“多”只要“少”
分析略
巩固练习:书本第9页练习1,2,3习题1. 1 1,2
课外作业:第9页习题1. 1 3 , 4 , 5
教学反思:
分配问题
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.1.1 两个基本计数原理》7
通过实例分析,让学生自主建构分类加法计数原理和分步乘法计数原理,并弄清它们之间的内在联系与主要区别,能初步运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的计数问题; 2通过探究活动,使学生在经历两个原理发现的过程中,理解由特殊到一般的归纳推理思维,体会一般到特殊的演绎推理思维,培养学生的抽象概括能力、逻辑思维能力和应用数学知识分析问题、解决问题的能力; 3通过合作交流,培养学生周密思考、细心分析的良好习惯,使学生在现实生活中面对复杂的现象,能够作出正确的分析,准确的判断,进而制订出完善的处理方案,体验数学知识的广泛应用性学生在初中学习过用列举法或树状图来解决一些简单的计数问题,已经具备了一定的归纳、类比能力,在平时的学习中会自学或不自觉地使用“分类〞和“分步〞的方法来思考和解决问题,这些都是学生学习两个计数原理的认知根底,形成了学生思维的“最近开展区〞两个计数原理深刻地反映了人类计数最根本的思想,即“分解〞的思想,具体地说就是把完成一件事的方法数分成类或分成步去计数分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的学生往往在判断是分类还是分步去完成一件事会有一定的障碍,局部同学对乘法原理的运算结果难以理解这是需要在教学中着力解决的问题对于学生而言,“计数〞是其学习数学的根本能力之一,简单的计数问题,其解决方法就是“数〞数,但复杂的问题呢要使学生意识到,只会机械地“数〞是不够的,必须从简单的、已能解决的计数问题中,抽象出能够解决一“类〞问题的方法,并明确界定适用该方法的问题的“类〞学习的重点是经历对实际问题进行方法建构的过程,从而掌握解决实际计数问题的流程,即:分析问题→构造方法→选择原理→解决问题学生学习的难点那么是在具体问题解决中,区别使用计数原理本节内容中的课本引例、例题和习题,学生通过预习大多都能看懂为了贴近学生实际生活,激发学生学习兴趣,在创设情境和例题的选用上,教学时选择了学生所熟悉的校园生活事例学生在合作交流中,对问题的理解可以得到互补完善从学生答复下列问题和学生间的相互评价中,使老师更多地了解学生的理解程度采用教师引导启发、学生分组合作学习的方式进行教学利用多媒体显示问题情境,让学生通过小组活动,具体地分析比拟,进而归纳总结,遵循从特殊到一般的思维过程,既关注学生的认知根底,又促使学生在原有认知根底上获取知识,学会思考,提高思维能力,保持高水平的思维活动,符合学生的认知规律凸显数学知识发生开展的过程,力求教学内容的生活化,创设真实、自然、贴近学生实际的教学情境,组织形式多样的教学活动,做到为用而学,在用中学自始至终地关注学生的情感、态度和价值观,充分利用直观、形象等图文并茂、灵活多样的教学方式,努力营造宽松、民主、和谐的教学气氛,让学生积极参与课堂活动,感受成功的喜悦【导入】设置情境,引入新课【活动】探索研究,形成概念评论问题1:要开学了, 通过查询,小高得知:从太仓到南京,一天当中适宜的直达高铁车有2个班次,直达客车有3个班次,那么一天中乘坐这些交通工具从太仓到南京会有多少种不同的直达方法问题2:小高想从南京大学两个学院中选择一个专业,那么他可能的专业选择有多少种问题3:从太仓到南京要途径常州, 上午从太仓去常州坐高铁有3个班次, 下午从常州到南京坐汽车有2个班次, 那么从太仓到南京要途径常州有多少种不同的方法问题4:小高去黄山时带有4件不同的外衣,3件不同的外裤,那么小明有多少种搭配穿衣的方法【设计意图】问题驱动,引导学生感知计数原理对4个问题,讨论它们的异同、特点,总结模型分类计数原理:如果完成一件事有两类不同方案,在第1 类方案中有m 种不同的方法,在第2 类方案中有n 种不同的方法,那么完成这件事共有N = m n 种不同的方法分步计数原理:如果完成一件事需要两个步骤,做第一步有m 种不同的方法,做第2 步有n 种不同的方法,那么完成这件事共有N = m×n 种不同的方法问题5:小高因为优秀成为家里弟妹的典范,经常帮助弟妹解答疑难,这是表妹小红的问题:在由电键组A与B所组成的并联电路中,如图1,仅合上1只开关接通电路使电灯发光,有多少种不同的方法如果再增添一组电键C呢继续添加呢在数学上该怎么表达图1图2 变式:如果电键组A、B组成如图3的串联电路中,仅合上2只开关接通电路,使电灯发光的不同方法有多少种如果再增添一组电键C呢继续添加呢在数学上该怎么表达【设计意图】推广模型,帮助学生建构计数原理分类计数原理加法原理:完成一件事,有n类方式,在第1类方式中有种不同的方法,在第2类方式中有种不同的方法,……,在第n类方式中有种不同的方法那么完成这件事共有种不同的方法分步计数原理乘法原理:完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有种不同的方法活动3【活动】比拟归纳,深化概念评论问题6:两个计数原理有什么异同相同点:都是完成一件事的不同方法的种数的问题不同点:分类计数原理是将办事方法分为假设干类,每一类方法之间是相互独立的,用任一种方法都可以完成这件事情;而分步计数原理是将办事方法分成假设干步进行,各个步骤相互依存,必须是各个步骤都完成了,这件事情才完成问题7:区别分类和分步的依据是什么分类时各类方法都能独立完成这件事;而分步时每一步都不能独立完成这件事例题1小明在学校不仅认真学习,还非常积极地参加学校的活动,他竞选上了系文艺部长,现在需要举办一次艺术节活动,要在 3 名教师,8名男生和5 名女生当中1选出一人主持这个文娱演出,会有多少种不同的选法2如果需要教师、男生、女生各1人共同主持,有多少种不同选法3如果需要1名教师、1名学生来主持,会有多少种不同的选法例题2小明为了更好地和以前的教师及同学联络,上网注册了一个电子邮箱我们知道,在申请电子邮箱的时候,除了用户名还要有密码为了确保电子邮箱的平安, 在注册时,要设置电子邮箱密码,在某网站设置的信箱中: 1密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个2密码为4位,每位均为0到9这10个数字中的一个,或是从A到Z这26个英文字母中的一个,这样的密码共有多少个3密码为4—6位,每位均为0到9这10个数字中的一个,这样的密码共有多少个例题3 江苏省太仓高级中学社团活动很丰富,小高同学习小组的5名同学准备报名参加心理协会、辩论协会、推理协会,每人限报其中的一项且必须报一项,不同的报名方法有多少种?总结:请同学们思考解决计数应用问题的方法和步骤: 1、完成的这件事是什么2、如何完成这件事3、它们属于分类还是分步是否独立完成4、运用哪个计数原理5、进行计算【设计意图】通过这两个例题,让学生辨析两个计数原理的异同,初步掌握解决计数应用问题的策略活动4【练习】学以致用,培养能力评论练习1 生活中有很多的计数问题,那么现在你能举出一些用分类或是分步原理进行计数的例子吗请学生举例,视时间决定请2到3位学生如:学校食堂备有5种素菜、3种荤菜、2种汤菜1假设你只吃一样菜,你有多少种选择2假设要配成一荤一素一汤的套餐,可以配制出多少种不同的品种4现有甲、乙、丙、丁4种不同的花供选种,要求在如图环形花坛里每块区域种1种花,且相邻的2块种不同的花,那么有种不同的种法总数,请同学们课后思考区域变成4块或5块呢?5【活动】总结反思,感悟收获评论请同学们说说今天这堂课的收获, 最后总结: 一个中心问题:计数; 两个根本原理:分类加法原理,分步乘法原理; 三个核心关键:完成怎样的一件事,需要分类,还是分步。
高二数学 教案 1.1 两个计数原理学案苏教版_选修2-3
§1.1 两个计数原理(1)编写:江凤芹审核:黄爱华一、知识要点1.分类计数原理;2.分步计数原理.二、典型例题例1.某班共有男生28名、女生20名,从该班选出学生代表参加学代会.⑴若学校分配给该班1名代表,有多少种不同的选法?⑵若学校分配给该班2名代表,且男、女生代表各1名,有多少种不同的选法?例2.⑴在图(1)中的电路中,仅合上1只开关接通电路,有多少种不同的方法?⑵在图(2)的电路中,仅合上2只开关接通电路,有多少种不同的方法?高二数学选修2-3 教学案01例3.要从甲、乙、丙、丁4名工人中选出2名分别值星期日的日班和晚班,有多少种不同的选法?三、巩固练习1.乘坐交通工具从甲地到相距较远的乙地,可以乘飞机,也可乘火车,还可以乘长途汽车,一天中,飞机有2班,火车有4班,长途汽车有10班.问:一天中,乘坐这些交通工具从甲地到乙地共有种不同的方法.2.将3封信投入2个信箱中,不同的投法有种;将2封信投入3个不同的信箱中,共有种不同投法.3.把4名实习老师分配到5个班实习,每个班人数不限的分配方案有种;每个班最多有1名老师的分配方案有种.4.书架上原来并排放着5本书,现要再插入3本不同的书,有多少种不同的插法?5.在1到200这200个自然数中,各个数位上都不含数字5的自然数有多少?四、课堂小结五、课后反思六、课后作业1.若1,2,3,5,6,7x y ,则xy 的不同值的个数为 .2.一名学生去书店,发现4本好书,决定至少买其中1本,则这名学生的购书方案共有 种.3.若,x y N ,且6x y ≤,则有序数对(,)x y 共有 个.4.某商场有东南西北四个大门,从一个大门进去又从另一个大门出来,共有 种不同走法.5.有3个小盒要放入4个不同颜色的小球,则不同的放法有 种.6.3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,则不同的报名方案有 种.7.在三个不同的盒子中,分别装有不同标号的红球10个,白球9个,黄球8个.⑴从三个盒子中任取1个球,共有多少种不同的取法?⑵从三个盒子中各取1个球,共有多少种不同的取法?⑶若要从盒子中任取2个球,其颜色不同的取法有多少种?8.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?订正栏:。
苏教版高中数学选修两个基本原理教案(3)
①.每个“接受单位”至多接受一个被分配元素的问题方法是 ,这里 .其中 是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要 .个数为 的一个元素就是“接受单位”,于是,方法还可以简化为 .这里的“多”只要 “少”.
分析:从甲地到乙地有3类方法,
第一类方法,乘火车,有4种方法;
第二类方法,乘汽车,有2种方法;
第三类方法,乘轮船,有3种方法;
所以从甲地到乙地共有4 + 2 + 3 = 9种方法。
问题2.如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?
分析:从A村经B村去C村有2步,
第一步,选一名男三好学生,有m1 = 5种方法;
第二步,选一名女三好学生,有m2 = 4种方法;
所以,根据分步原理,得到不同选法种数共有N = 5×4 = 20种。
例2
1在图1-1-3(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?
2在图1-1-3(2)的电路中,合上两只开关以接通电路,有多少种不同的方法
第一步,由A村去B村有3种方法,
第二步,由B村去C村有3种方法,
所以从A村经B村去C村共有3×2 = 6种不同的方法。
分类计数原理完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。那么完成这件事共有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点 教学难点
教具准备:与教材内容相关的资料。 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。 教学过程: 学生探究过程: [1]. 电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众 来信,甲信箱中有 30 封,乙信箱中有 20 封现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再 从两信箱中各确定一名幸运伙伴,有多少种不同的结果? [2]. 从集合{1,2,3,„,10}中,选出由 5 个数组成的子集,使得这 5 个数中的任何两个数 的和不等于 11,这样的子集共有多少个? 复习:1.分类计数原理、分步计数原理概念 2.分类计数原理、分步计数原理的不同点 例题讲解: 例 1.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 解:从总体上看,如,蚂蚁从顶点 A 爬到顶点 C1 有三类方法,从局部上看每类又需两步完成,所以, 第一类, m1 = 1×2 = 2 条 第二类, m2 = 1×2 = 2 条 第三类, m3 = 1×2 = 2 条 所以, 根据加法原理,从顶点 A 到顶点 C1 最近路线共有 N = 2 + 2 + 2 = 6 条 例 2 .如图,要给地图 A、B、C、D 四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色使用多 次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?
p
m n
或
c
m n
m n
乱套一气.具体地说:首先要弄清有无“顺序”的要求,如果有“顺序”的要求,用
pห้องสมุดไป่ตู้
m n
;
反之用
c
.其次,要弄清目标的实现,是分步达到的,还是分类完成的.前者用乘法原理,后者用加
法原理.事实上,一个复杂的问题,往往是分类和分步交织在一起的,这就要准确分清,哪一步用乘法 原理,哪一步用加法原理. 对于较复杂的问题,一般都有两个方向的列式途径,一个是“正面凑” ,一个是“反过来剔” .前者指, 按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求 的方案剔出去.
解: 按地图 A、B、C、D 四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有 N = 3 × 2 ×1×1 = 6 变式 1,如图,要给地图 A、B、C、D 四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色使 用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种? 2 若颜色是 2 种,4 种,5 种又会什么样的结果呢? 75600 有多少个正约数?有多少个奇约数?
解:由于 75600=2 ×3 ×5 ×7 (1) 75600 的每个约数都可以写成 2 l 3 j 5 k 7 l 的形式,其中 0 i 4 , 0 j 3 , 0 k 2 , 0 l 1 于是,要确定 75600 的一个约数,可分四步完成,即 i, j , k , l 分别在各自的范围内任取一个值,这样 i 有 5 种取法, j 有 4 种取法, k 有 3 种取法, l 有 2 种取法,根据分步计数原理得约数的个数为 5×4×3×2=120 个. 巩固练习: 1.如图,从甲地到乙地有 2 条路可通,从乙地到丙地有 3 条路可通;从甲地到丁地有 4 条路可通, 从丁 地到丙地有 2 条路可通。从甲地到丙地共有多少种不同的走法? 2.书架上放有 3 本不同的数学书,5 本不同的语文书,6 本不同的英语书. (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法? 3.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种 ,允许同一种颜色使用多次 ,但相 邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 ② ① ③ 图一 B. 160 C. 96 ④ D. 60 ① ③ ② 图二 ④ ② ① ③ ④
4
3
2
图三
若变为图二,图三呢? 5.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比 赛的冠军,获得冠军的可能性有多少种? 课外作业:第 10 页 习题 1. 1 6 , 7 , 8 教学反思:要深入弄清所要解的问题的情景,切实把握住各因素之间的相互关系,不可分析不透就 用
课题
1.1 两个基本原理
分类计数原理与分步计数原理第二课时
知识与技能: ①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解 教学目标 决一些简单的应用问题;过程与方法:培养学生的归纳概括能力; 情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 分类加法计数原理与分步乘法计数原理的应用理解 利用两个原理分析和解决一些简单的应用问题