第六章 万有引力与航天教案
高中物理第六章万有引力与航天3万有引力定律教学设计必修2
万有引力定律教学流程图教学目标一、知识与技能目标(1)理解万有引力定律的推导思路和过程。
(2)理解并掌握万有引力定律。
(3)知道任何物体间都存在着万有引力,且遵循相同的规律。
二、过程与方法目标(1)认识科学研究活动中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;(2)结合“月-地检验”通过思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力。
三、情感态度与价值观目标(1)学习科学家们谦逊美德,使学生学习中互相协作、互相借鉴,培养团队精神。
(2)认识天文观测、分析推理、归纳总结等科学意识和方法的重要性,培养学生尊重客观事实并透过现象看本质的认识观。
(3)学习科学家们坚持不懈、勇往直前和一丝不苛的工作精神,培养学生良好的学习习惯和善于探索的思维品质;教学重点1.万有引力定律的推导思路和过程。
2.万有引力定律的内容及表达公式。
教学难点1.对万有引力定律的理解;2.对万有引力的理解:任意物体间都有万有引力作用。
3.计算万有引力时物体间距离的含义。
教学媒体与环境(1)电脑、投影仪、屏幕、视频展示台;(2)Powerpoint、自制多媒体Flash积件:行星绕太阳的运动动画、苹果落地的受力动画、地球引力作用于运动着的月球的受力动画等等。
教学方法启发诱思,分析推理、猜想假设、事实验证、归纳总结等方法。
教学过程一、复习提问,导入新课教师:我们上节课学习了两个问题:其一是追寻牛顿的足迹学习了行星运动的动力学问题,找到了太阳与行星间引力的规律,谁能回答一下其具体内容呢?学生:(引导学生复习上节课内容)教师:同学们掌握得很好。
根据其间引力的作用规律,完全可以解释行星的运动了。
正是由于行星受到了太阳对它的引力作用,行星才不会飞离太阳,而是按开普勒发现的三个规律绕太阳运动。
教师:我们上节课学习的另一个问题是:太阳与行星间的引力规律是否适用于卫星绕行星的运动。
高中物理第六章万有引力与航天万有引力定律得理论成就教案新人教必修
6.4万有引力理论的成就(1) 教学 目标 (一)知识与技能1、了解万有引力定律在天文学上的重要应用。
2、行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量。
3、理解并运用万有引力定律处理天体问题的思路和方法。
(二)过程与方法1、培养学生归纳总结建立模型的能力与方法。
(三)情感、态度与价值观1、体会万有引力定律在人类认识自然界奥秘中的巨大作用,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。
重点 难点 重点:万有引力定律和圆周运动知识在天体运动中的应用难点:用已知条件求中心天体的质量教具 准备 多媒体 课时安排1课时教学过程与教学内容教学方法、教学手段与学法、学情引入:天体之间的作用力主要是万有引力,万有引力常量一经测出,使万有引力定律有了其实际的意义 一、测量天体的质量 1、称量地球质量 物体m 在纬度为θ的位置,万有引力指向地心,分解为两个分力:m 随地球自转围绕地轴运动的向心力和重力 。
通常情况下,只有赤道和两极的重力才严格指向地心。
但因为地球自转的并不快,所以向心力是一个很小的值。
在运算要求不是很准确的条件下,我们可以粗略的让万有引力等于重力。
即:向心力远小于重力,万有引力大小近似等于重力。
例:设地面附近的重力加速度g=9.8m/2s ,地球半径R =6.4×106m ,引力常量2211/1067.6kg m N G ⋅⨯=-,试估算地球的质量。
引导学生认识重力和万有引力的关系高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
高中物理第六章万有引力与航天第3节万有引力定律教案2新人教版必修2(new)
6。
3 万有引力定律一、教学目标(一)知识和技能1。
知道万有引力是一种普遍存在的力.知道万有引力定律的发现过程,了解科学研究的一般过程。
2。
知道万有引力定律的表达式,知道万有引力定律是平方比定律,知道G的含义。
3。
了解卡文迪许实验中扭秤的测量微小力的巧妙构思,知道卡文迪许实验的意义在于直接验证万有引力定律。
(二)过程和方法1.以学习万有引力定律为载体,培养学生搜集、组织信息的能力,掌握理论探究的基本方法。
2.以学习万有引力定律为载体,通过展现思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力。
3. 认识物理模型、理想实验和数学工具在物理学发展过程中的作用。
(三)情感、态度和价值观1。
领略自然界的奇妙与和谐,蕴涵其中的规律之简洁,发展对科学的好奇心与求知欲。
2.体验牛顿在前人基础上发现万有引力的思考过程,说明科学研究的长期性、连续性、艰巨性,体现科学精神与人文精神的结合.二、学情分析教学对象分析:本节课的教学对象为高一年级学生。
本节课使用的教材是人民教育出版社出版的普通高中课程标准实验教科书——物理②(必修),第六章第二、第三节的相关内容。
将这两节内容进行整合,有利于学生经历完整的探究过程.这两节内容准备两课时完成,本节课主要是引领学生,用自己的手和脑,重新“发现”万有引力定律。
经历将近两个学期的高中学习,学生已经基本掌握了高中物理的学习方法,具有一定的抽象思维能力和概括能力.另外,处于十七、八岁的他们,人生观、世界观正逐步形成,需要教师正确引导。
教学任务分析:本节课以天体运动为线索,通过猜想、建模、归纳、演绎、理想实验、检验等方法、运用牛顿运动定律、匀速圆周运动及向心力的知识,揭示万有引力定律。
通过对科学简史和科学人物的介绍,突出了万有引力的发现过程,体现了科学精神和人文精神的结合。
卡文迪许实验的介绍,说明任何科学发现都必须接受实验的验证。
教学设计思路:学生普遍感觉“万有引力”部分知识的学习为他们打开了探索宇宙的一扇天窗.但是,这部分知识的学习过程可以用:“难"、“繁"两字来概括。
高中物理第六章万有引力与航天太阳与行星间的引力教案新人教必修
6.2太阳与行星间的引力教学目标1、知识与技能(1)理解太阳与行星间引力的存在;(2)能根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力表达式;2、过程与方法(1)通过推导太阳与行星间的引力公式,体会逻辑推理在物理学中的重要性;(2)体会推导过程中的数量关系。
3、情感、态度与价值观:感受太阳与行星间的引力关系,从而体会大自然的奥秘。
重点难点教学重、难点1.行星绕太阳做匀速圆周运动的向心力来源、方向、表达式2.运用牛顿运动定律解决动力学问题教具准备多媒体课时安排1教学过程与教学内容教学方法、教学手段与学法、学情一、导入新课教师活动:1.上一节从运动学的角度描述了行星运动的规律:提问开普勒三定律的内容。
2.开普勒在1609和1619年发表了行星运动的三个定律,解决了描述行星运动的问题,但好奇的人们,面向天穹,深情地叩问:是什么力量支配着行星绕着太阳做如此和谐而有规律的运动呢?二、进行新课1.从动力学的角度来看,行星为什么会做这样的运动?(1)设置情境:教师活动:用线拉小球作为道具,进一步体验曲线运动的受力要求同学回答:线的拉力提供向心力。
(2)提供地球绕太阳运动的情景,假设未知数知识的回顾有助于新知识的形成,构造新的知识体系。
教师提示:从地上到宇宙,要改变任何物体的运动速度(包括改变速度的方向)都需要力,使行星烟圆或椭圆运动,需要指向圆心或椭圆焦点的力,这个力应该是来自于太阳的引力。
(3) 引导看书:伽俐略、胡克、哈雷等科学家研究太阳对行星引力所做出的贡献2.行星受到的引力究竟跟哪些因素有关?(1)教师布置:结合第一个模型,若已知圆周运动周期为T ,定量推导拉力的大小。
(2)讨论得出:向心力的来源 F 向=F从运动的角度 r T m F 224π= 明确表达式中各物理量的含义: 既然是由引力提供向心力,那么引力就与m 、r 、T 都有关系 (3)方法指导:课本36页“问题与练习”第一题关键是指导学生认识向心力(大小和方向)表示的两个常用途径, (4)对象过渡:行星在椭圆轨道上运动是否需要力?这个力是什么力提供的?这个力是多大?太阳对行星的引力,大小跟太阳与行星间的距离有什么关系吗? (5)结合学生的回答,联系天体的运行,课本36页“问题与练习”第二题,推导得到22π4=r mK F (6)师生总结:由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比。
高中物理第六章 万有引力与航天 单元教学设计
高中物理第六章万有引力与航天单元教学设计一、任务分析1、课程标准:(1)通过有关事实了解万有引力定律的发现过程。
知道万有引力定律。
认识发现万有引力定律的重要意义,体会科学定律对人类探索未知世界的作用。
(2)会计算人造卫星的环绕速度。
知道第二宇宙速度和第三宇宙速度。
(3)初步了解经典时空观和相对论时空观,知道相对论对人类认识世界的影响。
(4)初步了解微观世界中的量子化现象,知道宏观物体和微观粒子的能量变化特点,体会量子论的建立深化了人类对于物质世界的认识。
(5)通过实例,了解经典力学的发展历程和伟大成就,体会经典力学创立的价值与意义,认识经典力学的实用范围和局限性。
(6)体会科学研究方法对人们认识自然的重要作用。
举例说明物理学的进展对于自然科学的促进作用。
高考说明解读:万有引力定律及其应用、环绕速度Ⅱ级要求,第二宇宙速度、第三宇宙速度Ⅰ级要求。
一级与了解、认识相当,二级与理解、应用相当。
初中教材:未有涉及各版本教材分析:相互借鉴、去长补短、对教学很有帮助。
上海科教版:安排了两章,第五章,万有引力与航天,侧重于规律的发现过程、物理学史及航天事业的学习。
第六章,经典力学与现代物理,侧重于现代物理学的了解与认识。
山东科技版:安排了两章,第五章,万有引力定律及其应用,侧重于章节引入,规律简介、应用及物理学史、航天事业的学习。
第六章,相对论与量子论初步,侧重于现代物理学的了解与认识。
人教版:兼顾二者。
2、本单元在教材中的地位作用及主要内容本章主要知识是万有引力定律及其在天体运动中的应用,重点是第一宇宙速度、卫星线速度、角速度、周期等的计算、比较。
本章是匀速圆周运动、牛顿定律的进一步应用,在高考中占一定的分数。
除知识外,本章内容是对学生进行“过程与方法、情感、态度与价值观”教育的好机会,让学生充分体会“人类对行星运动规律的认识过程和牛顿建立万有引力定律的过程”,让学生充分体验托勒密、哥白尼、第谷、开普勒、布鲁诺、伽利略等物理学家坚持真理、勇于创新和实事求是的科学态度、科学精神和科学思维方法(求真、求简、求美),让学生充分感知航天活动是一项高顶尖的事业,正改变着我们的生活及正确评价经典力学。
必修二第六章《万有引力与航天》单元教案
必修二第六章《万有引力与航天》单元教案.docx20必修二第六章万有引力与航天单元教案2.1轨道球心同面原则轨道球心同面原则,是说人造地球卫星的运行轨道平面必通过地球球心。
设想有一人造地球卫星的运行轨道不通过地心,而仅垂直于地轴,如图1所示。
则卫星将在地球对其的万有引力F的分量F2作用下绕地轴做圆周运动;同时在F的分量F1的作用下在地球赤道平面上下振动。
这样,这个卫星的运行轨道将成为螺旋线,而不是圆形轨道了,这样的轨道显然是不存在的。
图1各种人造地球卫星的运行轨道,不论是圆还是椭圆,其轨道平面一定通过地球球心,不存在轨道平面不通过地球球心的运行轨道。
但轨道平面不一定都要与赤道平面重合,目前常见的有与赤道平面重合的赤道轨道,若轨道上运行的卫星的周期与地球自转周期相同,卫星相对地面静止,这种卫星主要用于通讯;有轨道平面与赤道平面垂直且经过两极的极地轨道,卫星在绕地球圆周运行的同时还沿地球自转方向从西向东转动,其周期等于地千公转周期,所以这种轨道也称太阳同步轨道;还有轨道平面既不与赤道平面重合也不垂直的轨道的倾斜轨道。
2.轨道决定一切原则设地球质量为M半彳仝为R质量为m的人造地球卫星在距地面h高度的轨道上做圆周运动,向心加速度为A、线速度为v、角速度为、周期为To由牛顿第二定律和万有引cMm匹物.27r 口=掰aGy=m化,由基本关系式低祝(我)可以得出:/。
由此知,轨道半径随卫星运行速度的增大而减小,这一过程中引力对卫星做正功,又使卫星的速度增大;随卫星运行速度的减小而增大,这一过程中引力卫星做负功,又使卫星速度减小,直到在新的轨道lMm卢上以新的速度运行,此时又有(*)(R h)。
4.近地卫星五最原则所谓近地卫星,是指在距地面的高度远小于地球半径轨道上运行的卫星,此时Rh,hmv2得,卫星的动能为:pQq卫星势能的计算:由库X定律广及电势的定义可得点电荷Q电场中的电势为:r。
与此类似,可由万有引力定律/得地球引力场中的“引力势”Uf=G为:r。
第六章--万有引力与航天单元备课教案
第六章万有引力与航天单元教学目标知识与技能1.能根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力表达式;2.了解万有引力定律得出的思路和过程,理解万有引力定律的含义,掌握万有引力定律的公式;3.了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;4.行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;了解万有引力定律在天文学上有重要应用。
5.了解人造卫星的有关知识;知道三个宇宙速度的含义,会推导第一宇宙速度。
6.知道牛顿运动定律的适用范围;了解经典力学在科学研究和生产技术中的广泛应用;过程与方法:1.通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。
通过推导太阳与行星间的引力公式,体会逻辑推理在物理学中的重要性;2.培养学生根据数据分析找到事物的主要因素和次要因素的一般过程和方法;培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法;培养学生归纳总结建立模型的能力与方法。
3.通过用万有引力定律推导第一宇宙速度,培养学生运用知识解决问题的能力。
情感、态度与价值观1.澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法。
2.感悟科学是人类进步不竭的动力。
感受太阳与行星间的引力关系,从而体会大自然的奥秘。
培养学生认真严禁的科学态度和大胆探究的心理品质;体会物理学规律的简洁性和普适性,领略物理学的优美。
3.通过介绍我国在卫星发射方面的情况.激发学生的爱国热情;感知人类探索宇宙的梦想.促使学生树立献身科学的人生价值观。
通过对牛顿力学适用范围的讨论,使学生知道物理中的结论和规律一般都有其适用范围,认识知识的变化性和无穷性,培养献身于科学的时代精神。
教学重点:1.理解和掌握开普勒行星运动定律,认识行星的运动。
学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习。
高中物理第六章万有引力与航天宇宙航行教案新人教必修
宇宙航行高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、单项选择题1.用起重机将物体匀速吊起一段距离,作用在物体上的各力做功的情况是( )A.重力做正功,拉力做负功,合力做功为零B.重力做负功,拉力做正功,合力做正功C.重力做负功,拉力做正功,合力做功为零D.重力不做功,拉力做正功,合力做正功2.二十一世纪新能源环保汽车在设计阶段要对其各项性能进行测试,某次新能源汽车性能测试中,图甲显示的是牵引力传感器传回的实时数据随时间变化关系,但由于机械故障,速度传感器只传回了第20s以后的数据,如图乙所示,已知汽车质量为1500kg,若测试平台是水平的,且汽车由静止开始直线运动,设汽车所受阻力恒定,由分析可得( )A.由图甲可得汽车所受阻力为1000NB.20s末的汽车的速度为26m/sC.由图乙可得20s后汽车才开始匀速运动D.前20s内汽车的位移为426m3.篮球运动员接传来的篮球时,通常要先伸出两臂迎球,手触到球瞬间顺势后引。
这样可以减小A.球对手的力的冲量 B.球对手的力的大小C.球的动量变化量D.球的动能变化量4.如图所示为甲、乙两质点做直线运动的位移—时间图象,由图象可知()A.甲、乙两质点会相遇,但不在1s时相遇B.甲、乙两质点在1s时相距4mC.甲、乙两质点在第1s内运动方向相反D.在5s内两质点速度方向一直不同5.每种原子都有自己的特征谱线,所以运用光谱分析可以鉴别物质成分。
氢原子光谱中巴耳末系的谱线波长公式为:=(–),n=3,4,5,…,其中E1为氢原子基态能量,h为普朗克常量,c为真空中的光速。
高中物理必修二第六章万有引力与航天教案
授课班级:计划课时:6.1行星的运动三维教学目标1、知识与技能(1)知道地心说和日心说的基本内容;(2)知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上;(3)知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关;(4)理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。
2、过程与方法:过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。
3、情感、态度与价值观(1)澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法。
(2)感悟科学是人类进步不竭的动力。
教学重点:理解和掌握开普勒行星运动定律,认识行星的运动。
学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习。
教学难点:对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神秘、模糊的认识。
教学方法:探究、讲授、讨论、练习教具准备:教学过程:第一节行星的运动(一)新课导入多媒体演示:天体运动的图片浏览。
(二)新课教学1、“地心说”和“日心说”之争2、开普勒行星运动定律运第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
这一定律说明了行星运动轨迹的形状,不同的行星绕大阳运行时椭圆轨道相同吗?(不同)第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上,如果时间间隔相等,即t2-t1=t4-t3,那么面积A=面积B。
由此可见,行星在远日点a 的速率最小,在近日点b的速率最大。
授课备注(教学班级的授课具体时间、教师自由调整内容、课堂教学记录等。
)第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。
人教版高中物理必修2第六章 万有引力与航天1. 行星的运动教案(2)
第1节行星的运动学习目标核心提炼1.了解人类对行星运动规律的认识历程。
2个学说——地心说、日心说3个定律——开普勒第一、二、三定律2.知道开普勒三定律的内容。
3.能用开普勒三定律分析一些简单的行星运动问题。
一、地心说与日心说阅读教材第32页第1、2自然段,知道地心说、日心说,认识地心说、日心说的不足之处。
1.地心说:地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动。
2.日心说:太阳是静止不动的,地球和其他行星都绕太阳运动。
3.局限性:都把天体的运动看得很神圣,认为天体的运动必然是最完美、最和谐的匀速圆周运动,而与丹麦天文学家第谷的观测数据不符。
思考判断1.太阳是整个宇宙的中心,其他天体都绕太阳运动。
(×)2.太阳每天东升西落,这一现象说明太阳绕着地球运动。
(×)二、开普勒行星运动定律阅读教材第32~33页内容,知道开普勒行星定律的内容。
定律内容、公式图示开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积开普勒第三定律所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等公式:a3T2=k,k是一个与行星无关的常量思维拓展如图1所示为地球绕太阳运动的示意图及春分、夏至、秋分、冬至时地球所在的位置。
图1(1)太阳是否在轨道平面的中心?夏至、冬至时地球到太阳的距离是否相同?(2)一年之内秋、冬两季比春、夏两季为什么要少几天?答案(1)不是不相同(2)秋、冬两季比春、夏两季地球运动的快。
预习完成后,请把你疑惑的问题记录在下面的表格中问题1问题2问题3对开普勒定律的认识[要点归纳]1.从空间分布上认识:行星的轨道都是椭圆,不同行星轨道的半长轴不同,即各行星的椭圆轨道大小不同,但所有轨道都有一个共同的焦点,太阳在此焦点上。
因此开普勒第一定律又叫焦点定律。
2.对速度大小的认识(1)如图2所示,如果时间间隔相等,即t2-t1=t4-t3,由开普勒第二定律,面积S A=S B,可见离太阳越近,行星在相等时间内经过的弧长越长,即行星的速率越大。
高中物理必修2_第六章万有引力与航天教案
6.1 行星的运动知识与技能1.知道地心说和日心说的基本内容.2.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.3.知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关.4.理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的.过程与方法通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解.情感、态度与价值观1.澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法.2.感悟科学是人类进步不竭的动力.教学重点理解和掌握开普勒行星运动定律, 认识行星的运动. 学好本节有利于对宇宙中行星的运动规律的认识, 掌握人类认识自然规律的科学方法, 并有利于对人造卫星的学习.教学难点对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神秘、模糊的认识.[新课导入 ]【多媒体演示】天体运动的图片浏览。
教师 :在浩瀚的宇宙中有无数大小不一、形态各异的天体,如月亮、地球、太阳、夜空中的星星……由这些天体组成的广袤无限的宇宙始终是我们渴望了解、不断探索的领域。
关于天体的运动,历史上有过不同的看法 .(课件投影中国古代天文学观我国古代先民看到北极星常年不动,以及北斗七星等拱极星的回转,便以为星空是圆的,就像是一只倒扣着的半球大锅,覆整在大地上, 而北极则是这盖天的顶,又认为地是方的,就像一张围棋盘,此即“天圆地方”说.东汉时的天文学家张衡提出“浑天”说,认为天就像一个大鸡蛋,地球就是其中的蛋黄.中国古代通常将历法和天文联系在一起.历法注重天体运行的长时间段的重复周期,而不注重天体在三维空间中的运行情况.与古希腊人和中世纪的欧洲人不同,中国历法家很少关心宇宙结构方面的讨论.在汉朝的大部分时期,人们满足于这样的假设:有人居住的世界是一小块中心区域.靠近平面大地中央,这个平面大地是一个绕着倾斜的轴旋转的天球的直径面.天体在该天球的内面移动,但它们靠何种机制来进行这种运动则没有讨论.中国古代有丰富的天文记录.公元前第二个千年的后期,甲骨文中已记载了新星现象.从约公元苗 200年开始,在官方文件中已有关于新星的连年记载,还有流星雨、彗星、日食、太阳黑子以及异乎寻常的云、板光之类的记载,或对蕾星的跟踪观测的记录.这些现象的观测者都使用了制作精良的大型浑天仪和其他刻度仪器,所观测的天体位置,其精确程度毫不逊色于欧洲在第谷之前的观测.学生阅读后对探索宇宙产生兴趣.师:在广袤无垠的宇宙中有着无数大小不一、形态各异的天体.如太阳、月亮、夜空中闪烁的星星……吸引了人们的注意,智麓的头脑开始探索天体运动的奥秘.它们的运动是靠神的支配,还是物理规律的约束 ? 经过不懈的努力,科学家们对它已有初步的了解,这一节让我们循着前人的足迹学习行星运动的情况.[新课教学 ]一. “地心说”和“日心说”之争[讨论与交流 ]展示问题:请阅读教材第一段1.古人对天体运动存在哪些看法 ?生:“地心说”和“日心说” .师:2.什么是“地心说” ? 什么是“日心说” ’ ?生:” 地心说” 认为地球是宇宙的中心,是静止不动的,大阳、月亮以及其他行星都绕地球运动, “日心说”则认为太阳是静止不动的,地球和其他行星都绕太阳运动.“地心说’的代表人物:托勒密 (古希腊. “地心说’符合人们的直接经验,同时也符合势力强大的宗教神学关于地球是宇宙中心的认识, 故地心说一度占据了统治地位.生:“日心说”战胜了“地心说” ,最终被接受.[讨论与交流 ]展示问题:师:“日心说”战胜了“地心说” ,最终真理战胜了谬误.请同学们阅读第 64页《人类对行星运动规律的认识,中托勒密:地心宇宙,哥白尼:拦住了太阳,推动了地球.交流讨论,找出“地心说”遭遇的尴尬和“日心说’的成功之处.生:地心说所描述的天体的运动不仅复杂而且问题很多,如果把地球从天体运动的中心位置移到一个普通的、绕太阳运动的位置,换一个角度来考虑天体的运动,许多问题都可以解决,行星运动的描述也变得筒单了.“日心说”代表人物:哥白尼, “日心说”能更完美地解释天体的运动.二、开普勒行量运动定律[做一做 ]用图钉和细绳画椭圆可以用一条细绳和两图钉来画椭圆.如图 7. 1— l 所示,把白纸镐在木板上,然后按上图钉.把细绳的两端系在图钉上,用一枝铅笔紧贴着细绳滑动,使绳始终保持张紧状态.铅笔在纸上画出的轨迹就是椭圆,图钉在纸上留下的痕迹叫做椭圆的焦点.想一想,椭圆上某点到两个焦点的距离之和与椭圆上另一点到两个焦点的距寓之和有什么关系 ?[课堂训练 ](分四小组进行师;阅读教材第二段到最后,并阅读第 64页《人类对行星运动规律的认识中第谷:天才观察家,开普勒:真理超出期望,投影展示以下问题:师:1. 古人认为天体做什么运动 ?生:古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀逮圆周运动. 师:2.开普勒认为行星做什么样的运动 ? 他是怎样得出这一结论的 ?生:开普勒认为行星做椭圆运动.他发现假设行星傲匀逮圆周运动,计算所得的数据与观测数据不符,只有认为行星做椭圆运动,才能解释这一差别.师:3.开普勒行星运动定律哪几个方面描述了行星绕太阳运动的规律 ? 具体表述是什么 ?生:开普勒行星运动定律从行星运动轨道,行墨运动的线速度变化,轨道与周期的关系三个方面揭示了行星运动的规律.具体表述为:第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.师:这一定律说明了行星运动轨迹的形状,不同的行星绕大阳运行时椭圆轨道相同吗 ?生:不同.第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积.教师 :如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上.如果时间间隔相等,即 t 2-t 1=t4-t 3,那么面积 A=面积 B .由此可见, 行星在远日点 a 的速率最小,在近日点 b 的速率最大.开普勒第三定律:3.所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.由于行星的椭圆轨道都跟圆近似,在近似计算中,可以认为行星都以太阳为圆心做匀速圆周运动,在这种情况下,若用 R 代表轨道半径, T 代表公转周期,开普勒第三定律可以用下面的公式表示:比值 k 是一个与行星无关的恒量.只与太阳有关。
高中物理必修二第六章万有引力与航天教案-(20229)
授课班级:6.1 行星的运动三维教学目标1、知识与技能(1)知道地心说和日心说的基本内容;(2)知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上;(3)知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关;(4)理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。
2、过程与方法:过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。
3、情感、态度与价值观(1)澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法。
(2)感悟科学是人类进步不竭的动力。
教学重点:理解和掌握开普勒行星运动定律,认识行星的运动。
学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习。
教学难点:对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神秘、模糊的认识。
教学方法:探究、讲授、讨论、练习教具准备:教学过程:第一节行星的运动(一)新课导入多媒体演示:天体运动的图片浏览。
(二)新课教学1、“地心说”和“日心说”之争2、开普勒行星运动定律运第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
这一定律说明了行星运动轨迹的形状,不同的行星绕大阳运行时椭圆轨道相同吗?(不同)第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上,如果时间间隔相等,即 t2t1=t4t3,那么面积 A=面积 B。
由此可见,行星在远日点 a 的速率最小,在近日点 b 的速率最大。
计划课时:授课备注(教学班级的授课具体时间、教师自由调整内容、课堂教学记录等。
)第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。
最新第六章-万有引力与航天-复习教案
精品文档第六章万有引力与航天复习教案★新课标要求1、理解万有引力定律的内容和公式。
2、掌握万有引力定律的适用条件。
3、了解万有引力的“三性”,即:①普遍性②相互性③宏观性4、掌握对天体运动的分析。
★ 复习重点万有引力定律在天体运动问题中的应用★ 教学难点宇宙速度、人造卫星的运动★ 教学方法:复习提问、讲练结合。
★ 教学过程(一)投影全章知识脉络,构建知识体系轨道定律开普勒行星运动定律面积定律周期定律发现万有引力定律万有引力定律表述G 的测定天体质量的计算应用发现未知天体人造卫星、宇宙速度(二)本章要点综述1、开普勒行星运动定律第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
即:3a2k精品文档( 3)万有引力定律适用于一切物体,但用公式计算时,注意有一定的适用条件。
3、万有引力定律在天文学上的应用。
( 1)基本方法:Mm①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:G 2rgM②在忽略天体自转影响时,天体表面的重力加速度:G2 , R 为天体半径R( 2)天体质量,密度的估算。
Mm2T ,由 G4测出环绕天体作匀速圆周运动的半径r ,周期为2m 2 r 得被环233rTr34Mr为 M2,密度为GT2 2 , R 为被环绕天体的半径。
GTVR当环绕天体在被环绕天体的表面运行时,r = R ,则3。
2GT( 3)环绕天体的绕行速度,角速度、周期与半径的关系。
Mm2GM①由 Gv得 v2mrrr∴ r 越大, v 越小②由 GMm2r 得GM2m3rr∴ r 越大,越小Mm4242 3③由 G2 r得Tr2mGMrT∴ r 越大, T 越大 ( 4)三种宇宙速度①第一宇宙速度(地面附近的环绕速度): v 1 =7.9km/s ,人造卫星在地面附近环绕地圆周运动的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章万有引力与航天第一节行星的运动从古到今,人类不仅创作了关于星空的神话、史诗,也在孜孜不倦地探索日月星辰的运动奥秘.所谓“斗转星移”,从古希腊科学家托勒密的地心说、波兰天文学家哥白尼的日心说到丹麦天文学家第谷的观测资料和德国天文学家开普勒的三大定律,人们终于认识到了行星运动的规律.1.了解地心说和日心说的基本内容及其代表人物.2.知道人类对行星运动的认识过程是漫长的,了解对天体运动正确认识的重要性.3.理解开普勒三定律,知道其科学价值,了解第三定律中k值的大小只与中心天体有关.4.了解处理行星运动问题的基本思路,体会科学家的科学态度和科学精神.一、两种学说内容代表人物地球是宇宙的中心,而且是静止不动的,太阳、月亮以及地心说托勒密(古希腊)其他行星都绕地球运动太阳是宇宙的中心,是静止不动的,地球和其他行星都绕哥白尼(波兰)日心说太阳运动二、开普勒行星运动定律公式:a3T2=k,k是一个与行星无关的常量三、开普勒行星运动定律的实际应用1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.对某一行星来说,它绕太阳转动的角速度(或线速度)大小不变,即行星做匀速圆周运动.3.所有行星轨道半径的三次方跟它的公转周期的二次方比值都相等.行星运动的模型一、模型特点1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.对某一行星,它绕太阳运动的角速度(或环绕速度大小)不变,行星做匀速圆周运动.3.所有行星轨道半径的三次方跟它的公转周期的二次方的比值相同.若用r表示轨道半径,T表示公转周期,则r3T2=k.二、典例剖析飞船沿半径为r 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示.如果地球半径为r 0,求飞船由A 点到B 点所需的时间.解析:由开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时其半长轴的三次方跟周期平方的比值.飞船椭圆轨道的半长轴为r +r 02,设飞船沿椭圆轨道运动的周期为T′,则有r 3T 2=(r +r 0)38T ′2.而飞船从A 到B 点所需的时间为:t =T ′2=28⎝⎛⎭⎫1+r 0r 32·T.答案:28⎝⎛⎭⎫1+r 0r 32·T第二、三节 太阳与行星间的引力 万有引力定律哥白尼说:“太阳坐在它的皇位上,管理着围绕着它的一切星球”,那么是什么原因使行星绕太阳运动呢?伽利略、开普勒以及法国数学家笛卡尔都提出过自己的解释.然而,只有牛顿才给出了正确的解释……1.知道行星绕太阳运动的原因及行星绕太阳做圆周运动的向心力来源.2.了解万有引力定律的发现过程,会用其公式解决有关问题,注意公式的适用条件. 3.知道万有引力常量的测定方法及其在物理学上的重要意义.1.太阳与行星间的引力. (1)太阳对行星的引力.假设行星以太阳为圆心做匀速圆周运动,那么太阳对行星的引力就为做匀速圆周运动的行星提供向心力.①设行星的质量为m ,线速度为v ,行星到太阳的距离为r ,太阳的质量为M.由向心力公式F =m 4π2T 2r 和开普勒第三定律r 3T 2=k ,得F =4π2k ·m r2.②这表明:太阳对不同行星的引力,与行星的质量m 成正比,与行星和太阳间距离的二次方成反比,即F∝mr2.(2)行星对太阳的引力.如图所示,太阳对行星的引力F 与行星的质量成正比,即与受力物体的质量成正比.由牛顿第三定律知,太阳吸引行星,则行星也必然吸引太阳,且吸引力应该与太阳质量M 成正比,与行星和太阳间距离的二次方成反比,即F′∝M r2.(3)太阳与行星间的引力.①太阳与行星之间的引力大小与太阳的质量、行星的质量成正比,与两者距离的二次方成反比,即F ∝Mm r 2,写成公式就是F =G Mmr2.②太阳与行星间引力的方向沿二者的连线. 2.月一地检验.(1)牛顿的思考:太阳对地球的引力、地球对月球的引力以及地球对地面上物体的引力都是同一种性质的力,其大小可由公式F =G Mmr计算.(2)月—地检验:如果猜想正确,月球在轨道上运动的向心加速度与地面重力加速度的比值,应该等于地球半径平方与月球轨道半径平方之比,即13 600. (3)检验的过程:①理论分析:设地球半径为r 地,地球和月球间距离为r 地月.②天文观测(4)检验的结果:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力,遵从相同的规律.3.万有引力定律.(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的平方成反比.(2)公式:F =G m 1m 2r2.(3)引力常量:英国物理学家卡文迪许较准确地得出了G 的数值,现在通常取G =6.67×10-11N ·m 2/kg 2.物理中常用的思想方法一、常用方法 1.理想化模型法.在研究物理问题时,忽略次要因素,关注主要因素,根据实际物体或实际过程抽象出来理想化模型,是中学物理中用的一种方法,前面接触的质点、匀速直线运动等都是理想化模型.2.类比法.由一类事物所具有的某种属性,推测出与其类似的事物也应具有这种属性的推理方法.在引入一些十分抽象的,看不见、摸不着的物理量时,经常用到类比法.3.等效法.在保证效果相同的前提下,将陌生的、复杂的、难处理的问题转换成熟悉的、容易的、易处理的问题的一种方法.等效法可分为等效原理、等效概念、等效方法、等效过程等.4.控制变量法.物理中对于多因素的问题,常常采用控制因素的方法,把多因素的问题变成多个单因素的问题.每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对问题的影响.二、典例剖析有一质量为M 、半径为r ,密度均匀的球体,在距离球心O 为2r 的地方有一质量为m 的质点,现在从M 中挖去一半径为r2的球体,如图所示,求剩下部分对m 的万有引力F 为多大?点拨:仔细观察球体挖去部分及完整球体的形状特点,可知,完整部分与质点m 以及挖去部分与质点m 间万有引力均可用公式计算,由此联想到利用等效割补的方式先将剩余部分还原为完整体,计算出万有引力,然后计算出割去部分与质点m 间的万有引力,两者之差即为所求.解析:设被挖小球的质量为M′,其球心到质点间的距离为r′. 由题意,知M′=M 8,r ′=32r.由万有引力定律,得F 1=G Mm (2r )2=GMm4r 2,F 2=G M ′m r ′2=G M 8m ⎝ ⎛⎭⎪⎫32r 2=GMm 18r2,所以剩下部分对m 的万有引力为F =F 1-F 2=7GMm36r 2.答案:7GMm 36r 2第四节 万有引力理论的成就阿基米德曾说过一句话:“假如给我一个杠杆,一个支点,我就能撬动地球.”他想,地球的质量可以通过计算这个杠杆的动力臂与阻力臂的比来得出,相信很多人都有同样的想法.这当然不能够实现,但现在我们可以用“万有引力定律”这个法宝来“测”地球和太阳的质量.1.了解万有引力定律在天文学上的应用.2.会用万有引力定律计算天体的质量,理解“称量地球的质量”“计算太阳的质量”的基本思路.3.认识万有引力定律的科学成就,体会科学思想方法.一、计算中心天体的质量和密度 1.天体质量的计算.(1)对于有卫星的天体,可认为卫星绕中心天体做匀速圆周运动,中心天体对卫星的万有引力提供卫星做匀速圆周运动的向心力.若已知卫星绕中心天体做圆周运动的周期T 和半径r ,则由G mM r 2=mr 4π2T2,解得中心天体的质量为M =4π2r3GT2.如果测出周期T 和半径r ,就可以算出中心天体的质量.(2)对于没有卫星的天体(或虽有卫星,但不知道卫星运行的相关物理量),可忽略天体自转的影响,根据万有引力等于重力的关系列式,计算天体质量.若已知天体的半径r 和该天体表面的重力加速度g ,则有mg =G mMr 2.解得天体的质量为M =gR2G .2.天体密度的计算.如果中心天体为球体,则密度ρ=M V =4π2r3GT 243πR 3=3πr3GT 2R 3,式中R 为中心天体的半径,r为中心天体与行星(卫星)间的距离.特例:当做匀速圆周运动的天体在中心天体表面运行时,r =R ,则ρ=3πGT .二、发现未知天体 1.海王星的发现过程.18世纪,人们观测发现,1781年发现的太阳系的第七颗行星——天王星的运动轨道与根据万有引力定律计算出来的轨道总有一些偏差.英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,各自独立地利用万有引力定律计算出这颗行星的轨道.1846年9月23日晚,德国的伽勒在勒维耶预言的附近发现了这颗行星,人们称其为“笔尖下发现的行星”.后来,这颗行星命名为海王星.2.哈雷彗星的“按时回归”.1705年,英国天文学家哈雷根据万有引力定律计算了一颗著名彗星的轨道并正确预言了它的回归,这就是哈雷彗星.解决天体运动问题的两条思路一、两条思路1.我们在应用万有引力定律解决有关天体运动问题时,常把天体的运动近似看做匀速圆周运动,其所需向心力由万有引力提供,有下列关系式可选用:G Mmr2=⎩⎪⎨⎪⎧ma 向m v2r m ω2r m ωv m 4π2T 2r由此可推出重要比例关系: a 向=G M r 2,或a 向∝1r2;v =GM r ,或v∝1r; ω=GM r 3,或ω∝1r3;T =2πr 3GM,或T∝r 3. 2.根据研究问题的实际情况,还可以利用物体在地球(天体)表面时受到的引力等于物体的重力这一关系,即mg =G MmR2.式中的R 为地球(天体)的半径,g 为地球(天体)表面物体的重力加速度. 则可以得到GM =gR 2,此式被称为“黄金代换”公式. 二、典例剖析已知地球半径约为 6.4×106m ,已知月球绕地球的运动可近似看做匀速圆周运动,运动周期为27天,则可估算出月球到地心的距离约为____m(结果只保留一位有效数字).解析:由地球表面物体的重力近似等于万有引力,即mg =GMmR 2.由月球绕地球做圆周运动的向心力为地球对它的万有引力,有 G Mm 月r 2=m 月⎝ ⎛⎭⎪⎫2πT 2r ,整理得r =3GMT 24π2=3R 2T 2g 4π2.地球表面的重力加速度g 取10 m/s 2,月球的运动周期T =27天,代入数据得r =4×108m. 答案:4×108第五节宇宙航行“嫦娥三号”卫星是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.“嫦娥三号”要携带探测器在月球着陆,实现月面巡视、月夜生存等重大突破,开展月表地形地貌与地质构造、矿物组成和化学成分等探测活动.根据中国探月工程三步走的规划,中国将在2013年前后进行首次月球软着陆探测和自动巡视勘察.1.了解人造地球卫星的最初构想.2.知道三个宇宙速度的含义,会推导第一宇宙速度的表达式.3.掌握人造地球卫星的线速度、角速度、周期和半径的关系.4.能运用万有引力定律及匀速圆周运动的规律解决卫星运动的有关问题.一、人造卫星1.牛顿对人造卫星原理的描绘.设想在高山上有一门大炮,水平发射炮弹,初速度越大,水平射程就越大.可以想象,当初速度足够大时,这颗炮弹将不会落到地面,将和月球一样成为地球的一颗人造地球卫星.2.人造卫星绕地球运行的动力学原因.人造卫星在绕地球运行时,只受到地球对它的万有引力作用,人造卫星做圆周运动的向心力由万有引力提供.3.人造卫星的运动可近似地看做匀速圆周运动,其向心力就是地球对它的吸引力. G Mm r 2=mv 2r =mω2r =m 4π2T 2r . 由此得出卫星的线速度、角速度、周期与轨道半径r 的关系:v 由此可见,卫星的轨道半径确定后,其线速度、角速度和周期也唯一确定,与卫星的质量无关,即同一轨道上的不同卫星具有相同的周期、线速度及角速度,而且对于不同轨道,轨道半径越小,卫星线速度和角速度越大,周期越小.二、宇宙速度1.物体在地面附近绕地球做匀速圆周运动的速度,叫做第一宇宙速度,也叫地面附近的环绕速度.2.近地卫星的轨道半径为:r =R ,万有引力提供向心力,则有GMm R 2=m v 2R.从而第一宇宙速度为:v =7.9km/s. 3.第二宇宙速度的大小为11.2_km/s .如果在地面附近发射飞行器,发射速度7.9 km/s<v<11.2 km/s ;则它绕地面运行的轨迹是椭圆.4.第三宇宙速度的大小为16.7_km/s ,即若在地面附近发射一个物体,使物体能够挣脱太阳引力的束缚,飞到太阳系外,则必须使它的速度等于或大于第三宇宙速度.卫星的变轨一、如何变轨人造地球卫星在发射的过程中,需要把开始的椭圆轨道调整为圆轨道,在卫星的回收过程中,需要把圆轨道调整为椭圆轨道.如何才能实现圆与椭圆的互相转变?人造地球卫星运行轨道的改变是通过它自带的推进器来实现的.如图所示为一人造地球卫星从椭圆轨道的远地点进入圆形轨道的示意图.椭圆是人造地球卫星正在运行的轨道,大圆是以地心为圆心,以远地点A 到地心距离r 2为半径的圆.当卫星在椭圆上运动到A 点和在大圆上运动到A 点时,离地心的距离相同,万有引力F =GMm r 22大小相同,由F =ma 知,加速度的大小相同.若人造地球卫星沿椭圆轨道运行,在A 点时对应曲率半径为r 1,则向心加速度a 1=v 21r 1;若沿大圆轨道运行时,在A 点的向心加速度a 2=v 22r 2,因为a 1=a 2,即v 21r 1=v 22r 2,又r 1<r 2,所以v 1<v 2.由于这个原因,人造地球卫星要从椭圆轨道进入大圆轨道,只要在到达远地点A 时,用推进器向后喷气使其加速,当速度达到沿大圆运动时的速度v 2时,它就不再沿椭圆运行而沿大圆做圆周运动了.地球同步卫星就是利用这种原理进入同步轨道并保持在这条轨道上运行的.若人造卫星原来在大圆上运行,则当它经过远地点A 时,利用推进器向前喷气使自己的速度减小到沿椭圆运行的速度v 1时,它就从大圆轨道上到了椭圆轨道上.二、变轨问题的两点技巧1.当卫星绕天体做匀速圆周运动时,万有引力提供向心力,由G Mm r 2=m v 2r ,得v =GM r,由此可见轨道半径r 越大,线速度v 越小.当由于某原因速度v 突然改变时,若速度v 突然减小,则F>m v 2r ,卫星将做近心运动,轨迹为椭圆;若速度v 突然增大,则F<m v 2r,卫星将做离心运动,轨道变为椭圆,此时可用开普勒第三定律分析其运动.2.卫星到达椭圆轨道与圆轨道的切点时,卫星受到的万有引力相同,所以加速度相同.三、典例剖析(多选)发射地球同步卫星,先将卫星发射至近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度小于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度点拨:卫星的加速度a =G M r 2,只与卫星到地心的距离r 有关,与卫星的轨道无关.卫星在不同轨道上的角速度ω、线速度v 的大小关系可根据F 万=F 向得出.解析:本题主要考查人造地球卫星的运动,尤其是考查了同步卫星的发射过程,对考生理解物理模型有很高的要求.由G Mm r 2=m v 2r 得,v =GM r .因为r 3>r 1,所以v 3<v 1.由G Mm r 2=mω2r 得,ω=GM r3.因为r 3>r 1,所以ω3<ω1.卫星在轨道1上经Q 点时的加速度为地球引力产生的加速度,而在轨道2上经过Q 点时,也只有地球引力产生加速度,故应相等.同理,卫星在轨道2上经P 点时的加速度等于它在轨道3上经过P 点时的加速度.答案:BD第六节 经典力学的局限性20世纪30年代,爱因斯坦提出了“虫洞”理论.所谓“虫洞”是宇宙中的隧道,它能扭曲空间,可以让原本相隔亿万千米的地方近在咫尺.科学家认为,如果研究成功,人类可能需要重新估计自己在宇宙中的角色和位置.现在,人类被“困”在地球上,要航行到最近的一个星系,动辄需要数百年时间,是目前人类不可能办到的.但是,未来的太空航行如使用“虫洞”,那么一瞬间就能到达宇宙中遥远的地方.“如果你希望知道地球距今一百万年后的样子,我可以告诉你方法.”格林说:“先建好一艘太空船,然后以接近光速的高速度开始飞行.当你在高速飞行的飞船上过了一年返回地球时,走出飞船后你会发现地球上已经过了100万年——你已经到了地球上的未来.”1.了解经典力学的发展历程和伟大成就.2.认识经典力学的局限性和适用范围,了解相对论的时空观.3.了解相对论、量子力学的建立对人类深入认识客观世界的作用.一、从低速到高速1.经典力学的基础是牛顿运动定律,牛顿运动定律和万有引力定律在宏观、低速、弱引力的广阔领域,包括天体力学的研究中,经受了实践的检验,取得了巨大的成就.2.狭义相对论阐述的是物体以接近光的速度运动时所遵从的规律.3.在经典力学中,物体的质量是不变的,而狭义相对论指出,质量要随物体运动速度的增大而增大,即m ,两者在速度远小于光速的条件下是统一的.4.经典力学认为位移和时间的测量与参考系无关,相对论认为,统一过程的位移和时间的测量与参考系有关,在不同的参考系中测量结果不同.二、从宏观到微观1.电子、质子、中子等微观粒子不仅有粒子性,同时还具有波动性,它们的运动规律在很多情况下不能用经典力学来说明,而量子力学能够正确地描述微观粒子的运动规律.2.经典力学的适用范围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.三、从弱引力到强引力1.弱引力与强引力.(1)每一个天体都有一个引力半径,半径的大小由天体的质量决定.(2)当天体间的距离远大于引力半径时,它们间的引力就是弱引力.(3)当天体间的距离远小于引力半径时,它们间的引力就是强引力.2.经典力学与行星轨道的矛盾.按照牛顿的万有引力理论,行星应该沿着一些椭圆轨道做周期性运动,而天文观测表明,行星的轨道并不是严格闭合的,它们的近日点在不断地旋进,如水星的运动.实际观测到的水星的运动情况与爱因斯坦广义相对论的计算结果吻合得很好.规律方法总结应用万有引力定律研究天体运动问题是高中物理的重要内容和高考热点,在分析天体运动问题时,要注意模型构建思想的应用.1.建立质点模型.天体有自然天体(如地球、月亮)和人造天体(如宇宙飞船、人造卫星)两种,无论是哪种天体,不管它的体积有多大,在分析天体问题时,应把研究对象看做质点.人造天体直接看做一个质点,自然天体看做是位于球心位置的一个质点.2.建立匀速圆周运动模型.行星与卫星的绕行轨道大都是椭圆,但用圆周运动知识处理近似圆的椭圆轨道问题,误差不大并且方便解决,因此天体的运动就抽象为质点之间相互绕转的匀速圆周运动.3.常见的匀速圆周运动三种绕行模型.(1)核星模型:这种天体运动模型中,一般由运行天体绕中心天体(视为静止)做匀速圆周运动,即为常规性运动模型.(2)双星模型:在天体模型中,将两颗彼此距离较近的恒星称为双星,它们在相互之间的万有引力作用下,绕两球连线上某点做周期相同的匀速圆周运动.(3)三星模型:宇宙中存在一些离其他恒星较远的三颗星组成的相对稳定的系统,三颗星可能构成稳定的正三角形,也可能在同一直线上.专题一万有引力定律及其应用万有引力定律揭示了自然界中物体间普遍存在的一种基本相互作用规律.将地面上物体的运动与天体的运动统一起来.万有引力定律的具体应用有:根据其规律发现新的天体,测天体质量,计算天体密度,研究天体的运动规律等,同时也是现代空间技术的理论基础.这一部分内容公式变化多,各种关系复杂,要紧紧把握住“万有引力提供向心力”这一点来进行,是高考的热点,也是学习的难点.1.建立两种模型.一是绕行天体的质点模型;二是绕行天体与中心天体之间依靠两者之间万有引力提供向心力的匀速圆周运动模型.2.抓住两条思路.天体问题实际上是万有引力定律、牛顿第二定律、匀速圆周运动规律的综合应用,解决问题的基本思路有两条:(1)利用在中心天体表面或附近,万有引力近似等于重力即G Mm r 2=mg 0(g 0表示天体表面的重力加速度).注意:在研究卫星的问题中,若已知中心天体表面的重力加速度g 0时,常运用GM =g 0R 2作为桥梁,把“地上”和“天上”联系起来.由于这种代换的作用巨大,此式通常称为黄金代换式.(2)利用万有引力提供向心力.即G Mm r 2=ma ,a =v 2r =ω2r =ωv=4π2T 2r. 注意:向心加速度的几种表达形式,要根据具体问题,把这几种表达式代入公式,讨论相关问题.3.澄清几个模糊概念.(1)不同公式和问题中的r 含义不同.如在公式G Mm R 2=mg 中,R 表示地球的半径;在公式G Mm r 2=ma 中,r 是指两天体之间的距离,而a =v 2r =ω2r =ωv=4π2T 2r 中的r 指的是某天体做圆周运动的轨道半径,若轨道为椭圆则是该天体运动所在点处的曲率半径.一般地说,两个r 不相等,只有对于那些在万有引力作用下,围绕某中心天体做圆周运动的天体来说,两个r 才相等.(2)天体半径和卫星轨道半径的区别.天体半径反映天体大小,而卫星轨道半径是卫星绕天体做圆周运动的半径,一般地说,卫星的轨道半径总大于该天体的半径,只有卫星贴近天体表面运行时,可近似认为卫星轨道半径等于天体半径.误区警示:(1)(2)中提到的问题,在有关天体绕行,特别是双星问题以及天体密度的求解中最容易出错,应引起重视.(3)万有引力与重力.物体的重力并不等于地球对物体的万有引力,重力实际上是地球对物体的万有引力的一个分力.但由于两者差距不大所以通常情况下认为两者相等(不考虑地球自转).①地球表面附近,G Mm R 2=mg ,所以g =GM R 2(其中g 为地球附近重力加速度,M 为地球的质量,R 为地球的半径,G 为引力常量).②离地面高h 处,G Mm (R +h )2=mg′,所以g′=GM (R +h )2. ③绕地球运动的物体的重力等于万有引力,且提供向心力:mg′=G Mm r 2=F 向. (4)随地球自转的物体向心加速度和环绕运行的向心加速度不同.放在地球上的物体随地球自转做匀速圆周运动,所以具有向心加速度,该加速度是地球对物体的引力和地面支持力的合力提供的(赤道处G Mm R 2-mg =mω2R),一般来讲是很小的;环绕地球运行的卫星,具有向心加速度,该加速度完全由地球对其的万有引力提供⎝ ⎛⎭⎪⎫G Mm r 2=m v 2r . 两处向心加速度的数值是不同的.如:质量为1 kg 的物体在赤道上随地球自转的向心加速度是0.34 m/s 2,而假设它成为紧贴地面飞行的一颗卫星,其环绕运行的向心加速度为9.8 m/s 2.土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动,其中有两个岩石颗粒A 和B 与土星中心的距离分别为r A =8.0×105 km 和r B =1.2×105 km.忽略所有岩石颗粒间的相互作用(结果可用根式表示).(1)求岩石颗粒A 和B 的线速度之比;(2)求岩石颗粒A 和B 的周期之比;(3)土星探测器上有一物体,在地球上重为10 N ,推算出它距土星中心 3.2×105 km 处受到土星的引力为0.38 N .已知地球半径为6.4×103 km ,请估算土星质量是地球质量的多少倍.解析:(1)设土星质量为M 0,颗粒质量为m ,颗粒距土星中心距离为r ,线速度为v ,根据牛顿第二定律和万有引力定律可得。