八年级实际问题与反比例函数教案(一)
初中八年级初二数学教案 实际问题与反比例函数教学设计(一)
17.2 实际问题与反比例函数(一)教学过程(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.第三步:课堂练习:1.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是v=720t.(2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于240千米/小时.2.有一面积为60的梯形,其上底长是下底长的13,若下底长为x,高为y,则y与x的函数关系是y=90x.3.(中考·长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为(A)4.下列各问题中,两个变量之间的关系不是反比例函数的是(C)A.小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系D.压力为600N时,压强p与受力面积S之间的关系5.面积为2的△ABC,一边长为x,这边上的高为y,则y与x•的变化规律用图象表示大致是(C)开放探究6.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知,•药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,•药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式为:y=34x ,自变量的取值范围是:0<x<•8 ;药物燃烧后y与x的函数关系式为:y=48x;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过30 分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10•分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】有效,因为燃烧时第4分钟含药量开始高于3毫克,当到第16分钟含药量开始低于3毫克,这样含药量不低于3毫克的时间共有16-4=12分钟,故有效.总结反思,拓展升华。
八年级数学下册 17.2.1 实际问题与反比例函数教学案
实际问题与反比例函数(1)【学习目标】1.能灵活运用反比例函数的知识解决实际问题;2.经历“实际问题——建立模型——拓展应用”的进程,进展分析问题,解决问题的能力;3.体验反比例函数是有效地描述现实世界的重要手腕,体验数学的有效性,提高“用数学”的意识.【学习重点】运用反比例函数的意义和性质解决实际问题. 及数形结合及转化的思想方式【学习难点】从实际问题中寻觅变量之间的关系,成立数学模型.【自主学习】(这部份要求同窗们课前独立完成,记下不明白的问题,课堂小组交流讨论)1.温习旧知:1).写出反比例函数的概念:______________________________________2).反比例函数的图象是_________,当k>0时,_____________ _____________________;当k<0时,____________3).有一面积为60的梯形,其下底长是上底长的2倍,假设上底长为x,高为y,那么y与x的函数关系是________4).已知矩形的面积为10,那么它的长y与宽x之间的关系用图象大致可表示为()5).以下各问题中,两个变量之间的关系不是反比例函数的是()A.小明完成100m赛跑时,时刻t(s)与他跑步的平均速度v(m/s)之间的关系;B.三角形形的面积为48cm2,它的底y(cm)与高x(cm)的关系;C.电压为6V时,电流I(A)与电阻R(Ω)之间的关系;D.长方形的周长为12cm,它的长y(cm)与宽x(cm)的关系.几何中的反比例函数关系一、三角形中,当面积S一按时,高h与相应的底边长a关系。
二、矩形中,当面积S一按时,长a与宽b关系。
3、长方体中当体积V一按时,高h与底面积S的关系二、预习疑难摘要:【合作探讨】(这部份要求同窗们课堂完成。
分为小组交流讨论、展现结论、提出问题、解决问题)二、探讨新知(认真阅读教材50—51页内容)(一)例题研讨:一、例1:某煤气公司要在地下修建一个容积为104m3的圆柱形煤气贮存室。
实际问题与反比例函数教学设计
课题:17.2实际问题与反比例函数本节课选自数学人教版八年级下册十七章第二小节第一课时,是在之前学习过反比例函数的概念、图象及其性质之后,进一步引导学生探索生活中的反比例函数的情境,并且运用数学的建模思想将实际问题转化成反比例函数的模型,再借助其图像和性质解决实际问题。
二、教学目标:(一)知识与技能1.能灵活利用反比例函数的知识分析、解决实际问题2.利用反比例函数求出问题中的值3.渗透数形结合思想,提高学生用函数观点解决问题的能力(二)过程与方法在运用反比例函数解决实际问题的过程中,进一步体会数学建模思想,培养学生的数学应用意识,在“实际问题——建立模型——拓展应用”的过程中,发展学生分析问题、解决问题的能力。
(三)情感、态度与价值观运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学生学习数学方的兴趣,同时也进一步培养了学生合作交流的意识。
三、教学重点运用反比例函数的意义和性质解决实际问题四、教学难点从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.难点的突破方法:用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。
教学中要让学生领会这一解决实际问题的基本思路。
五、课型课时:新授课、标准课六、教学手段:多媒体辅助教学七、学法解析1.认知起点:前面已经学过了函数、一次函数、•反比例函数并且积累了一定的经验,以此为基础,加强对反比例函数的应用.2.知识线索:根据反比例函数的图象和性质3.学习方式:以生活情境为素材,采用自主、合作、交流、汇报的方式,解决“数学建模”问题八、学生准备:1.复习已学的反比例函数的概念、图象、性质;2.预习本节课内容,尝试收集有关本节课的情境资料.九、教学过程:(一)复习引入:(出示幻灯片1)k(k为常数,且k≠0)的函数称为反比例函1.反比例函数的概念:形如y=x数,其中x是自变量,y是函数,自变量x的取值范围是不等于零的一切实数。
八年级数学《实际问题与反比例函数》第一课时 教案
[设计意图]
反比例函数在实际问题的应用过程中,研究两个变量之间的关系。能够熟练地由已知一个变量求另一个变量。
[设计意图]
在这个过程中,学生活学活用,培养学生自主探究的学习品质,
活动四归纳小结,内化新知。
1.通过今天的学习,你们都有哪些收获想和同学们交流分享?
2.能和老师谈谈你们的困惑吗?愿意给其他同学以友情提示吗?
(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?
(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?
(2)d=30(cm)
教师出示题组一,提出答题要求,学生回答,师根据学生的表现适时评价。
教师出示题组二1题,学生理解题意,独立解决问题,师巡视指导,帮助学困生。
[设计意图]
1、对所学的知识和所获得的方法进行巩固运用。
学
习
目
标
知识与技能
1.、运用反比例函数的概念和性质解决实际问题。
2、利用反比例函数求出问题中得值。
过程与方法
在运用反比例函数解决实际问题的过程中,进一步体会数学建模思想,培养学生的数学应用意识,在“实际问题——建立模型——拓展应用”的过程中,发展学生分析问题、解决问题的能力。
情感态度与价值观
运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学生学习的兴趣,同时也进一步培养了合作交流的意识。
教学程序
问题与情境
师生互动
媒体使用与教学评价
活动一创设情境,导入新课
问题1:反比例函数图象有哪些性质?
问题2:本节课学习目标:运用反比例函数的图象和性质解决实际问题。
问题3:你吃过拉面吗?你知道在做拉面的过程中渗透着数学知识吗?
反比例函数的实际应用、 实际问题与反比例函数(教案)
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
八年级数学下册17.2实际问题与反比例函数教案1新人教版
17.2实际问题与反比例函数(1)一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题四、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。
你能解释一下小明这样做的道理吗?五、例习题分析例1.见教材第57页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2.见教材第58页分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。
初二数学实际问题与反比例函数教案
初二数学实际问题与反比例函数教案17.2实际问题与反比例函数(1)一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题四、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。
你能解释一下小明这样做的道理吗?五、例习题分析例1.见教材第57页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积 =底面积高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2.见教材第58页分析:此题类似应用题中的工程问题,关系式为工作总量=工作速度工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v 取最小值是多少?例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。
人教版八年级下册17.2:实际问题与反比例函数(1)教学设计
人教版八年级下册17.2:实际问题与反比例函数(1)教学设计一、教学目标1.掌握反比例函数的概念和性质;2.学会用反比例函数解决实际问题;3.培养学生的数学建模能力;4.培养学生的分析问题及解决问题的能力。
二、教学重难点1.重点:学会如何用反比例函数解决实际问题;2.难点:培养学生的数学建模能力。
三、教学过程3.1 课前预习让学生在课前预习教材17.2节内容,理解反比例函数的概念和性质,尝试解决教材中的例题。
3.2 导入新课1.回顾上节课学习的内容,介绍本节课的主要内容:实际问题与反比例函数;2.引入一个实际问题:甲、乙、丙三个人分别用相同的时间完成一项工作,甲一人完成这项工作需要5天,乙一人完成需要6天,丙一人完成需要10天,问三人一起完成这项工作需要多长时间?3.让学生思考这个问题,让学生自己通过数据分析得出结论,引入反比例函数的概念。
3.3 新知讲解和讨论1.讲解反比例函数的概念:若量x与y成反比例关系,则函数$f(x)=\\dfrac{k}{x}$,其中k为常数,称为反比例函数。
2.列举反比例函数的性质,如当x>0时,f(x)>0;当x<k时,f(x)>1等。
3.结合实际问题,引导学生列出模型:假设用t天可以完成这项工作,则有$\\dfrac{5}{t}+\\dfrac{6}{t}+\\dfrac{10}{t}=1$,让学生通过等式解法,解得t=3。
4.让学生再从数据入手,理解反比例函数的性质和特点,探究反比例函数与实际问题之间的联系。
3.4 练习和巩固1.让学生针对教材中的例题和习题进行练习,再次巩固反比例函数的内容和相关知识点。
2.引导学生自己寻找反比例函数与实际问题之间的联系,让学生自己列举实例并解决问题。
3.5 总结和拓展1.帮助学生总结反比例函数的相关内容,强化学生对反比例函数的理解和运用;2.引导学生拓展更广泛的实际问题,让学生了解如何应用反比例函数解决更多的实际问题。
实际问题和反比例函数(1)
课题:23.2实际问题与反比例函数(1)编写人:郭金凤审核人:王丽校对人:李波编号:5学习目标:1、灵活列反比例函数表达式解决现实世界中的实际问题.2、能综合利用几何、方程、反比例函数的知识解决一些实际问题.学习重点:1、利用反比例函数的知识分析、解决实际问题。
学习难点:2、分析实际问题中的数量关系,正确写出函数解析式。
思维导航:1、先要弄清题目中的基本数量关系,将实际问题转化为数学问题,再看各变量间满足什么样的关系式,建立数学模型。
2、要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围。
本节课所用的数量关系:圆柱体的体积=底面积×高工作总量=工作效率×工作时间矩形(即长方形)面积=长×宽学习过程:一、自学环节:【活动1】问题:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)?分析:圆柱形煤气储存室的容积、底面积、深度之间的等量关系为:根据这个等量关系得到底面积S与其深度d的函数关系式为:解:自学方法小结:【活动2】问题:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载宪毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?分析:根据装货速度×装货时间=货物总量,可以求出轮船装载货物总量,再根据卸货速度=货物总量÷卸货时间,得到v与t的函数式。
八年级数学下册 17.2实际问题与反比例函数(1)教案 人教新课标版
解:(1) 设轮船上的货物总量为k吨.
∴
∵当v=30时,t=8
∴k=30×8=240
∴ (t>0)
(2)法一、∵当t=5时, (先求出界值)
又∵在第一象限,v随t的增大而减小
∴当t≤5时,v≥48
∴若货物在不超过5天内卸完,平均每天至少要卸48吨货物.
法二、∵ ∴
∵t≤5 ∴
∵v>0∴v≥48
例1、市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.
(1) 储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2) 公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?
(3) 当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石. 为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要 (保留两位小数)?
∴若货物在不超过5天内卸完,平均每天至少要卸48吨货物.
注:1、本题的⑴与例1不同,需用待定系数法来确定反比例函数中的k,而例1已知k的值.
2、第(1)问的图象只在第一象限.
3、第⑵问的方法一利用的是函数的增减性,方法二是根据题目中的不等关系列不等式.
三、课堂练习
书P54练习1、2、3
四、课ቤተ መጻሕፍቲ ባይዱ小结
1、把实际问题转化为数学问题,充分体现了数学知识来源于实际生活,又服务于实际生活.
2、求函数解析式的方法:①待定系数法(如例2);②根据实际意义列函数解析式(如例1).
3、实际问题中,注意求自变量的取值范围,并注意图象的位置.
五、作业
1、书P54~55习题2、3、6
2、目测
人教版八年级下册17.2:实际问题与反比例函数(1)课程设计
人教版八年级下册17.2:实际问题与反比例函数(1)课程设
计
一、知识点概述
本节课主要涉及到反比例函数的概念、图像及实际应用问题。
反比例函数指的是一种特殊的函数,在该函数中,自变量和因变量呈反比例关系,即当自变量增加时,因变量减少,当自变量减少时,因变量增加。
在实际生活中,很多场景下都可用反比例函数进行建模,例如人口增长、电路电阻、每公里油耗等等。
二、教学目标
1.理解反比例函数的概念;
2.能够画出反比例函数的图像;
3.能够根据实际问题建立反比例函数模型;
4.能够通过反比例函数求解实际问题。
三、教学重点难点
•教学重点:反比例函数的概念,图像及实际应用问题;
•教学难点:如何根据实际问题建立反比例函数模型。
四、教学过程设计
4.1 导入新知识
通过引入一个生活问题,例如公路上行车的时间与速度之间的关系,引导学生思考速度与时间的关系,由此引出反比例函数的概念。
1。
反比例函数教案6篇
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
2019-2020年八年级数学下册 17.2 实际问题与反比例函数(一)教案
解得x= (cm).
当矩形的宽为4cm,求长为多少?即当x=4cm时,y=?cm,则
把x=4cm代入y= 中,
y= =5(cm).
所以当矩形的长为12 cm时,宽为 cm;当矩形的宽为4cm时,其长为5cm.
(3)y= 此反比例函数在第一象限y随x的增大而减小,如果矩形的长不小于8cm,
即y≥8 cm,所以 ≥8 cm,因为x>0,所以20≥8x.x≤ (cm).
分析:(1)药物燃烧时,由图象可知函数是的正比例函数,设,将点
(8,6)代人解析式,求得,自变量0<≤8;药物燃烧后,由图象看出是的反比例函数,设,用待定系数法求得
(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因此,只能在燃烧后的某一时间进入办公室,先将药含量=1.6代入,求出=30,根据反比例函数的图象与性质知药含量随时间的增大而减小,求得时间至少要30分钟
师:从此活动中,我们可以发现,生活中存在着大量的反比例函数的现实.从这节课开始我们就来学习“17.2实际问题与反比例函数”,你会发现有了反比例函数,很多实际问题解决起来会很方便.
设计意图:
展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣.
师生行为:
学生分四个小组进行探讨、交流.领会实际问题的数学煮义,体会数与形的统一.
即宽至多是 m.
四师生行为
由学生独立完成,教师根据学生完成情况及时给予评价.
生:解:(1)根据矩形的面积公式,我们可以得到20=xy.
④在直角坐标系中,作出相应的函数图象.
⑤请利用图象对(2)(3)作出直观解释,并与同伴交流.
生:在物理中,我们曾学过,当人和木板对湿地的压力一定时,随着木板面积S的增大,人和木板对地面的压强p将减小.
《实际问题与反比例函数》教案
《实际问题与反比例函数》教案课标要求能用反比例函数解决简单实际问题.教学目标知识与技能:1.能灵活列出表达式解决一些实际问题;2.能综合利用几何、方程、反比例函数的知识解决实际问题.过程与方法:1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力;3.初步形成自己构建数学模型的能力.情感、态度与价值观:1.积极参与交流,并积极发表自己的见解,相互促进;2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,体验数学的实用性.教学重点综合运用反比例函数的解析式、图象和性质解决实际问题.教学难点综合运用反比例函数的知识解决较复杂的实际问题.教学流程一、情境引入问题:反比例函数kyx=的图象是什么样的?它有什么性质?引出课题:前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中的作用.今天,我们进一步探讨如何利用反比例函数解决实际问题.二、探究归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd =104,所以S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得410 500d=解得:d=20(m)答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)把d=15代入410Sd=,得41015S=解得:S≈666.67(m2)答:当储存室的深度为15 m时,底面积约为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240vt=.(2)把t=5代入240vt=,得240485v==(吨).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数240vt=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.问题1:公元前 3 世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1200×0.5,所以F关于l的函数解析式为600Fl=.当l=1.5 m时,6004001.5F==(N).对于函数600Fl=,当l=1.5 m 时,F=400N,此时杠杆平衡.因此,撬动石头至少需要400N的力.(2)当14002002F=⨯=时,由600 200l=得6003 200l==(m),3-1.5=1.5(m).对于函数600Fl=,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.追问:在我们使用撬棍时,为什么动力臂越长越省力?问题2:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=2UR,或R=2UP.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围多少?解:(1)根据电学知识,当U=220时,得2220PR=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R 最小值=110代入2220P R =,得P 最大值=2220440110=(W ); 把电阻R 最大值=220代入2220P R =,得P 最小值=2220220220=(W ); 因此用电器功率的范围为220~440W .追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节. 三、应用提高1.如图,某玻璃器皿制造公司要制造一种容积为1L (1L =1dm 3)的圆锥形漏斗. (1)漏斗口的面积S (单位:dm 2)与漏斗的深度d 有怎样的函数关系? (2)如果漏斗口的面积为100cm 2,则漏斗的深为多少?答案:(1)3S d=(2)30 cm 2.一司机驾驶汽车从甲地去乙地,他以80 km /h 的平均速度用6 h 到达目的地. (1)当他按原路匀速返回时,汽车的速度v 与时间t 有怎样的函数关系? (2)如果该司机必须在4h 之内回到甲地,那么返程时的平均速度不能小于多少? 答案:(1)480V t=(2)120 km /h 3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m 2.(1)所需的瓷砖块数n 与每块瓷砖的面积S (单位:m 2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm 2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)3510n S⨯=(2)250000块,250000块,125000块四、体验收获 说一说你的收获.1.我们如何建立反比例函数模型,并解决实际问题?2.在这个过程中要注意什么问题?五、拓展提升1.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)木板面积S 与人和木板对地面的压强p 有怎样的函数关系?(2)当木板面积为0.2 m2时,压强是多少?(3)要求压强不超过6000 Pa,木板面积至少要多大?答案:(1)600(0)p SS=>(2)3000 Pa(3)至少0.1m22.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式.(2)蓄电池的电压是多少?(3)完成下表:范围?答案:(1)36IR=(2)36V(3)12,9,7.2,6,5.14,4.5,4,3.6(4)R≥3.6六、课内检测1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是()答案:C2.在某一电路中,电源电压U 保持不变,电流I (A )与电阻R (Ω)之间的函数关系如图所示. (1)写出I 与R 之间的函数解析式;(2)结合图象回答当电路中的电流不超过12 A 时,电路中电阻R 的取值范围是多少Ω?答案:(1)36I R=(2)电阻R 大于或等于3 Ω 3.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg /m 3)也会随之变化.已知密度ρ与体积V 是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)求V =9 m 3时,二氧化碳的密度ρ.答案:(1)9.9Vρ=(2)1.1 kg /m 3 七、布置作业必做题:教材16页习题26.2第2、3、4、7题. 选做题:教材17页习题26.2第9题. 附:板书设计教学反思:。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:(1)理解反比例函数的定义;(2)掌握反比例函数的性质;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用图形演示反比例函数的特点;(3)运用数学建模的方法,解决生活中的反比例函数问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生的团队协作和交流能力。
二、教学重点与难点1. 教学重点:(1)反比例函数的定义;(2)反比例函数的性质;(3)反比例函数在实际问题中的应用。
2. 教学难点:(1)反比例函数图形的特点;(2)解决实际问题时,如何建立反比例函数模型。
三、教学过程1. 导入新课:(1)引导学生回顾正比例函数的知识;(2)通过提问,激发学生对反比例函数的好奇心。
2. 自主学习:(1)让学生阅读教材,理解反比例函数的定义;(2)学生相互讨论,总结反比例函数的性质。
3. 课堂讲解:(1)利用图形演示反比例函数的特点;(2)讲解反比例函数在实际问题中的应用。
4. 课堂练习:(1)布置一些反比例函数的题目,让学生独立完成;(2)挑选学生回答,总结解题思路。
5. 课后作业:(1)巩固反比例函数的知识;(2)培养学生运用反比例函数解决实际问题的能力。
四、教学评价1. 课堂讲解:评价学生对反比例函数的理解程度;2. 课堂练习:评价学生运用反比例函数解决问题的能力;3. 课后作业:评价学生对反比例函数知识的掌握情况。
五、教学资源1. 教材:提供反比例函数的相关知识;2. 图形演示软件:帮助学生直观地理解反比例函数的特点;3. 实际问题案例:培养学生运用反比例函数解决实际问题的能力。
六、教学策略1. 实例引导:通过展示实际生活中的反比例关系,如人口增长、radioactive decay等,让学生直观地感受反比例函数的应用。
2019-2020学年八年级数学下册 实际问题与反比例函数教案 新人教版.doc
2019-2020学年八年级数学下册实际问题与反比例函数教案新人教版第一课时一、教学设计思想本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。
首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。
接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。
分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
二、教学目标知识与技能1.能灵活列反比例函数表达式解决一些实际问题.2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.情感态度与价值观体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
三、教学重难点重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
四、教学方法启发引导、合作探究五、教学媒体课件六、教学过程设计(一)创设问题情境,引入新课有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的就是为了应用。
(板书课题)请看下面的问题(媒体显示):问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
问题思考:(1)请你解释他们这样做的道理。
m)的变化,人和木板对地(2)当人和木板对湿地的压力一定时,随着木板面积S(2面的压强P(Pa)将如何变化?(3)如果人和木板对湿地的压力合计600N,那么:①用含S的代数式表示p,p是S的反比例函数吗?为什么?m时,压强是多少?②当木板面积为0.22③如果要求压强不超过6000Pa,木板面积至少要多大?④在直角坐标系中,作出相应的函数图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17·2实际问题与反比例函数(一)
教学目标:
1、 能灵活列反比例函数解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
3、经历分析实际问题中变量间的关系,建立反比例函数模型,进而解决问题。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量间的关系。
关键是充分运用所学知识分析实际问题,实际情况,建立函数模型,教学时注意分析过程,渗透数形结合思想。
教学过程:
一、 创设问题情景,引入新课
活动1
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务的情境。
(1)请你解释他们这样做的道理。
(2)当人和木板对湿地的压力一定时,随着木板面积S (m 2)的变化,人和木板对地面的压强p (Pa )将如何变化?
(3)如果人和木板对湿地的压力合计600N ,那么?
①用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么?
②当木板面积为0.2m 2时,压强是多少?
③如果要求压强不超过6000 Pa ,木板面积至少要多大?
④在直角坐标系中作出相应的函数图象。
⑤请利用函数图象对(2)(3)作出直观解释,并与同伴交流。
师生行为:学生分成四个小组进行探讨、交流,领会实际问题的数学意义,体会数与形的统一。
教师可引导、启发学生解决实际问题。
在此活动中教师应重点关注学生:
①能灵活列反比例函数表达式解决一些实际问题;
②能积极地与小组成员合作交流;
③能否有强烈的求知欲。
分析:
在物理中,我们曾学过,当人和木板对湿地的压力一定时,随着木板面积S 的增大,人和木板对地面的压强p 将减小。
在(3)中,①()06000>=S S
p p 是S 的反比例函数;②当S =0.2m 2时,p=3000Pa ;③如果要求压强不超过6000 Pa ,根据反比例函数的性质,木板面积至少为0.1m 2;那么,为什么作图象在第一象限呢?因为物理学中,S >0,p>0。
总结:从此活动中我们可以发现,生活中存在大量反比例函数的现实。
从这节课开始我们就来学习“17·2实际问题与反比例函数”,你会发现有了反比例函数,很多实际问题解决起来很方便。
二、讲授新课
活动2
【例1】 市煤气公司要在地下修建一个容积为104m 3的圆柱形储存室。
(1) 储存室的底面积S (单位:m 2)与其深度(单位:m )有怎样的函数关系?
(2) 公司决定将储存室的底面积S 定为500m 2,施工队施工时应该向下挖进多深?
(3) 当施工队按(2)中的计划挖进到15m 时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计
划把储存室的深改为15m ,相应的储存室的底面积应改为多少才能满足需要(保留两位小数)。
师生行为:先由学生独立思考,然后小组内合作交流,教师和学生合作完成此活动。
在此活动中教师应重点关注学生:
①能否从实际问题中抽象出函数模型;
②能否用函数模型解释实际问题中的现象;
③能否积极主动阐述自己的见解。
分析:我们知识圆柱的容积是底面积×深度,而现在容积一定为104m 3。
所以S ·d =104。
变形就可得到底面积S 与其深度d 的函数关系,即d
S 4
10=。
所以储存室的底面积S 是其深度d 的反比例函数。
根据函数d
S 4
10=,我们知道给出一个d 的值就有唯一的S 值和它相对应,反过来,知道S 的一个值,也可以求出的d 值。
题中告诉我们“公司决定将储存室的底面积S 定为500m 2”,即,“施工队施工时应该向下挖进多深”实际上
就是求当时S=500m 2时,d=?。
根据d S 410=得d
410500=,解得d=20。
即施工队施工时应该向下挖进20米。
当施工队按(2)中的计划挖进到地下15m 时,碰上了坚硬的岩石。
为了节约建设资金,公司临时改变计划,把储存室的深度改为15m ,即d=15m ,相应的储存室的底面积应改为多少才能满足需要:即当d=15m ,S =?呢? 根据d
S 4
10=,把d=15代入此式子,得67.66615104≈=S
当储存室的深为15m 时,储存室的底面积应改为666.67m 2才能满足需要。
我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数的数学模型求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解。
三、巩固提高
活动3
练习P61. 1
师生行为:
由两位学生板演,其余学生在练习本上完成,老师可巡视学生完成,情况,对“学困生”要提供一定的帮助,
活动4
练习:(1)已知某矩形的面积为20cm 2,写出其长y 与守宽x 之间的函数表达式;
(2)当矩形的长为12cm 时,求宽为多少?当矩形的宽为4cm ,求其长为多少?
(3)如果要求矩形的长不小于8cm ,其宽至多要多少?
师生行为:由学生独立完成,教师根据学生完成情况及时给予评价。
四、课时小结
本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,面解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。